Package ‘alabama’

January 15, 2026
Type Package
Title Constrained Nonlinear Optimization

Description Augmented Lagrangian Adaptive Barrier Minimization
Algorithm for optimizing smooth nonlinear objective functions
with constraints. Linear or nonlinear equality and inequality
constraints are allowed.

Depends R (>= 4.0), numDeriv

Version 2025.1.0

Date 2025-12-29

Maintainer Ravi Varadhan <ravi.varadhan@jhu.edu>
License GPL (>=2)

LazyLoad yes

Repository CRAN

NeedsCompilation no

Date/Publication 2026-01-15 06:10:43 UTC

Author Ravi Varadhan [aut, cre] (with contributions from Gabor Grothendieck)

Contents
auglag e

Index

2 auglag

alabama Constrained Nonlinear Optimization

Description

Augmented Lagrangian and Adaptive Barrier Minimization Algorithm for optimizing smooth non-
linear objective functions with constraints. Linear or nonlinear equality and inequality constraints
are allowed.

Details
Package: alabama
Type: Package
Version: 2023.1.0
Date: 2023-08-21
License: GPL-2 or greater
LazyLoad: yes

Author(s)

Ravi Varadhan (with contributions from Gabor Grothendieck)

Ravi Varadhan <ravi.varadhan @jhu.edu>

See Also

constrOptim, spg

auglag Nonlinear optimization with constraints

Description

Augmented Lagrangian Minimization Algorithm for optimizing smooth nonlinear objective func-
tions with constraints. Linear or nonlinear equality and inequality constraints are allowed.

Usage

auglag(par, fn, gr, hin, hin.jac, heq, heq. jac,
control.outer=list(), control.optim = list(), ...)

auglag 3

Arguments

par Starting vector of parameter values. Any initial vector, even those violating
inequality constraints, may be specified. This is in contrast to constrOptim.nl
which requires "feasible" initial values with respect to inequality constraints

fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point (see details).

gr The gradient of the objective function fn evaluated at the argument. This is a
vector-function that takes a real vector as argument and returns a real vector
of the same length. It defaults to "NULL", which means that gradient is eval-
uated numerically. Computations are dramatically faster in high-dimensional
problems when the exact gradient is provided. See *Example*.

hin a vector function specifying inequality constraints such that hin[j] > O for all j

hin.jac Jacobian of hin. If unspecified, it will be computed using finite-difference, but
computations will be faster if specified.

heq a vector function specifying equality constraints such that heq[j] = 0 for all j

heq. jac Jacobian of heq. If unspecified, it will be computed using finite-difference, but

computations will be faster if specified.

control.outer A list of control parameters to be used by the outer loop in constrOptim.nl.
See *Details* for more information.

control.optim A list of control parameters to be used by the unconstrained optimization algo-
rithm in the inner loop. Identical to that used in optim or in n1Iminb.

Additional arguments passed to fn, gr, hin, heq. All of them must accept any
specified arguments, either explicitly or by having a ...argument, but they do
not need to use them all.

Details

Argument control.outer is a list specifing any changes to default values of algorithm control
parameters for the outer loop. Note that the names of these must be specified completely. Partial
matching will not work. The list items are as follows:

lam@: Initial value for the Lagrangian parameter.
sig@: A scaling parameter for penalty term that is augmented to the Lagrangian.

eps: Tolerance for convergence of outer iterations of the barrier and/or augmented lagrangian algo-
rithm

itmax: Maximum number of outer iterations.
ilack.max: Maximum number of outer iterations where no change in parameters is tolerated.

trace: A logical variable indicating whether information on outer iterations should be printed
out. If TRUE, at each outer iteration information is displayed on: (i) how well the inequality and
equalities are satisfied, (ii) current parameter values, and (iii) current objective function value.

method: Unconstrained optimization algorithm for inner loop optimization. User can specify any
algorithm in optim(). The default is the "BFGS" variable metric method. However, the user can

4 auglag

also invoke the n1minb() algorithm by specifying method="nlminb", which can often perform better
than "BFGS."

NMinit: A logical variable indicating whether "Nelder-Mead" algorithm should be used in optim()
for the first outer iteration.

i.scale: A vector of length equal to number of inequalities that may be used to scale the inequali-
ties or it can be a scalar in which case all the inequalities are scaled by the same value.

e.scale: A vector of length equal to number of equalities that may be used to scale the equalities
or it can be a scalar in which case all the equalities are scaled by the same value.

kkt2.check: A logical variable (TRUE/FALSE) indicating whether the second-order KKT condi-
tion should be checked. Deafult is TRUE. It may be set to FALSE in problems where the Hessian
computation can b etime consuming.

Value

A list with the following components:

par Parameters that optimize the nonlinear objective function, satisfying constraints,
if convergence is successful.

value The value of the objective function at termination.

counts A vector of length 2 denoting the number of times the objective fn and the gr

were evaluated, respectively.

convergence An integer code indicating type of convergence. @ indicates successful conver-
gence. Positive integer codes indicate failure to converge.

outer.iterations
Number of outer iterations

lambda Values of the Lagrangian parameter. This is a vector of same length as the total

number of inequalities and equalities. It must be zero for inactive inequalities;
non-negative for active inequalities; and can have any sign for equalities.

sigma Value of augmented penalty parameter for the quadratic term

gradient Gradient of the augmented Lagrangian function at convergence. It should be
small.

hessian Hessian of the augmented Lagrangian function at convergence. It should be
positive (negative) definite for minimization (maximization)

ineq Values of inequlaity constraints at convergence. All of them must be non-
negative

equal Values of equlaity constraints at convergence. All of them must be close to zero.

kkt1 A logical variable indicating whether or not the first-order KKT conditions were
satisfied.

kkt2 A logical variable indicating whether or not the second-order KKT conditions

were satisfied.

Author(s)

Ravi Varadhan, Center on Aging and Health, Johns Hopkins University.

auglag 5

References

Lange K, Optimization, 2004, Springer.

Madsen K, Nielsen HB, Tingleff O, Optimization With Constraints, 2004, IMM, Technical Univer-
sity of Denmark.

See Also

See Also constrOptim.nl, nlminb, optim.

Examples

fn <- function(x) (x[1] + 3*x[2] + x[31)*2 + 4 * (x[1] - x[2])*2

gr <- function(x) {

g <- rep(NA, 3)

g[1] <= 2%x(x[1] + 3*x[2] + x[31) + 8x(x[1]1 - x[21)
gl2] <= 6x(x[1] + 3%x[2] + x[3]) - 8x(x[1] - x[2])
g[3] <= 2x(x[1] + 3*x[2] + x[31)

g

3

heq <- function(x) {

h <- rep(NA, 1)

h[1] <- x[1] + x[2] + x[3] - 1
h

3

heq.jac <- function(x) {

j <= matrix(NA, 1, length(x))
jO1, 1 <=c(1, 1, 1D

]

3

hin <- function(x) {

h <- rep(NA, 1)

h[1] <- 6*%x[2] + 4xx[3] - x[1]*3 - 3
h[2] <- x[1]

h[3] <- x[2]

h[4] <- x[3]

h

3

hin.jac <- function(x) {
j <- matrix(NA, 4, length(x))
jO1, 1 <= c(-3*x[1]*2, 6, 4)

jl2, 1 <= c(1, 0, 0)
j[3, 1 <-c(o, 1, @)
jl4, 1 <= c(o, 0, 1)

J

6 constrOptim.nl

}

Note: “auglag' accepts infeasible starting values

#

po <- runif(3)

ans <- auglag(par=p@, fn=fn, gr=gr, heqg=heq, heq.jac=heq.jac, hin=hin, hin.jac=hin. jac)
ans

Not specifying the gradient and the Jacobians
set.seed(12)

po <- runif(3)

ans2 <- auglag(par=p@, fn=fn, heg=heq, hin=hin)
ans?2

Using "nlminb” algorithm
ans3 <- auglag(par=p@, fn=fn, heg=heq, hin=hin, control.outer=list(method="nlminb"))
ans3

Turning off the second-order KKT condition check
ans4 <- auglag(par=p@, fn=fn, heg=heq, hin=hin, control.outer=1ist(kkt2.check=FALSE))
ans4

constrOptim.nl Nonlinear optimization with constraints

Description

Augmented Lagrangian Adaptive Barrier Minimization Algorithm for optimizing smooth nonlinear
objective functions with constraints. Linear or nonlinear equality and inequality constraints are
allowed.

Usage

constrOptim.nl(par, fn, gr = NULL,
hin = NULL, hin.jac = NULL, heq = NULL, heq.jac = NULL,

control.outer=list(), control.optim = list(), ...)
Arguments
par starting vector of parameter values; initial vector must be "feasible"
fn Nonlinear objective function that is to be optimized. A scalar function that takes

a real vector as argument and returns a scalar that is the value of the function at
that point (see details).

gr The gradient of the objective function fn evaluated at the argument. This is a
vector-function that takes a real vector as argument and returns a real vector
of the same length. It defaults to "NULL", which means that gradient is eval-
uated numerically. Computations are dramatically faster in high-dimensional
problems when the exact gradient is provided. See *Example*.

constrOptim.nl 7

hin a vector function specifying inequality constraints such that hin[j] > O for all j

hin. jac Jacobian of hin. If unspecified, it will be computed using finite-difference, but
computations will be faster if specified.

heq a vector function specifying equality constraints such that heq[j] = 0 for all j

heq. jac Jacobian of heq. If unspecified, it will be computed using finite-difference, but

computations will be faster if specified.

control.outer A list of control parameters to be used by the outer loop in constrOptim.nl.
See *Details* for more information.

control.optim A list of control parameters to be used by the unconstrained optimization algo-
rithm in the inner loop. Identical to that used in optim.

Additional arguments passed to fn, gr, hin, heq. All of them must accept any
specified arguments, either explicitly or by having a ...argument, but they do
not need to use them all.

Details

Argument control.outer is a list specifing any changes to default values of algorithm control
parameters for the outer loop. Note that the names of these must be specified completely. Partial
matching will not work. The list items are as follows:

mu@: A scaling parameter for barrier penalty for inequality constraints.
sig0: A scaling parameter for augmented lagrangian for equality constraints

eps: Tolerance for convergence of outer iterations of the barrier and/or augmented lagrangian algo-
rithm

itmax: Maximum number of outer iterations.

trace: A logical variable indicating whether information on outer iterations should be printed
out. If TRUE, at each outer iteration information is displayed on: (i) how well the inequality and
equalities are satisfied, (ii) current parameter values, and (iii) current objective function value.

method: Unconstrained optimization algorithm in optim() to be used; default is the "BFGS" variable
metric method.

NMinit: A logical variable indicating whether "Nelder-Mead" algorithm should be used in optim()
for the first outer iteration.

Value

A list with the following components:

par Parameters that optimize the nonlinear objective function, satisfying constraints,
if convergence is successful.

value The value of the objective function at termination.

convergence An integer code indicating type of convergence. @ indicates successful conver-

gence. Positive integer codes indicate failure to converge.

message Text message indicating the type of convergence or failure.
outer.iterations
Number of outer iterations

8 constrOptim.nl

lambda Value of augmented Lagrangian penalty parameter

sigma Value of augmented Lagrangian penalty parameter for the quadratic term

barrier.value Reduction in the value of the function from its initial value. This is negative in
maximization.

K Residual norm of equality constraints. Must be small at convergence.

counts A vector of length 2 denoting the number of times the objective fn and the gr

were evaluated, respectively.

Author(s)

Ravi Varadhan, Center on Aging and Health, Johns Hopkins University.

References

Lange K, Optimization, 2004, Springer.

Madsen K, Nielsen HB, Tingleft O, Optimization With Constraints, 2004, IMM, Technical Univer-
sity of Denmark.

See Also

See Also auglag, constrOptim.

Examples

fn <= function(x) (x[1] + 3*x[2] + x[31)"2 + 4 x (x[1] - x[2])*2

gr <- function(x) {

g <- rep(NA, 3)

g[1] <= 2%(x[1] + 3*x[2] + x[3]) + 8x(x[1]1 - x[21)
g[2] <= 6%x(x[1] + 3*xx[2] + x[3]) - 8x(x[1]1 - x[2])
gl3] <- 2%x(x[1] + 3*x[2] + x[31)

g

3

heq <- function(x) {

h <- rep(NA, 1)

h[1] <- x[1] + x[2] + x[3] - 1
h

3

heq.jac <- function(x) {

j <- matrix(NA, 1, length(x))
jO1, 1 <=c(, 1, 1D

J

3

hin <- function(x) {
h <- rep(NA, 1)
h[1] <- 6*%x[2] + 4%x[3] - x[1]1*3 - 3

constrOptim.nl 9

h[2] <- x[1]
h[3] <- x[2]
h[4] <- x[3]
h
3

hin.jac <- function(x) {

j <- matrix(NA, 4, length(x))
301, 1 <= c(-3*x[1]*2, 6, 4)
jl2, 1 <-c(, 0, 0)

ji3, 1 <-c(o, 1, 0)

jl4, 1 <= c(o, 0, 1)

]

3

set.seed(12)
po <- runif(3)
ans <- constrOptim.nl(par=p@, fn=fn, gr=gr, heg=heq, heq.jac=heq.jac, hin=hin, hin. jac=hin. jac)

Not specifying the gradient and the Jacobians
set.seed(12)

po <- runif(3)

ans2 <- constrOptim.nl(par=p@, fn=fn, heg=heq, hin=hin)

Index

* optimize
alabama, 2
auglag, 2
constrOptim.nl, 6

adpbar (constrOptim.nl), 6
alabama, 2

alabama (constrOptim.nl), 6
alabama-package (alabama), 2
auglag, 2, 8

auglagl (auglag), 2

auglag? (auglag), 2

auglag3 (auglag), 2

augpen (constrOptim.nl), 6

constrOptim, 8
constrOptim.nl, 5,6

nlminb, 5

optim, 5

10

	alabama
	auglag
	constrOptim.nl
	Index

