
Package ‘admiraldev’
January 14, 2026

Type Package

Title Utility Functions and Development Tools for the Admiral Package
Family

Version 1.4.0

Description Utility functions to check data, variables and conditions for
functions used in 'admiral' and 'admiral' extension packages.
Additional utility helper functions to assist developers with
maintaining documentation, testing and general upkeep of 'admiral' and
'admiral' extension packages.

License Apache License (>= 2)

URL https://pharmaverse.github.io/admiraldev/,

https://github.com/pharmaverse/admiraldev/

BugReports https://github.com/pharmaverse/admiraldev/issues

Depends R (>= 4.1)

Imports cli (>= 3.6.2), dplyr (>= 1.1.1), glue (>= 1.6.0), lifecycle
(>= 0.1.0), lubridate (>= 1.7.4), purrr (>= 0.3.3), rlang (>=
0.4.4), roxygen2 (>= 7.0.0), stringr (>= 1.4.0), tidyr (>=
1.0.2), tidyselect (>= 1.1.0), withr

Suggests diffdf, DT, htmltools, knitr, methods, pkgdown, rmarkdown,
spelling, testthat (>= 3.2.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

NeedsCompilation no

Author Ben Straub [aut, cre],
Stefan Bundfuss [aut] (ORCID: <https://orcid.org/0009-0005-0027-1198>),
Arianna Cascone [aut] (ORCID: <https://orcid.org/0000-0001-5948-2831>),
Jeffrey Dickinson [aut],

1

https://pharmaverse.github.io/admiraldev/
https://github.com/pharmaverse/admiraldev/
https://github.com/pharmaverse/admiraldev/issues
https://orcid.org/0009-0005-0027-1198
https://orcid.org/0000-0001-5948-2831

2 Contents

Ross Farrugia [aut],
Fanny Gautier [aut],
Edoardo Mancini [aut] (ORCID: <https://orcid.org/0009-0006-4899-8641>),
Gordon Miller [aut],
Daniel Sjoberg [aut] (ORCID: <https://orcid.org/0000-0003-0862-2018>),
Stefan Thoma [aut] (ORCID: <https://orcid.org/0000-0002-5553-9252>),
F. Hoffmann-La Roche AG [cph, fnd],
GlaxoSmithKline LLC [cph, fnd]

Maintainer Ben Straub <ben.x.straub@gsk.com>

Repository CRAN

Date/Publication 2026-01-14 08:20:02 UTC

Contents
add_suffix_to_vars . 3
arg_name . 4
assert_atomic_vector . 5
assert_character_scalar . 6
assert_character_vector . 8
assert_data_frame . 10
assert_date_var . 12
assert_date_vector . 14
assert_expr . 15
assert_expr_list . 17
assert_filter_cond . 18
assert_function . 20
assert_integer_scalar . 22
assert_list_element . 23
assert_list_of . 26
assert_logical_scalar . 27
assert_named . 29
assert_numeric_vector . 30
assert_one_to_one . 32
assert_param_does_not_exist . 34
assert_s3_class . 35
assert_same_type . 37
assert_symbol . 38
assert_unit . 40
assert_vars . 42
assert_varval_list . 44
backquote . 46
capture_output . 47
contains_vars . 48
convert_dtm_to_dtc . 48
dataset_vignette . 49
deprecate_inform . 50
dquote . 51

https://orcid.org/0009-0006-4899-8641
https://orcid.org/0000-0003-0862-2018
https://orcid.org/0000-0002-5553-9252

add_suffix_to_vars 3

enumerate . 52
expect_dfs_equal . 52
expr_c . 54
extract_vars . 54
filter_if . 55
friendly_type_of . 56
get_constant_vars . 57
get_dataset . 57
get_duplicates . 58
get_new_tmp_var . 59
get_source_vars . 60
is_auto . 60
is_order_vars . 61
is_valid_dtc . 62
parse_code . 62
process_set_values_to . 63
rdx_roclet . 64
remove_tmp_vars . 67
replace_symbol_in_expr . 68
replace_values_by_names . 69
squote . 70
suppress_warning . 70
valid_time_units . 71
vars2chr . 71
warn_if_incomplete_dtc . 72
warn_if_inconsistent_list . 73
warn_if_invalid_dtc . 74
warn_if_vars_exist . 75
what_is_it . 76
%notin% . 76
%or% . 77

Index 78

add_suffix_to_vars Add a Suffix to Variables in a List of Expressions

Description

Add a suffix to variables in a list of expressions

Usage

add_suffix_to_vars(order, vars, suffix)

4 arg_name

Arguments

order List of expressions

Permitted values list of variables or desc(<variable>) function calls created
by exprs(), e.g., exprs(ADT, desc(AVAL))

Default value none

vars Variables to change

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

suffix Suffix

Permitted values a character scalar, i.e., a character vector of length one
Default value none

Value

The list of expression where for each element the suffix (suffix) is added to every symbol specified
for vars

See Also

Helpers for working with Quosures: expr_c(), replace_symbol_in_expr(), replace_values_by_names()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)

add_suffix_to_vars(exprs(ADT, desc(AVAL), AVALC), vars = exprs(AVAL), suffix = ".join")

arg_name Extract Argument Name from an Expression

Description

[Deprecated]
This function is deprecated, please use rlang::caller_arg() instead.

Usage

arg_name(expr)

Arguments

expr An expression created inside a function using substitute()

Default value none

assert_atomic_vector 5

Value

character vector

See Also

Other deprecated: %or%(), enumerate(), friendly_type_of(), valid_time_units(), what_is_it()

assert_atomic_vector Is an Argument an Atomic Vector?

Description

Checks if an argument is an atomic vector

Usage

assert_atomic_vector(
arg,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_atomic_vector",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.

6 assert_character_scalar

Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not an atomic vector. Otherwise, the input is returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(x) {
assert_atomic_vector(x)

}

example_fun(1:10)

try(example_fun(list(1, 2)))

assert_character_scalar

Is an Argument a Character Scalar (String)?

Description

Checks if an argument is a character scalar and (optionally) whether it matches one of the provided
values.

Usage

assert_character_scalar(
arg,
values = NULL,
case_sensitive = TRUE,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_character_scalar",
call = parent.frame()

)

assert_character_scalar 7

Arguments

arg A function argument to be checked

Default value none

values A character vector of valid values for arg. Values is converted to a lower case
vector if case_sensitive = FALSE is used.

Default value NULL

case_sensitive Should the argument be handled case-sensitive? If set to FALSE, the argument
is converted to lower case for checking the permitted values and returning the
argument.

Default value TRUE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a character vector or if arg is a character vector but
of length > 1 or if its value is not one of the values specified. Otherwise, the input is returned
invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_vector(),
assert_data_frame(), assert_date_vector(), assert_expr(), assert_expr_list(), assert_filter_cond(),
assert_function(), assert_integer_scalar(), assert_list_element(), assert_list_of(),
assert_logical_scalar(), assert_named(), assert_numeric_vector(), assert_one_to_one(),
assert_param_does_not_exist(), assert_s3_class(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

8 assert_character_vector

Examples

example_fun <- function(msg_type) {
assert_character_scalar(msg_type, values = c("warning", "error"))

}

example_fun("warning")

try(example_fun("message"))

try(example_fun(TRUE))

handling arguments case-insensitive
example_fun2 <- function(msg_type) {

msg_type <- assert_character_scalar(
msg_type,
values = c("warning", "error"),
case_sensitive = FALSE

)
if (msg_type == "warning") {

print("A warning was requested.")
}

}

example_fun2("Warning")

assert_character_vector

Is an Argument a Character Vector?

Description

Checks if an argument is a character vector

Usage

assert_character_vector(
arg,
values = NULL,
named = FALSE,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_character_vector",
call = parent.frame()

)

assert_character_vector 9

Arguments

arg A function argument to be checked

Default value none

values A character vector of valid values for arg

Default value NULL

named If set to TRUE, an error is issued if not all elements of the vector are named.

Default value FALSE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a character vector or if any element is not included in the
list of valid values. Otherwise, the input is returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_data_frame(), assert_date_vector(), assert_expr(), assert_expr_list(), assert_filter_cond(),
assert_function(), assert_integer_scalar(), assert_list_element(), assert_list_of(),
assert_logical_scalar(), assert_named(), assert_numeric_vector(), assert_one_to_one(),
assert_param_does_not_exist(), assert_s3_class(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

10 assert_data_frame

Examples

example_fun <- function(chr) {
assert_character_vector(chr)

}

example_fun(letters)

try(example_fun(1:10))

example_fun2 <- function(chr) {
assert_character_vector(chr, named = TRUE)

}

try(example_fun2(c(alpha = "a", "b", gamma = "c")))

assert_data_frame Is an Argument a Data Frame?

Description

Checks if an argument is a data frame and (optionally) whether is contains a set of required variables

Usage

assert_data_frame(
arg,
required_vars = NULL,
check_is_grouped = TRUE,
check_is_rowwise = TRUE,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_data_frame",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

required_vars A list of variables created using exprs()

Default value NULL

check_is_grouped

Throws an error if dataset is grouped

Default value TRUE

assert_data_frame 11

check_is_rowwise

Throws an error if dataset is rowwise

Default value TRUE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a data frame or if arg is a data frame but misses any
variable specified in required_vars. Otherwise, the input is returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_date_vector(), assert_expr(), assert_expr_list(),
assert_filter_cond(), assert_function(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

library(dplyr)
library(rlang)
dm <- tribble(

~STUDYID, ~USUBJID,
"XYZ", "1",
"XYZ", "2"

)

12 assert_date_var

example_fun <- function(dataset) {
assert_data_frame(dataset, required_vars = exprs(STUDYID, USUBJID))

}

example_fun(dm)

try(example_fun(select(dm, -STUDYID)))

try(example_fun("Not a dataset"))

try(example_fun(group_by(dm, USUBJID)))

assert_date_var Is a Variable in a Dataset a Date or Datetime Variable?

Description

Checks if a variable in a dataset is a date or datetime variable

Usage

assert_date_var(
dataset,
var,
dataset_name = rlang::caller_arg(dataset),
var_name = rlang::caller_arg(var),
message = NULL,
class = "assert_date_var",
call = parent.frame()

)

Arguments

dataset The dataset where the variable is expected

Default value none

var The variable to check

Default value none

dataset_name The name of the dataset. If the argument is specified, the specified name is
displayed in the error message.

Default value rlang::caller_arg(dataset)

var_name The name of the variable. If the argument is specified, the specified name is
displayed in the error message.

Default value rlang::caller_arg(var)

assert_date_var 13

message (string)
string passed to cli::cli_abort(message). When NULL, default messaging is
used (see examples for default messages). "var_name" and "dataset_name",
can be used in messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if var is not a date or datetime variable in dataset and returns the
input invisibly otherwise.

Examples

library(lubridate)
library(dplyr)
library(rlang)

example_fun <- function(dataset, var) {
var <- assert_symbol(enexpr(var))
assert_date_var(dataset = dataset, var = !!var)

}

my_data <- tribble(
~USUBJID, ~ADT,
"1", ymd("2020-12-06"),
"2", ymd("")

)

example_fun(
dataset = my_data,
var = ADT

)

try(example_fun(
dataset = my_data,
var = USUBJID

))

example_fun2 <- function(dataset, var) {
var <- assert_symbol(enexpr(var))

14 assert_date_vector

assert_date_var(
dataset = dataset,
var = !!var,
dataset_name = "your_data",
var_name = "your_var"

)
}

try(example_fun2(
dataset = my_data,
var = USUBJID

))

assert_date_vector Is an object a date or datetime vector?

Description

Check if an object/vector is a date or datetime variable without needing a dataset as input

Usage

assert_date_vector(
arg,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_date_vector",
call = parent.frame()

)

Arguments

arg The function argument to be checked

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then the
function assert_date_vector exits early and throw and error.

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

assert_expr 15

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function returns an error if arg is missing, or not a date or datetime variable but otherwise
returns an invisible output.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_expr(), assert_expr_list(),
assert_filter_cond(), assert_function(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(arg) {
assert_date_vector(arg)

}

example_fun(
as.Date("2022-01-30", tz = "UTC")

)
try(example_fun("1993-07-14"))

assert_expr Assert Argument is an Expression

Description

Assert Argument is an Expression

Usage

assert_expr(
arg,
optional = FALSE,
arg_name = gsub("^enexpr\\((.*)\\)$", "\\1", rlang::caller_arg(arg)),

16 assert_expr

message = NULL,
class = "assert_expr",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name By default the expression specified for arg is used. If it is of the form enexpr(<argument name>),
the enexpr() part is removed. For example if arg = enexpr(filter_add) is
specified, arg_name defaults to "filter_add"

Default value gsub("^enexpr\((.*)\)$", "\1", rlang::caller_arg(arg))

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not an expression, i.e. either a symbol or a call, or returns the
input invisibly otherwise

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr_list(),
assert_filter_cond(), assert_function(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

assert_expr_list 17

assert_expr_list Is an Argument a List of Expressions?

Description

Checks if the argument is a list of expressions.

Usage

assert_expr_list(
arg,
required_elements = NULL,
named = FALSE,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_expr_list",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none
required_elements

A character vector of names that must be present in arg

Default value NULL

named If set to TRUE, an error is issued if not all elements of the list are named.

Default value FALSE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown.

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

18 assert_filter_cond

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a list of expressions. Otherwise, the input it returned
invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_filter_cond(), assert_function(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

library(rlang)

example_fun <- function(vars) {
assert_expr_list(vars)

}
example_fun(exprs(DTHDOM = "AE", DTHSEQ = AESEQ))

try(example_fun(exprs("AE", DTSEQ = AESEQ, !!list("a"), !!list("a"))))

assert_filter_cond Is an Argument a Filter Condition?

Description

Is an Argument a Filter Condition?

Usage

assert_filter_cond(
arg,
optional = FALSE,
arg_name = gsub("^enexpr\\((.*)\\)$", "\\1", rlang::caller_arg(arg)),

assert_filter_cond 19

message = NULL,
class = "assert_filter_cond",
call = parent.frame()

)

Arguments

arg Quosure - filtering condition.

Default value none

optional Logical - is the argument optional?

Default value FALSE

arg_name By default the expression specified for arg is used. If it is of the form enexpr(<argument name>),
the enexpr() part is removed. For example if arg = enexpr(filter_add) is
specified, arg_name defaults to "filter_add"

Default value gsub("^enexpr\((.*)\)$", "\1", rlang::caller_arg(arg))

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Details

Check if arg is a suitable filtering condition to be used in functions like subset or dplyr::filter.

Value

Performs necessary checks and returns arg if all pass. Otherwise throws an informative error.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_function(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

20 assert_function

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)
dm <- dplyr::tribble(

~DOMAIN, ~STUDYID, ~USUBJID, ~AGE,
"DM", "STUDY X", "01-701-1015", 64,
"DM", "STUDY X", "01-701-1016", 65,

)

typical usage in a function as an argument check
example_fun <- function(dat, x) {

x <- assert_filter_cond(enexpr(x), arg_name = "x")
filter(dat, !!x)

}

example_fun(dm, AGE == 64)

try(assert_filter_cond(mtcars))

assert_function Is Argument a Function?

Description

Checks if the argument is a function and if all expected arguments are provided by the function.

Usage

assert_function(
arg,
params = NULL,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_function",
call = parent.frame()

)

Arguments

arg A function
The function to be checked

Default value none

params A character vector
A character vector of expected argument names for the aforementioned function
in arg. If ellipsis, ..., is included in the function formals of the function in
arg, this argument, params will be ignored, accepting all values of the character
vector.

assert_function 21

Default value NULL

optional Is the checked argument optional?
If set to FALSE and arg is NULL then an error is thrown.

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error

• if the argument is not a function or

• if the function does not provide all arguments as specified for the params argument (assuming
ellipsis is not in function formals)

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_integer_scalar(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(fun) {
assert_function(fun, params = c("x"))

}

example_fun(mean)

22 assert_integer_scalar

try(example_fun(1))

try(example_fun(sum))

assert_integer_scalar Is an Argument an Integer Scalar?

Description

Checks if an argument is an integer scalar

Usage

assert_integer_scalar(
arg,
subset = "none",
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_integer_scalar",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

subset A subset of integers that arg should be part of.

Permitted values "none", "positive", "non-negative", or "negative"
Default value "none"

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

assert_list_element 23

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not an integer belonging to the specified subset. Otherwise,
the input is returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_list_element(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(num1, num2) {
assert_integer_scalar(num1, subset = "positive")
assert_integer_scalar(num2, subset = "negative")

}

example_fun(1, -9)

try(example_fun(1.5, -9))

try(example_fun(2, 0))

try(example_fun("2", 0))

assert_list_element Is an Element of a List of Lists/Classes Fulfilling a Condition?

Description

Checks if the elements of a list of named lists/classes fulfill a certain condition. If not, an error is
issued and all elements of the list not fulfilling the condition are listed.

24 assert_list_element

Usage

assert_list_element(
list,
element,
condition,
message_text,
arg_name = rlang::caller_arg(list),
message = NULL,
class = "assert_list_element",
call = parent.frame(),
...

)

Arguments

list A list to be checked A list of named lists or classes is expected.

Default value none

element The name of an element of the lists/classes A character scalar is expected.

Default value none

condition Condition to be fulfilled The condition is evaluated for each element of the list.
The element of the lists/classes can be referred to by its name, e.g., censor ==
0 to check the censor field of a class.

Default value none

message_text Text to be displayed in the error message above the listing of values that do
not meet the condition. The text should describe the condition to be fulfilled,
e.g., "Error in {arg_name}: the censor values must be zero.". If message
argument is specified, that text will be displayed and message_text is ignored.

Default value none

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

assert_list_element 25

... Objects required to evaluate the condition or the message text
If the condition or the message text contains objects apart from the element, they
have to be passed to the function. See the second example below.

Default value none

Value

An error if the condition is not met. The input otherwise.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

death <- list(
dataset_name = "adsl",
date = "DTHDT",
censor = 0

)

lstalv <- list(
dataset_name = "adsl",
date = "LSTALVDT",
censor = 1

)

events <- list(death, lstalv)

try(assert_list_element(
list = events,
element = "censor",
condition = censor == 0,
message_text = "For events the censor values must be zero."

))

try(assert_list_element(
list = events,
element = "dataset_name",
condition = dataset_name %in% c("adrs", "adae"),
valid_datasets = c("adrs", "adae"),
message_text = paste(
"The dataset name must be one of the following: {.val {valid_datasets}}"

)
))

26 assert_list_of

assert_list_of Is an Argument a List of Objects of a Specific S3 Class or Type?

Description

Checks if an argument is a list of objects inheriting from the S3 class or type specified.

Usage

assert_list_of(
arg,
cls,
named = FALSE,
optional = TRUE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_list_of",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

cls The S3 class or type to check for

Default value none

named If set to TRUE, an error is issued if not all elements of the list are named.

Default value FALSE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value TRUE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.

assert_logical_scalar 27

You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a list or if arg is a list but its elements are not objects
inheriting from class or of type class. Otherwise, the input is returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(list) {
assert_list_of(list, "data.frame")

}

example_fun(list(mtcars, iris))

try(example_fun(list(letters, 1:10)))

try(example_fun(c(TRUE, FALSE)))

example_fun2 <- function(list) {
assert_list_of(list, "numeric", named = TRUE)

}
try(example_fun2(list(1, 2, 3, d = 4)))

assert_logical_scalar Is an Argument a Logical Scalar (Boolean)?

Description

Checks if an argument is a logical scalar

28 assert_logical_scalar

Usage

assert_logical_scalar(
arg,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_logical_scalar",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

optional Is the checked argument optional?
If set to FALSE and arg is NULL then an error is thrown. Otherwise, NULL is
considered as valid value.

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is neither TRUE or FALSE. Otherwise, the input is returned
invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),

assert_named 29

assert_list_element(), assert_list_of(), assert_named(), assert_numeric_vector(), assert_one_to_one(),
assert_param_does_not_exist(), assert_s3_class(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(flag) {
assert_logical_scalar(flag)

}

example_fun(FALSE)

try(example_fun(NA))

try(example_fun(c(TRUE, FALSE, FALSE)))

try(example_fun(1:10))

assert_named Assert Argument is a Named List or Vector

Description

Assert that all elements of the argument are named.

Usage

assert_named(
arg,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_named",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

30 assert_numeric_vector

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a named list or vector or returns the input invisibly
otherwise

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(varval_list) {
assert_named(varval_list)

}

example_fun(list(var1 = 1, var2 = "x"))

try(example_fun(list(1, "x")))

try(example_fun(list(var = 1, "x")))

assert_numeric_vector Is an Argument a Numeric Vector?

Description

Checks if an argument is a numeric vector

assert_numeric_vector 31

Usage

assert_numeric_vector(
arg,
length = NULL,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_numeric_vector",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

length Expected length
If the argument is not specified or set to NULL, any length is accepted.

Default value NULL

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a numeric vector. Otherwise, the input is returned invisi-
bly.

32 assert_one_to_one

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_one_to_one(),
assert_param_does_not_exist(), assert_s3_class(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(num) {
assert_numeric_vector(num)

}

example_fun(1:10)

try(example_fun(letters))

example_fun <- function(num) {
assert_numeric_vector(num, length = 2)

}

try(example_fun(1:10))

assert_one_to_one Is There a One to One Mapping between Variables?

Description

Checks if there is a one to one mapping between two lists of variables.

Usage

assert_one_to_one(
dataset,
vars1,
vars2,
dataset_name = rlang::caller_arg(dataset),
message = NULL,
class = "assert_one_to_one",
call = parent.frame()

)

Arguments

dataset Dataset to be checked
The variables specified for vars1 and vars2 are expected.

assert_one_to_one 33

Default value none

vars1 First list of variables

Default value none

vars2 Second list of variables

Default value none

dataset_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(dataset)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "dataset_name" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

An error if the condition is not meet. The input otherwise.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_param_does_not_exist(), assert_s3_class(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

library(dplyr)
library(rlang)

df <- tribble(
~SPECIES, ~SPECIESN,
"DOG", 1L,
"CAT", 2L,
"DOG", 1L

)

34 assert_param_does_not_exist

assert_one_to_one(df, vars1 = exprs(SPECIES), vars2 = exprs(SPECIESN))

df_many <- tribble(
~SPECIES, ~SPECIESN,
"DOG", 1L,
"CAT", 2L,
"DOG", 3L

)

try(
assert_one_to_one(df_many, vars1 = exprs(SPECIES), vars2 = exprs(SPECIESN))

)

try(
assert_one_to_one(df_many, vars1 = exprs(SPECIESN), vars2 = exprs(SPECIES))

)

assert_param_does_not_exist

Asserts That a Parameter Does Not Exist in the Dataset

Description

Checks if a parameter (PARAMCD) does not exist in a dataset.

Usage

assert_param_does_not_exist(
dataset,
param,
arg_name = rlang::caller_arg(dataset),
message = NULL,
class = "assert_param_does_not_exist",
call = parent.frame()

)

Arguments

dataset A data.frame

Default value none

param Parameter code to check

Default value none

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

assert_s3_class 35

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if the parameter exists in the input dataset. Otherwise, the dataset is
returned invisibly.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_s3_class(), assert_same_type(), assert_symbol(), assert_unit(),
assert_vars(), assert_varval_list()

Examples

library(dplyr)

advs <- tribble(
~USUBJID, ~VSTESTCD, ~VSTRESN, ~VSSTRESU, ~PARAMCD, ~AVAL,
"P01", "WEIGHT", 80.1, "kg", "WEIGHT", 80.1,
"P02", "WEIGHT", 85.7, "kg", "WEIGHT", 85.7

)
assert_param_does_not_exist(advs, param = "HR")
try(assert_param_does_not_exist(advs, param = "WEIGHT"))

assert_s3_class Is an Argument an Object of a Specific S3 Class?

Description

Checks if an argument is an object inheriting from the S3 class specified.

36 assert_s3_class

Usage

assert_s3_class(
arg,
cls,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_s3_class",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

cls The S3 class to check for

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is an object which does not inherit from class. Otherwise, the
input is returned invisibly.

assert_same_type 37

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_same_type(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(obj) {
assert_s3_class(obj, "factor")

}

example_fun(as.factor(letters))

try(example_fun(letters))

try(example_fun(1:10))

assert_same_type Are All Arguments of the Same Type?

Description

Checks if all arguments are of the same type.

Usage

assert_same_type(
...,
.message = c("Arguments {.arg {arg_names}} must be the same type.", i =
paste("Argument types are", paste0("{.arg ", arg_names, "} {.cls ", types, "}",
collapse = ", "))),

.class = "assert_same_type",

.call = parent.frame()
)

Arguments

... Arguments to be checked

Default value none

.message character vector passed to cli_abort(message) when assertion fails.

Default value c("Arguments {.arg {arg_names}} must be the same type.",
i = paste("Argument types are", paste0("{.arg ", arg_names, "} {.cls
", types, "}", collapse = ", ")))

38 assert_symbol

.class character vector passed to cli_abort(class) when assertion fails.

Default value "assert_same_type"

.call environment passed to cli_abort(call) when assertion fails.

Default value parent.frame()

Value

The function throws an error if not all arguments are of the same type.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_symbol(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

example_fun <- function(true_value, false_value, missing_value) {
assert_same_type(true_value, false_value, missing_value)

}

example_fun(
true_value = "Y",
false_value = "N",
missing_value = NA_character_

)

try(example_fun(
true_value = 1,
false_value = 0,
missing_value = "missing"

))

assert_symbol Is an Argument a Symbol?

Description

Checks if an argument is a symbol

assert_symbol 39

Usage

assert_symbol(
arg,
optional = FALSE,
arg_name = gsub("^enexpr\\((.*)\\)$", "\\1", rlang::caller_arg(arg)),
message = NULL,
class = "assert_symbol",
call = parent.frame()

)

Arguments

arg A function argument to be checked. Must be a symbol. See examples.

Default value none

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown.

Default value FALSE

arg_name By default the expression specified for arg is used. If it is of the form enexpr(<argument name>),
the enexpr() part is removed. For example if arg = enexpr(filter_add) is
specified, arg_name defaults to "filter_add"

Default value gsub("^enexpr\((.*)\)$", "\1", rlang::caller_arg(arg))

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a symbol and returns the input invisibly otherwise.

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),

40 assert_unit

assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_unit(), assert_vars(), assert_varval_list()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)
dm <- dplyr::tribble(

~DOMAIN, ~USUBJID,
"DM", "01-701-1015",
"DM", "01-701-1016",

)
example_fun <- function(dat, var) {

var <- assert_symbol(enexpr(var))
select(dat, !!var)

}

example_fun(dm, USUBJID)

try(example_fun(dm))

try(example_fun(dm, "USUBJID"))

try(example_fun(dm, toupper(PARAMCD)))

assert_unit Asserts That a Parameter is Provided in the Expected Unit

Description

Checks if a parameter (PARAMCD) in a dataset is provided in the expected unit.

Usage

assert_unit(
dataset,
param,
required_unit = NULL,
get_unit_expr,
arg_name = rlang::caller_arg(required_unit),
message = NULL,
class = "assert_unit",
call = parent.frame()

)

assert_unit 41

Arguments

dataset Dataset to be checked
The variable PARAMCD and those used in get_unit_expr are expected.

Default value none

param Parameter code of the parameter to check

Default value none

required_unit Expected unit(s)
If the argument is set to NULL, it is checked only whether the unit is unique
within the parameter.

Permitted values A character vector or NULL
Default value NULL

get_unit_expr Expression used to provide the unit of param

Default value none

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error

• if there is more than one non-missing unit in the dataset or

• if the unit variable differs from the expected unit for any observation of the parameter in the
input dataset.

Otherwise, the dataset is returned invisibly.

42 assert_vars

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_vars(), assert_varval_list()

Examples

library(dplyr)

advs <- tribble(
~USUBJID, ~VSTESTCD, ~VSTRESN, ~VSSTRESU, ~PARAMCD, ~AVAL,
"P01", "WEIGHT", 80.1, "kg", "WEIGHT", 80.1,
"P02", "WEIGHT", 85.7, "kg", "WEIGHT", 85.7

)

assert_unit(advs, param = "WEIGHT", required_unit = "kg", get_unit_expr = VSSTRESU)

try(
assert_unit(
advs,
param = "WEIGHT",
required_unit = c("g", "mg"),
get_unit_expr = VSSTRESU

)
)

Checking uniqueness of unit only
advs <- tribble(

~USUBJID, ~VSTESTCD, ~VSTRESN, ~VSSTRESU, ~PARAMCD, ~AVAL,
"P01", "WEIGHT", 80.1, "kg", "WEIGHT", 80.1,
"P02", "WEIGHT", 85700, "g", "WEIGHT", 85700

)

try(
assert_unit(advs, param = "WEIGHT", get_unit_expr = VSSTRESU)

)

assert_vars Is an Argument a List of Variables?

Description

Checks if an argument is a valid list of symbols (e.g., created by exprs())

assert_vars 43

Usage

assert_vars(
arg,
expect_names = FALSE,
optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_vars",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none

expect_names If the argument is set to TRUE, it is checked if all variables are named, e.g.,
exprs(APERSDT = APxxSDT, APEREDT = APxxEDT).

Default value FALSE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a list of symbols (e.g., created by exprs() and returns
the input invisibly otherwise.

44 assert_varval_list

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_varval_list()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)

example_fun <- function(by_vars) {
assert_vars(by_vars)

}

example_fun(exprs(USUBJID, PARAMCD))

try(example_fun(quos(USUBJID, PARAMCD)))

try(example_fun(c("USUBJID", "PARAMCD", "VISIT")))

try(example_fun(exprs(USUBJID, toupper(PARAMCD), desc(AVAL))))

example_fun_name <- function(by_vars) {
assert_vars(by_vars, expect_names = TRUE)

}

example_fun_name(exprs(APERSDT = APxxSDT, APEREDT = APxxEDT))

try(example_fun_name(exprs(APERSDT = APxxSDT, APxxEDT)))

assert_varval_list Is an Argument a Variable-Value List?

Description

Checks if the argument is a list of expressions where the expressions are variable-value pairs. The
value can be a symbol, a string, a numeric, an expression, or NA.

Usage

assert_varval_list(
arg,
required_elements = NULL,
accept_expr = TRUE,
accept_var = FALSE,

assert_varval_list 45

optional = FALSE,
arg_name = rlang::caller_arg(arg),
message = NULL,
class = "assert_varval_list",
call = parent.frame()

)

Arguments

arg A function argument to be checked

Default value none
required_elements

A character vector of names that must be present in arg

Default value NULL

accept_expr Should expressions on the right hand side be accepted?

Default value TRUE

accept_var Should unnamed variable names (e.g. exprs(USUBJID)) on the right hand side
be accepted?

Default value FALSE

optional Is the checked argument optional? If set to FALSE and arg is NULL then an error
is thrown.

Default value FALSE

arg_name string indicating the label/symbol of the object being checked.

Default value rlang::caller_arg(arg)

message string passed to cli::cli_abort(message). When NULL, default messaging
is used (see examples for default messages). "{arg_name}" can be used in
messaging.

Default value NULL

class Subclass of the condition.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.
You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.
Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.
For more information about error calls, see Including function calls in error
messages.

Value

The function throws an error if arg is not a list of variable-value expressions. Otherwise, the input
it returned invisibly.

46 backquote

See Also

Checks for valid input and returns warning or errors messages: assert_atomic_vector(), assert_character_scalar(),
assert_character_vector(), assert_data_frame(), assert_date_vector(), assert_expr(),
assert_expr_list(), assert_filter_cond(), assert_function(), assert_integer_scalar(),
assert_list_element(), assert_list_of(), assert_logical_scalar(), assert_named(), assert_numeric_vector(),
assert_one_to_one(), assert_param_does_not_exist(), assert_s3_class(), assert_same_type(),
assert_symbol(), assert_unit(), assert_vars()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)

example_fun <- function(vars) {
assert_varval_list(vars)

}
example_fun(exprs(DTHDOM = "AE", DTHSEQ = AESEQ))

try(example_fun(exprs("AE", DTSEQ = AESEQ)))

backquote Wrap a String in Backquotes

Description

Wrap a String in Backquotes

Usage

backquote(x)

Arguments

x A character vector

Default value none

Value

A character vector

See Also

Helpers for working with Quotes and Quoting: dquote(), squote()

capture_output 47

capture_output Capture Output and Messages

Description

The function captures both output and expected messages from an R expression. If the expression
results in an unexpected message, an error is issued.

Usage

capture_output(expr, srcref = NULL, expected_cnds = NULL, env = caller_env())

Arguments

expr An R expression to evaluate

Permitted values An unquoted R expression
Default value none

srcref The source reference of the expression

Default value NULL

expected_cnds A character vector of expected conditions
If the expression issues a condition of a class that is in this vector, the condition
is ignored but added to the return value.
Otherwise, an error is issued.

Default value NULL

env The environment in which to evaluate the expression

Default value caller_env()

Value

A character vector of captured output and messages

Examples

Capture Output and Messages:

capture_output(1 + 1)
#> [1] "[1] 2"

capture_output(log(-1))
#> Error in capture_output(log(-1)) : The expression
#> > log(-1)
#> issued an unexpected condition:
#> NaNs produced
#> If this is expected, add any of the classes "simpleWarning", "warning", and
#> "condition" to the argument `expected_cnds`.

48 convert_dtm_to_dtc

capture_output(log(-1), expected_cnds = "warning")
#> [1] "[1] NaN" "Warning in log(-1) : NaNs produced"

contains_vars check that argument contains valid variable(s) created with exprs()
or Source Variables from a List of Expressions

Description

check that argument contains valid variable(s) created with exprs() or Source Variables from a
List of Expressions

Usage

contains_vars(arg)

Arguments

arg A function argument to be checked

Default value none

Value

A TRUE if variables were valid variable

See Also

Developer Utility Functions: %notin%(), convert_dtm_to_dtc(), extract_vars(), filter_if(),
vars2chr()

convert_dtm_to_dtc Helper Function to Convert Date (or Date-time) Objects to Characters
of dtc Format (-DTC type of variable)

Description

Helper Function to Convert Date (or Date-time) Objects to Characters of dtc Format (-DTC type of
variable)

Usage

convert_dtm_to_dtc(dtm)

dataset_vignette 49

Arguments

dtm date or date-time

Default value none

Value

character vector

See Also

Developer Utility Functions: %notin%(), contains_vars(), extract_vars(), filter_if(), vars2chr()

dataset_vignette Output a Dataset in a Vignette in the admiral Format

Description

Output a dataset in a vignette with the pre-specified admiral format.

Usage

dataset_vignette(dataset, display_vars = NULL, filter = NULL)

Arguments

dataset Dataset to output in the vignette

Default value none

display_vars Variables selected to demonstrate the outcome of the derivation
If display_vars is not NULL, only the selected variables are visible in the
vignette while the other variables are hidden. They can be made visible by
clicking theChoose the columns to display button.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

filter Filter condition
The specified condition is applied to the dataset before it is displayed.

Permitted values a condition
Default value NULL

Value

A HTML table

50 deprecate_inform

deprecate_inform Deprecation with Soft Message

Description

Wrapper around lifecycle::deprecate_soft() that messages users about deprecated features
and functions instead of warning.

Usage

deprecate_inform(
when,
what,
with = NULL,
details = NULL,
id = NULL,
env = rlang::caller_env(),
user_env = rlang::caller_env(2)

)

Arguments

when A string giving the version when the behaviour was deprecated.
what A string describing what is deprecated:

• Deprecate a whole function with "foo()".
• Deprecate an argument with "foo(arg)".
• Partially deprecate an argument with "foo(arg = 'must be a scalar integer')".
• Deprecate anything else with a custom message by wrapping it in I().

You can optionally supply the namespace: "ns::foo()", but this is usually not
needed as it will be inferred from the caller environment.

with An optional string giving a recommended replacement for the deprecated be-
haviour. This takes the same form as what.

details In most cases the deprecation message can be automatically generated from
with. When it can’t, use details to provide a hand-written message.
details can either be a single string or a character vector, which will be con-
verted to a bulleted list. By default, info bullets are used. Provide a named
vectors to override.

id The id of the deprecation. A warning is issued only once for each id. Defaults
to the generated message, but you should give a unique ID when the message in
details is built programmatically and depends on inputs, or when you’d like to
deprecate multiple functions but warn only once for all of them.

env, user_env Pair of environments that define where deprecate_*() was called (used to de-
termine the package name) and where the function called the deprecating func-
tion was called (used to determine if deprecate_soft() should message).
These are only needed if you’re calling deprecate_*() from an internal helper,
in which case you should forward env = caller_env() and user_env = caller_env(2).

dquote 51

Value

NULL, invisibly.

Examples

A Phase 1 deprecated function with custom bulleted list:
deprecate_inform(

when = "1.0.0",
what = "foo()",
details = c(
x = "This message will turn into a warning with release of x.y.z",
i = "See admiral's deprecation guidance:

https://pharmaverse.github.io/admiraldev/dev/articles/programming_strategy.html#deprecation"
)

)

dquote Wrap a String in Double Quotes

Description

Wrap a string in double quotes, e.g., for displaying character values in messages.

Usage

dquote(x)

Arguments

x A character vector

Default value none

Value

If the input is NULL, the text "NULL" is returned. Otherwise, the input in double quotes is returned.

See Also

Helpers for working with Quotes and Quoting: backquote(), squote()

52 expect_dfs_equal

enumerate Enumerate Multiple Elements

Description

[Deprecated]

This function is deprecated, please use cli functionality instead.

Usage

enumerate(x, quote_fun = backquote, conjunction = "and")

Arguments

x A vector or list

Default value none

quote_fun Quoting function, defaults to backquote. If set to NULL, the elements are not
quoted.

Default value backquote

conjunction Character to be used in the message, defaults to "and".

Default value "and"

Value

A character vector

See Also

Other deprecated: %or%(), arg_name(), friendly_type_of(), valid_time_units(), what_is_it()

expect_dfs_equal Expectation: Are Two Datasets Equal?

Description

Uses diffdf::diffdf() to compares 2 datasets for any differences. This function can be thought
of as an R-equivalent of SAS proc compare and a useful tool for unit testing as well.

Usage

expect_dfs_equal(base, compare, keys, ...)

expect_dfs_equal 53

Arguments

base Input dataset

Permitted values A dataset, i.e., a data.frame or tibble.
Default value none

compare Comparison dataset

Default value none

keys character vector of variables that define a unique row in the base and compare
datasets

Default value none

... Additional arguments passed onto diffdf::diffdf()

Default value none

Value

An error if base and compare do not match or NULL invisibly if they do

Examples

library(dplyr, warn.conflicts = FALSE)

tbl1 <- tribble(
~USUBJID, ~AGE, ~SEX,
"1001", 18, "M",
"1002", 19, "F",
"1003", 20, "M",
"1004", 18, "F"

)

tbl2 <- tribble(
~USUBJID, ~AGE, ~SEX,
"1001", 18, "M",
"1002", 18.9, "F",
"1003", 20, NA

)

try(expect_dfs_equal(tbl1, tbl2, keys = "USUBJID"))

tlb3 <- tribble(
~USUBJID, ~AGE, ~SEX,
"1004", 18, "F",
"1003", 20, "M",
"1002", 19, "F",
"1001", 18, "M",

)

Note the sorting order of the keys is not required
expect_dfs_equal(tbl1, tlb3, keys = "USUBJID")

54 extract_vars

expr_c Concatenate One or More Expressions

Description

Concatenate One or More Expressions

Usage

expr_c(...)

Arguments

... One or more expressions or list of expressions

Default value none

Value

A list of expressions

See Also

Helpers for working with Quosures: add_suffix_to_vars(), replace_symbol_in_expr(), replace_values_by_names()

extract_vars Extract All Symbols from a List of Expressions

Description

Extract All Symbols from a List of Expressions

Usage

extract_vars(x, side = "lhs")

Arguments

x An R object

Default value none

side One of "lhs" (the default) or "rhs" for formulas

Default value "lhs"

Value

A list of expressions

filter_if 55

See Also

Developer Utility Functions: %notin%(), contains_vars(), convert_dtm_to_dtc(), filter_if(),
vars2chr()

Examples

library(rlang)
extract_vars(exprs(PARAMCD, (BASE - AVAL) / BASE + 100))
extract_vars(AVAL ~ ARMCD + AGEGR1)
extract_vars(AVAL ~ ARMCD + AGEGR1, side = "rhs")

filter_if Optional Filter

Description

Filters the input dataset if the provided expression is not NULL

Usage

filter_if(dataset, filter)

Arguments

dataset Input dataset

Default value none

filter A filter condition. Must be an expression.

Default value none

Value

A data.frame containing all rows in dataset matching filter or just dataset if filter is NULL

See Also

Developer Utility Functions: %notin%(), contains_vars(), convert_dtm_to_dtc(), extract_vars(),
vars2chr()

56 friendly_type_of

friendly_type_of Return English-friendly messaging for object-types

Description

[Deprecated]

This function is deprecated, please use cli functionality instead.

Usage

friendly_type_of(x, value = TRUE, length = FALSE)

Arguments

x Any R object.

Default value none

value Whether to describe the value of x.

Default value TRUE

length Whether to mention the length of vectors and lists.

Default value FALSE

Details

This helper function aids us in forming user-friendly messages that gets called through what_is_it(),
which is often used in the assertion functions to identify what object-type the user passed through
an argument instead of an expected-type.

Value

A string describing the type. Starts with an indefinite article, e.g. "an integer vector".

See Also

Other deprecated: %or%(), arg_name(), enumerate(), valid_time_units(), what_is_it()

get_constant_vars 57

get_constant_vars Get Constant Variables

Description

Get Constant Variables

Usage

get_constant_vars(dataset, by_vars, ignore_vars = NULL)

Arguments

dataset A data frame.

Default value none

by_vars By variables The groups defined by the by variables are considered separately.
I.e., if a variable is constant within each by group, it is returned.

Default value none

ignore_vars Variables to ignore The specified variables are not considered, i.e., they are not
returned even if they are constant (unless they are included in the by variables).

Permitted values A list of variable names or selector function calls like starts_with("EX")
Default value NULL

Value

Variable vector.

See Also

Brings something to you!?!: get_dataset(), get_duplicates(), get_source_vars()

get_dataset Retrieve a Dataset from the admiraldev_environment environment

Description

Retrieve a Dataset from the admiraldev_environment environment

Usage

get_dataset(name)

58 get_duplicates

Arguments

name The name of the dataset to retrieve

Default value none

Details

Sometimes, developers may want to provide information to users which does not fit into a warning
or error message. For example, if the input dataset of a function contains unexpected records, these
can be stored in a separate dataset, which users can access to investigate the issue.

To achieve this, R has a data structure known as an ’environment’. These environment objects are
created at build time, but can be populated with values after the package has been loaded and update
those values over the course of an R session.

As so, the establishment of admiraldev_environment allows us to create dynamic data/objects
based on user-inputs that need modification. The purpose of get_dataset is to retrieve the datasets
contained inside admiraldev_environment.

Currently we only support two datasets inside our admiraldev_environment object:

• one_to_many

• many_to_one

Value

A data.frame

See Also

Brings something to you!?!: get_constant_vars(), get_duplicates(), get_source_vars()

get_duplicates Get Duplicates From a Vector

Description

Get Duplicates From a Vector

Usage

get_duplicates(x)

Arguments

x An atomic vector

Default value none

get_new_tmp_var 59

Value

A vector of the same type as x contain duplicate values

See Also

Brings something to you!?!: get_constant_vars(), get_dataset(), get_source_vars()

Examples

get_duplicates(1:10)

get_duplicates(c("a", "a", "b", "c", "d", "d"))

get_new_tmp_var Get a New Temporary Variable Name for a Dataset

Description

Get a New Temporary Variable Name for a Dataset

Usage

get_new_tmp_var(dataset, prefix = "tmp_var")

Arguments

dataset The input dataset

Default value none

prefix The prefix of the new temporary variable name to create

Default value "tmp_var"

Details

The function returns a new unique temporary variable name to be used inside dataset. The tem-
porary variable names have the structure prefix_n where n is an integer, e.g. tmp_var_1. If there
is already a variable inside datset with a given prefix then the suffix is increased by 1, e.g. if
tmp_var_1 already exists then get_new_tmp_var() will return tmp_var_2.

Value

The name of a new temporary variable as a symbol

See Also

remove_tmp_vars()

60 is_auto

Examples

library(dplyr, warn.conflicts = FALSE)
dm <- tribble(

~DOMAIN, ~STUDYID, ~USUBJID,
"DM", "STUDY X", "01-701-1015",
"DM", "STUDY X", "01-701-1016",

)

tmp_var <- get_new_tmp_var(dm)
mutate(dm, !!tmp_var := NA)

get_source_vars Get Source Variables from a List of Expressions

Description

Get Source Variables from a List of Expressions

Usage

get_source_vars(expressions)

Arguments

expressions A list of expressions

Default value none

Value

A list of expressions

See Also

Brings something to you!?!: get_constant_vars(), get_dataset(), get_duplicates()

is_auto Checks if the argument equals the auto keyword

Description

Checks if the argument equals the auto keyword

Usage

is_auto(arg)

is_order_vars 61

Arguments

arg argument to check

Default value none

Value

TRUE if the argument equals the auto keyword, i.e., it is an expression of a symbol named auto.

See Also

Identifies type of Object with return of TRUE/FALSE: is_order_vars(), is_valid_dtc()

is_order_vars Is order vars?

Description

Check if inputs are created using exprs() or calls involving desc()

Usage

is_order_vars(arg)

Arguments

arg An R object

Default value none

Value

FALSE if the argument is not a list of order vars

See Also

Identifies type of Object with return of TRUE/FALSE: is_auto(), is_valid_dtc()

62 parse_code

is_valid_dtc Is this string a valid DTC

Description

Is this string a valid DTC

Usage

is_valid_dtc(arg)

Arguments

arg A character vector

Default value none

Value

TRUE if the argument is a valid --DTC string, FALSE otherwise

See Also

Identifies type of Object with return of TRUE/FALSE: is_auto(), is_order_vars()

parse_code Parse Code

Description

The function parses the code and returns a list of expressions and source references.

Usage

parse_code(code)

Arguments

code The code to parse

Permitted values A character vector
Default value none

process_set_values_to 63

Value

A list of expressions and source references

Each item of the list is a list with the following elements:

• expr: The expression

• srcref: The source reference

• eval: A logical indicating whether the expression should be evaluated, i.e., it is not a comment
or an empty line.

Examples

parse_code("1+1\n2*2")

parse_code(c("# sum:", "sum(\n 1, #first\n 2\n)"))

process_set_values_to Process set_values_to Argument

Description

The function creates the variables specified by the set_values_to argument, catches errors, pro-
vides user friendly error messages, and optionally checks the type of the created variables.

Usage

process_set_values_to(dataset, set_values_to = NULL, expected_types = NULL)

Arguments

dataset Input dataset

Default value none

set_values_to Variables to set
A named list returned by exprs() defining the variables to be set, e.g. exprs(PARAMCD
= "OS", PARAM = "Overall Survival") is expected. The values must be sym-
bols, character strings, numeric values, expressions, or NA.

Default value NULL

expected_types If the argument is specified, the specified variables are checked whether the
specified type matches the type of the variables created by set_values_to.

Permitted values A character vector with values "numeric" or "character"
Default value NULL

Value

The input dataset with the variables specified by set_values_to added/updated

64 rdx_roclet

Examples

library(dplyr)
data <- tribble(

~AVAL,
20

)

try(
process_set_values_to(
data,
set_values_to = exprs(

PARAMCD = BMI
)

)
)

try(
process_set_values_to(

data,
set_values_to = exprs(

PARAMCD = 42
),
expected_types = c(PARAMCD = "character")

)
)

rdx_roclet Roclet Extending the Standard rd Roclet

Description

This roclet extends the standard rd roclet by allowing

• to add permitted values and default values to the @param tag and

• to add a caption and a description to examples.

Usage

rdx_roclet()

Details

The following tags are supported:

• @permitted: Permitted values for the argument. Permitted value description which are used
for several arguments/functions can be stored in inst/roxygen/rdx_meta.R. For example:

rdx_roclet 65

list(
rdx_permitted_values = list(
mode = "`\"first\"`, `\"last\"`",
msg_type = "`\"none\"`, `\"message\"`, `\"warning\"`, `\"error\"`"

)
)

The reference to the permitted values is done by specifying the name of the list element in
square brackets, e.g., @permitted [mode].

• @default: Default value for the argument. By default the default value from the function
formals is displayed. This can be overwritten by using the @default tag.

• @examplesx: This tag can be used to mark the beginning of the examples section but doesn’t
affect the output, i.e., it can be omitted.

• @caption: Caption for the example. The caption is displayed as a subsection in the examples
section. The caption can be followed by an arbitrary number of @info and @code tags.

• @info: Description of the example.
• @code: Code of the example.

By default, any warning or error issued by the example code causes the building of the docu-
mentation to fail. If this is expected, the condition can be added to the expected_cnds option
of the @code tag. E.g.,

@code [expected_cnds = "warning"]

To use the roclet call roxygen2::roxygenise(roclets = "admiral::rdx_roclet") or add to the
DESCRIPTION file:

Roxygen: list(markdown = TRUE, roclets = c("collate", "namespace", "admiraldev::rdx_roclet"))

For more information on roxygen2 roclets see the Extending roxygen2.

Examples

Using the custom tags:
The id char_scalar used for the @permitted tag is defined in man/roxygen/rdx_meta.R.
See demo_fun() for a rendered version of the Rd code generated in the example.

roxygen2::roc_proc_text(
rdx_roclet(),
c(
"#' A Demo Function",
"#'",

"#' This function is used to demonstrate the custom tags of the `rdx_roclet()`.",
"#'",
"#' @param x An argument",
"#' @param number A number",
"#' @permitted A number",
"#' @param letter A letter",
"#' @permitted [char_scalar]",
"#' @default The first letter of the alphabet",

https://roxygen2.r-lib.org/articles/extending.html

66 rdx_roclet

"#' @examplesx",
"#' @caption A simple example",
"#' @info This is a simple example showing the default behaviour.",
"#' @code demo_fun(1)",
"#' @caption An example with a different letter",
"#' @info This example shows that the `letter` argument doesn't",
"#' affect the output. ",
"#' @code demo_fun(1, letter = \"b\")",
"demo_fun <- function(x, number = 1, letter = \"a\") 42"

))
#> $demo_fun.Rd
#> % Generated by roxygen2: do not edit by hand
#> % Please edit documentation in ./<text>
#> \name{demo_fun}
#> \alias{demo_fun}
#> \title{A Demo Function}
#> \usage{
#> demo_fun(x, number = 1, letter = "a")
#> }
#> \arguments{
#> \item{x}{An argument
#>
#> \describe{
#> \item{Default value}{none}
#> }}
#>
#> \item{number}{A number
#>
#> \describe{
#> \item{Permitted values}{A number}
#> \item{Default value}{\code{1}}
#> }}
#>
#> \item{letter}{A letter
#>
#> \describe{
#> \item{Permitted values}{a character scalar, i.e., a character vector of length one}
#> \item{Default value}{The first letter of the alphabet}
#> }}
#> }
#> \description{
#> This function is used to demonstrate the custom tags of the \code{rdx_roclet()}.
#> }
#> \section{Examples}{
#> \subsection{A simple example}{
#>
#> This is a simple example showing the default behaviour.
#>

remove_tmp_vars 67

#> \if{html}{\out{<div class="sourceCode r">}}\preformatted{demo_fun(1)
#> #> [1] 42}\if{html}{\out{</div>}}}
#> \subsection{An example with a different letter}{
#>
#> This example shows that the \code{letter} argument doesn't
#> affect the output.
#>
#> \if{html}{\out{<div class="sourceCode r">}}\preformatted{demo_fun(1, letter = "b")
#> #> [1] 42}\if{html}{\out{</div>}}}}
#>
#>

remove_tmp_vars Remove All Temporary Variables Created Within the Current Function
Environment

Description

Remove All Temporary Variables Created Within the Current Function Environment

Usage

remove_tmp_vars(dataset)

Arguments

dataset The input dataset

Default value none

Value

The input dataset with temporary variables removed

See Also

get_new_tmp_var()

Examples

library(dplyr, warn.conflicts = FALSE)
dm <- tribble(

~DOMAIN, ~STUDYID, ~USUBJID,
"DM", "STUDY X", "01-701-1015",
"DM", "STUDY X", "01-701-1016",

)
dm <- select(dm, USUBJID)
tmp_var <- get_new_tmp_var(dm)
dm <- mutate(dm, !!tmp_var := NA)

68 replace_symbol_in_expr

This function creates two new temporary variables which are removed when calling
`remove_tmp_vars()`. Note that any temporary variable created outside this
function is **not** removed
do_something <- function(dataset) {

tmp_var_1 <- get_new_tmp_var(dm)
tmp_var_2 <- get_new_tmp_var(dm)
dm %>%

mutate(!!tmp_var_1 := NA, !!tmp_var_2 := NA) %>%
print() %>%
remove_tmp_vars()

}

do_something(dm)

replace_symbol_in_expr

Replace Symbols in an Expression

Description

Replace symbols in an expression

Usage

replace_symbol_in_expr(expression, target, replace)

Arguments

expression Expression

Permitted values a quoted expression, e.g., created by expr()

Default value none

target Target symbol

Permitted values an unquoted symbol, e.g., AVAL
Default value none

replace Replacing symbol

Permitted values an unquoted symbol, e.g., AVAL
Default value none

Value

The expression where every occurrence of the symbol target is replaced by replace

Author(s)

Stefan Bundfuss

replace_values_by_names 69

See Also

Helpers for working with Quosures: add_suffix_to_vars(), expr_c(), replace_values_by_names()

Examples

library(rlang)

replace_symbol_in_expr(expr(AVAL), target = AVAL, replace = AVAL.join)
replace_symbol_in_expr(expr(AVALC), target = AVAL, replace = AVAL.join)
replace_symbol_in_expr(expr(desc(AVAL)), target = AVAL, replace = AVAL.join)
replace_symbol_in_expr(expr(if_else(AVAL > 0, AVAL, NA)), AVAL, AVAL.join)

replace_values_by_names

Replace Expression Value with Name

Description

Replace Expression Value with Name

Usage

replace_values_by_names(expressions)

Arguments

expressions A list of expressions

Default value none

Value

A list of expressions

See Also

Helpers for working with Quosures: add_suffix_to_vars(), expr_c(), replace_symbol_in_expr()

Examples

library(rlang)
replace_values_by_names(exprs(AVAL, ADT = convert_dtc_to_dt(EXSTDTC)))

70 suppress_warning

squote Wrap a String in Single Quotes

Description

Wrap a String in Single Quotes

Usage

squote(x)

Arguments

x A character vector

Default value none

Value

A character vector

See Also

Helpers for working with Quotes and Quoting: backquote(), dquote()

suppress_warning Suppress Specific Warnings

Description

Suppress certain warnings issued by an expression.

Usage

suppress_warning(expr, regexpr)

Arguments

expr Expression to be executed

Default value none

regexpr Regular expression matching warnings to suppress

Default value none

Details

All warnings which are issued by the expression and match the regular expression are suppressed.

valid_time_units 71

Value

Return value of the expression

See Also

Function that provide users with custom warnings warn_if_incomplete_dtc(), warn_if_inconsistent_list(),
warn_if_invalid_dtc(), warn_if_vars_exist()

valid_time_units Valid Time Units

Description

[Deprecated]
This function is deprecated. Please get in touch if you are using this function!

Contains the acceptable character vector of valid time units

Usage

valid_time_units()

Value

A character vector of valid time units

See Also

Other deprecated: %or%(), arg_name(), enumerate(), friendly_type_of(), what_is_it()

vars2chr Turn a List of Expressions into a Character Vector

Description

Turn a List of Expressions into a Character Vector

Usage

vars2chr(expressions)

Arguments

expressions A list of expressions created using exprs()

Default value none

72 warn_if_incomplete_dtc

Value

A character vector

See Also

Developer Utility Functions: %notin%(), contains_vars(), convert_dtm_to_dtc(), extract_vars(),
filter_if()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)

vars2chr(exprs(USUBJID, AVAL))

warn_if_incomplete_dtc

Warn if incomplete dtc

Description

Warn if incomplete dtc

Usage

warn_if_incomplete_dtc(dtc, n)

Arguments

dtc A character vector of date-times in ISO 8601 format

Default value none

n A non-negative integer

Default value none

Value

A warning if dtc contains any partial dates

See Also

Function that provide users with custom warnings suppress_warning(), warn_if_inconsistent_list(),
warn_if_invalid_dtc(), warn_if_vars_exist()

warn_if_inconsistent_list 73

warn_if_inconsistent_list

Warn If Two Lists are Inconsistent

Description

Checks if two list inputs have the same names and same number of elements and issues a warning
otherwise.

Usage

warn_if_inconsistent_list(base, compare, list_name, i = 2)

Arguments

base A named list

Default value none

compare A named list

Default value none

list_name A string the name of the list

Default value none

i the index id to compare the 2 lists

Default value 2

Value

a warning if the 2 lists have different names or length

See Also

Function that provide users with custom warnings suppress_warning(), warn_if_incomplete_dtc(),
warn_if_invalid_dtc(), warn_if_vars_exist()

Examples

library(dplyr, warn.conflicts = FALSE)
library(rlang)

no warning
warn_if_inconsistent_list(

base = exprs(DTHDOM = "DM", DTHSEQ = DMSEQ),
compare = exprs(DTHDOM = "DM", DTHSEQ = DMSEQ),
list_name = "Test"

)
warning
warn_if_inconsistent_list(

74 warn_if_invalid_dtc

base = exprs(DTHDOM = "DM", DTHSEQ = DMSEQ, DTHVAR = "text"),
compare = exprs(DTHDOM = "DM", DTHSEQ = DMSEQ),
list_name = "Test"

)

warn_if_invalid_dtc Warn If a Vector Contains Unknown Datetime Format

Description

Warn if the vector contains unknown datetime format such as "2003-12-15T-:15:18", "2003-12-
15T13:-:19","–12-15","—–T07:15"

Usage

warn_if_invalid_dtc(dtc, is_valid = is_valid_dtc(dtc))

Arguments

dtc a character vector containing the dates

Default value none

is_valid a logical vector indicating whether elements in dtc are valid

Default value is_valid_dtc(dtc)

Value

No return value, called for side effects

See Also

Function that provide users with custom warnings suppress_warning(), warn_if_incomplete_dtc(),
warn_if_inconsistent_list(), warn_if_vars_exist()

Examples

No warning as `dtc` is a valid date format
warn_if_invalid_dtc(dtc = "2021-04-06")

Issues a warning
warn_if_invalid_dtc(dtc = "2021-04-06T-:30:30")

warn_if_vars_exist 75

warn_if_vars_exist Warn If a Variable Already Exists

Description

Warn if a variable already exists inside a dataset

Usage

warn_if_vars_exist(dataset, vars)

Arguments

dataset A data.frame

Default value none

vars character vector of columns to check for in dataset

Default value none

Value

No return value, called for side effects

See Also

Function that provide users with custom warnings suppress_warning(), warn_if_incomplete_dtc(),
warn_if_inconsistent_list(), warn_if_invalid_dtc()

Examples

library(dplyr, warn.conflicts = FALSE)
dm <- tribble(

~USUBJID, ~ARM,
"01-701-1015", "Placebo",
"01-701-1016", "Placebo",

)

No warning as `AAGE` doesn't exist in `dm`
warn_if_vars_exist(dm, "AAGE")

Issues a warning
warn_if_vars_exist(dm, "ARM")

76 %notin%

what_is_it What Kind of Object is This?

Description

[Deprecated]

This function is deprecated, please use cli functionality instead.

Usage

what_is_it(x)

Arguments

x Any R object

Default value none

Value

A character description of the type of x

See Also

Other deprecated: %or%(), arg_name(), enumerate(), friendly_type_of(), valid_time_units()

%notin% Negated Value Matching

Description

Returns a logical vector indicating if there is no match of the left operand in the right operand.

Usage

x %notin% table

Arguments

x The values to be matched

Default value none

table The values to be matched against

Default value none

%or% 77

Value

A logical vector

See Also

Developer Utility Functions: contains_vars(), convert_dtm_to_dtc(), extract_vars(), filter_if(),
vars2chr()

%or% Or

Description

[Deprecated]
This function is deprecated. Please get in touch if you are using this function!

Usage

lhs %or% rhs

Arguments

lhs Any valid R expression

Default value none

rhs Any valid R expression

Default value none

Details

The function evaluates the expression lhs and if this expression results in an error, it catches that
error and proceeds with evaluating the expression rhs and returns that result.

Value

Either the result of evaluating lhs, rhs or an error

See Also

Other deprecated: arg_name(), enumerate(), friendly_type_of(), valid_time_units(), what_is_it()

Index

∗ assertion
assert_atomic_vector, 5
assert_character_scalar, 6
assert_character_vector, 8
assert_data_frame, 10
assert_date_var, 12
assert_date_vector, 14
assert_expr, 15
assert_expr_list, 17
assert_filter_cond, 18
assert_function, 20
assert_integer_scalar, 22
assert_list_element, 23
assert_list_of, 26
assert_logical_scalar, 27
assert_named, 29
assert_numeric_vector, 30
assert_one_to_one, 32
assert_param_does_not_exist, 34
assert_s3_class, 35
assert_same_type, 37
assert_symbol, 38
assert_unit, 40
assert_vars, 42
assert_varval_list, 44

∗ deprecated
%or%, 77
arg_name, 4
enumerate, 52
friendly_type_of, 56
valid_time_units, 71
what_is_it, 76

∗ dev_utility
%notin%, 76
contains_vars, 48
convert_dtm_to_dtc, 48
dataset_vignette, 49
extract_vars, 54
filter_if, 55

vars2chr, 71
∗ documentation

capture_output, 47
parse_code, 62
rdx_roclet, 64

∗ get
get_constant_vars, 57
get_dataset, 57
get_duplicates, 58
get_source_vars, 60

∗ is
is_auto, 60
is_order_vars, 61
is_valid_dtc, 62

∗ messages
deprecate_inform, 50

∗ quote
backquote, 46
dquote, 51
squote, 70

∗ quo
add_suffix_to_vars, 3
expr_c, 54
replace_symbol_in_expr, 68
replace_values_by_names, 69

∗ test_helper
expect_dfs_equal, 52

∗ tmp_vars
get_new_tmp_var, 59
remove_tmp_vars, 67

∗ utils_help
process_set_values_to, 63

∗ warnings
suppress_warning, 70
warn_if_incomplete_dtc, 72
warn_if_inconsistent_list, 73
warn_if_invalid_dtc, 74
warn_if_vars_exist, 75

%notin%, 48, 49, 55, 72, 76

78

INDEX 79

%or%, 5, 52, 56, 71, 76, 77

add_suffix_to_vars, 3, 54, 69
arg_name, 4, 52, 56, 71, 76, 77
assert_atomic_vector, 5, 7, 9, 11, 15, 16,

18, 19, 21, 23, 25, 27, 28, 30, 32, 33,
35, 37–39, 42, 44, 46

assert_character_scalar, 6, 6, 9, 11, 15,
16, 18, 19, 21, 23, 25, 27, 28, 30, 32,
33, 35, 37–39, 42, 44, 46

assert_character_vector, 6, 7, 8, 11, 15,
16, 18, 19, 21, 23, 25, 27, 28, 30, 32,
33, 35, 37–39, 42, 44, 46

assert_data_frame, 6, 7, 9, 10, 15, 16, 18,
19, 21, 23, 25, 27, 28, 30, 32, 33, 35,
37–39, 42, 44, 46

assert_date_var, 12
assert_date_vector, 6, 7, 9, 11, 14, 16, 18,

19, 21, 23, 25, 27, 28, 30, 32, 33, 35,
37–39, 42, 44, 46

assert_expr, 6, 7, 9, 11, 15, 15, 18, 19, 21,
23, 25, 27, 28, 30, 32, 33, 35, 37–39,
42, 44, 46

assert_expr_list, 6, 7, 9, 11, 15, 16, 17, 19,
21, 23, 25, 27, 28, 30, 32, 33, 35,
37–39, 42, 44, 46

assert_filter_cond, 6, 7, 9, 11, 15, 16, 18,
18, 21, 23, 25, 27, 28, 30, 32, 33, 35,
37–39, 42, 44, 46

assert_function, 6, 7, 9, 11, 15, 16, 18, 19,
20, 23, 25, 27, 28, 30, 32, 33, 35,
37–39, 42, 44, 46

assert_integer_scalar, 6, 7, 9, 11, 15, 16,
18, 19, 21, 22, 25, 27, 28, 30, 32, 33,
35, 37–39, 42, 44, 46

assert_list_element, 6, 7, 9, 11, 15, 16, 18,
19, 21, 23, 23, 27, 29, 30, 32, 33, 35,
37, 38, 40, 42, 44, 46

assert_list_of, 6, 7, 9, 11, 15, 16, 18, 19,
21, 23, 25, 26, 29, 30, 32, 33, 35, 37,
38, 40, 42, 44, 46

assert_logical_scalar, 6, 7, 9, 11, 15, 16,
18, 19, 21, 23, 25, 27, 27, 30, 32, 33,
35, 37, 38, 40, 42, 44, 46

assert_named, 6, 7, 9, 11, 15, 16, 18, 19, 21,
23, 25, 27, 29, 29, 32, 33, 35, 37, 38,
40, 42, 44, 46

assert_numeric_vector, 6, 7, 9, 11, 15, 16,
18, 19, 21, 23, 25, 27, 29, 30, 30, 33,

35, 37, 38, 40, 42, 44, 46
assert_one_to_one, 6, 7, 9, 11, 15, 16, 18,

19, 21, 23, 25, 27, 29, 30, 32, 32, 35,
37, 38, 40, 42, 44, 46

assert_param_does_not_exist, 6, 7, 9, 11,
15, 16, 18, 19, 21, 23, 25, 27, 29, 30,
32, 33, 34, 37, 38, 40, 42, 44, 46

assert_s3_class, 6, 7, 9, 11, 15, 16, 18, 19,
21, 23, 25, 27, 29, 30, 32, 33, 35, 35,
38, 40, 42, 44, 46

assert_same_type, 6, 7, 9, 11, 15, 16, 18, 19,
21, 23, 25, 27, 29, 30, 32, 33, 35, 37,
37, 40, 42, 44, 46

assert_symbol, 6, 7, 9, 11, 15, 16, 18, 19, 21,
23, 25, 27, 29, 30, 32, 33, 35, 37, 38,
38, 42, 44, 46

assert_unit, 6, 7, 9, 11, 15, 16, 18, 19, 21,
23, 25, 27, 29, 30, 32, 33, 35, 37, 38,
40, 40, 44, 46

assert_vars, 6, 7, 9, 11, 15, 16, 18, 19, 21,
23, 25, 27, 29, 30, 32, 33, 35, 37, 38,
40, 42, 42, 46

assert_varval_list, 6, 7, 9, 11, 15, 16, 18,
19, 21, 23, 25, 27, 29, 30, 32, 33, 35,
37, 38, 40, 42, 44, 44

backquote, 46, 51, 70
bulleted list, 50

capture_output, 47
contains_vars, 48, 49, 55, 72, 77
convert_dtm_to_dtc, 48, 48, 55, 72, 77

dataset_vignette, 49
defused function call, 6, 7, 9, 11, 13, 15,

16, 18, 19, 21, 23, 24, 27, 28, 30, 31,
33, 35, 36, 39, 41, 43, 45

demo_fun(), 65
deprecate_inform, 50
diffdf::diffdf(), 52, 53
dquote, 46, 51, 70

enumerate, 5, 52, 56, 71, 76, 77
expect_dfs_equal, 52
expr_c, 4, 54, 69
extract_vars, 48, 49, 54, 55, 72, 77

filter_if, 48, 49, 55, 55, 72, 77
friendly_type_of, 5, 52, 56, 71, 76, 77

80 INDEX

get_constant_vars, 57, 58–60
get_dataset, 57, 57, 59, 60
get_duplicates, 57, 58, 58, 60
get_new_tmp_var, 59
get_new_tmp_var(), 67
get_source_vars, 57–59, 60

Including function calls in error
messages, 6, 7, 9, 11, 13, 15, 16, 18,
19, 21, 23, 24, 27, 28, 30, 31, 33, 35,
36, 39, 41, 43, 45

is_auto, 60, 61, 62
is_order_vars, 61, 61, 62
is_valid_dtc, 61, 62

parse_code, 62
process_set_values_to, 63

rdx_roclet, 64
remove_tmp_vars, 67
remove_tmp_vars(), 59
replace_symbol_in_expr, 4, 54, 68, 69
replace_values_by_names, 4, 54, 69, 69

squote, 46, 51, 70
suppress_warning, 70, 72–75

valid_time_units, 5, 52, 56, 71, 76, 77
vars2chr, 48, 49, 55, 71, 77

warn_if_incomplete_dtc, 71, 72, 73–75
warn_if_inconsistent_list, 71, 72, 73, 74,

75
warn_if_invalid_dtc, 71–73, 74, 75
warn_if_vars_exist, 71–74, 75
what_is_it, 5, 52, 56, 71, 76, 77

	add_suffix_to_vars
	arg_name
	assert_atomic_vector
	assert_character_scalar
	assert_character_vector
	assert_data_frame
	assert_date_var
	assert_date_vector
	assert_expr
	assert_expr_list
	assert_filter_cond
	assert_function
	assert_integer_scalar
	assert_list_element
	assert_list_of
	assert_logical_scalar
	assert_named
	assert_numeric_vector
	assert_one_to_one
	assert_param_does_not_exist
	assert_s3_class
	assert_same_type
	assert_symbol
	assert_unit
	assert_vars
	assert_varval_list
	backquote
	capture_output
	contains_vars
	convert_dtm_to_dtc
	dataset_vignette
	deprecate_inform
	dquote
	enumerate
	expect_dfs_equal
	expr_c
	extract_vars
	filter_if
	friendly_type_of
	get_constant_vars
	get_dataset
	get_duplicates
	get_new_tmp_var
	get_source_vars
	is_auto
	is_order_vars
	is_valid_dtc
	parse_code
	process_set_values_to
	rdx_roclet
	remove_tmp_vars
	replace_symbol_in_expr
	replace_values_by_names
	squote
	suppress_warning
	valid_time_units
	vars2chr
	warn_if_incomplete_dtc
	warn_if_inconsistent_list
	warn_if_invalid_dtc
	warn_if_vars_exist
	what_is_it
	notin
	or
	Index

