
Package ‘SpaDES.tools’
January 11, 2026

Type Package

Title Additional Tools for Developing Spatially Explicit Discrete
Event Simulation (SpaDES) Models

Version 2.1.1

Date 2026-01-09

Description Provides GIS and map utilities, plus additional modeling
tools for developing cellular automata, dynamic raster models, and
agent based models in 'SpaDES'. Included are various methods for
spatial spreading, spatial agents, GIS operations, random map
generation, and others. See '?SpaDES.tools' for an categorized
overview of these additional tools. The suggested package 'NLMR' can
be installed from the following repository:
(<https://PredictiveEcology.r-universe.dev>).

License GPL-3

URL https://spades-tools.predictiveecology.org,

https://github.com/PredictiveEcology/SpaDES.tools

BugReports https://github.com/PredictiveEcology/SpaDES.tools/issues

Depends R (>= 4.3)

Imports backports, checkmate (>= 1.8.2), data.table (>= 1.10.4),
fpCompare (>= 0.2.1), graphics, methods, parallel, Rcpp (>=
0.12.12), reproducible (>= 2.1.3), stats, terra

Suggests animation, bit (>= 1.1-12), covr, DEoptim (>= 2.2-4), dqrng,
fastmatch, knitr, NLMR (>= 1.1.1), quickPlot (>= 1.0.2), raster
(>= 2.5-8), rmarkdown, sf, snow, sp (>= 1.2-4), testthat (>=
3.0.0), tools, withr

LinkingTo Rcpp

Additional_repositories https://predictiveecology.r-universe.dev/

ByteCompile yes

Config/testthat/edition 3

Encoding UTF-8

1

https://PredictiveEcology.r-universe.dev
https://spades-tools.predictiveecology.org
https://github.com/PredictiveEcology/SpaDES.tools
https://github.com/PredictiveEcology/SpaDES.tools/issues
https://predictiveecology.r-universe.dev/

2 Contents

Language en-CA

RoxygenNote 7.3.3

Collate 'RcppExports.R' 'heading.R' 'SELES.R'
'distanceFromEachPoint.R' 'environment.R' 'helpers.R'
'initialize.R' 'mapReduce.R' 'mergeRaster.R' 'movement.R'
'neighbourhood.R' 'numerical-comparisons.R' 'probability.R'
'resample.R' 'rings.R' 'spades-tools-deprecated.R'
'spades-tools-package.R' 'splitRaster.R' 'spread.R' 'spread2.R'
'spread3.R' 'studyArea.R' 'zzz.R'

NeedsCompilation yes

Author Eliot J B McIntire [aut] (ORCID:
<https://orcid.org/0000-0002-6914-8316>),

Alex M Chubaty [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7146-8135>),

Yong Luo [ctb],
Ceres Barros [ctb] (ORCID: <https://orcid.org/0000-0003-4036-977X>),
Steve Cumming [ctb],
Jean Marchal [ctb],
His Majesty the King in Right of Canada, as represented by the Minister

of Natural Resources Canada [cph]

Maintainer Alex M Chubaty <achubaty@for-cast.ca>

Repository CRAN

Date/Publication 2026-01-11 06:11:56 UTC

Contents
SpaDES.tools-package . 3
.pointDistance . 5
adj . 6
agentLocation . 9
cir . 9
cirSpecialQuick . 13
distanceFromEachPoint . 14
duplicatedInt . 17
dwrpnorm2 . 17
fastCrop . 18
gaussMap . 19
heading . 20
initiateAgents . 21
inRange . 22
mergeRaster . 23
middlePixel . 26
move . 27
neutralLandscapeMap . 29
numAgents . 30
patchSize . 31

https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0003-4036-977X

SpaDES.tools-package 3

probInit . 31
randomPolygons . 32
randomStudyArea . 34
rasterizeReduced . 35
rings . 36
runifC . 39
specificNumPerPatch . 39
spokes . 40
spread . 43
spread2 . 52
spread3 . 61
testEquivalentMetadata . 65
transitions . 66
wrap . 67

Index 69

SpaDES.tools-package Categorized overview of the SpaDES.tools package

Description

1 Spatial spreading/distances methods

Spatial contagion is a key phenomenon for spatially explicit simulation models. Contagion can be
modelled using discrete approaches or continuous approaches. Several functions assist with these:

adj() An optimized (i.e., faster) version of terra::adjacent()
cir() Identify pixels in a circle around a SpatialPoints* object
directionFromEachPoint() Fast calculation of direction and distance surfaces
distanceFromEachPoint() Fast calculation of distance surfaces
rings() Identify rings around focal cells (e.g., buffers and donuts)
spokes() TO DO: need description
spread() Contagious cellular automata
wrap() Create a torus from a grid

2 Spatial agent methods

Agents have several methods and functions specific to them:

crw() Simple correlated random walk function

4 SpaDES.tools-package

heading() Determines the heading between SpatialPoints*
quickPlot::makeLines() Makes SpatialLines object for, e.g., drawing arrows
move() A meta function that can currently only take "crw"
specificNumPerPatch() Initiate a specific number of agents per patch

3 GIS operations

In addition to the vast amount of GIS operations available in R (mostly from contributed pack-
ages such as sp, raster, maps, maptools and many others), we provide the following GIS-related
functions:

quickPlot::equalExtent() Assess whether a list of extents are all equal

4 Map-reduce - type operations

These functions convert between reduced and mapped representations of the same data. This al-
lows compact representation of, e.g., rasters that have many individual pixels that share identical
information.

rasterizeReduced() Convert reduced representation to full raster

5 Random Map Generation

It is often useful to build dummy maps with which to build simulation models before all data are
available. These dummy maps can later be replaced with actual data maps.

randomPolygons() Creates a random polygon with specified number of classes.

See the NLMR package for tools to generate random landscapes (rasters).

6 SELES-type approach to simulation

These functions are essentially skeletons and are not fully implemented. They are intended to make
translations from SELES. You must know how to use SELES for these to be useful:

agentLocation() Agent location
initiateAgents() Initiate agents into a SpatialPointsDataFrame
numAgents() Number of agents
probInit() Probability of initiating an agent or event
transitions() Transition probability

7 Package options

SpaDES packages use the following options() to configure behaviour:

• spades.lowMemory: If true, some functions will use more memory efficient (but slower)
algorithms. Default FALSE.

http://www.gowlland.ca/

.pointDistance 5

Author(s)

Maintainer: Alex M Chubaty <achubaty@for-cast.ca> (ORCID)

Authors:

• Eliot J B McIntire <eliot.mcintire@nrcan-rncan.gc.ca> (ORCID)

Other contributors:

• Yong Luo <Yong.Luo@gov.bc.ca> [contributor]

• Ceres Barros <ceres.barros@ubc.ca> (ORCID) [contributor]

• Steve Cumming <Steve.Cumming@sbf.ulaval.ca> [contributor]

• Jean Marchal <jean.d.marchal@gmail.com> [contributor]

• His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources
Canada [copyright holder]

See Also

Useful links:

• https://spades-tools.predictiveecology.org

• https://github.com/PredictiveEcology/SpaDES.tools

• Report bugs at https://github.com/PredictiveEcology/SpaDES.tools/issues

.pointDistance Alternative point distance (and direction) calculations

Description

These have been written with speed in mind.

Usage

.pointDistance(
from,
to,
angles = NA,
maxDistance = NA_real_,
otherFromCols = FALSE

)

https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0003-4036-977X
https://spades-tools.predictiveecology.org
https://github.com/PredictiveEcology/SpaDES.tools
https://github.com/PredictiveEcology/SpaDES.tools/issues

6 adj

Arguments

from Numeric matrix with 2 or 3 or more columns. They must include x and y, rep-
resenting x and y coordinates of "from" cell. If there is a column named "id",
it will be "id" from to, i.e,. specific pair distances. All other columns will be
included in the return value of the function.

to Numeric matrix with 2 or 3 columns (or optionally more, all of which will be
returned), x and y, representing x and y coordinates of "to" cells, and optional
"id" which will be matched with "id" from from. Default is all cells.

angles Logical. If TRUE, then the function will return angles in radians, as well as
distances.

maxDistance Numeric in units of number of cells. The algorithm will build the whole surface
(from from to to), but will remove all distances that are above this distance.
Using this will keep memory use down.

otherFromCols other columns to use as ’from’

adj Fast adjacent function, and Just In Time compiled version

Description

Faster function for determining the cells of the 4, 8 or bishop neighbours of the cells. This is a
hybrid function that uses matrix for small numbers of loci (<1e4) and data.table for larger numbers
of loci

Usage

adj(
x = NULL,
cells,
directions = 8,
sort = FALSE,
pairs = TRUE,
include = FALSE,
target = NULL,
numCol = NULL,
numCell = NULL,
match.adjacent = FALSE,
cutoff.for.data.table = 2000,
torus = FALSE,
id = NULL,
numNeighs = NULL,
returnDT = FALSE

)

adj 7

Arguments

x SpatRaster object for which adjacency will be calculated.

cells vector of cell numbers for which adjacent cells should be found. Cell numbers
start with 1 in the upper-left corner and increase from left to right and from top
to bottom.

directions the number of directions in which cells should be connected: 4 (rook’s case), 8
(queen’s case), or "bishop" to connect cells with one-cell diagonal moves. Or
a neighbourhood matrix (see Details).

sort logical. Whether the outputs should be sorted or not, using cell ids of the from
cells (and to cells, if match.adjacent is TRUE).

pairs logical. If TRUE, a matrix of pairs of adjacent cells is returned. If FALSE, a vector
of cells adjacent to cells is returned

include logical. Should the focal cells be included in the result?

target a vector of cells that can be spread to. This is the inverse of a mask.

numCol numeric indicating number of columns in the raster. Using this with numCell is
a bit faster execution time.

numCell numeric indicating number of cells in the raster. Using this with numCol is a bit
faster execution time.

match.adjacent logical. Should the returned object be the same as raster::adjacent. Default
FALSE, which is faster.

cutoff.for.data.table

numeric. If the number of cells is above this value, the function uses data.table
which is faster with large numbers of cells. Default is 5000, which appears to
be the turning point where data.table becomes faster.

torus Logical. Should the spread event wrap around to the other side of the raster?
Default is FALSE.

id numeric If not NULL (default), then function will return "id" column.

numNeighs A numeric scalar, indicating how many neighbours to return. Must be less than
or equal to directions; which neighbours are random with equal probabilities.

returnDT A logical. If TRUE, then the function will return the result as a data.table, if
the internals used data.table, i.e., if number of cells is greater than cutoff.for.data.table.
User should be warned that this will therefore cause the output format to change
depending cutoff.for.data.table. This will be faster for situations where
cutoff.for.data.table = TRUE.

Details

Between 4x (large number loci) to 200x (small number loci) speed gains over adjacent in raster
package. There is some extra speed gain if NumCol and NumCells are passed rather than a raster.
Efficiency gains come from:

1. use data.table internally

• no need to remove NAs because wrapped or outside points are just removed directly with
data.table

8 adj

• use data.table to sort and fast select (though not fastest possible)

2. don’t make intermediate objects; just put calculation into return statement

The steps used in the algorithm are:

1. Calculate indices of neighbouring cells

2. Remove "to" cells that are

• < 1 or > numCells (i.e., they are above or below raster), using a single modulo calculation
• where the modulo of "to" cells is equal to 1 if "from" cells are 0 (wrapped right to left)
• or where the modulo of the "to" cells is equal to 0 if "from" cells are 1 (wrapped left to

right)

Value

Either a matrix (if more than 1 column, i.e., pairs = TRUE, and/or id is provided), a vector (if
only one column), or a data.table (if cutoff.for.data.table is less than length(cells) and
returnDT is TRUE. To get a consistent output, say a matrix, it would be wise to test the output for
its class. The variable output is done to minimize coercion to maintain speed. The columns will be
one or more of id, from, to.

Author(s)

Eliot McIntire

See Also

terra::adjacent()

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

a <- rast(ext(0, 1000, 0, 1000), res = 1)
sam <- sample(1:ncell(a), 1e4)
numCol <- ncol(a)
numCell <- ncell(a)
adj.new <- adj(numCol = numCol, numCell = numCell, cells = sam, directions = 8)
adj.new <- adj(numCol = numCol, numCell = numCell, cells = sam, directions = 8,

include = TRUE)

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

agentLocation 9

agentLocation SELES - Agent Location at initiation

Description

Sets the the location of the initiating agents. NOT YET FULLY IMPLEMENTED.

A SELES-like function to maintain conceptual backwards compatibility with that simulation tool.
This is intended to ease transitions from SELES.

You must know how to use SELES for these to be useful.

Usage

agentLocation(map)

Arguments

map A SpatialPoints*, SpatialPolygons*, or Raster* object.

Value

Object of same class as provided as input. If a Raster*, then zeros are converted to NA.

Author(s)

Eliot McIntire

cir Identify pixels in a circle or ring (doughnut) around an object.

Description

Identify the pixels and coordinates that are at a (set of) buffer distance(s) of the objects passed
into coords. This is similar to sf::st_buffer but much faster and without the georeferencing
information. In other words, it can be used for similar problems, but where speed is important. This
code is substantially adapted from PlotRegionHighlighter::createCircle.

Usage

cir(
landscape,
coords,
loci,
maxRadius = ncol(landscape)/4,
minRadius = maxRadius,
allowOverlap = TRUE,

http://www.gowlland.ca/

10 cir

allowDuplicates = FALSE,
includeBehavior = "includePixels",
returnDistances = FALSE,
angles = NA_real_,
returnAngles = FALSE,
returnIndices = TRUE,
closest = FALSE,
simplify = TRUE

)

Arguments

landscape Raster on which the circles are built.

coords Either a matrix with 2 (or 3) columns, x and y (and id), representing the coordi-
nates (and an associated id, like cell index), or a SpatialPoints* object around
which to make circles. Must be same coordinate system as the landscape argu-
ment. Default is missing, meaning it uses the default to loci.

loci Numeric. An alternative to coords. These are the indices on landscape to
initiate this function (see coords). Default is one point in centre of landscape.

maxRadius Numeric vector of length 1 or same length as coords

minRadius Numeric vector of length 1 or same length as coords. Default is maxRadius,
meaning return all cells that are touched by the narrow ring at that exact radius.
If smaller than maxRadius, then this will create a buffer or doughnut or ring.

allowOverlap Logical. Should duplicates across id be removed or kept. Default TRUE.
allowDuplicates

Logical. Should duplicates within id be removed or kept. Default FALSE. This
is useful if the actual x, y coordinates are desired, rather than the cell indices.
This will increase the size of the returned object.

includeBehavior

Character string. Currently accepts only "includePixels", the default, and
"excludePixels". See details.

returnDistances

Logical. If TRUE, then a column will be added to the returned data.table that
reports the distance from coords to every point that was in the circle/doughnut
surrounding coords. Default FALSE, which is faster.

angles Numeric. Optional vector of angles, in radians, to use. This will create "spokes"
outward from coords. Default is NA, meaning, use internally derived angles that
will "fill" the circle.

returnAngles Logical. If TRUE, then a column will be added to the returned data.table that
reports the angle from coords to every point that was in the circle/doughnut
surrounding coords. Default FALSE.

returnIndices Logical or numeric. If 1 or TRUE, will return a data.table with indices and
values of successful spread events. If 2, it will simply return a vector of pixel
indices of all cells that were touched. This will be the fastest option. If FALSE,
then it will return a raster with values. See Details.

cir 11

closest Logical. When determining non-overlapping circles, should the function give
preference to the closest loci or the first one (much faster). Default is FALSE,
meaning the faster, though maybe not desired behaviour.

simplify logical. If TRUE, then all duplicate pixels are removed. This means that some x,
y combinations will disappear.

Details

This function identifies all the pixels as defined by a donut with inner radius minRadius and outer
radius of maxRadius. The includeBehavior defines whether the cells that intersect the radii but
whose centres are not inside the donut are included includePixels or not excludePixels in the
returned pixels identified. If this is excludePixels, and if a minRadius and maxRadius are equal,
this will return no pixels.

Value

A matrix with 4 columns, id, indices, x, y. The x and y indicate the exact coordinates of the
indices (i.e., cell number) of the landscape associated with the ring or circle being identified by
this function.

See Also

rings() which uses spread internally. cir tends to be faster when there are few starting points,
rings tends to be faster when there are many starting points. cir scales with maxRadius^2 and
coords. Another difference between the two functions is that rings takes the centre of the pixel as
the centre of a circle, whereas cir takes the exact coordinates. See example. For the specific case
of creating distance surfaces from specific points, see distanceFromEachPoint(), which is often
faster. For the more general GIS buffering, see sf::st_buffer.

Examples

library(data.table)
library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)
set.seed(1462)

circle centred
ras <- rast(ext(0, 15, 0, 15), res = 1, val = 0)
middleCircle <- cir(ras)
ras[middleCircle[, "indices"]] <- 1
circlePoints <- vect(middleCircle[, c("x", "y")])
if (interactive()) {

clearPlot()
terra::plot(ras)
terra::plot(circlePoints, add = TRUE)

}

circles non centred
ras <- randomPolygons(ras, numTypes = 4)

12 cir

n <- 2
agent <- vect(cbind(x = stats::runif(n, xmin(ras), xmax(ras)),

y = stats::runif(n, xmin(ras), xmax(ras))))

cirs <- cir(ras, agent, maxRadius = 15, simplify = TRUE) ## TODO: empty with some seeds! e.g. 1642
cirsSP <- vect(cirs[, c("x", "y")]) ## TODO: error with some seeds! e.g. 1642
cirsRas <- rast(ras)
cirsRas[] <- 0
cirsRas[cirs[, "indices"]] <- 1

if (interactive()) {
terra::plot(ras)
terra::plot(cirsRas, add = TRUE, col = c("transparent", "#00000055"))
terra::plot(agent, add = TRUE)
terra::plot(cirsSP, add = TRUE)

}

Example comparing rings and cir
hab <- rast(system.file("extdata", "hab1.tif", package = "SpaDES.tools"))
radius <- 4
n <- 2
coords <- vect(cbind(x = stats::runif(n, xmin(hab), xmax(hab)),

y = stats::runif(n, xmin(hab), xmax(hab))))

cirs
cirs <- cir(hab, coords, maxRadius = rep(radius, length(coords)), simplify = TRUE)

ras1 <- rast(hab)
ras1[] <- 0
ras1[cirs[, "indices"]] <- cirs[, "id"]
if (interactive()) {

terra::plot(ras1)
}

rings
loci <- cellFromXY(hab, crds(coords))
cirs2 <- rings(hab, loci, maxRadius = radius, minRadius = radius - 1, returnIndices = TRUE)

ras2 <- rast(hab)
ras2[] <- 0
ras2[cirs2$indices] <- cirs2$id
if (interactive()) {

terra::plot(c(ras1, ras2))
}

hab <- rast(system.file("extdata", "hab2.tif", package = "SpaDES.tools"))
cirs <- cir(hab, coords, maxRadius = 44, minRadius = 0)
ras1 <- rast(hab)
ras1[] <- 0
cirsOverlap <- data.table::data.table(cirs)[, list(sumIDs = sum(id)), by = indices]
ras1[cirsOverlap$indices] <- cirsOverlap$sumIDs
if (interactive()) {

terra::plot(ras1)

cirSpecialQuick 13

}

Provide a specific set of angles
ras <- rast(ext(0, 330, 0, 330), res = 1)
ras[] <- 0
n <- 2
coords <- cbind(x = stats::runif(n, xmin(ras), xmax(ras)),

y = stats::runif(n, xmin(ras), xmax(ras)))
circ <- cir(ras, coords, angles = seq(0, 2 * pi, length.out = 21),

maxRadius = 200, minRadius = 0, returnIndices = FALSE,
allowOverlap = TRUE, returnAngles = TRUE)

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

cirSpecialQuick This is a very fast version of cir with allowOverlap
= TRUE, allowDuplicates = FALSE, returnIndices =
TRUE, returnDistances = TRUE, and includeBehavior =
"excludePixels". It is used inside spread2, when asymmetry
is active. The basic algorithm is to run cir just once, then add to the
x,y coordinates of every locus.

Description

This is a very fast version of cir with allowOverlap = TRUE, allowDuplicates = FALSE, returnIndices
= TRUE, returnDistances = TRUE, and includeBehavior = "excludePixels". It is used inside
spread2, when asymmetry is active. The basic algorithm is to run cir just once, then add to the
x,y coordinates of every locus.

Usage

.cirSpecialQuick(landscape, loci, maxRadius, minRadius)

Arguments

landscape Raster on which the circles are built.

loci Numeric. An alternative to coords. These are the indices on landscape to
initiate this function (see coords). Default is one point in centre of landscape.

maxRadius Numeric vector of length 1 or same length as coords

minRadius Numeric vector of length 1 or same length as coords. Default is maxRadius,
meaning return all cells that are touched by the narrow ring at that exact radius.
If smaller than maxRadius, then this will create a buffer or doughnut or ring.

14 distanceFromEachPoint

distanceFromEachPoint Calculate distances and directions between many points and many
grid cells

Description

This is a modification of terra::distance() for the case of many points. This version can of-
ten be faster for a single point because it does not return a RasterLayer. This is different than
terra::distance() because it does not take the minimum distance from the set of points to all
cells. Rather this returns the every pair-wise point distance. As a result, this can be used for doing
inverse distance weightings, seed rain, cumulative effects of distance-based processes etc. If mem-
ory limitation is an issue, maxDistance will keep memory use down, but with the consequences that
there will be a maximum distance returned. This function has the potential to use a lot of memory
if there are a lot of from and to points.

Usage

distanceFromEachPoint(
from,
to = NULL,
landscape,
angles = NA_real_,
maxDistance = NA_real_,
cumulativeFn = NULL,
distFn = function(dist) 1/(1 + dist),
cl,
...

)

Arguments

from Numeric matrix with 2 or 3 or more columns. They must include x and y, rep-
resenting x and y coordinates of "from" cell. If there is a column named "id",
it will be "id" from to, i.e,. specific pair distances. All other columns will be
included in the return value of the function.

to Numeric matrix with 2 or 3 columns (or optionally more, all of which will be
returned), x and y, representing x and y coordinates of "to" cells, and optional
"id" which will be matched with "id" from from. Default is all cells.

landscape RasterLayer. optional. This is only used if to is NULL, in which case all cells
are considered to.

angles Logical. If TRUE, then the function will return angles in radians, as well as
distances.

maxDistance Numeric in units of number of cells. The algorithm will build the whole surface
(from from to to), but will remove all distances that are above this distance.
Using this will keep memory use down.

distanceFromEachPoint 15

cumulativeFn A function that can be used to incrementally accumulate values in each to loca-
tion, as the function iterates through each from. See Details.

distFn A function. This can be a function of landscape, fromCell (single integer
value of a from pixel), toCells (integer vector value of all the to pixel indices),
and dist. If cumulativeFn is supplied, this will be used to convert the distances
to some other set of units that will be accumulated by the cumulativeFn. See
Details and examples.

cl A cluster object. Optional. This would generally be created using parallel::makeCluster()
or equivalent. This is an alternative way, instead of beginCluster(), to use par-
allelism for this function, allowing for more control over cluster use.

... Any additional objects needed for distFn.

Details

This function is cluster aware if the raster package is available. If there is a cluster running, it will
use it. To start a cluster use raster::beginCluster(), with N being the number of cores to use.
See examples in SpaDES.core::experiment.

If the user requires an id (indicating the from cell for each to cell) to be returned with the function,
the user must add an identifier to the from matrix, such as "id". Otherwise, the function will only
return the coordinates and distances.

distanceFromEachPoint calls .pointDistance, which is not intended to be called directly by the
user.

This function has the potential to return a very large object, as it is doing pairwise distances (and
optionally directions) between from and to. If there are memory limitations because there are
many from and many to points, then cumulativeFn and distFn can be used. These two functions
together will be used iteratively through the from points. The distFn should be a transformation
of distances to be used by the cumulativeFn function. For example, if distFn is 1 / (1+x), the
default, and cumulativeFn is +, then it will do a sum of inverse distance weights. See examples.

Value

A sorted matrix on id with same number of rows as to, but with one extra column, "dists",
indicating the distance between from and to.

See Also

rings(), cir(), terra::distance(), which can all be made to do the same thing, under specific
combinations of arguments. But each has different primary use cases. Each is also faster under
different conditions. For instance, if maxDistance is relatively small compared to the number of
cells in the landscape, then cir() will likely be faster. If a minimum distance from all cells in the
landscape to any cell in from, then distanceFromPoints will be fastest. This function scales best
when there are many to points or all cells are used to = NULL (which is default).

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)

16 distanceFromEachPoint

origNcpus <- options(Ncpus = 2L)

n <- 2
distRas <- rast(ext(0, 40, 0, 40), res = 1)
coords <- cbind(x = round(runif(n, xmin(distRas), xmax(distRas))) + 0.5,

y = round(runif(n, xmin(distRas), xmax(distRas))) + 0.5)

inverse distance weights
dists1 <- distanceFromEachPoint(coords, landscape = distRas)
indices <- cellFromXY(distRas, dists1[, c("x", "y")])
invDist <- tapply(dists1[, "dists"], indices, function(x) sum(1 / (1 + x))) # idw function
distRas[] <- as.vector(invDist)
if (interactive()) {

clearPlot()
terra::plot(distRas)

}

With iterative summing via cumulativeFn to keep memory use low, with same result
dists1 <- distanceFromEachPoint(coords[, c("x", "y"), drop = FALSE],

landscape = distRas, cumulativeFn = `+`)
idwRaster <- rast(distRas)
idwRaster[] <- dists1[, "dists"]
if (interactive()) terra::plot(idwRaster)

all(idwRaster[] == distRas[]) # TRUE

A more complex example of cumulative inverse distance sums, weighted by the value
of the origin cell
ras <- rast(ext(0, 34, 0, 34), res = 1, val = 0)
rp <- randomPolygons(ras, numTypes = 10) ^ 2
n <- 15
cells <- sample(ncell(ras), n)
coords <- xyFromCell(ras, cells)
distFn <- function(landscape, fromCell, dist) landscape[fromCell] / (1 + dist)

#beginCluster(3) # can do parallel
dists1 <- distanceFromEachPoint(coords[, c("x", "y"), drop = FALSE],

landscape = rp, distFn = distFn, cumulativeFn = `+`)
#endCluster() # if beginCluster was run

idwRaster <- rast(ras)
idwRaster[] <- dists1[, "dists"]
if (interactive()) {

clearPlot()
terra::plot(rp)
sp1 <- vect(coords)
terra::plot(sp1, add = TRUE)
terra::plot(idwRaster)
terra::plot(sp1, add = TRUE)

}

On linux; can use numeric passed to cl; will use mclapply with mc.cores = cl
if (identical(Sys.info()["sysname"], "Linux")) {

duplicatedInt 17

dists1 <- distanceFromEachPoint(coords[, c("x", "y"), drop = FALSE],
landscape = rp, distFn = distFn,
cumulativeFn = `+`, cl = 2)

}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

duplicatedInt Rcpp duplicated on integers using Rcpp Sugar

Description

.duplicatedInt does same as duplicated in R, but only on integers, and faster. It uses Rcpp
sugar

Usage

duplicatedInt(x)

Arguments

x Integer Vector

Value

A logical vector, as per duplicated

dwrpnorm2 Vectorized wrapped normal density function

Description

This is a modified version of dwrpnorm in the CircStats package to allow for multiple angles at
once (i.e., vectorized on theta and mu).

Usage

dwrpnorm2(theta, mu, rho, sd = 1, acc = 1e-05, tol = acc)

18 fastCrop

Arguments

theta value at which to evaluate the density function, measured in radians.
mu mean direction of distribution, measured in radians.
rho mean resultant length of distribution.
sd different way of select rho, see details below.
acc parameter defining the accuracy of the estimation of the density. Terms are

added to the infinite summation that defines the density function until successive
estimates are within acc of each other.

tol same as acc.

Author(s)

Eliot McIntire

Examples

Values for which to evaluate density
theta <- c(1:500) * 2 * pi / 500
Compute wrapped normal density function
density <- c(1:500)
for(i in 1:500) {

density[i] <- dwrpnorm2(theta[i], pi, .75)
}

if (interactive()) {
plot(theta, density)

}

Approximate area under density curve
sum(density * 2 * pi / 500)

fastCrop fastCrop is deprecated.

Description

fastCrop is deprecated.

Usage

fastCrop(x, y, ...)

Arguments

x Raster to crop
y Raster to crop with
... other

gaussMap 19

See Also

velox::VeloxRaster_crop

gaussMap Produce a raster of a random Gaussian process.

Description

Defunct.

Usage

gaussMap(
x,
scale = 10,
var = 1,
speedup = 1,
method = "RMexp",
alpha = 1,
inMemory = FALSE,
...

)

Arguments

x A spatial object (e.g., a RasterLayer).

scale The spatial scale in map units of the Gaussian pattern.

var Spatial variance.

speedup An numeric value indicating how much faster than ’normal’ to generate maps.
It may be necessary to give a value larger than 1 for large maps. Default is 1.

method The type of model used to produce the Gaussian pattern. Should be one of
"RMgauss" (Gaussian covariance model), "RMstable" (the stable powered ex-
ponential model), or the default, "RMexp" (exponential covariance model).

alpha A required parameter of the "RMstable" model. Should be in the interval [0,2]
to provide a valid covariance function. Default is 1.

inMemory Should the RasterLayer be forced to be in memory? Default FALSE.

... Additional arguments to raster.

Value

A raster map with same extent as x, with a Gaussian random pattern.

20 heading

heading Heading between spatial points.

Description

Determines the heading between spatial points.

Usage

heading(from, to)

Arguments

from The starting position; an object of class SpatVector.

to The ending position; an object of class SpatVector.

Value

The heading between the points, in degrees.

Author(s)

Eliot McIntire

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

N <- 10L # number of agents
x1 <- stats::runif(N, -50, 50) # previous X location
y1 <- stats::runif(N, -50, 50) # previous Y location
x0 <- stats::rnorm(N, x1, 5) # current X location
y0 <- stats::rnorm(N, y1, 5) # current Y location

using SpatVector
prev <- terra::vect(cbind(x = x1, y = y1))
curr <- terra::vect(cbind(x = x0, y = y0))
heading(prev, curr)

using matrix
prev <- matrix(c(x1, y1), ncol = 2, dimnames = list(NULL, c("x","y")))
curr <- matrix(c(x0, y0), ncol = 2, dimnames = list(NULL, c("x","y")))
heading(prev, curr)

#using both
prev <- terra::vect(cbind(x = x1, y = y1))

initiateAgents 21

curr <- matrix(c(x0, y0), ncol = 2, dimnames = list(NULL, c("x","y")))
heading(prev, curr)

prev <- matrix(c(x1, y1), ncol = 2, dimnames = list(NULL, c("x","y")))
curr <- terra::vect(cbind(x = x0, y = y0))
heading(prev, curr)

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

initiateAgents SELES - Initiate agents

Description

Sets the the number of agents to initiate. THIS IS NOT FULLY IMPLEMENTED.

A SELES-like function to maintain conceptual backwards compatibility with that simulation tool.
This is intended to ease transitions from SELES.

You must know how to use SELES for these to be useful.

Usage

initiateAgents(map, numAgents, probInit, asSpatialPoints = TRUE, indices)

Arguments

map RasterLayer with extent and resolution of desired return object

numAgents numeric resulting from a call to numAgents()

probInit a Raster resulting from a probInit() call
asSpatialPoints

logical or "sf". Should returned object be RasterLayer or SpatVector default
(or legacy TRUE SpatialPointsDataFrame)

indices numeric. Indices of where agents should start

Value

A SpatialPointsDataFrame, with each row representing an individual agent

Author(s)

Eliot McIntire

http://www.gowlland.ca/

22 inRange

Examples

if (require("sf", quietly = TRUE)) {
library(data.table)
library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

map <- rast(system.file("extdata", "map.tif", package = "SpaDES.tools"))
names(map) <- "layer"
pr <- probInit(map, p = (map[] / terra::minmax(map)[2])^2)
agents <- initiateAgents(map, 100, pr, asSpatialPoints = "sf")
if (interactive()) {
terra::plot(map)
terra::plot(agents, add = TRUE)

}
Test that they are indeed selecting according to probabilities in pr
dt1 <- data.table(table(round(extract(map, agents), 0)[, "layer"]))
setnames(dt1, old = "N", new = "count")
dt2 <- data.table(table(round(map[], 0)))
setnames(dt2, old = "N", new = "available")
dt <- dt1[dt2, on = "V1"] # join the counts and available data.tables
setnames(dt, old = "V1", new = "mapValue")
dt[, selection := count / available]
dt[is.na(selection), selection := 0]
if (interactive()) {

with(dt, plot(mapValue, selection))
}
#'
Note, can also produce a Raster representing agents,
then the number of points produced can't be more than
the number of pixels:
agentsRas <- initiateAgents(map, 30, pr, asSpatialPoints = FALSE)
if (interactive()) {

terra::plot(agentsRas)
}
#'
clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

}

inRange Test whether a number lies within range [a,b]

Description

Default values of a=0; b=1 allow for quick test if x is a probability.

mergeRaster 23

Usage

inRange(x, a = 0, b = 1)

Arguments

x values to be tested
a lower bound (default 0)
b upper bound (default 1)

Value

Logical vectors. NA values in x are retained.

Author(s)

Alex Chubaty

Examples

set.seed(100)
x <- stats::rnorm(4) # -0.50219235 0.13153117 -0.07891709 0.88678481
inRange(x, 0, 1)

mergeRaster Split and re-merge RasterLayer(s)

Description

splitRaster divides up a raster into an arbitrary number of pieces (tiles). Split rasters can be
recombined using do.call(merge, y) or mergeRaster(y), where y <- splitRaster(x).

Usage

mergeRaster(x, fun = NULL)

S4 method for signature 'list'
mergeRaster(x, fun = NULL)

splitRaster(
r,
nx = 1,
ny = 1,
buffer = c(0, 0),
path = NA,
cl,
rType = "FLT4S",
fExt = ".tif"

)

24 mergeRaster

Arguments

x A list of split raster tiles (i.e., from splitRaster).
fun Function (e.g. mean, min, or max that accepts a na.rm argument. The default is

mean.
r The raster to be split.
nx The number of tiles to make along the x-axis.
ny The number of tiles to make along the y-axis.
buffer Numeric vector of length 2 giving the size of the buffer along the x and y axes.

If values greater than or equal to 1 are used, this is interpreted as the number
of pixels (cells) to use as a buffer. Values between 0 and 1 are interpreted as
proportions of the number of pixels in each tile (rounded up to an integer value).
Default is c(0, 0), which means no buffer.

path Character specifying the directory to which the split tiles will be saved. If miss-
ing, the function will write to memory.

cl A cluster object. Optional. This would generally be created using parallel::makeCluster()
or equivalent. This is an alternative way, instead of beginCluster(), to use par-
allelism for this function, allowing for more control over cluster use.

rType Data type of the split rasters. Defaults to FLT4S.
fExt file extension (e.g., ".grd" or ".tif") specifying the file format.

Details

mergeRaster differs from merge in how overlapping tile regions are handled: merge retains the
values of the first raster in the list. This has the consequence of retaining the values from the
buffered region in the first tile in place of the values from the neighbouring tile. On the other hand,
mergeRaster retains the values of the tile region, over the values in any buffered regions. This is
useful for reducing edge effects when performing raster operations involving contagious processes.

This function is parallel-aware using the same mechanism as used in raster: NOTE: This may
not work as expected as we transition away from raster. Specifically, if you start a cluster using
raster::beginCluster(), then this function will automatically use that cluster. It is always a
good idea to stop the cluster when finished, using raster::endCluster().

Value

mergeRaster returns a RasterLayer object.

splitRaster returns a list (length nx*ny) of cropped raster tiles.

Author(s)

Yong Luo, Alex Chubaty, Tati Micheletti & Ian Eddy

Alex Chubaty and Yong Luo

See Also

terra::merge(), terra::mosaic()

do.call(), terra::merge().

mergeRaster 25

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)
set.seed(1462)

an example with dimensions: nrow = 77, ncol = 101, nlayers = 3
b <- rast(system.file("ex/logo.tif", package = "terra"))
r <- b[[1]] # use first layer only
nx <- 3
ny <- 4

tmpdir <- dir.create(file.path(tempdir(), "splitRaster-example"), showWarnings = FALSE)

y0 <- splitRaster(r, nx, ny, path = file.path(tmpdir, "y0")) # no buffer

buffer: 10 pixels along both axes
y1 <- splitRaster(r, nx, ny, c(10, 10), path = file.path(tmpdir, "y1"))

buffer: half the width and length of each tile
y2 <- splitRaster(r, nx, ny, c(0.5, 0.5), path = file.path(tmpdir, "y2"))

the original raster:
if (interactive()) plot(r) # may require a call to `dev()` if using RStudio

the split raster:
layout(mat = matrix(seq_len(nx * ny), ncol = nx, nrow = ny))
plotOrder <- unlist(lapply(split(1:12, rep(1:nx, each = ny)), rev))

if (interactive()) {
invisible(lapply(y0[plotOrder], terra::plot))

}

parallel splitting
if (requireNamespace("raster", quietly = TRUE) &&

requireNamespace("parallel")) {
if (interactive()) {

n <- pmin(parallel::detectCores(), 4) # use up to 4 cores
raster::beginCluster(n, type = "PSOCK")
y3 <- splitRaster(r, nx, ny, c(0.7, 0.7), path = file.path(tmpdir, "y3"))
raster::endCluster()
if (interactive()) {

invisible(lapply(y3[plotOrder], terra::plot))
}

}
}

can be recombined using `terra::merge`
m0 <- do.call(merge, y0)
all.equal(m0, r) ## TRUE

26 middlePixel

m1 <- do.call(merge, y1)
all.equal(m1, r) ## TRUE

m2 <- do.call(merge, y2)
all.equal(m2, r) ## TRUE

or recombine using mergeRaster
n0 <- mergeRaster(y0)
all.equal(n0, r) ## TRUE

n1 <- mergeRaster(y1)
all.equal(n1, r) ## TRUE

n2 <- mergeRaster(y2)
all.equal(n2, r) ## TRUE

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)
unlink(tmpdir, recursive = TRUE)

middlePixel Return the (approximate) middle pixel on a raster

Description

Return the (approximate) middle pixel on a raster

Usage

middlePixel(ras)

Arguments

ras A Raster or SpatRaster object

Value

This calculation is slightly different depending on whether the nrow(ras) and ncol(ras) are even
or odd. It will return the exact middle pixel if these are odd, and the pixel just left and/or above the
middle pixel if either dimension is even, respectively.

move 27

move Move

Description

Wrapper for selecting different animal movement methods.

This version uses just turn angles and step lengths to define the correlated random walk.

Usage

move(hypothesis = "crw", ...)

crw(
agent,
extent,
stepLength,
stddev,
lonlat = FALSE,
torus = FALSE,
returnMatrix = FALSE

)

Arguments

hypothesis Character vector, length one, indicating which movement hypothesis/method to
test/use. Currently defaults to ’crw’ (correlated random walk) using crw.

... arguments passed to the function in hypothesis

agent A SpatVector points geometry or a SpatialPoints* (deprecated) object. If
is has attributes, e.g., SpatialPointsDataFrame, 2 of the columns must be x1
and y1, indicating the previous location. If it does not have these columns as
attributes, x1 and y1 will be assigned randomly.

extent An optional Extent object that will be used for torus.

stepLength Numeric vector of length 1 or number of agents describing step length.

stddev Numeric vector of length 1 or number of agents describing standard deviation
of wrapped normal turn angles.

lonlat Logical. If TRUE, coordinates should be in degrees. If FALSE coordinates repre-
sent planar (’Euclidean’) space (e.g. units of meters)

torus Logical. Should the movement be wrapped to the opposite side of the map, as
determined by the extent argument. Default FALSE.

returnMatrix If TRUE then the return object will be a matrix. This will be MUCH faster than
retaining the sp or SpatVector class, and thus will be much more effective for
iterative crw calls

28 move

Details

This simple version of a correlated random walk is largely the version that was presented in Turchin
1998, but it was also used with bias modifications in McIntire, Schultz, Crone 2007.

Value

A SpatVector points object with updated spatial position defined by a single occurrence of step
length(s) and turn angle(s).

Author(s)

Eliot McIntire

References

Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling population redistri-
bution in animals and plants. Sinauer Associates, Sunderland, MA.

McIntire, E. J. B., C. B. Schultz, and E. E. Crone. 2007. Designing a network for butterfly habitat
restoration: where individuals, populations and landscapes interact. Journal of Applied Ecology
44:725-736.

See Also

terra::distance()

wrap()

Examples

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

using just matrix
N <- 10
xrange <- yrange <- c(-50, 50)
starts <- cbind(x = stats::runif(N, xrange[1], xrange[2]),

y = stats::runif(N, yrange[1], yrange[2]))
moved <- crw(starts, stepLength = 5, stddev = 10)
plot(starts, col = rainbow(10), pch = 19)
points(moved, col = rainbow(10))

as SpatVector
agent <- terra::vect(starts)
moved <- crw(agent, stepLength = 5, stddev = 10)
movedAgain <- crw(moved, stepLength = 5, stddev = 10)
terra::plot(agent)
terra::plot(moved, add = TRUE, col = "red")
terra::plot(movedAgain, add = TRUE, col = "green")

1000x faster!! -- returnMatrix = TRUE
agentOrig <- agent

neutralLandscapeMap 29

reps <- 1e2
system.time({
for (i in 1:reps) agent <- crw(agent, stepLength = 5, stddev = 10, returnMatrix = TRUE)

})
agent <- agentOrig
system.time({

for (i in 1:reps) agent <- crw(agent, stepLength = 5, stddev = 10)
})

as sp
if (requireNamespace("sp")) {

agent <- sp::SpatialPoints(starts)
spdf <- crw(agent, stepLength = 5, stddev = 10)
spdfNew <- crw(spdf, stepLength = 5, stddev = 10)
terra::plot(spdf, pch = 19)
terra::points(spdfNew, col = "blue", pch = 19)

}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

neutralLandscapeMap Produce a neutral landscape using a midpoint displacement algorithm

Description

This is a wrapper for the nlm_mpd function in the NLMR package. The main addition is that it makes
sure that the output raster conforms in extent with the input raster x, since nlm_mpd can output a
smaller raster.

Usage

neutralLandscapeMap(
x,
pad = 10L,
type = c("nlm_mpd", "nlm_gaussianfield", "nlm_distancegradient", "nlm_edgegradient",
"nlm_fbm", "nlm_mosaicfield", "nlm_mosaicgibbs", "nlm_mosaictess", "nlm_neigh",
"nlm_percolation", "nlm_planargradient", "nlm_random",
"nlm_randomrectangularcluster"),

...
)

Arguments

x A RasterLayer/SpatRaster to use as a template.

pad Integer. Number of cells by which to pad x internally to ensure nlm_mpd pro-
duces a raster corresponding to the dimensions of x.

30 numAgents

type One of the supported NLMR functions.

... Further arguments passed to NLMR function specified in type (except ncol, nrow
and resolution, which are extracted from x).

Value

A RasterLayer/SpatRaster with same extent as x, with randomly generated values.

See Also

nlm_mpd

Examples

if (requireNamespace("NLMR", quietly = TRUE) &&
requireNamespace("raster", quietly = TRUE)) {

library(terra)
nx <- ny <- 100L
r <- rast(nrows = ny, ncols = nx,

xmin = -nx/2, xmax = nx/2,
ymin = -ny/2, ymax = ny/2)

or with raster package:
r <- raster::raster(nrows = ny, ncols = nx,
xmn = -nx/2, xmx = nx/2,
ymn = -ny/2, ymx = ny/2)
map1 <- neutralLandscapeMap(r,

type = "nlm_mpd",
roughness = 0.65,
rand_dev = 200,
rescale = FALSE,
verbose = FALSE)

if (interactive()) plot(map1)
}

numAgents SELES - Number of Agents to initiate

Description

Sets the the number of agents to initiate. THIS IS NOT YET FULLY IMPLEMENTED.

A SELES-like function to maintain conceptual backwards compatibility with that simulation tool.
This is intended to ease transitions from SELES.

You must know how to use SELES for these to be useful.

Usage

numAgents(N, probInit)

http://www.gowlland.ca/

patchSize 31

Arguments

N Number of agents to initiate (integer scalar).

probInit Probability of initializing an agent at the location.

Value

A numeric, indicating number of agents to start

Author(s)

Eliot McIntire

patchSize Patch size

Description

Patch size

Usage

patchSize(patches)

Arguments

patches Number of patches.

probInit SELES - Probability of Initiation

Description

Describes the probability of initiation of agents or events. THIS IS NOT FULLY IMPLEMENTED.

A SELES-like function to maintain conceptual backwards compatibility with that simulation tool.
This is intended to ease transitions from SELES.

You must know how to use SELES for these to be useful.

Usage

probInit(map, p = NULL, absolute = NULL)

http://www.gowlland.ca/

32 randomPolygons

Arguments

map A spatialObjects object. Currently, only provides CRS and, if p is not a
raster, then all the raster dimensions.

p probability, provided as a numeric or raster

absolute logical. Is p absolute probabilities or relative?

Value

A RasterLayer with probabilities of initialization. There are several combinations of inputs possi-
ble and they each result in different behaviours.

If p is numeric or Raster and between 0 and 1, it is treated as an absolute probability, and a map
will be produced with the p value(s) everywhere.

If p is numeric or Raster and not between 0 and 1, it is treated as a relative probability, and a map
will be produced with p/max(p) value(s) everywhere.

If absolute is provided, it will override the previous statements, unless absolute = TRUE and p is
not between 0 and 1 (i.e., is not a probability).

Author(s)

Eliot McIntire

randomPolygons Produce a SpatRaster of random polygons

Description

These are built with the spread() function internally.

Produces a SpatVector polygons object with 1 feature that will have approximately an area equal
to area (expecting area in hectares), #’ and a centre at approximately x.

Usage

randomPolygons(
ras = rast(ext(0, 15, 0, 15), res = 1, vals = 0),
numTypes = 2,
...

)

randomPolygon(x, hectares, area)

Default S3 method:
randomPolygon(x, hectares, area)

randomPolygons 33

Arguments

ras A raster that whose extent will be used for the random polygons.

numTypes Numeric value. The number of unique polygon types to use.

... Other arguments passed to spread. No known uses currently.

x Either a SpatVector, or SpatialPoints (deprecated), SpatialPolygons (dep-
recated), or matrix with two dimensions, 1 row, with the approximate centre of
the new random polygon to create. If matrix, then longitude and latitude are
assumed (epsg:4326).

hectares Deprecated. Use area in meters squared.

area A numeric, the approximate area in meters squared of the random polygon.

Value

A map of extent ext with random polygons.

A SpatVector polygons object, with approximately the area request, centred approximately at the
coordinates requested, in the projection of x.

See Also

spread(), randomPolygons()

Examples

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

set.seed(1234)
Ras <- randomPolygons(numTypes = 5)
if (interactive()) {

terra::plot(Ras, col = c("yellow", "dark green", "blue", "dark red"))
}

more complex patterning, with a range of patch sizes
r <- terra::rast(terra::ext(0, 50, 0, 50), resolution = 1, vals = 0)
a <- randomPolygons(numTypes = 400, r)
a[a < 320] <- 0
a[a >= 320] <- 1
clumped <- terra::patches(a)
if (interactive()) {

terra::plot(a)
}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

latLong <- terra::crs("+proj=longlat +datum=WGS84 +no_defs")
"epsg:4326"
a1 <- terra::vect(cbind(-110, 59), crs = latLong)

34 randomStudyArea

a2 <- randomPolygon(a1, area = 1e7)

if (interactive()) {
terra::plot(a1)
terra::points(a2, pch = 19)

}

if (require("sf", quietly = TRUE)) {
latLong <- sf::st_crs("+proj=longlat +datum=WGS84 +no_defs")
"epsg:4326"

b1 <- list(cbind(
x = c(-122.98, -116.1, -99.2, -106, -122.98),
y = c(59.9, 65.73, 63.58, 54.79, 59.9)

)) |>
sf::st_polygon() |>
sf::st_sfc() |>
sf::st_sf(geometry = _, ID = 1L, shinyLabel = "zone2", crs = latLong)

b2 <- randomPolygon(b1, area = 1e10)

if (interactive()) {
plot(sf::st_geometry(b1))
plot(sf::st_geometry(b2), add = TRUE)

}
}

randomStudyArea Create default study areas for use with SpaDES modules

Description

Create default study areas for use with SpaDES modules

Usage

randomStudyArea(center = NULL, size = 10000, seed = NULL)

Arguments

center SpatialPoints object specifying a set of coordinates and a projection. Default
is an area in southern Alberta, Canada.

size Numeric specifying the approximate size of the area in m^2. Default 1e4.

seed Numeric indicating the random seed to set internally (useful for ensuring the
same study area is produced each time).

Value

SpatVector

rasterizeReduced 35

Examples

a <- randomStudyArea(seed = 123)
if (interactive()) {

terra::plot(a)
}

rasterizeReduced Convert reduced representation to full raster

Description

Convert reduced representation to full raster

Usage

rasterizeReduced(
reduced,
fullRaster,
newRasterCols,
mapcode = names(fullRaster),
...

)

Arguments

reduced data.frame or data.table that has at least one column of codes that are rep-
resented in the fullRaster.

fullRaster RasterLayer/SpatRaster of codes used in reduced that represents a spatial
representation of the data. Note that if fullRaster is a factor SpatRaster,
the active category level values are used, not the IDs (see terra::activeCat
and terra::cats)

newRasterCols Character vector, length 1 or more, with the name(s) of the column(s) in reduced
whose value will be returned as a RasterLayer/SpatRaster or list of RasterLayer/SpatRasters.

mapcode a character, length 1, with the name of the column in reduced that is represented
in fullRaster.

... Other arguments. None used yet.

Value

A RasterLayer/SpatRaster or list of RasterLayer/SpatRaster of with same dimensions as
fullRaster representing newRasterCols spatially, according to the join between the mapcode
contained within reduced and fullRaster

Author(s)

Eliot McIntire

36 rings

See Also

terra::rast()

Examples

library(data.table)
library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

ras <- rast(ext(0, 15, 0, 15), res = 1)
fullRas <- randomPolygons(ras, numTypes = 2)
names(fullRas) <- "mapcodeAll"
uniqueComms <- unique(fullRas)
reducedDT <- data.table(uniqueComms,

communities = sample(1:1000, length(uniqueComms)),
biomass = rnbinom(length(uniqueComms), mu = 4000, 0.4))

biomass <- rasterizeReduced(reducedDT, fullRas, "biomass")

The default key is the layer name of the fullRas, so rekey incase of miskey
setkey(reducedDT, biomass)

communities <- rasterizeReduced(reducedDT, fullRas, "communities")
coltab(communities) <- c("blue", "orange", "red")
if (interactive()) {

terra::plot(c(biomass, communities, fullRas))
}

with a factor SpatRaster, the mapcode should correspond to the
active category (not the ids)
cls <- data.frame(id = sort(unique(as.vector(fullRas[]))))
cls$Bclass <- LETTERS[cls$id]
levels(fullRas) <- cls
is.factor(fullRas)

clsDT <- as.data.table(cls)
reducedDT <- reducedDT[clsDT, on = "mapcodeAll==id"]
reducedDT[, mapcodeAll := Bclass]

biomass2 <- rasterizeReduced(reducedDT, fullRas, "biomass")

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

rings Identifies all cells within a ring around the focal cells

rings 37

Description

Identifies the cell numbers of all cells within a ring defined by minimum and maximum distances
from focal cells. Uses spread() under the hood, with specific values set. Under many situations,
this may be faster than using sf::st_buffer twice (once for smaller ring and once for larger ring,
then removing the smaller ring cells).

Usage

rings(
landscape,
loci = NA_real_,
id = FALSE,
minRadius = 2,
maxRadius = 5,
allowOverlap = FALSE,
returnIndices = FALSE,
returnDistances = TRUE,
...

)

Arguments

landscape A RasterLayer or SpatRaster object. This defines the possible locations for
spreading events to start and spread into. This can also be used as part of
stopRule.

loci A vector of locations in landscape. These should be cell indices. If user has x
and y coordinates, these can be converted with cellFromXY().

id Logical. If TRUE, returns a raster of events ids. If FALSE, returns a raster of
iteration numbers, i.e., the spread history of one or more events. NOTE: this is
overridden if returnIndices is TRUE or 1 or 2.

minRadius Numeric. Minimum radius to be included in the ring. Note: this is inclusive,
i.e., >=.

maxRadius Numeric. Maximum radius to be included in the ring. Note: this is inclusive,
i.e., <=.

allowOverlap Logical. If TRUE, then individual events can overlap with one another, i.e., they
do not interact (this is slower than if allowOverlap = FALSE). Default is FALSE.

returnIndices Logical or numeric. If 1 or TRUE, will return a data.table with indices and
values of successful spread events. If 2, it will simply return a vector of pixel
indices of all cells that were touched. This will be the fastest option. If FALSE,
then it will return a raster with values. See Details.

returnDistances

Logical. Should the function include a column with the individual cell distances
from the locus where that event started. Default is FALSE. See Details.

... Any other argument passed to spread

38 rings

Value

This will return a data.table with columns as described in spread when returnIndices = TRUE.

Author(s)

Eliot McIntire

See Also

cir() which uses a different algorithm. cir tends to be faster when there are few starting points,
rings tends to be faster when there are many starting points. Another difference between the two
functions is that rings takes the centre of the pixel as the centre of a circle, whereas cir takes the
exact coordinates. See example.

sf::st_buffer

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)
set.seed(1462)

Make random forest cover map
emptyRas <- terra::rast(terra::ext(0, 1e2, 0, 1e2), res = 1)

start from two cells near middle
loci <- (ncell(emptyRas) / 2 - ncol(emptyRas)) / 2 + c(-3, 3)

No overlap is default, occurs randomly
emptyRas[] <- 0
rngs <- rings(emptyRas, loci = loci, minRadius = 7, maxRadius = 9, returnIndices = TRUE)
emptyRas[rngs$indices] <- rngs$id
if (interactive()) {

terra::plot(emptyRas)
}

Variable ring widths, including centre cell for smaller one
emptyRas[] <- 0
rngs <- rings(emptyRas, loci = loci, minRadius = c(0, 7), maxRadius = c(8, 18),

returnIndices = TRUE)
emptyRas[rngs$indices] <- rngs$id
if (interactive()) {

terra::plot(emptyRas)
}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

runifC 39

runifC Rcpp Sugar version of runif

Description

Slightly faster than runif, and used a lot

Usage

runifC(N)

Arguments

N Integer Vector

Value

A vector of uniform random numbers as per runif

specificNumPerPatch Initiate a specific number of agents in a map of patches

Description

Instantiate a specific number of agents per patch. The user can either supply a table of how many to
initiate in each patch, linked by a column in that table called pops.

Usage

specificNumPerPatch(patches, numPerPatchTable = NULL, numPerPatchMap = NULL)

Arguments

patches SpatRaster of patches, with some sort of a patch id.
numPerPatchTable

A data.frame or data.table with a column named pops that matches the
patches patch ids, and a second column num.in.pop with population size in
each patch.

numPerPatchMap A SpatRaster exactly the same as patches but with agent numbers rather than
ids as the cell values per patch.

Value

A raster with 0s and 1s, where the 1s indicate starting locations of agents following the numbers
above.

40 spokes

Examples

library(data.table)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

set.seed(1234)
Ntypes <- 4
ras <- randomPolygons(numTypes = Ntypes)
if (interactive()) {

terra::plot(ras)
}

Use numPerPatchTable
patchDT <- data.table(pops = 1:Ntypes, num.in.pop = c(1, 3, 5, 7))
rasAgents <- specificNumPerPatch(ras, patchDT)
rasAgents[is.na(rasAgents)] <- 0

if (require(testthat))
expect_true(all(unname(table(ras[rasAgents])) == patchDT$num.in.pop))

Use numPerPatchMap
rasPatches <- ras
for (i in 1:Ntypes) {

rasPatches[rasPatches==i] <- patchDT$num.in.pop[i]
}
if (interactive()) {

terra::plot(c(ras, rasPatches))
}
rasAgents <- specificNumPerPatch(ras, numPerPatchMap = rasPatches)
rasAgents[is.na(rasAgents)] <- 0
if (interactive()) {

terra::plot(rasAgents)
}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

spokes Identify outward radiating spokes from initial points

Description

This is a generalized version of a notion of a viewshed. The main difference is that there can be
many "viewpoints".

spokes 41

Usage

spokes(
landscape,
coords,
loci,
maxRadius = ncol(landscape)/4,
minRadius = maxRadius,
allowOverlap = TRUE,
stopRule = NULL,
includeBehavior = "includePixels",
returnDistances = FALSE,
angles = NA_real_,
nAngles = NA_real_,
returnAngles = FALSE,
returnIndices = TRUE,
...

)

Arguments

landscape Raster on which the circles are built.

coords Either a matrix with 2 (or 3) columns, x and y (and id), representing the coordi-
nates (and an associated id, like cell index), or a SpatialPoints* object around
which to make circles. Must be same coordinate system as the landscape argu-
ment. Default is missing, meaning it uses the default to loci.

loci Numeric. An alternative to coords. These are the indices on landscape to
initiate this function (see coords). Default is one point in centre of landscape.

maxRadius Numeric vector of length 1 or same length as coords

minRadius Numeric vector of length 1 or same length as coords. Default is maxRadius,
meaning return all cells that are touched by the narrow ring at that exact radius.
If smaller than maxRadius, then this will create a buffer or doughnut or ring.

allowOverlap Logical. Should duplicates across id be removed or kept. Default TRUE.

stopRule A function. If the spokes are to stop. This can be a function of landscape,
fromCell, toCell, x (distance from coords cell), or any other named argument
passed into the ... of this function. See examples.

includeBehavior

Character string. Currently accepts only "includePixels", the default, and
"excludePixels". See details.

returnDistances

Logical. If TRUE, then a column will be added to the returned data.table that
reports the distance from coords to every point that was in the circle/doughnut
surrounding coords. Default FALSE, which is faster.

angles Numeric. Optional vector of angles, in radians, to use. This will create "spokes"
outward from coords. Default is NA, meaning, use internally derived angles that
will "fill" the circle.

42 spokes

nAngles Numeric, length one. Alternative to angles. If provided, the function will create
a sequence of angles from 0 to 2*pi, with a length nAngles, and not including
2*pi. Will not be used if angles is provided, and will show warning of both are
given.

returnAngles Logical. If TRUE, then a column will be added to the returned data.table that
reports the angle from coords to every point that was in the circle/doughnut
surrounding coords. Default FALSE.

returnIndices Logical or numeric. If 1 or TRUE, will return a data.table with indices and
values of successful spread events. If 2, it will simply return a vector of pixel
indices of all cells that were touched. This will be the fastest option. If FALSE,
then it will return a raster with values. See Details.

... Objects to be used by stopRule(). See examples.

Value

A matrix containing columns id (representing the row numbers of coords), angles (from coords to
each point along the spokes), x and y coordinates of each point along the spokes, the corresponding
indices on the landscape Raster, dists (the distances between each coords and each point along
the spokes), and stop, indicating if it was a point that caused a spoke to stop going outwards due to
stopRule.

Author(s)

Eliot McIntire

Examples

library(data.table)
library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)
set.seed(1234)

ras <- terra::rast(terra::ext(0, 10, 0, 10), res = 1, val = 0)
rp <- randomPolygons(ras, numTypes = 10)

if (interactive())
terra::plot(rp)

angles <- seq(0, pi * 2, length.out = 17)
angles <- angles[-length(angles)]
n <- 2
loci <- sample(terra::ncell(rp), n)
coords <- terra::vect(terra::xyFromCell(rp, loci))
stopRule <- function(landscape) landscape < 3
d2 <- spokes(rp, coords = coords, stopRule = stopRule,

minRadius = 0, maxRadius = 50,
returnAngles = TRUE, returnDistances = TRUE,
allowOverlap = TRUE, angles = angles, returnIndices = TRUE)

spread 43

Assign values to the "patches" that were in the viewshed of a ray
rasB <- terra::rast(ras)
rasB[] <- 0
rasB[d2[d2[, "stop"] == 1, "indices"]] <- 1

if (interactive()) {
rasB[rasB == 0] <- NA
terra::plot(rasB, add = TRUE, col = "red", legend = FALSE)

}

if (NROW(d2) > 0) {
sp1 <- terra::vect(d2[, c("x", "y")])
if (interactive())
terra::plot(sp1, add = TRUE, pch = 19)

}
if (interactive())

terra::plot(coords, add = TRUE, pch = 19, col = "blue")

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

spread Simulate a spread process on a landscape.

Description

This can be used to simulate fires, seed dispersal, calculation of iterative, concentric landscape
values (symmetric or asymmetric) and many other things. Essentially, it starts from a collection of
cells (loci) and spreads to neighbours, according to the directions and spreadProb arguments.
This can become quite general, if spreadProb is 1 as it will expand from every loci until all cells
in the landscape have been covered. With id set to TRUE, the resulting map will be classified by the
index of the cell where that event propagated from. This can be used to examine things like fire size
distributions. NOTE: See also spread2(), which is more robust and can be used to build custom
functions. However, under some conditions, this spread function is faster. The two functions can
accomplish many of the same things, and key differences are internal.

Usage

spread(
landscape,
loci = NA_real_,
spreadProb = 0.23,
persistence = 0,
mask = NA,
maxSize = 100000000L,
directions = 8L,
iterations = 1000000L,

44 spread

lowMemory = NULL,
returnIndices = FALSE,
returnDistances = FALSE,
mapID = NULL,
id = FALSE,
plot.it = FALSE,
spreadProbLater = NA_real_,
spreadState = NA,
circle = FALSE,
circleMaxRadius = NA_real_,
stopRule = NA,
stopRuleBehavior = "includeRing",
allowOverlap = FALSE,
asymmetry = NA_real_,
asymmetryAngle = NA_real_,
quick = FALSE,
neighProbs = NULL,
exactSizes = FALSE,
relativeSpreadProb = FALSE,
...

)

Arguments

landscape A RasterLayer or SpatRaster object. This defines the possible locations for
spreading events to start and spread into. This can also be used as part of
stopRule.

loci A vector of locations in landscape. These should be cell indices. If user has x
and y coordinates, these can be converted with cellFromXY().

spreadProb Numeric, RasterLayer, or SpatRaster. If numeric of length 1, then this is
the global probability of spreading into each cell from a neighbour. If a raster
(or a vector of length terra::ncell(landscape), resolution and extent of
landscape), then this will be the cell-specific probability. Default is 0.23. If a
spreadProbLater is provided, then this is only used for the first iteration. Also
called "escape probability". See section on "Breaking out of spread events".

persistence A length 1 probability that an active cell will continue to burn, per time step.

mask RasterLayer or SpatRaster object congruent with landscape, whose ele-
ments are 0,1, where 1 indicates "cannot spread to". Currently not implemented,
but identical behaviour can be achieved if spreadProb has zeros in all unspread-
able locations.

maxSize Numeric. Maximum number of cells for a single or all events to be spread.
Recycled to match loci length, if it is not as long as loci. See section on
Breaking out of spread events.

directions The number of adjacent cells in which to look; default is 8 (Queen case). Can
only be 4 or 8.

iterations Number of iterations to spread. Leaving this NULL allows the spread to continue
until stops spreading itself (i.e., exhausts itself).

spread 45

lowMemory Deprecated.

returnIndices Logical or numeric. If 1 or TRUE, will return a data.table with indices and
values of successful spread events. If 2, it will simply return a vector of pixel
indices of all cells that were touched. This will be the fastest option. If FALSE,
then it will return a raster with values. See Details.

returnDistances

Logical. Should the function include a column with the individual cell distances
from the locus where that event started. Default is FALSE. See Details.

mapID Deprecated. Use id.

id Logical. If TRUE, returns a raster of events ids. If FALSE, returns a raster of
iteration numbers, i.e., the spread history of one or more events. NOTE: this is
overridden if returnIndices is TRUE or 1 or 2.

plot.it If TRUE, then plot the raster at every iteration, so one can watch the spread event
grow.

spreadProbLater

Numeric, or RasterLayer. If provided, then this will become the spreadProb
after the first iteration. See Details.

spreadState data.table. This should be the output of a previous call to spread, where
returnIndices was TRUE. Default NA, meaning the spread is starting from loci.
See Details.

circle Logical. If TRUE, then outward spread will be by equidistant rings, rather than
solely by adjacent cells (via directions arg.). Default is FALSE. Using circle
= TRUE can be dramatically slower for large problems. Note, this should usually
be used with spreadProb = 1.

circleMaxRadius

Numeric. A further way to stop the outward spread of events. If circle is TRUE,
then it will grow to this maximum radius. See section on Breaking out of spread events.
Default is NA.

stopRule A function which will be used to assess whether each individual cluster should
stop growing. This function can be an argument of "landscape", "id", "cells",
and any other variables passed to spread in the cells and landscape will
both be numeric vectors of length of active cells. cells will be the raster index,
so can be used to extract values from another raster passed via Default NA,
meaning that spreading will not stop as a function of the landscape. See section
on "Breaking out of spread events" and examples.

stopRuleBehavior

Character. Can be one of "includePixel", "excludePixel", "includeRing",
or "excludeRing". If stopRule contains a function, this argument is used de-
termine what to do with the cell(s) that caused the rule to be TRUE. See details.
Default is "includeRing" which means to accept the entire ring of cells that
caused the rule to be TRUE.

allowOverlap Logical. If TRUE, then individual events can overlap with one another, i.e., they
do not interact (this is slower than if allowOverlap = FALSE). Default is FALSE.

asymmetry A numeric indicating the ratio of the asymmetry to be used. Default is NA,
indicating no asymmetry. See details. This is still experimental. Use with
caution.

46 spread

asymmetryAngle A numeric indicating the angle in degrees (0 is "up", as in North on a map), that
describes which way the asymmetry is.

quick Logical. If TRUE, then several potentially time consuming checking (such as
inRange) will be skipped. This should only be used if there is no concern about
checking to ensure that inputs are legal.

neighProbs A numeric vector, whose sum is 1. It indicates the probabilities an individual
spread iteration spreading to 1:length(neighProbs) neighbours.

exactSizes Logical. If TRUE, then the maxSize will be treated as exact sizes, i.e., the spread
events will continue until they are floor(maxSize). This is overridden by
iterations, but if iterations is run, and individual events haven’t reached
maxSize, then the returned data.table will still have at least one active cell
per event that did not achieve maxSize, so that the events can continue if passed
into spread with spreadState.

relativeSpreadProb

Logical. If TRUE, then spreadProb will be rescaled within the directions
neighbours, such that the sum of the probabilities of all neighbours will be 1.
Default FALSE, unless spreadProb values are not contained between 0 and 1,
which will force relativeSpreadProb to be TRUE.

... Additional named vectors or named list of named vectors required for stopRule.
These vectors should be as long as required e.g., length loci if there is one value
per event.

Details

For large rasters, a combination of lowMemory = TRUE and returnIndices = TRUE or returnIndices
= 2 will be fastest and use the least amount of memory. 2022-07-25: lowMemory = TRUE is depre-
cated due to removal of package ffbase from CRAN.

This function can be interrupted before all active cells are exhausted if the iterations value is
reached before there are no more active cells to spread into. If this is desired, returnIndices
should be TRUE and the output of this call can be passed subsequently as an input to this same func-
tion. This is intended to be used for situations where external events happen during a spread event,
or where one or more arguments to the spread function change before a spread event is completed.
For example, if it is desired that the spreadProb change before a spread event is completed because,
for example, a fire is spreading, and a new set of conditions arise due to a change in weather.

asymmetry is currently used to modify the spreadProb in the following way. First for each ac-
tive cell, spreadProb is converted into a length 2 numeric of Low and High spread probabilities
for that cell: spreadProbsLH <- (spreadProb*2) // (asymmetry+1)*c(1,asymmetry), whose
ratio is equal to asymmetry. Then, using asymmetryAngle, the angle between the initial start-
ing point of the event and all potential cells is found. These are converted into a proportion of
the angle from -asymmetryAngle to asymmetryAngle using: angleQuality <- (cos(angles -
rad2(asymmetryAngle))+1)/2 where rad2 <- function (degree) (degree * pi)/180

These are then converted to multiple spreadProbs by spreadProbs <- lowSpreadProb + (angleQuality
* diff(spreadProbsLH)) To maintain an expected spreadProb that is the same as the asymmet-
ric spreadProbs, these are then rescaled so that the mean of the asymmetric spreadProbs is always
equal to spreadProb at every iteration: spreadProbs <- spreadProbs - diff(c(spreadProb, mean(spreadProbs)))

spread 47

Value

Either a RasterLayer indicating the spread of the process in the landscape or a data.table if
returnIndices is TRUE. If a RasterLayer, then it represents every cell in which a successful
spread event occurred. For the case of, say, a fire this would represent every cell that burned. If
allowOverlap is TRUE, This RasterLayer will represent the sum of the individual event ids (which
are numerics seq_along(loci). This will generally be of minimal use because it won’t be possible
to distinguish if event 2 overlapped with event 5 or if it was just event 7.

If returnIndices is TRUE, then this function returns a data.table with columns:

id an arbitrary ID 1:length(loci) identifying unique clusters of spread events, i.e., all cells that have been spread into that have a common initial cell.
initialLocus the initial cell number of that particular spread event.
indices The cell indices of cells that have been touched by the spread algorithm.
active a logical indicating whether the cell is active (i.e., could still be a source for spreading) or not (no spreading will occur from these cells).

This will generally be more useful when allowOverlap is TRUE.

Breaking out of spread events

There are 4 ways for the spread to "stop" spreading. Here, each "event" is defined as all cells that are
spawned from a single starting loci. So, one spread call can have multiple spreading "events". The
ways outlines below are all acting at all times, i.e., they are not mutually exclusive. Therefore, it
is the user’s responsibility to make sure the different rules are interacting with each other correctly.
Using spreadProb or maxSize are computationally fastest, sometimes dramatically so.

spreadProb Probabilistically, if spreadProb is low enough, active spreading events will stop. In practice, active spreading events will stop. In practice, this number generally should be below 0.3 to actually see an event stop
maxSize This is the number of cells that are "successfully" turned on during a spreading event. This can be vectorized, one value for each event
circleMaxRadius If circle is TRUE, then this will be the maximum radius reached, and then the event will stop. This is vectorized, and if length is >1, it will be matched in the order of loci
stopRule This is a function that can use "landscape", "id", "cells", or any named vector passed into spread in the This can take on relatively complex functions. Passing in, say, a RasterLayer to spread can access the individual values on that arbitrary RasterLayer using "cells". These will be calculated within all the cells of the individual event (equivalent to a "group_by(event)" in dplyr. So, sum(arbitraryRaster[cells]) would sum up all the raster values on the arbitraryRaster raster that are overlaid by the individual event. This can then be used in a logical statement. See examples. To confirm the cause of stopping, the user can assess the values after the function has finished.

The spread function does not return the result of this stopRule. If, say, an event has both circleMaxRadius
and stopRule, and it is the circleMaxRadius that caused the event spreading to stop, there will be
no indicator returned from this function that indicates which rule caused the stop.

stopRule has many use cases. One common use case is evaluating a neighbourhood around a
focal set of points. This provides, therefore, an alternative to the terra::buffer() function or
terra::focal() function. In both of those cases, the window/buffer size must be an input to the
function. Here, the resulting size can be emergent based on the incremental growing and calculating
of the landscape values underlying the spreading event.

stopRuleBehavior

This determines how the stopRule should be implemented. Because spreading occurs outwards
in concentric circles or shapes, one cell width at a time, there are 4 possible ways to interpret the
logical inequality defined in stopRule. In order of number of cells included in resulting events,
from most cells to fewest cells:

48 spread

"includeRing" Will include the entire ring of cells that, as a group, caused stopRule to be TRUE.
"includePixel" Working backwards from the entire ring that caused the stopRule to be TRUE, this will iteratively random cells in the final ring until the stopRule is FALSE. This will add back the last removed cell and include it in the return result for that event.
"excludePixel" Like "includePixel", but it will not add back the cell that causes stopRule to be TRUE
"excludeRing" Analogous to "excludePixel", but for the entire final ring of cells added. This will exclude the entire ring of cells that caused the stopRule to be TRUE

Note

dqrng version 0.4.0 changed the default RNG. If backwards compatibility is needed, set dqrng::dqRNGkind("Xoroshiro128+")
before running spread to ensure numerical reproducibility with previous versions.

Author(s)

Eliot McIntire and Steve Cumming

See Also

spread2() for a different implementation of the same algorithm. It is more robust, meaning, there
will be fewer unexplainable errors, and the behaviour has been better tested, so it is more likely to
be exactly as described under all argument combinations. Also, rings() which uses spread but
with specific argument values selected for a specific purpose. terra::distance(). cir() to create
"circles"; it is fast for many small problems.

Examples

library(terra)
origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

Make random forest cover map
set.seed(123)
emptyRas <- rast(ext(0, 1e2, 0, 1e2), res = 1)
hab <- randomPolygons(emptyRas, numTypes = 40)
names(hab) <- "hab"
mask <- rast(emptyRas)
values(mask) <- 0
mask[1:5000] <- 1
numCol <- ncol(emptyRas)
numCell <- ncell(emptyRas)
directions <- 8

Can use transparent as a colour
coltab(hab) <- paste(c("transparent", grey(0:40/40)))

terra::plot(hab)

initiate 10 fires
startCells <- as.integer(sample(1:ncell(emptyRas), 100))
fires <- spread(hab, loci = startCells, 0.235, persistence = 0, numNeighs = 2,

mask = NULL, maxSize = 1e8, directions = 8, iterations = 1e6, id = TRUE)

spread 49

terra::plot(hab, type = "classes", legend = FALSE)
fires[fires == 0] <- NA
terra::plot(fires, add = TRUE, col = "red", type = "continuous", legend = FALSE)

Instead, to give a colour to the zero values, use \code{zero.color=}
coltab(fires) <- NULL
need to specify "type" to get correct legend
terra::plot(fires, col = c(colorRampPalette(c("blue", "green"))(100)),

type = "continuous")

##--
Continue event by passing interrupted object into spreadState
##--

Interrupt a spread event using iterations - need `returnIndices = TRUE` to
use outputs as new inputs in next iteration
fires <- spread(hab, loci = as.integer(sample(1:ncell(hab), 10)),

returnIndices = TRUE, 0.235, 0, NULL, 1e8, 8, iterations = 3, id = TRUE)
fires[, list(size = length(initialLocus)), by = id] # See sizes of fires

fires2 <- spread(hab, loci = NA_real_, returnIndices = TRUE, 0.235, 0, NULL,
1e8, 8, iterations = 2, id = TRUE, spreadState = fires)

NOTE events are assigned arbitrary IDs, starting at 1

Use data.table and loci...
fires <- spread(hab, loci = as.integer(sample(1:ncell(hab), 10)),

returnIndices = TRUE, 0.235, 0, NULL, 1e8, 8,
iterations = 2, id = TRUE)

fullRas <- rast(hab)
fullRas[] <- 1:ncell(hab)
burned <- fires[active == FALSE]
burnedMap <- rasterizeReduced(burned, fullRas, "id", "indices")

terra::plot(burnedMap, type = "classes")

####################
stopRule examples
####################

examples with stopRule, which means that the eventual size is driven by the values on the raster
passed in to the landscape argument. It won't be exact because the pixel values
will likely not allow it
stopRule22 <- function(landscape) sum(landscape) > 100

set.seed(1234)
stopRule1 <- function(landscape) sum(landscape) > 50
stopRuleA <- spread(hab, loci = as.integer(sample(1:ncell(hab), 10)), 1, 0, NULL,

maxSize = 1e6, 8, 1e6, id = TRUE, circle = TRUE, stopRule = stopRule1,
stopRuleBehavior = "excludePixel")

tapply(hab[], stopRuleA[], sum) # all below 50

set.seed(1234)

50 spread

using stopRuleBehavior = "excludePixel"
stopRuleB <- spread(hab, loci = as.integer(sample(1:ncell(hab), 10)), 1, 0, NULL,

maxSize = 1e6, 8, 1e6, id = TRUE, circle = TRUE, stopRule = stopRule22,
stopRuleBehavior = "excludePixel")

tapply(hab[], stopRuleB[], sum) # all below 100

if (interactive())
terra::plot(c(stopRuleA, stopRuleB))

Cellular automata shapes
Diamonds - can make them with: a boolean raster, directions = 4,
stopRule in place, spreadProb = 1
diamonds <- spread(hab > 0, spreadProb = 1, directions = 4, id = TRUE, stopRule = stopRule22)

terra::plot(diamonds)

Squares - can make them with: a boolean raster, directions = 8,
stopRule in place, spreadProb = 1
squares <- spread(hab > 0, spreadProb = 1, directions = 8, id = TRUE, stopRule = stopRule22)
terra::plot(squares)

Interference shapes - can make them with: a boolean raster, directions = 8,
stopRule in place, spreadProb = 1
stopRule2 <- function(landscape) sum(landscape) > 200
squashedDiamonds <- spread(hab > 0, spreadProb = 1,

loci = (ncell(hab) - ncol(hab)) / 2 + c(4, -4),
directions = 4, id = TRUE, stopRule = stopRule2)

terra::plot(squashedDiamonds)

Circles with spreadProb < 1 will give "more" circular shapes, but definitely not circles
stopRule2 <- function(landscape) sum(landscape) > 200
seed <- sample(1e4, 1)
set.seed(seed)

circlish <- spread(hab > 0, spreadProb = 1, iterations = 10,
loci = (ncell(hab) - ncol(hab)) / 2 + c(4, -4),
directions = 8, id = TRUE, circle = TRUE)#, stopRule = stopRule2)

if (interactive())
terra::plot(c(circlish))

set.seed(seed)
regularCA <- spread(hab > 0, spreadProb = 1, iterations = 10,

loci = (ncell(hab) - ncol(hab)) / 2 + c(4, -4),
directions = 8, id = TRUE)#, stopRule = stopRule2)

if (interactive()) # compare to circlish
terra::plot(regularCA)

####################
complex stopRule
####################

initialLoci <- sample(seq_len(ncell(hab)), 2)
endSizes <- seq_along(initialLoci) * 200

spread 51

Can be a function of landscape, id, and/or any other named
variable passed into spread
stopRule3 <- function(landscape, id, endSizes) sum(landscape) > endSizes[id]

set.seed(1)
twoCirclesDiffSize <- spread(hab, spreadProb = 1, loci = initialLoci,

circle = TRUE, directions = 8, id = TRUE,
stopRule = stopRule3, endSizes = endSizes,
stopRuleBehavior = "excludePixel")

or using named list of named elements:
set.seed(1)
twoCirclesDiffSize2 <- spread(hab, spreadProb = 1, loci = initialLoci,

circle = TRUE, directions = 8, id = TRUE,
stopRule = stopRule3,
vars = list(endSizes = endSizes),
stopRuleBehavior = "excludePixel")

compareGeom(twoCirclesDiffSize, twoCirclesDiffSize2, res = TRUE,
stopOnError = FALSE)

terra::plot(c(twoCirclesDiffSize , twoCirclesDiffSize2))

cirs <- values(twoCirclesDiffSize)
vals <- tapply(hab[][cirs > 0], cirs[cirs > 0], sum) # one is <200, other is <400 as per endSizes

Stop if sum of landscape is big or mean of quality is too small
quality <- rast(hab)
quality[] <- runif(ncell(quality), 0, 1)
stopRule4 <- function(landscape, quality, cells) {

(sum(landscape) > 20) | (mean(values(quality)[cells]) < 0.3)
}

twoCirclesDiffSize <- spread(hab, spreadProb = 1, loci = initialLoci, circle = TRUE,
directions = 8, id = TRUE, stopRule = stopRule4,
quality = quality, stopRuleBehavior = "excludePixel")

Using alternative algorithm, not probabilistic diffusion
Will give exactly correct sizes, yet still with variability
within the spreading (i.e., cells with and without successes)
seed <- sample(1e6, 1)
set.seed(seed)
startCells <- startCells[1:4]
maxSizes <- rexp(length(startCells), rate = 1 / 500)
fires <- spread(hab, loci = startCells, 1, persistence = 0,

neighProbs = c(0.5, 0.5, 0.5) / 1.5,
mask = NULL, maxSize = maxSizes, directions = 8,
iterations = 1e6, id = TRUE, plot.it = FALSE, exactSizes = TRUE)

all(table(fires[fires > 0][]) == floor(maxSizes))

terra::plot(fires)

52 spread2

hist(fires[][fires[] > 0], main = "fire size distribution")

Example with relativeSpreadProb ... i.e., a relative probability spreadProb
(shown here because because spreadProb raster is not a probability).
Here, we force the events to grow, choosing always 2 neighbours,
according to the relative probabilities contained on hab layer.
##
Note: `neighProbs = c(0,1)` forces each active pixel to move to 2 new pixels
(`prob = 0` for 1 neighbour, `prob = 1` for 2 neighbours)
##
Note: set hab3 to be very distinct probability differences, to detect spread
differences
hab3 <- (hab < 20) * 200 + 1
seed <- 643503
set.seed(seed)
sam <- sample(which(hab3[] == 1), 1)
set.seed(seed)
events1 <- spread(hab3, spreadProb = hab3, loci = sam, directions = 8,

neighProbs = c(0, 1), maxSize = c(70), exactSizes = TRUE)

Compare to absolute probability version
set.seed(seed)
events2 <- spread(hab3, id = TRUE, loci = sam, directions = 8,

neighProbs = c(0, 1), maxSize = c(70), exactSizes = TRUE)

terra::plot(events1)

terra::plot(events2, col = c("white", "red", "red"))

hist(events1[], breaks = 30, main = "Event size distribution") ## TODO: fix this plot
Compare outputs -- should be more high value hab pixels spread to in event1
(randomness may prevent this in all cases)
sum(hab3[events1[] > 0]) >= sum(hab3[events2[] > 0]) ## should be usually TRUE

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

spread2 Simulate a contagious spread process on a landscape, with
data.table internals

Description

This can be used to simulate fires, seed dispersal, calculation of iterative, concentric, symmetric
(currently) landscape values and many other things. Essentially, it starts from a collection of cells
(start, called "events") and spreads to neighbours, according to the directions and spreadProb
with modifications due to other arguments. NOTE: spread() is similar, but sometimes slightly
faster, but less robust, and more difficult to use iteratively.

spread2 53

Usage

spread2(
landscape,
start = ncell(landscape)/2 - ncol(landscape)/2,
spreadProb = 0.23,
persistProb = NA_real_,
asRaster = TRUE,
maxSize,
exactSize,
directions = 8L,
iterations = 1000000L,
returnDistances = FALSE,
returnDirections = FALSE,
returnFrom = FALSE,
maxRetriesPerID = 10,
spreadProbRel = NA_real_,
plot.it = FALSE,
circle = FALSE,
asymmetry = NA_real_,
asymmetryAngle = NA_real_,
allowOverlap = 0,
neighProbs = NA_real_,
oneNeighbourOnly = FALSE,
skipChecks = FALSE

)

Arguments

landscape Required. A RasterLayer object. This defines the possible locations for spread-
ing events to start and spread2 into. Required.

start Required. Either a vector of pixel numbers to initiate spreading, or a data.table
that is the output of a previous spread2. If a vector, they should be cell indices
(pixels) on the landscape. If user has x and y coordinates, these can be con-
verted with cellFromXY().

spreadProb Numeric of length 1 or length ncell(landscape) or a RasterLayer that is
the identical dimensions as landscape. If numeric of length 1, then this is the
global (absolute) probability of spreading into each cell from a neighbour. If
a numeric of length ncell(landscape) or a raster, then this must be the cell-
specific (absolute) probability of a "receiving" potential cell. Default is 0.23.
If relative probabilities are required, use spreadProbRel. If used together, then
the relative probabilities will be re-scaled so that the mean relative probability
of potential neighbours is equal to the mean of spreadProb of the potential
neighbours.

persistProb Numeric of length 1 or RasterLayer. If numeric of length 1, then this is the
global (absolute) probability of cell continuing to burn per time step. If a raster,
then this must be the cell-specific (absolute) probability of a fire persisting. De-
fault is NA, which is the same as 0, i.e. a cell only burns for one time step.

54 spread2

asRaster Logical, length 1. If TRUE, the function will return a Raster where raster non
NA values indicate the cells that were "active", and the value is the initial starting
pixel.

maxSize Numeric. Maximum number of cells for a single or all events to be spread2.
Recycled to match start length, if it is not as long as start. This will be over-
ridden if exactSize also provided. See section on ’Breaking out of spread2
events’.

exactSize Numeric vector, length 1 or length(start). Similar to maxSize, but these will
be the exact final sizes of the events. i.e., the spread2 events will continue until
they are floor(exactSize). This will override maxSize if both provided. See
Details.

directions The number adjacent cells in which to look; default is 8 (Queen case). Can only
be 4 or 8.

iterations Number of iterations to spread2. Leaving this NULL allows the spread2 to
continue until stops spreading itself (i.e., exhausts itself).

returnDistances

Logical. Should the function include a column with the individual cell distances
from the locus where that event started. Default is FALSE. See Details.

returnDirections

Logical. Should the function include a column with the individual directions (in
radians) from the locus where that event started. Default is FALSE.

returnFrom Logical. Should the function return a column with the source, i.e, the lag 1
"from" pixel, for each iteration.

maxRetriesPerID

Only active if exactSize is used. This is the number of attempts that will be
made per event ID, before abandoning, therefore completing the spread2 for
that event with a size that is smaller than exactSize. Default 10 times.

spreadProbRel Optional RasterLayer indicating a surface of relative probabilities useful when
using neighProbs (which provides a mechanism for selecting a specific number
of cells at each iteration). This indicates the relative probabilities for the selec-
tion of successful neighbours. spreadProb will still be evaluated after the rela-
tive probabilities and neighProbs has been evaluated, i.e., potential cells will be
identified, then some could be rejected via spreadProb. If absolute spreadProb
is not desired, be sure to set spreadProb = 1. Ignored if neighProbs is not pro-
vided.

plot.it If TRUE, then plot the raster at every iteration, so one can watch the spread2
event grow.

circle Logical. If TRUE, then outward spread2 will be by equidistant rings, rather
than solely by adjacent cells (via directions arg.). Default is FALSE. Using
circle = TRUE can be dramatically slower for large problems. Note, this will
likely create unexpected results if spreadProb < 1.

asymmetry A numeric or RasterLayer indicating the ratio of the asymmetry to be used. i.e.,
1 is no asymmetry; 2 means that the angles in the direction of the asymmetryAngle
are 2x the spreadProb of the angles opposite tot he asymmetryAngle Default is
NA, indicating no asymmetry. See details. This is still experimental. Use with
caution.

spread2 55

asymmetryAngle A numeric or RasterLayer indicating the angle in degrees (0 is "up", as in North
on a map), that describes which way the asymmetry is.

allowOverlap numeric (logical will work for backwards compatibility). See details. Default
is 0, i.e., no overlapping.

neighProbs An optional numeric vector, whose sum is 1. It indicates the probabilities that
an individual spread iteration will spread to 1, 2, ..., length(neighProbs)
neighbours, respectively. If this is used (i.e., something other than NA), circle
and returnDistances will not work currently.

oneNeighbourOnly

Logical. Default is FALSE. If TRUE, then this spread algorithm will allow exactly
one neighbour to be spread to (not fewer or more). This could be used, e.g., for
an animal moving. If this is TRUE, then allowOverlap will be set to 2 if it is 0
or 1.

skipChecks Logical. If TRUE, the argument checking (i.e., assertions) will be skipped. This
should likely only be used once it is clear that the function arguments are well
understood and function speed is of the primary importance. This is likely most
useful in repeated iteration cases i.e., if this call is using the previous output
from this same function.

Details

There are 2 main underlying algorithms for active cells to "spread" to nearby cells (adjacent cells):
spreadProb and neighProb. Using spreadProb, every "active" pixel will assess all neighbours
(either 4 or 8, depending on directions), and will "activate" whichever neighbours successfully
pass independent calls to runif(1,0,1) < spreadProb. The algorithm will iterate again and again,
each time starting from the newly "activated" cells. Several built-in decisions are as follows:

1. no active cell can activate a cell that was already activated by the same event (i.e., "it won’t go
backwards");

2. If allowOverlap is FALSE, then the previous rule will also apply, regardless of which "event"
caused the pixels to be previously active.

This function can be interrupted before all active cells are exhausted if the iterations value is
reached before there are no more active cells to spread2 into. The interrupted output (a data.table)
can be passed subsequently as an input to this same function (as start). This is intended to be used
for situations where external events happen during a spread2 event, or where one or more argu-
ments to the spread2 function change before a spread2 event is completed. For example, if it is
desired that the spreadProb change before a spread2 event is completed because, for example, a
fire is spreading, and a new set of conditions arise due to a change in weather.

asymmetry here is slightly different than in the spread function, so that it can deal with a RasterLayer
of asymmetryAngle. Here, the spreadProb values of a given set of neighbours around each active
pixel are adjusted to create adjustedSpreadProb which is calculated maintain the following two
qualities:

mean(spreadProb) = mean(ajustedSpreadProb)

and
max(spreadProb)/min(spreadProb) = asymmetry

56 spread2

along the axis of asymmetryAngle. NOTE: this means that the 8 neighbours around an active cell
may not fulfill the preceeding equality if asymmetryAngle is not exactly one of the 8 angles of the
8 neighbours. This means that

max(spreadProb)/min(spreadProb)

will generally be less than asymmetry, for the 8 neighbours. The exact adjustment to the spreadProb
is calculated with:

angleQuality < −(cos(angles− rad2(asymmetryAngle)) + 1)/2

which is multiplied to get an angle-adjusted spreadProb:

spreadProbAdj < −actualSpreadProb ∗ angleQuality

which is then rescaled:

adjustedSpreadProb = (spreadProbAdj −min(spreadProbAdj)) ∗ par2 + par1

, where par1 and par2 are parameters calculated internally to make the 2 conditions above true.

If maxSize or exactSize are used, then spreading will continue and stop before or at maxSize or
at exactSize, respectively. If iterations is specified, then the function will end, and the returned
data.table may (if maxSize) or will (if exactSize) have at least one active cell per event that
did not already achieve maxSize or exactSize. This will be very useful to build new, customized
higher-level wrapper functions that iteratively call spread2.

Value

Either a data.table (asRaster=FALSE) or a RasterLayer (asRaster=TRUE, the default). The
data.table will have one attribute named spreadState, which is a list containing a data.table
of current cluster-level information about the spread events. If asRaster=TRUE, then the data.table
(with its spreadState attribute) will be attached to the Raster as an attribute named pixel as it
provides pixel-level information about the spread events.

The RasterLayer represents every cell in which a successful spread2 event occurred. For the case
of, say, a fire this would represent every cell that burned. If allowOverlap is TRUE, the return will
always be a data.table.

If asRaster is FALSE, then this function returns a data.table with 3 (or 4 if returnFrom is TRUE)
columns:

initialPixels the initial cell number of that particular spread2 event.
pixels The cell indices of cells that have been touched by the spread2 algorithm.
state a logical indicating whether the cell is active (i.e., could still be a source for spreading) or not (no spreading will occur from these cells).
from The pixel indices that were the immediately preceding "source" for each pixels, i.e., the lag 1 pixels. Only returned if returnFrom is TRUE

The attribute saved with the name "spreadState" (e.g., attr(output, "spreadState")) includes
a data.table with columns:

id An arbitrary code, from 1 to length(start) for each "event".

spread2 57

initialPixels the initial cell number of that particular spread2 event.
numRetries The number of re-starts the event did because it got stuck (normally only because exactSize was used and was not achieved.
maxSize The number of pixels that were provided as inputs via maxSize or exactSize.
size The current size, in pixels, of each event.

and several other objects that provide significant speed ups in iterative calls to spread2. If the user
runs spread2 iteratively, there will likely be significant speed gains if the data.table passed in to
start should have the attribute attached, or re-attached if it was lost, e.g., via setattr(outInput,
"spreadState", attr(out, "spreadState")), where out is the returned data.table from the
previous call to spread2, and outInput is the modified data.table. Currently, the modified
data.table must have the same order as out.

Breaking out of spread2 events

There are 3 ways for the spread2 to "stop" spreading. Here, each "event" is defined as all cells
that are spawned from each unique start location. The ways outlined below are all acting at all
times, i.e., they are not mutually exclusive. Therefore, it is the user’s responsibility to make sure
the different rules are interacting with each other correctly.

spreadProb Probabilistically, if spreadProb is low enough, active spreading events will stop. In practice, this number generally should be below 0.3 to actually see an event stop.
maxSize This is the number of cells that are "successfully" turned on during a spreading event. spreadProb will still be active, so, it is possible that the end size of each event is smaller than maxSize, but they will not be greater than maxSize
exactSize This is the number of cells that are "successfully" turned on during a spreading event. This will override an event that stops probabilistically via spreadProb, but forcing its last set of active cells to try again to find neighbours. It will try maxRetriesPerID times per event, before giving up. During those maxRetriesPerID times, it will try to "jump" up to 4 cells outwards from each of the active cells, every 5 retries.
iterations This is a hard cap on the number of internal iterations to complete before returning the current state of the system as a data.table.

Building custom spreading events

This function can be used iteratively, with relatively little overhead compared to using it non-
iteratively. In general, this function can be called with arguments set as user needs, and with
specifying e.g., iterations = 1. This means that the function will spread outwards 1 iteration,
then stop. The returned object will be a data.table or RasterLayer that can be passed immedi-
ately back as the start argument into a subsequent call to spread2. This means that every argument
can be updated at each iteration.

When using this function iteratively, there are several things to keep in mind. The output will likely
be sorted differently than the input (i.e., the order of start, if a vector, may not be the same order
as that returned). This means that when passing the same object back into the next iteration of
the function call, maxSize or exactSize may not be in the same order. To get the same order,
the easiest thing to do is sort the initial start objects by their pixel location, increasing. Then, of
course, sorting any vectorized arguments (e.g., maxSize) accordingly.

NOTE: the data.table or RasterLayer should not be altered when passed back into spread2.

allowOverlap

If 1 (or TRUE), then individual events can overlap with one another, i.e., allow overlap between
events. If 2 (or NA), then each pixel is essentially independent, allowing overlap between and within
events. This likely requires a user to intervene as it is possible to spread back onto itself. If 3
(did not exist previously), individual events can overlap, and there can be overlap within an event,

58 spread2

but only within an iteration, i.e., once an iteration is finished, and a pixel was activated, then the
spreading will not return onto these pixels. If 0 (or FALSE), then once a pixel is activated, it cannot
be re-activated, within or between event. This allows events to not interfere with one another i.e.,
they do not interact (this is slower than if allowOverlap = FALSE). Default is 0. In the case of 2 or
3, this would be, perhaps, useful for dispersal of, say, insect swarms.

Note

exactSize may not be achieved if there aren’t enough cells in the map. Also, exactSize may not
be achieved because the active cells are "stuck", i.e., they have no inactivated cells to move to; or the
spreadProb is low. In the latter two cases, the algorithm will retry again, but it will only retry from
the last iteration’s active cells. The algorithm will only retry 10 times before quitting. Currently,
there will also be an attempt to "jump" up to four cells away from the active cells to try to continue
spreading.

A common way to use this function is to build wrappers around this, followed by iterative calls in a
while loop. See example.

Author(s)

Eliot McIntire and Steve Cumming

See Also

spread() for a different implementation of the same algorithm. spread is less robust but it is often
slightly faster.

Examples

library(terra)

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

a <- rast(ext(0, 10, 0, 10), res = 1)
sams <- sort(sample(ncell(a), 3))

Simple use -- similar to spread(...)
out <- spread2(a, start = sams, 0.225)
if (interactive()) {

terra::plot(out)
}

Use maxSize -- this gives an upper limit
maxSizes <- sort(sample(1:10, size = length(sams)))
out <- spread2(a, start = sams, 0.225, maxSize = maxSizes, asRaster = FALSE)
check TRUE using data.table .N
out[, .N, by = "initialPixels"]$N <= maxSizes

Use exactSize -- gives an exact size, if there is enough space on the Raster
exactSizes <- maxSizes
out <- spread2(a, start = sams, spreadProb = 0.225,

spread2 59

exactSize = exactSizes, asRaster = FALSE)
out[, .N, by = "initialPixels"]$N == maxSizes # should be TRUE TRUE TRUE

Use exactSize -- but where it can't be achieved
exactSizes <- sort(sample(100:110, size = length(sams)))
out <- spread2(a, start = sams, 1, exactSize = exactSizes)

Iterative calling -- create a function with a high escape probability
spreadWithEscape <- function(ras, start, escapeProb, spreadProb) {

out <- spread2(ras, start = sams, spreadProb = escapeProb, asRaster = FALSE)
while (any(out$state == "sourceActive")) {
pass in previous output as start
out <- spread2(ras, start = out, spreadProb = spreadProb,

asRaster = FALSE, skipChecks = TRUE) # skipChecks for speed
}
out

}

set.seed(421)
out1 <- spreadWithEscape(a, sams, escapeProb = 0.25, spreadProb = 0.225)
set.seed(421)
out2 <- spread2(a, sams, 0.225, asRaster = FALSE)
The one with high escape probability is larger (most of the time)
NROW(out1) > NROW(out2) ## TODO: not true

Use neighProbs, with a spreadProb that is a RasterLayer
Create a raster of different values, which will be the relative probabilities
i.e., they are rescaled to relative probabilities within the 8 neighbour choices.
The neighProbs below means 70% of the time, 1 neighbour will be chosen,
30% of the time 2 neighbours.
The cells with spreadProb of 5 are 5 times more likely than cells with 1 to be chosen,
when they are both within the 8 neighbours
sp <- rast(ext(0, 3, 0, 3), res = 1, vals = 1:9) #small raster, simple values
Check neighProbs worked
out <- list()

enough replicates to see stabilized probabilities
for (i in 1:100) {

out[[i]] <- spread2(sp, spreadProbRel = sp, spreadProb = 1,
start = 5, iterations = 1,
neighProbs = c(1), asRaster = FALSE)

}
out <- data.table::rbindlist(out)[pixels != 5] # remove starting cell
table(sp[out$pixels])
should be non-significant -- note no 5 because that was the starting cell
This tests whether the null model is true ... there should be proportions
equivalent to 1:2:3:4:6:7:8:9 ... i.e,. cell 9 should have 9x as many events
spread to it as cell 1. This comes from sp object above which is providing
the relative spread probabilities
keep <- c(1:4, 6:9)
chisq.test(keep, unname(tabulate(sp[out$pixels]$lyr.1, 9)[keep]),

simulate.p.value = TRUE)

60 spread2

Example showing asymmetry
sams <- ncell(a) / 4 - ncol(a) / 4 * 3
circs <- spread2(a, spreadProb = 0.213, start = sams,

asymmetry = 2, asymmetryAngle = 135,
asRaster = TRUE)

ADVANCED: Estimate spreadProb when using asymmetry, such that the expected
event size is the same as without using asymmetry

if (interactive()) {
Still using `raster` as it works more easily with parallelism due to not using pointers
This will updated at a later release
if (requireNamespace("raster", quietly = TRUE)) {

ras <- raster::raster(a)
ras[] <- 1

n <- 100
sizes <- integer(n)
for (i in 1:n) {

circs <- spread2(ras, spreadProb = 0.225,
start = round(ncell(ras) / 4 - ncol(ras) / 4 * 3),
asRaster = FALSE)

sizes[i] <- circs[, .N]
}
goalSize <- mean(sizes)

if (requireNamespace("DEoptim", quietly = TRUE)) {
library(parallel)
library(DEoptim)

need 10 cores for 10 populations in DEoptim
cl <- makeCluster(pmin(10, detectCores() - 2))
parallel::clusterEvalQ(cl, {

library(SpaDES.tools)
library(terra)
library(raster)
library(fpCompare)

})

objFn <- function(sp, n = 20, ras, goalSize) {
sizes <- integer(n)
for (i in 1:n) {
circs <- spread2(ras, spreadProb = sp, start = ncell(ras) / 4 - ncol(ras) / 4 * 3,

asymmetry = 2, asymmetryAngle = 135,
asRaster = FALSE)

sizes[i] <- circs[, .N]
}
abs(mean(sizes) - goalSize)

}
aa <- DEoptim(objFn, lower = 0.2, upper = 0.23,

control =
DEoptim.control(

cluster = cl, NP = 10, VTR = 0.02,
imposing itermax simply for example; should let go to completion

spread3 61

itermax = 5,
initialpop = as.matrix(rnorm(10, 0.213, 0.001))),

ras = ras, goalSize = goalSize)

The value of spreadProb that will give the
same expected event sizes to spreadProb = 0.225 is:
sp <- aa$optim$bestmem
circs <- spread2(ras, spreadProb = sp, start = ncell(ras) / 4 - ncol(ras) / 4 * 3,

asymmetry = 2, asymmetryAngle = 135, asRaster = FALSE)

stopCluster(cl)
}

}
}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

spread3 An alternative spread function, conceived for insects

Description

This is built with spread2() and is still experimental. This one differs from other attempts in
that it treats the advection and dispersal as mathematical vectors that are added together. They are
"rounded" to pixel centres.

Usage

spread3(
start,
rasQuality,
rasAbundance,
advectionDir,
advectionMag,
meanDist,
dispersalKernel = "exponential",
sdDist = 1,
plot.it = 2,
minNumAgents = 50,
verbose = getOption("LandR.verbose", 0),
saveStack = NULL,
skipChecks = FALSE

)

62 spread3

Arguments

start Raster indices from which to initiate dispersal

rasQuality A raster with habitat quality. Currently, must be scaled from 0 to 1, i.e., a prob-
ability of "settling"

rasAbundance A raster where each pixel represents the number of "agents" or pseudo-agents
contained. This number of agents, will be spread horizontally, and distributed
from each pixel that contains a non-zero non NA value.

advectionDir A single number or RasterLayer in degrees from North = 0 (though it will use
radians if all values are abs(advectionDir) > 2 * pi). This indicates the
direction of advective forcing (i.e., wind).

advectionMag A single number or RasterLayer in distance units of the rasQuality, e.g.,
meters, indicating the relative forcing that will occur. It is imposed on the to-
tal event, i.e., if the meanDist is 10000, and advectionMag is 5000, then the
expected distance (i.e., 63% of agents) will have settled by 15000 map units.

meanDist A single number indicating the mean distance parameter in map units (not pix-
els), for a negative exponential distribution dispersal kernel (e.g., dexp). This
will mean that 63% of agents will have settled at this meanDist (still experimen-
tal).

dispersalKernel

One of either "exponential" or "weibull".

sdDist A single number indicating the sd parameter of a two-parameter dispersalKernel.
Defaults to 1, which is the same as the exponential distribution.

plot.it Numeric. With increasing numbers above 0, there will be plots produced during
iterations. Currently, only 0, 1, or 2+ are distinct.

minNumAgents Single numeric indicating the minimum number of agents to consider all dis-
persing finished. Default is 50.

verbose Numeric. With increasing numbers above 0, there will be more messages pro-
duced. Currently, only 0, 1, or 2+ are distinct.

saveStack If provided as a character string, it will save each iteration as part of a rasterStack
to disk upon exit.

skipChecks Logical. If TRUE, assertions will be skipped (faster, but could miss problems)

Value

A data.table with all information used during the spreading

Examples

these tests are fairly heavy, so don't run during automated tests
###
Simple case, no variation in rasQuality, numeric advectionDir and advectionMag
###

library(terra)

spread3 63

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

maxDim <- 10000
ras <- terra::rast(terra::ext(c(0, maxDim, 0, maxDim)), res = 100, vals = 0)
rasQuality <- terra::rast(ras)
rasQuality[] <- 1
rasAbundance <- terra::rast(rasQuality)
rasAbundance[] <- 0
startPixel <- middlePixel(rasAbundance)
startPixel <- sample(seq(terra::ncell(rasAbundance)), 30)
rasAbundance[startPixel] <- 1000
advectionDir <- 70
advectionMag <- 4 * res(rasAbundance)[1]
meanDist <- 2600

Test the dispersal kernel -- create a function
plotDispersalKernel <- function(out, meanAdvectionMag) {

out[, disGroup := round(distance / 100) * 100]
freqs <- out[, .N, by = "disGroup"]
freqs[, `:=`(cumSum = cumsum(N), N = N)]
plot(freqs$disGroup, freqs$cumSum, # addTo = "CumulativeNumberSettled",

main = "Cumulative Number Settled") # can plot the distance X number
abline(v = meanAdvectionMag + meanDist)
newTitle <- "Number Settled By Distance"
plot(freqs$disGroup, freqs$N, # addTo = gsub(" ", "", newTitle),

main = newTitle) # can plot the distance X number
abline(v = meanAdvectionMag + meanDist)
should be 0.63:
freqs[disGroup == meanAdvectionMag + meanDist, cumSum] / tail(freqs, 1)[, cumSum]
mtext(side = 3, paste("Average habitat quality: ",

round(mean(rasQuality[], na.rm = TRUE), 2)),
outer = TRUE, line = -2, cex = 2)

}
out <- spread3(rasAbundance = rasAbundance,

rasQuality = rasQuality,
advectionDir = advectionDir,
advectionMag = advectionMag,
meanDist = meanDist, verbose = 2,
plot.it = interactive())

plotDispersalKernel(out, advectionMag)

The next examples are potentially time consuming; avoid on automated testing
if (interactive()) {

###
The case of variable quality raster
###
rasQuality <- terra::rast(system.file("extdata", "rasQuality.tif",

package = "SpaDES.tools"))
terra::crs(rasQuality) <- system.file("extdata", "targetCRS.rds", package = "SpaDES.tools") |>

readRDS() |>
slot("projargs")

64 spread3

mask <- rasQuality < 5
rasQuality[mask[] %in% TRUE] <- 0
rescale so min is 0.75 and max is 1
rasQuality[] <- rasQuality[] / (reproducible::maxFn(rasQuality) * 4) + 1 / 4
rasAbundance <- terra::rast(rasQuality)
rasAbundance[] <- 0
startPixel <- sample(seq(ncell(rasAbundance)), 300)
rasAbundance[startPixel] <- 1000
advectionDir <- 75
advectionMag <- 4 * res(rasAbundance)[1]
meanDist <- 2600
out <- spread3(rasAbundance = rasAbundance,

rasQuality = rasQuality,
advectionDir = advectionDir,
advectionMag = advectionMag,
meanDist = meanDist, verbose = 2,
plot.it = interactive())

if (interactive()) {
plotDispersalKernel(out, advectionMag)

}

###
The case of variable quality raster, raster for advectionDir & advectionMag
###
maxDim <- 10000
ras <- terra::rast(terra::ext(c(0, maxDim, 0, maxDim)), res = 100, vals = 0)
rasQuality <- terra::rast(ras)
rasQuality[] <- 1
rasAbundance <- terra::rast(rasQuality)
rasAbundance[] <- NA
startPixel <- middlePixel(rasAbundance)
startPixel <- sample(seq(ncell(rasAbundance)), 25)
rasAbundance[startPixel] <- 1000

raster for advectionDir
advectionDir <- terra::rast(system.file("extdata", "advectionDir.tif",

package = "SpaDES.tools"))
crs(advectionDir) <- crs(rasQuality)
rescale so min is 0.75 and max is 1
advectionDir[] <- advectionDir[] / (reproducible::maxFn(advectionDir)) * 180

raster for advectionMag
advectionMag <- terra::rast(system.file("extdata", "advectionMag.tif",

package = "SpaDES.tools"))
crs(advectionMag) <- crs(rasQuality)
rescale so min is 0.75 and max is 1
advectionMag[] <- advectionMag[] / (reproducible::maxFn(advectionMag)) * 600

out <- spread3(rasAbundance = rasAbundance,
rasQuality = rasQuality,
advectionDir = advectionDir,
advectionMag = advectionMag,
meanDist = meanDist, verbose = 2,

testEquivalentMetadata 65

plot.it = interactive())

if (interactive()) {
names(advectionDir) <- "Wind direction"
names(advectionMag) <- "Wind speed"
names(rasAbundance) <- "Initial abundances"
terra::plot(c(advectionDir, advectionMag, rasAbundance))

plotDispersalKernel(out, mean(advectionMag[]))
}

###
save iterations to a stack to make animated GIF
##
tmpStack <- tempfile(pattern = "stackToAnimate", fileext = ".tif")
out <- spread3(rasAbundance = rasAbundance,

rasQuality = rasQuality,
advectionDir = advectionDir,
advectionMag = advectionMag,
meanDist = 2600, verbose = 2,
plot.it = interactive(), saveStack = tmpStack)

This animates the series of images into an animated GIF
if (require(animation, quietly = TRUE)) {

out2 <- terra::rast(tmpStack)
gifName <- file.path(tempdir(), "animation.gif")

Only works on some systems; may need to configure
Works on Windows without system adjustments
if (identical(.Platform$OS.type, "windows"))

saveGIF(interval = 0.1, movie.name = gifName, expr = {
for (i in seq(length(names(out2)))) terra::plot(out2[[i]])

})
}

}

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

testEquivalentMetadata

Test that metadata of 2 or more objects is the same

Description

Currently, only Raster class has a useful method. Defaults to all(sapply(list(...)[-1], function(x)
identical(list(...)[1], x)))

66 transitions

Usage

testEquivalentMetadata(...)

Arguments

... 2 or more of the same type of object to test for equivalent metadata.

transitions SELES - Transitioning to next time step

Description

Describes the probability of an agent successfully persisting until next time step. THIS IS NOT
YET FULLY IMPLEMENTED.

A SELES-like function to maintain conceptual backwards compatibility with that simulation tool.
This is intended to ease transitions from SELES.

You must know how to use SELES for these to be useful.

Usage

transitions(p, agent)

Arguments

p realized probability of persisting (i.e., either 0 or 1).

agent SpatialPoints* object.

Value

Returns new SpatialPoints* object with potentially fewer agents.

Author(s)

Eliot McIntire

http://www.gowlland.ca/

wrap 67

wrap Wrap coordinates or pixels in a torus-like fashion

Description

Generally useful for model development purposes. Primarily used internally in e.g., crw if torus =
TRUE.

Usage

wrap(X, bounds, withHeading = FALSE)

Arguments

X SpatVector, sf, or matrix of coordinates.

bounds Either a SpatRaster*, Extent, or bbox object defining bounds to wrap around.

withHeading logical. If TRUE, the previous points must be wrapped also so that the subsequent
heading calculation will work. Default FALSE. See details.

Details

If withHeading used, then X must be an sf or SpatVector object that contains two columns, x1
and y1, with the immediately previous agent locations.

Value

Object of the same class as X, but with coordinates updated to reflect the wrapping.

Author(s)

Eliot McIntire

Examples

origDTThreads <- data.table::setDTthreads(2L)
origNcpus <- options(Ncpus = 2L)

xrange <- yrange <- c(-50, 50)
hab <- terra::rast(terra::ext(c(xrange, yrange)))
hab[] <- 0

initialize agents
N <- 10

previous points
x1 <- y1 <- rep(0, N)
initial points
starts <- cbind(x = stats::runif(N, xrange[1], xrange[2]),

68 wrap

y = stats::runif(N, yrange[1], yrange[2]))

create the agent object # the x1 and y1 are needed for "previous location"
agent <- terra::vect(data.frame(x1, y1, starts), geom = c("x", "y"))

ln <- rlnorm(N, 1, 0.02) # log normal step length
sd <- 30 # could be specified globally in params

if (interactive()) {
clearPlot()
terra::plot(hab, col = "white")

}

for (i in 1:10) {
agent <- crw(agent = agent, extent = terra::ext(hab), stepLength = ln,

stddev = sd, lonlat = FALSE, torus = FALSE) # don't wrap
if (interactive()) terra::plot(agent[, 1], add = TRUE, col = 1:10)

}
terra::crds(agent) # many are "off" the map, i.e., beyond the extent of hab
agent <- SpaDES.tools::wrap(agent, bounds = terra::ext(hab))
terra::plot(agent, add = TRUE, col = 1:10) # now inside the extent of hab

clean up
data.table::setDTthreads(origDTThreads)
options(Ncpus = origNcpus)

Index

.cirSpecialQuick (cirSpecialQuick), 13

.pointDistance, 5

adj, 6
adj(), 3
agentLocation, 9
agentLocation(), 4

cellFromXY(), 37, 44, 53
cir, 9
cir(), 3, 15, 38, 48
cirSpecialQuick, 13
crw (move), 27
crw(), 3

directionFromEachPoint(), 3
distanceFromEachPoint, 14
distanceFromEachPoint(), 3, 11
do.call(), 24
duplicatedInt, 17
dwrpnorm2, 17

fastCrop, 18

gaussMap, 19

heading, 20
heading(), 4

initiateAgents, 21
initiateAgents(), 4
inRange, 22

mergeRaster, 23
mergeRaster,list-method (mergeRaster),

23
middlePixel, 26
move, 27
move(), 4

neutralLandscapeMap, 29

numAgents, 30
numAgents(), 4, 21

options(), 4

parallel::makeCluster(), 15, 24
patchSize, 31
pointDistance (.pointDistance), 5
probInit, 31
probInit(), 4, 21

randomPolygon (randomPolygons), 32
randomPolygons, 32
randomPolygons(), 4, 33
randomStudyArea, 34
rasterizeReduced, 35
rasterizeReduced(), 4
rings, 36
rings(), 3, 11, 15, 48
runifC, 39

SpaDES.tools (SpaDES.tools-package), 3
SpaDES.tools-package, 3
specificNumPerPatch, 39
specificNumPerPatch(), 4
splitRaster (mergeRaster), 23
spokes, 40
spokes(), 3
spread, 43
spread(), 3, 32, 33, 37, 52, 58
spread2, 52
spread2(), 43, 48, 61
spread3, 61

terra::adjacent(), 3, 8
terra::buffer(), 47
terra::distance(), 14, 15, 28, 48
terra::focal(), 47
terra::merge(), 24
terra::mosaic(), 24
terra::rast(), 36

69

70 INDEX

testEquivalentMetadata, 65
transitions, 66
transitions(), 4

wrap, 67
wrap(), 3, 28

	SpaDES.tools-package
	.pointDistance
	adj
	agentLocation
	cir
	cirSpecialQuick
	distanceFromEachPoint
	duplicatedInt
	dwrpnorm2
	fastCrop
	gaussMap
	heading
	initiateAgents
	inRange
	mergeRaster
	middlePixel
	move
	neutralLandscapeMap
	numAgents
	patchSize
	probInit
	randomPolygons
	randomStudyArea
	rasterizeReduced
	rings
	runifC
	specificNumPerPatch
	spokes
	spread
	spread2
	spread3
	testEquivalentMetadata
	transitions
	wrap
	Index

