
Package ‘SerolyzeR’
January 21, 2026

Type Package

Title Reading, Quality Control and Preprocessing of MBA (Multiplex
Bead Assay) Data

Description Speeds up the process of loading raw data from MBA (Multiplex Bead Assay) examina-
tions, performs quality control checks, and automatically normalises the data, prepar-
ing it for more advanced, downstream tasks. The main objective of the package is to create a sim-
ple environment for a user, who does not necessarily have experience with R lan-
guage. The package is developed within the project 'PvSTATEM', which is an interna-
tional project aiming for malaria elimination.

BugReports https://github.com/mini-pw/SerolyzeR/issues

Version 1.4.0

License BSD_3_clause + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports dplyr, ggplot2, nplr, R6, readxl, stringi, stringr, grid, png,
tools, ggrepel, lubridate, R.utils, svglite, fs, scales, rlang,
cowplot, cellranger

Suggests knitr, qpdf, rmarkdown, testthat (>= 3.0.0)

Config/testfhat/edition 3

VignetteBuilder knitr

URL https://github.com/mini-pw/SerolyzeR,

https://mini-pw.github.io/SerolyzeR/

NeedsCompilation no

Author Jakub Grzywaczewski [aut, cre],
Tymoteusz Kwiecinski [aut] (ORCID:
<https://orcid.org/0009-0006-7362-9821>),

Mateusz Nizwantowski [aut],
Przemyslaw Biecek [ths] (ORCID:

<https://orcid.org/0000-0001-8423-1823>),
Nuno Sepulveda [ths] (ORCID: <https://orcid.org/0000-0002-8542-1706>)

1

https://github.com/mini-pw/SerolyzeR/issues
https://github.com/mini-pw/SerolyzeR
https://mini-pw.github.io/SerolyzeR/
https://orcid.org/0009-0006-7362-9821
https://orcid.org/0000-0001-8423-1823
https://orcid.org/0000-0002-8542-1706

2 create_standard_curve_model_analyte

Maintainer Jakub Grzywaczewski <jakubzgrzywaczewski@gmail.com>

Repository CRAN

Date/Publication 2026-01-21 11:50:02 UTC

Contents
create_standard_curve_model_analyte . 2
generate_levey_jennings_report . 3
generate_plate_report . 5
get_nmfi . 7
handle_high_dose_hook . 8
is_valid_data_type . 10
is_valid_sample_type . 10
merge_plate_outputs . 11
Model . 12
Plate . 15
PlateBuilder . 21
plot_counts . 24
plot_layout . 25
plot_levey_jennings . 26
plot_mfi_for_analyte . 28
plot_standard_curve_analyte . 29
plot_standard_curve_analyte_with_model . 30
plot_standard_curve_stacked . 32
predict.Model . 34
process_dir . 34
process_file . 37
process_plate . 39
read_bioplex_format . 42
read_intelliflex_format . 42
read_layout_data . 43
read_luminex_data . 43
read_xponent_format . 46
translate_sample_names_to_sample_types . 46

Index 48

create_standard_curve_model_analyte

Create a standard curve model for a certain analyte

Description

Create a standard curve model for a certain analyte

generate_levey_jennings_report 3

Usage

create_standard_curve_model_analyte(
plate,
analyte_name,
data_type = "Median",
source_mfi_range_from_all_analytes = FALSE,
detect_high_dose_hook = TRUE,
...

)

Arguments

plate (Plate()) Object of the Plate class

analyte_name (character(1)) Name of the analyte for which we want to create the model

data_type (character(1)) Data type of the value we want to use to fit the model - the
same datatype as in the plate file. By default, it equals to Median

source_mfi_range_from_all_analytes

(logical(1)) If TRUE, the MFI range is calculated from all analytes; if FALSE,
the MFI range is calculated only for the current analyte Defaults to FALSE

detect_high_dose_hook

(logical(1)) If TRUE, the high dose hook effect is detected and handled. For
more information, please see the handle_high_dose_hook function documenta-
tion.

... Additional arguments passed to the model

Standard curve samples should not contain na values in mfi values nor in dilu-
tions.

Value

(Model()) Standard Curve model

generate_levey_jennings_report

Generate a Levey-Jennings Report for Multiple Plates.

Description

This function generates a Levey-Jennings report for a list of plates. The report includes layout plot,
levey jennings plot, for each analyte and selected dilutions.

4 generate_levey_jennings_report

Usage

generate_levey_jennings_report(
list_of_plates,
report_title,
dilutions = c("1/100", "1/400"),
filename = NULL,
output_dir = "reports",
additional_notes = NULL,
...

)

Arguments

list_of_plates A list of plate objects.

report_title (character(1)) The title of the report.

dilutions (character) A character vector specifying the dilutions to be included in the
report. Default is c("1/100", "1/400").

filename (character(1)) The name of the output HTML report file. If not provided
or set to NULL, the filename will be based on the first plate name, formatted
as {plate_name}_levey_jennings.html. If the filename does not contain the
.html extension, it will be automatically added. Absolute file paths in filename
will override output_dir. Existing files at the specified path will be overwrit-
ten.

output_dir (character(1)) The directory where the report will be saved. Defaults to ’re-
ports’. If NULL, the current working directory will be used. Necessary directories
will be created if they do not exist.

additional_notes

(character(1)) Additional notes to be included in the report. Markdown for-
matting is supported. If not provided, the section will be omitted.

... Additional params passed to the plots created within the report.

Details

The report also includes stacked standard curves plot in both monochromatic and color versions for
each analyte. The report is generated using the R Markdown template file levey_jennings_report_template.Rmd,
located in the inst/templates directory of the package. You can access it using: system.file("templates/levey_jennings_report_template.Rmd",
package = "SerolyzeR").

Value

A Levey-Jennings report in HTML format.

Examples

output_dir <- tempdir(check = TRUE)

dir_with_luminex_files <- system.file("extdata", "multiplate_lite",

generate_plate_report 5

package = "SerolyzeR", mustWork = TRUE
)
list_of_plates <- process_dir(dir_with_luminex_files,

return_plates = TRUE, format = "xPONENT", output_dir = output_dir
)
note <- "This is a Levey-Jennings report.\n**Author**: Jane Doe \n**Tester**: John Doe"

generate_levey_jennings_report(
list_of_plates = list_of_plates,
report_title = "QC Report",
dilutions = c("1/100", "1/200"),
output_dir = tempdir(),
additional_notes = note

)

generate_plate_report Generate a report for a plate.

Description

This function generates a report for a plate. The report contains all the necessary information about
the plate, from the general plate parameters, such as examination date, to the breakdown of the ana-
lytes’ plots. The report is generated using the R Markdown template file plate_report_template.Rmd,
located in the inst/templates directory of the package. You can access it using: system.file("templates/plate_report_template.Rmd",
package = "SerolyzeR").

Usage

generate_plate_report(
plate,
use_model = TRUE,
filename = NULL,
output_dir = "reports",
counts_lower_threshold = 50,
counts_higher_threshold = 70,
additional_notes = NULL,
...

)

Arguments

plate A plate object.

use_model (logical(1)) A logical value indicating whether the model should be used in
the report.

filename (character(1)) The name of the output HTML report file. If not provided or
equals to NULL, the output filename will be based on the plate name, precisely:

6 generate_plate_report

{plate_name}_report.html. By default the plate_name is the filename of the
input file that contains the plate data. For more details please refer to Plate.

If the passed filename does not contain .html extension, the default extension
.html will be added. Filename can also be a path to a file, e.g. path/to/file.html.
In this case, the output_dir and filename will be joined together. However,
if the passed filepath is an absolute path and the output_dir parameter is also
provided, the output_dir parameter will be ignored. If a file already exists
under a specified filepath, the function will overwrite it.

output_dir (character(1)) The directory where the output CSV file should be saved. Please
note that any directory path provided will create all necessary directories (in-
cluding parent directories) if they do not exist. If it equals to NULL the current
working directory will be used. Default is ’reports’.

counts_lower_threshold

(numeric(1)) The lower threshold for the counts plots (works for each analyte).
Default is 50.

counts_higher_threshold

(numeric(1)) The higher threshold for the counts plots (works for each analyte).
Default is 70.

additional_notes

(character(1)) Additional notes to be included in the report. Contents of this
fields are left to the user’s discretion. If not provided, the field will not be in-
cluded in the report.

... Additional params passed to the plots created in the report.

Value

A report.

Examples

plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "SerolyzeR")
a plate file with reduced number of analytes to speed up the computation
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "SerolyzeR")
note <- "This is a test report.\n**Author**: Jane Doe \n**Tester**: John Doe"

plate <- read_luminex_data(plate_file, layout_file, verbose = FALSE)
example_dir <- tempdir(check = TRUE) # a temporary directory
generate_plate_report(plate,

output_dir = example_dir,
counts_lower_threshold = 40,
counts_higher_threshold = 50,
additional_notes = note

)

get_nmfi 7

get_nmfi Calculate Normalised MFI (nMFI) Values for a Plate

Description

Calculates normalised MFI (nMFI) values for each analyte in a Luminex plate. The nMFI values
are computed as the ratio of each test sample’s MFI to the MFI of a standard curve sample at a
specified reference dilution.

Usage

get_nmfi(
plate,
reference_dilution = 1/400,
data_type = "Median",
sample_type_filter = "ALL",
verbose = TRUE

)

Arguments

plate (Plate()) a plate object for which to calculate the nMFI values
reference_dilution

(numeric(1) or character(1)) the dilution value of the standard curve sam-
ple to use as a reference for normalisation. The default is 1/400. It should refer
to a dilution of a standard curve sample in the given plate object. This parameter
could be either a numeric value or a string. In case it is a character string, it
should have format 1/d+, where d+ is any positive integer.

data_type (character(1)) type of data for the computation. Median is the default
sample_type_filter

(character()) The types of samples to normalise. (e.g., "TEST", "STANDARD
CURVE"). It can also be a vector of sample types. In that case, dataframe with
multiple sample types will be returned. The default value is "ALL", which cor-
responds to returning all the samples.

verbose (logical(1)) print additional information. The default is TRUE

Details

Normalised MFI (nMFI) is a simple, model-free metric used to compare test sample responses
relative to a fixed concentration from the standard curve. It is particularly useful when model fitting
(e.g., for RAU calculation) is unreliable or not possible, such as when test sample intensities fall
outside the standard curve range.

The function locates standard samples with the specified dilution and divides each test sample’s
MFI by the corresponding standard MFI value for each analyte.

8 handle_high_dose_hook

Value

nmfi (data.frame) a data frame with normalised MFI values for each analyte in the plate and all
test samples.

When Should nMFI Be Used?

While RAU values are generally preferred for antibody quantification, they require successful model
fitting of the standard curve. This may not be feasible when:

• The test samples produce MFI values outside the range of the standard curve.

• The standard curve is poorly shaped or missing critical points.

In such cases, nMFI serves as a useful alternative, allowing for plate-to-plate comparison without
the need for extrapolation.

References

L. Y. Chan, E. K. Yim, and A. B. Choo, Normalized median fluorescence: An alternative flow
cytometry analysis method for tracking human embryonic stem cell states during differentiation,
http://dx.doi.org/10.1089/ten.tec.2012.0150

Examples

read the plate
plate_file <- system.file("extdata", "CovidOISExPONTENT.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_layout.csv", package = "SerolyzeR")

plate <- read_luminex_data(plate_file, layout_file)

artificially bump up the MFI values of the test samples (the Median data type is default one)
plate$data[["Median"]][plate$sample_types == "TEST",] <-

plate$data[["Median"]][plate$sample_types == "TEST",] * 10

calculate the nMFI values
nmfi <- get_nmfi(plate, reference_dilution = 1 / 400)

we don't do any extrapolation and the values should be comparable across plates
head(nmfi)
different params
nmfi <- get_nmfi(plate, reference_dilution = "1/50")
nmfi <- get_nmfi(plate, reference_dilution = "1/50", sample_type_filter = c("TEST", "BLANK"))

handle_high_dose_hook Detect and handle the high dose hook effect

handle_high_dose_hook 9

Description

Typically, the MFI values associated with standard curve samples should decrease as we dilute the
samples. However, sometimes in high dilutions, the MFI presents a non monotonic behavior. In
that case, MFI values associated with dilutions above (or equal to) high_dose_threshold should
be removed from the analysis.

For the nplr model the recommended number of standard curve samples is at least 4. If the high
dose hook effect is detected but the number of samples below the high_dose_threshold is lower
than 4, additional warning is printed and the samples are not removed.

Warning: High dose hook effect affects which dilution and MFI values are used to fit the logistic
model and by extension affects the maximum value to which the predicted RAU MFI values are
extrapolated / truncated.

The function returns a logical vector that can be used to subset the MFI values.

Usage

handle_high_dose_hook(mfi, dilutions, high_dose_threshold = 1/200)

Arguments

mfi (numeric())

dilutions (numeric())
high_dose_threshold

(numeric(1)) MFI values associated with dilutions above this threshold should
be checked for the high dose hook effect

Value

sample selector (logical())

References

Namburi, R. P. et. al. (2014) High-dose hook effect. DOI: 10.4103/2277-8632.128412

Examples

plate_filepath <- system.file(
"extdata", "CovidOISExPONTENT.csv",
package = "SerolyzeR", mustWork = TRUE

) # get the filepath of the csv dataset
layout_filepath <- system.file(

"extdata", "CovidOISExPONTENT_layout.xlsx",
package = "SerolyzeR", mustWork = TRUE

)
plate <- read_luminex_data(plate_filepath, layout_filepath) # read the data

here we plot the data with observed high dose hook effect
plot_standard_curve_analyte(plate, "RBD_omicron")

here we create the model with the high dose hook effect handled

10 is_valid_sample_type

model <- create_standard_curve_model_analyte(plate, "RBD_omicron")

is_valid_data_type Check validity of given data type

Description

Check if the data type is valid. The data type is valid if it is one of the elements of the VALID_DATA_TYPES
vector. The valid data types are:
c(Median, Net MFI, Count, Avg Net MFI, Mean, Peak).

Usage

is_valid_data_type(data_type)

Arguments

data_type A string representing the data type.

Value

TRUE if the data type is valid, FALSE otherwise.

is_valid_sample_type Check validity of given sample type

Description

Check if the sample type is valid. The sample type is valid if it is one of the elements of the
VALID_SAMPLE_TYPES vector. The valid sample types are:

c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL).

Usage

is_valid_sample_type(sample_type)

Arguments

sample_type A string representing the sample type.

Value

TRUE if the sample type is valid, FALSE otherwise.

merge_plate_outputs 11

merge_plate_outputs Merge Normalised Data from Multiple Plates

Description

This function merges normalised data from a list of Plate objects into a single data.frame. It sup-
ports different normalisation types and handles column mismatches based on the specified strategy.

Usage

merge_plate_outputs(
plates,
normalisation_type,
column_collision_strategy = "intersection",
verbose = TRUE,
...

)

Arguments

plates A named list of Plate objects, typically returned by process_dir() with pa-
rameter return_plates = TRUE.

normalisation_type

(character(1)) The type of normalisation to merge. Options: "MFI", "RAU",
"nMFI".

column_collision_strategy

(character(1), default = "intersection")

• Determines how to handle mismatched columns across plates.
• Options: "intersection" (only shared columns), "union" (include all

columns).

verbose (logical(1), default = TRUE) Whether to print verbose output.

... Additional arguments passed to process_plate(), such as sample_type_filter
= "TEST" to include only certain sample types in the merged result.

Value

A merged data.frame containing normalised data across all plates.

Examples

creating temporary directory for the example
output_dir <- tempdir(check = TRUE)

dir_with_luminex_files <- system.file("extdata", "multiplate_reallife_reduced",
package = "SerolyzeR", mustWork = TRUE

)
list_of_plates <- process_dir(dir_with_luminex_files,

12 Model

return_plates = TRUE, format = "xPONENT", output_dir = output_dir
)

df <- merge_plate_outputs(list_of_plates, "RAU", sample_type_filter = c("TEST", "STANDARD CURVE"))

Model Logistic regression model for the standard curve

Description

The Model class is a wrapper around the nplr model. It allows to predict the RAU (Relative
Antibody Unit) values directly from the MFI values of a given sample.

The nplr model is fitted using the formula:

y = B +
T −B

(1 + 10b·(xmid−x))s
,

where:

• y is the predicted value, MFI in our case,

• x is the independent variable, dilution in our case,

• B is the bottom plateau - the right horizontal asymptote,

• T is the top plateau - the left horizontal asymptote,

• b is the slope of the curve at the inflection point,

• xmid is the x-coordinate at the inflection point,

• s is the asymmetric coefficient.

This equation is referred to as the Richards’ equation. More information about the model can be
found in the nplr package documentation.

After the model is fitted to the data, the RAU values can be predicted using the predict.Model()
method. The RAU value is simply a predicted dilution value (using the standard curve) for a given
MFI multiplied by 1,000 000 to have a more readable value. For more information about the dif-
ferences between dilution, RAU and MFI values, please see Normalisation section in the Basic
SerolyzeR functionalities vignette.

Public fields

analyte (character(1))
Name of the analyte for which the model was fitted

dilutions (numeric())
Dilutions used to fit the model

mfi (numeric())
MFI values used to fit the model

../doc/example_script.html#normalisation
../doc/example_script.html#normalisation

Model 13

mfi_min (numeric(1))
Minimum MFI used for scaling MFI values to the range [0, 1]

mfi_max (numeric(1))
Maximum MFI used for scaling MFI values to the range [0, 1]

model (nplr)
Instance of the nplr model fitted to the data

log_dilution (logical())
Indicator should the dilutions be transformed using the log10 function

log_mfi (logical())
Indicator should the MFI values be transformed using the log10 function

scale_mfi (logical())
Indicator should the MFI values be scaled to the range [0, 1]

Active bindings

top_asymptote (numeric(1))
The top asymptote of the logistic curve

bottom_asymptote (numeric(1))
The bottom asymptote of the logistic curve

Methods

Public methods:

• Model$new()

• Model$predict()

• Model$get_plot_data()

• Model$print()

• Model$clone()

Method new(): Create a new instance of Model R6 class

Usage:
Model$new(
analyte,
dilutions,
mfi,
npars = 5,
verbose = TRUE,
log_dilution = TRUE,
log_mfi = TRUE,
scale_mfi = TRUE,
mfi_min = NULL,
mfi_max = NULL,
...

)

Arguments:

14 Model

analyte (character(1))
Name of the analyte for which the model was fitted.

dilutions (numeric())
Dilutions used to fit the model

mfi MFI (numeric())
values used to fit the model

npars (numeric(1))
Number of parameters to use in the model

verbose (logical())
If TRUE prints messages, TRUE by default

log_dilution (logical())
If TRUE the dilutions are transformed using the log10 function, TRUE by default

log_mfi (logical())
If TRUE the MFI values are transformed using the log10 function, TRUE by default

scale_mfi (logical())
If TRUE the MFI values are scaled to the range [0, 1], TRUE by default

mfi_min (numeric(1))
Enables to set the minimum MFI value used for scaling MFI values to the range [0, 1]. Use
values before any transformations (e.g., before the log10 transformation)

mfi_max (numeric(1))
Enables to set the maximum MFI value used for scaling MFI values to the range [0, 1]. Use
values before any transformations (e.g., before the log10 transformation)

... Additional parameters, ignored here. Used here only for consistency with the SerolyzeR
pipeline

Method predict(): Predict RAU values from the MFI values
Usage:
Model$predict(mfi, over_max_extrapolation = 0, eps = 1e-06, ...)

Arguments:
mfi (numeric())

MFI values for which we want to predict the RAU values
over_max_extrapolation (numeric(1))

How much we can extrapolate the values above the maximum RAU value seen in stan-
dard curve samples RAUmax. Defaults to 0. If the value of the predicted RAU is above
RAUmax + over_max_extrapolation, the value is censored to the value of that sum.

eps (numeric(1))
A small value used to avoid numerical issues close to the asymptotes

... Additional parameters. This method ignores them, used here for compatibility with the
pipeline.
Warning: High dose hook effect affects which dilution and MFI values are used to fit the
logistic model and by extension affects the over_max_extrapolation value. When a high
dose hook effect is detected we remove the samples with dilutions above the high dose
threshold (which by default is 1/200). Making the highest RAU value lower than the one
calculated without handling of the high dose hook effect.

Returns: (data.frame())
Dataframe with the predicted RAU values for given MFI values The columns are named as
follows:

Plate 15

• RAU - the Relative Antibody Units (RAU) value
• MFI - the predicted MFI value

Method get_plot_data(): Data that can be used to plot the standard curve.

Usage:
Model$get_plot_data()

Returns: (data.frame())
Prediction dataframe for scaled MFI (or logMFI) values in the range [0, 1]. Columns are named
as in the predict method

Method print(): Function prints the basic information about the model such as the number of
parameters or samples used

Usage:
Model$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Model$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

plate_file <- system.file("extdata", "CovidOISExPONTENT.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_layout.csv", package = "SerolyzeR")
plate <- read_luminex_data(plate_file, layout_filepath = layout_file)
model <- create_standard_curve_model_analyte(plate, "S2", log_mfi = TRUE)
print(model)

Plate Plate Object

Description

The Plate object represents a Luminex assay plate and stores data related to its samples, an-
alytes, metadata, and batch information. This object is typically created by functions such as
read_luminex_data(), process_file(), or process_dir().

It provides methods for accessing and manipulating data, including retrieving specific analyte mea-
surements, filtering by sample type, and performing blank adjustments.

16 Plate

Public fields

plate_name (character(1))
Name of the plate. Set to the name of the file from which the plate was read.

analyte_names (character())
Names of the analytes that were examined on the plate.

sample_names (character())
Names of the samples that were examined on the plate. The order of the samples in this vector
is identical with order in the CSV source file.

batch_name (character(1))
Name of the batch to which the plate belongs.

plate_datetime (POSIXct())
A date and time when the plate was created by the machine

sample_locations (character())
Locations of the samples on the plate. This vector is in the same order as the sample_names
vector.

sample_types (character())
Types of the samples that were examined on the plate. The possible values are
c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL). This vec-
tor is in the same order as the sample_names vector. If the Plate object is read using read_luminex_data(),
then the sample types are usually detected based on the sample names according to the rules
described in translate_sample_names_to_sample_types().

dilutions (character())
A list containing names of the samples as keys and string representing dilutions as values.
The dilutions are represented as strings. This vector is in the same order as the sample_names
vector.

dilution_values (numeric())
A list containing names of the samples as keys and numeric values representing dilutions as
values. It is in the same order as the sample_names vector.

default_data_type (character(1))
The default data type that will be returned by the Plate$get_data() method. By default is
set to Median.

data (list())
A list containing dataframes with the data for each sample and analyte. The possible data
types - the keys of the list are:
c(Median, Net MFI, Count, Avg Net MFI, Mean, Peak).
In each dataframe, the rows represent samples and the columns represent analytes.

batch_info (list())
A list containing additional, technical information about the batch.

layout (character())
A list containing information about the layout of the plate. The layout is read from the separate
file and usually provides additional information about the dilutions, sample names, and the
sample layout on the actual plate.

blank_adjusted (logical)
A flag indicating whether the blank values have been adjusted.

Plate 17

Methods

Public methods:
• Plate$new()

• Plate$print()

• Plate$summary()

• Plate$get_data()

• Plate$get_dilution()

• Plate$get_dilution_values()

• Plate$blank_adjustment()

• Plate$clone()

Method new(): Method to initialize the Plate object
Usage:
Plate$new(
plate_name,
sample_names,
analyte_names,
batch_name = "",
plate_datetime = NULL,
sample_locations = NULL,
sample_types = NULL,
dilutions = NULL,
dilution_values = NULL,
default_data_type = NULL,
data = NULL,
batch_info = NULL,
layout = NULL

)

Arguments:
plate_name (character(1))

Name of the plate. By default is set to an empty string, during the reading process it is set
to the name of the file from which the plate was read.

sample_names (character())
Names of the samples that were examined on the plate. Sample names are by default ordered
by location in the plate, using the row-major order. The first sample is the one in upper-left
corner, then follows the ones in the first row, then the second row, and so on.

analyte_names (character())
Names of the analytes that were examined on the plate.

batch_name (character(1))
Name of the batch to which the plate belongs. By default is set to an empty string, during
the reading process it is set to the batch field of the plate

plate_datetime (POSIXct())
Datetime object representing the date and time when the plate was created by the machine.

sample_locations (character())
Locations of the samples on the plate. Sample locations are ordered in the same way as
samples in the input CSV file.

18 Plate

sample_types (character())
Types of the samples that were examined on the plate. The possible values are
c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL). Sample
types are ordered in the same way as the sample_names vector.
If the Plate object is initialised using the default methods (read_luminex_data or any
of the processing methods: process_dir, process_file and process_plate) the sam-
ple types are detected based on the sample names according to the rules described in
translate_sample_names_to_sample_types.

dilutions (character())
A list containing names of the samples as keys and string representing dilutions as values.
The dilutions are represented as strings. The dilutions are ordered in the same way as the
sample_names vector

dilution_values (numeric())
A list containing names of the samples as keys and numeric values representing dilutions as
values. The dilution values are ordered in the same way as the sample_names vector

default_data_type (character(1))
The default data type that will be returned by the get_data method. By default is set to
Median.

data (list())
A list containing dataframes with the data for each sample and analyte. The possible data
types - the keys of the list are
c(Median, Net MFI, Count, Avg Net MFI, Mean, Peak). In each dataframe, the rows rep-
resent samples and the columns represent analytes. Rows of each dataframe are ordered in
the same way as the sample_names vector.

batch_info (list())
A list containing additional, technical information about the batch.

layout (character())
A list containing information about the layout of the plate. The layout is read from the
separate file and usually provides additional information about the dilutions, sample names,
and the sample layout on the actual plate.

Method print(): Function prints the basic information about the plate such as the number of
samples and analytes

Usage:
Plate$print(...)

Arguments:

... Additional parameters to be passed to the print function Print the summary of the plate

Method summary(): Function outputs basic information about the plate, such as examination
date, batch name, and sample types.

Usage:
Plate$summary(..., include_names = FALSE)

Arguments:

... Additional parameters to be passed to the print function Get data for a specific analyte and
sample type

Plate 19

include_names If include_names parameter is TRUE, a part from count of control samples,
provides also their names. By default FALSE

Method get_data(): Function returns data for a specific analyte and sample.

Usage:
Plate$get_data(
analyte,
sample_type_filter = "ALL",
data_type = self$default_data_type

)

Arguments:

analyte An analyte name or its id of which data we want to extract. If set to ’ALL’ returns
data for all analytes.

sample_type_filter is a type of the sample we want to extract data from. The possible values
are
c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL). Default
value is ALL. sample_type_filter can be also of length greater than 1. If sample_type is
longer than 1 and ALL is in the vector, the method returns all the sample types.

data_type The parameter specifying which data type should be returned. This parameter has
to take one of values:
c(Median, Net MFI, Count, Avg Net MFI, Mean, Peak). What’s more, the data_type has
to be present in the plate’s data Default value is plate’s default_data_type, which is usu-
ally Median.

Returns: Dataframe containing information about a given sample type and analyte Get the
string representation of dilutions

Method get_dilution(): Function returns the dilution represented as strings for a specific
sample type.

Usage:
Plate$get_dilution(sample_type)

Arguments:

sample_type type of the samples that we want to obtain the dilution for. The possible values
are
c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL) Default
value is ALL.

Returns: A list containing names of the samples as keys and string representing dilutions as
values. Get the numeric representation of dilutions

Method get_dilution_values(): Function returns the dilution values for a specific sample
type.

Usage:
Plate$get_dilution_values(sample_type)

Arguments:

20 Plate

sample_type type of the samples that we want to obtain the dilution values for. The possible
values are
c(ALL, BLANK, TEST, NEGATIVE CONTROL, STANDARD CURVE, POSITIVE CONTROL) Default
value is ALL.

Returns: A list containing names of the samples as keys and numeric values representing
dilutions as values.
Adjust the MFI values by subtracting the background

Method blank_adjustment(): Function adjusts the values of samples (all samples excluding
the blanks) by clamping the values to the aggregated value of the BLANK samples for each analyte
separately.

The purpose of this operation is to unify the data by clamping values below the background noise.
how this method works was inspired by the paper "Quality control of multiplex antibody detection
in samples from large-scale surveys: the example of malaria in Haiti." which covers the quality
control in the MBA.

In short, this operation firstly calculates the aggregate of MFI in the BLANK samples (available
methods are: min, max, mean, median) and then replaces all values below this threshold with the
threshold value.

Method does not modifies the data of type Count.

This operation is recommended to be performed before any further analysis, but is optional. Skip-
ping it before further analysis is allowed, but will result in a warning.

@references van den Hoogen, L.L., Présumé, J., Romilus, I. et al. Quality control of multiplex
antibody detection in samples from large-scale surveys: the example of malaria in Haiti. Sci Rep
10, 1135 (2020). https://doi.org/10.1038/s41598-020-57876-0

Usage:

Plate$blank_adjustment(threshold = "max", in_place = TRUE)

Arguments:

threshold The method used to calculate the background value for each analyte. Every value
below this threshold will be clamped to the threshold value. By default max. Available
methods are: min, max, mean, median.

in_place Whether the method should produce new plate with adjusted values or not, By default
TRUE - operates on the current plate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Plate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PlateBuilder 21

PlateBuilder PlateBuilder

Description

This class helps creating the Plate object. It is used to store the data and validate the final fields.

Active bindings

layout_as_vector Print the layout associated with the plate as a flattened vector of values.

Methods

Public methods:
• PlateBuilder$new()

• PlateBuilder$set_sample_locations()

• PlateBuilder$set_dilutions()

• PlateBuilder$set_sample_types()

• PlateBuilder$set_sample_names()

• PlateBuilder$set_plate_datetime()

• PlateBuilder$set_data()

• PlateBuilder$set_default_data_type()

• PlateBuilder$set_batch_info()

• PlateBuilder$set_plate_name()

• PlateBuilder$set_layout()

• PlateBuilder$build()

• PlateBuilder$clone()

Method new(): Initialize the PlateBuilder object

Usage:
PlateBuilder$new(sample_names, analyte_names, batch_name = "", verbose = TRUE)

Arguments:

sample_names • vector of sample names measured during an examination in the same order
as in the data. It should not contain any duplicates.

analyte_names • vector of analytes names measured during an examination in the same order
as in the data

batch_name • name of the batch during which the plate was examined obtained from the plate
info. An optional parameter, by default set to "" - an empty string.

verbose • logical value indicating whether to print additional information. This parameter is
stored as a private attribute of the object and reused in other methods

Method set_sample_locations(): Set the sample types used during the examination

Usage:

22 PlateBuilder

PlateBuilder$set_sample_locations(sample_locations)

Arguments:

sample_locations vector of sample locations pretty name ie. A1, B2

Method set_dilutions(): Extract and set the dilutions from layout, sample names or use
a provided vector of values. The provided vector should be the same length as the number of
samples and should contain dilution factors saved as strings

Usage:
PlateBuilder$set_dilutions(use_layout_dilutions = TRUE, values = NULL)

Arguments:

use_layout_dilutions logical value indicating whether to use names extracted from layout
files to extract dilutions. If set to FALSE the function uses the sample names as a source for
dilution

values a vector of dilutions to overwrite the extraction process
Set and extract sample types from the sample names. Optionally use the layout file to extract
the sample types

Method set_sample_types():
Usage:
PlateBuilder$set_sample_types(use_layout_types = TRUE, values = NULL)

Arguments:

use_layout_types logical value indicating whether to use names extracted from layout files
to extract sample types

values a vector of sample types to overwrite the extraction process

Method set_sample_names(): Set the sample names used during the examination. If the layout
is provided, extract the sample names from the layout file. Otherwise, uses the original sample
names from the Luminex file
In case there are multiple samples with the same name, it prints a warning and renames the sam-
ples, by adding a number.

Usage:
PlateBuilder$set_sample_names(use_layout_sample_names = TRUE)

Arguments:

use_layout_sample_names logical value indicating whether to use names extracted from lay-
out files. If set to false, this function only checks if the sample names are provided in the
plate

Method set_plate_datetime(): Set the plate datetime for the plate

Usage:
PlateBuilder$set_plate_datetime(plate_datetime)

Arguments:

plate_datetime a POSIXct datetime object representing the date and time of the examination

Method set_data(): Set the data used during the examination

PlateBuilder 23

Usage:
PlateBuilder$set_data(data)

Arguments:
data a named list of data frames containing information about the samples and analytes. The

list is named by the type of the data e.g. Median, Net MFI, etc. The data frames contain
information about the samples and analytes The rows are different measures, whereas the
columns represent different analytes Example of how data$Median looks like:

Sample Analyte1 Analyte2 Analyte3
Sample1 1.2 2.3 3.4
Sample2 4.5 5.6 6.7
...
Sample96 7.8 8.9 9.0

Method set_default_data_type(): Set the data type used for calculations

Usage:
PlateBuilder$set_default_data_type(data_type = "Median")

Arguments:
data_type a character value representing the type of data that is currently used for calculations.

By default, it is set to Median

Method set_batch_info(): Set the batch info for the plate

Usage:
PlateBuilder$set_batch_info(batch_info)

Arguments:
batch_info a raw list containing metadata about the plate read from the Luminex file

Method set_plate_name(): Set the plate name for the plate. The plate name is extracted from
the filepath

Usage:
PlateBuilder$set_plate_name(file_path)

Arguments:
file_path a character value representing the path to the file

Method set_layout(): Set the layout matrix for the plate. This function performs basic vali-
dation

• verifies if the plate is a matrix of shape 8x12 with 96 wells

Usage:
PlateBuilder$set_layout(layout_matrix)

Arguments:
layout_matrix a matrix containing information about the sample names. dilutions, etc.

Method build(): Create a Plate object from the PlateBuilder object

24 plot_counts

Usage:
PlateBuilder$build(validate = TRUE, reorder = TRUE)

Arguments:
validate logical value indicating whether to validate the fields
reorder logical value indicating whether to reorder the data according to the locations on the

plate. If FALSE, the samples will be ordered in the same manner as in the CSV plate file.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PlateBuilder$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

plot_counts Plot counts in a 96-well plate

Description

This function plots counts in a 96-well plate using a colour to represent the count ranges. There is
a possibility of plotting exact counts in each well.

If the plot window is resized, it’s best to re-run the function to adjust the scaling. Sometimes,
when a legend is plotted, the whole layout may be shifted. It’s best to stretch the window, and
everything will be adjusted automatically.

Usage

plot_counts(
plate,
analyte_name,
plot_counts = TRUE,
plot_legend = FALSE,
lower_threshold = 50,
higher_threshold = 70

)

Arguments

plate The plate object with the counts data
analyte_name The name of the analyte
plot_counts Logical indicating if the counts should be plotted
plot_legend Logical indicating if the legend should be plotted
lower_threshold

The lower threshold for the counts, it separates green and yellow colours
higher_threshold

The higher threshold for the counts, it separates yellow and red colours

plot_layout 25

Value

A ggplot object

Examples

plate_filepath <- system.file("extdata", "CovidOISExPONTENT_CO.csv",
package = "SerolyzeR", mustWork = TRUE

)
layout_filepath <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx",

package = "SerolyzeR", mustWork = TRUE
)
plate <- read_luminex_data(plate_filepath, layout_filepath)
plot_counts(

plate = plate, analyte_name = "OC43_NP_NA",
plot_counts = TRUE, plot_legend = FALSE

)

plot_layout Plot layout of a 96-well plate

Description

This function plots the layout of a 96-well plate using a colour to represent the sample types.

If the plot window is resized, it’s best to re-run the function to adjust the scaling. Sometimes,
the whole layout may be shifted when a legend is plotted. It’s best to stretch the window, and
everything will be adjusted automatically.

Usage

plot_layout(plate, plot_legend = TRUE)

Arguments

plate The plate object with the layout information

plot_legend Logical indicating if the legend should be plotted

Value

A ggplot object

26 plot_levey_jennings

Examples

plate_filepath <- system.file("extdata", "CovidOISExPONTENT_CO.csv",
package = "SerolyzeR", mustWork = TRUE

)
layout_filepath <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx",

package = "SerolyzeR", mustWork = TRUE
)
plate <- read_luminex_data(plate_filepath, layout_filepath)
plot_layout(plate = plate, plot_legend = TRUE)

plot_levey_jennings Plot Levey-Jennings chart

Description

The function plots a Levey-Jennings chart for the given analyte in the list of plates. The Levey-
Jennings chart is a graphical representation of the data that enables the detection of outliers and
trends. It is a quality control tool that is widely used in the laboratories across the world.

The method takes several parameters that can customise its output. Except for the required param-
eters (list_of_plates and analyte_name), the most significant optional ones are dilution and
sd_lines.

The additional parameters can be used for improving the plots interpretability, by customizing the
layout, y-scale, etc.

For better readibilty, the plot is zoomed out in the y-axis, by a factor of 1.5.

Usage

plot_levey_jennings(
list_of_plates,
analyte_name,
dilution = "1/400",
sd_lines = c(1, 2, 3),
mfi_log_scale = TRUE,
sort_plates = TRUE,
plate_labels = "number",
label_angle = 0,
legend_position = "bottom",
data_type = "Median"

)

Arguments

list_of_plates A list of plate objects for which to plot the Levey-Jennings chart

analyte_name (character(1)) the analyte for which to plot the Levey-Jennings chart

plot_levey_jennings 27

dilution (character(1)) the dilution for which to plot the Levey-Jennings chart. The
default is "1/400"

sd_lines (numeric) the vector of coefficients for the standard deviation lines to plot, for
example, c(1.96, 2.58) will plot four horizontal lines: mean +/- 1.96sd, mean
+/- 2.58sd default is c(1, 2, 3) which will plot 6 lines in total

mfi_log_scale (logical(1)) specifies if the MFI should be in the log10 scale. By default it
equals to TRUE, which corresponds to plotting the chart in log10 scale.

sort_plates (logical(1)) if TRUE sorts plates by the date of examination. If FALSE plots
using the plate order as in input. TRUE by default.

plate_labels (character(1)) controls x-axis labels. Can improve readibility of the plot.
Takes the following values:

• "numbers": shows the number of the plate,

• "names": shows the plate names

• "dates": shows the date of examination

label_angle (numeric(1)) angle in degrees to rotate x-axis labels. Can improve readibility
of the plot. Default: 0

legend_position

the position of the legend, a possible values are c(right, bottom, left, top,
none). Is not used if plot_legend equals to FALSE.

data_type (character(1)) the type of data used plot. The default is "Median"

Value

A ggplot object with the Levey-Jennings chart

Examples

creating temporary directory for the example
output_dir <- tempdir(check = TRUE)

dir_with_luminex_files <- system.file("extdata", "multiplate_reallife_reduced",
package = "SerolyzeR", mustWork = TRUE

)
list_of_plates <- process_dir(dir_with_luminex_files,

return_plates = TRUE, format = "xPONENT", output_dir = output_dir
)
list_of_plates <- rep(list_of_plates, 10) # since we have only 3 plates i will repeat them 10 times

plot_levey_jennings(list_of_plates, "ME", dilution = "1/400", sd_lines = c(0.5, 1, 1.96, 2.58))

28 plot_mfi_for_analyte

plot_mfi_for_analyte Plot MFI value distribution for a given analyte

Description

Plot MFI value distribution for a given analyte

Usage

plot_mfi_for_analyte(
plate,
analyte_name,
data_type = "Median",
plot_type = "violin",
scale_y = "log10",
plot_outliers = FALSE,
...

)

Arguments

plate A plate object

analyte_name The analyte to plot

data_type The type of data to plot. Default is "Median"

plot_type The type of plot to generate. Default is "violin". Available options are "boxplot"
and "violin".

scale_y What kind of transformation of the scale to apply. By default MFI is presented
in a "log10" scale. Available options are described in the documentation of
scale_y_continuous undertransform parameter.

plot_outliers When using "boxplot" type of a plot one can set this parameter to TRUE and
display the names of samples for which MFI falls outside the 1.5 IQR interval

... Additional parameters, ignored here. Used here only for consistency with the
SerolyzeR pipeline

Value

A ggplot object

plot_standard_curve_analyte 29

plot_standard_curve_analyte

Standard curves

Description

Plot standard curve samples of a plate of a given analyte.

Usage

plot_standard_curve_analyte(
plate,
analyte_name,
data_type = "Median",
decreasing_rau_order = TRUE,
log_scale = c("all"),
plot_line = TRUE,
plot_blank_mean = TRUE,
plot_rau_bounds = TRUE,
plot_legend = TRUE,
legend_position = "bottom",
verbose = TRUE,
...

)

Arguments

plate A plate object

analyte_name Name of the analyte of which standard curve we want to plot.

data_type Data type of the value we want to plot - the same datatype as in the plate file.
By default equals to Net MFI

decreasing_rau_order

If TRUE the RAU values are plotted in decreasing order, TRUE by default

log_scale Which elements on the plot should be displayed in log scale. By default "RAU".
If NULL or c() no log scale is used, if "all" or c("RAU", "MFI") all elements
are displayed in log scale.

plot_line If TRUE a line is plotted, TRUE by default
plot_blank_mean

If TRUE the mean of the blank samples is plotted, TRUE by default
plot_rau_bounds

If TRUE the RAU values bounds are plotted, TRUE by default

plot_legend If TRUE the legend is plotted, TRUE by default
legend_position

the position of the legend, a possible values are c(right, bottom, left, top,
none). Is not used if plot_legend equals to FALSE.

30 plot_standard_curve_analyte_with_model

verbose If TRUE prints messages, TRUE by default

... Additional parameters, ignored here. Used here only for consistency with the
SerolyzeR pipeline

Value

ggplot object with the plot

Examples

path <- system.file("extdata", "CovidOISExPONTENT.csv",
package = "SerolyzeR", mustWork = TRUE

)
layout_path <- system.file("extdata", "CovidOISExPONTENT_layout.xlsx",

package = "SerolyzeR", mustWork = TRUE
)
plate <- read_luminex_data(path, layout_filepath = layout_path, verbose = FALSE)
plot_standard_curve_analyte(plate, "Spike_6P", plot_legend = FALSE, data_type = "Median")

plot_standard_curve_analyte_with_model

Plot standard curve of a certain analyte with fitted model

Description

Function plots the values of standard curve samples and the fitted model.

Usage

plot_standard_curve_analyte_with_model(
plate,
model,
data_type = "Median",
decreasing_rau_order = TRUE,
log_scale = c("all"),
plot_asymptote = TRUE,
plot_test_predictions = TRUE,
plot_blank_mean = TRUE,
plot_rau_bounds = TRUE,
plot_legend = TRUE,
legend_position = "bottom",
verbose = TRUE,
...

)

plot_standard_curve_analyte_with_model 31

Arguments

plate Plate object

model fitted Model object, which predictions we want to plot

data_type Data type of the value we want to plot - the same datatype as in the plate file.
By default equals to Median

decreasing_rau_order

If TRUE the RAU values are plotted in decreasing order, TRUE by default.

log_scale Which elements on the plot should be displayed in log scale. By default "all".
If NULL or c() no log scale is used, if "all" or c("RAU", "MFI") all elements
are displayed in log scale.

plot_asymptote If TRUE the asymptotes are plotted, TRUE by default

plot_test_predictions

If TRUE the predictions for the test samples are plotted, TRUE by default. The
predictions are obtained through extrapolation of the model

plot_blank_mean

If TRUE the mean of the blank samples is plotted, TRUE by default

plot_rau_bounds

If TRUE the RAU bounds are plotted, TRUE by default

plot_legend If TRUE the legend is plotted, TRUE by default

legend_position

the position of the legend, a possible values are c(right, bottom, left, top,
none). Is not used if plot_legend equals to FALSE.

verbose If TRUE prints messages, TRUE by default

... Additional arguments passed to the predict function

Value

a ggplot object with the plot

Examples

path <- system.file("extdata", "CovidOISExPONTENT.csv",
package = "SerolyzeR", mustWork = TRUE

)
layout_path <- system.file("extdata", "CovidOISExPONTENT_layout.xlsx",

package = "SerolyzeR", mustWork = TRUE
)
plate <- read_luminex_data(path, layout_filepath = layout_path, verbose = FALSE)
model <- create_standard_curve_model_analyte(plate, analyte_name = "Spike_B16172")
plot_standard_curve_analyte_with_model(plate, model, decreasing_rau_order = FALSE)

32 plot_standard_curve_stacked

plot_standard_curve_stacked

Standard curve stacked plot for levey-jennings report

Description

As a quality control measure to detect plates with inconsistent results or drift in calibration over
time, this function plots standard curves for a specified analyte across multiple plates on a single
plot. It enables visual comparison of standard curves, making it easier to spot outliers or shifts in
calibration. The function can be run standalone or used as part of a broader Levey-Jennings report.

Each curve represents one plate, and users can choose how colours are applied — either in a
monochromatic blue gradient (indicating time-based drift) or with distinct hues for clearer dif-
ferentiation.

Usage

plot_standard_curve_stacked(
list_of_plates,
analyte_name,
data_type = "Median",
decreasing_dilution_order = TRUE,
monochromatic = TRUE,
legend_type = NULL,
plot_legend = TRUE,
legend_position = "bottom",
max_legend_items_per_row = 3,
legend_text_size = 6,
sort_plates = TRUE,
log_scale = c("all"),
separate_legend = FALSE,
legend_rel_height = 0.4,
verbose = TRUE

)

Arguments

list_of_plates list of Plate objects

analyte_name Name of the analyte of which standard curves we want to plot.

data_type Data type of the value we want to plot - the same datatype as in the plate file.
By default equals to Median

decreasing_dilution_order

If TRUE the dilution values are plotted in decreasing order, TRUE by default

monochromatic If TRUE the color of standard curves changes from white (the oldest) to blue (the
newest) it helps to observe drift in calibration of the device; otherwise, more
varied colours are used, TRUE by default

plot_standard_curve_stacked 33

legend_type default value is NULL, then legend type is determined based on monochromatic
value. If monochromatic is equal to TRUE then legend type is set to date, if it
is FALSE then legend type is set to plate_name. User can override this behavior
by setting explicitly legend_type to date or plate_name.

plot_legend If TRUE the legend is plotted, TRUE by default
legend_position

the position of the legend, a possible values are c(right, bottom, left, top,
none). Is not used if plot_legend equals to FALSE.

max_legend_items_per_row

Maximum number of legend items per row when legend is at top or bottom.
Default is 3.

legend_text_size

Font size of the legend. Can be useful if plotting long plate names. Default is 8

sort_plates (logical(1)) if TRUE sorts plates by the date of examination.

log_scale Which elements on the plot should be displayed in log scale. By default "all".
If NULL or c() no log scale is used, if "all" or c("dilutions", "MFI") all
elements are displayed in log scale.

separate_legend

If TRUE, the legend is returned as concatatenated ggplot object.
legend_rel_height

Relative height of the legend when separate_legend is set to TRUE.

verbose If TRUE prints messages, TRUE by default

Details

The function overlays all standard curves from the provided plates for the given analyte. When
monochromatic = TRUE, the curves are drawn in a blue gradient — oldest plates in light blue (almost
white) and most recent ones in dark blue. This visual encoding helps track drift in calibration over
time.

When monochromatic = FALSE, colours are selected from a hue palette to ensure distinct appear-
ance, especially useful when comparing many plates simultaneously.

The legend_type determines how curves are identified in the legend. By default, it adapts based
on the monochromatic setting.

If the legend becomes crowded (e.g., with long plate names), use max_legend_items_per_row and
legend_text_size to improve layout and readability.

Value

ggplot object with the plot

Examples

creating temporary directory for the example
output_dir <- tempdir(check = TRUE)

dir_with_luminex_files <- system.file("extdata", "multiplate_reallife_reduced",

34 process_dir

package = "SerolyzeR", mustWork = TRUE
)
list_of_plates <- process_dir(dir_with_luminex_files,

return_plates = TRUE, format = "xPONENT", output_dir = output_dir
)
plot_standard_curve_stacked(list_of_plates, "ME", data_type = "Median", monochromatic = FALSE)

predict.Model Predict the RAU values from the MFI values

Description

More details can be found here: Model

Usage

S3 method for class 'Model'
predict(object, mfi, ...)

Arguments

object (Model()) Object of the Model class

mfi (numeric()) MFI values for which we want to predict the RAU values Should
be in the same scale as the MFI values used to fit the model

... Additional arguments passed to the method

Value

(data.frame())

process_dir Process a Directory of Luminex Data Files

Description

This function processes all Luminex plate files within a specified directory. Each plate file is pro-
cessed using process_file(), and the resulting normalised data is saved. Optionally, quality
control reports can be generated, and results from multiple plates can be merged into a single file.

Workflow:

1. Identify all Luminex plate files in the input_dir, applying recursive search if recurse =
TRUE.

2. Detect the format of each file based on the format parameter or the filename.

process_dir 35

3. Locate the corresponding layout file using the filename or use the common layout passed
with the layout_filepath parameter.

4. Determine the appropriate output directory using get_output_dir().
5. Process each plate file using process_file().
6. If merge_outputs = TRUE, merge normalised data from multiple plates into a single CSV

file.

Naming Conventions for Input Files:
• If format is specified:

– Each plate file should be named as {plate_name}.csv.
– The corresponding layout file should be named as {plate_name}_layout.csv or {plate_name}_layout.xlsx.
– Alternatively, if layout_filepath is provided, it serves as a unified layout file for all

plates.
• If format equals NULL (automatic detection):

– Each plate file should be named as {plate_name}_{format}.csv, where {format} is
either xPONENT or INTELLIFLEX.

– The corresponding layout file should be named using the same convention as above, i.i.
{plate_name}_{format}_layout.csv or {plate_name}_{format}_layout.xlsx.

Output File Structure:
• The output_dir parameter specifies where the processed files are saved.
• If output_dir is NULL, output files are saved in the same directory as the input files.
• By default, the output directory structure follows the input directory, unless flatten_output_dir
= TRUE, which saves all outputs directly into output_dir.

• Output filenames follow the convention used in process_file().
– For a plate named {plate_name}, the normalised output files are named as:

* {plate_name}_RAU.csv for RAU normalisation.

* {plate_name}_nMFI.csv for nMFI normalisation.

* {plate_name}_MFI.csv for MFI normalisation.
– If generate_reports = TRUE, a quality control report for every plate is saved as {plate_name}_report.pdf.
– If merge_outputs = TRUE, merged normalised files are named as:

* merged_RAU_{timestamp}.csv

* merged_nMFI_{timestamp}.csv

* merged_MFI_{timestamp}.csv

– If generate_multiplate_reports = TRUE, a multiplate quality control report is saved
as multiplate_report_{timestamp}.pdf.

Usage

process_dir(
input_dir,
output_dir = NULL,
recurse = FALSE,
flatten_output_dir = FALSE,
layout_filepath = NULL,

36 process_dir

format = "xPONENT",
normalisation_types = c("MFI", "RAU", "nMFI"),
generate_reports = FALSE,
generate_multiplate_reports = FALSE,
merge_outputs = TRUE,
column_collision_strategy = "intersection",
return_plates = FALSE,
dry_run = FALSE,
verbose = TRUE,
...

)

Arguments

input_dir (character(1)) Path to the directory containing plate files. Can contain subdi-
rectories if recurse = TRUE.

output_dir (character(1), optional) Path to the directory where output files will be saved.
Defaults to NULL (same as input directory).

recurse (logical(1), default = FALSE)

• If TRUE, searches for plate files in subdirectories as well.
flatten_output_dir

(logical(1), default = FALSE)

• If TRUE, saves output files directly in output_dir, ignoring the input direc-
tory structure.

layout_filepath

(character(1), optional) Path to a layout file. If NULL, the function attempts to
detect it automatically.

format (character(1), optional) Luminex data format. If NULL, it is automatically
detected. Options: 'xPONENT', 'INTELLIFLEX', 'BIOPLEX'. By default equals
to 'xPONENT'.

normalisation_types

(character(), default = c("MFI", "RAU", "nMFI"))

• The normalisation types to apply. Supported values: "MFI", "RAU", "nMFI".
generate_reports

(logical(1), default = FALSE)

• If TRUE, generates single plate quality control reports for each processed
plate file.

generate_multiplate_reports

(logical(1), default = FALSE)

• If TRUE, generates a multiplate quality control report for all processed plates.

merge_outputs (logical(1), default = TRUE)

• If TRUE, merges all normalised data into a single CSV file per normalisation
type.

• The merged file is named merged_{normalisation_type}_{timestamp}.csv.

process_file 37

column_collision_strategy

(character(1), default = 'intersection')

• Determines how to handle missing or extra columns when merging outputs.
• Options: 'union' (include all columns), 'intersection' (include only

common columns).

return_plates (logical(1), default = FALSE)

• If TRUE, returns a list of processed plates sorted by experiment date.

dry_run (logical(1), default = FALSE)

• If TRUE, prints file details without processing them.

verbose (logical(1), default = TRUE)

• If TRUE, prints detailed processing information.

... Additional arguments passed to process_file().

Value

If return_plates = TRUE, returns a sorted list of Plate objects. Otherwise, returns NULL.

Examples

Process all plate files in a directory
input_dir <- system.file("extdata", "multiplate_lite", package = "SerolyzeR", mustWork = TRUE)
output_dir <- tempdir(check = TRUE)
plates <- process_dir(input_dir, return_plates = TRUE, output_dir = output_dir)

process_file Process a File to Generate Normalised Data and Reports

Description

This function reads a Luminex plate file by calling read_luminex_data() and then processes it by
calling process_plate(). It optionally generates also a quality control report using generate_plate_report().
It reads the specified plate file, processes the plate object using all specified normalisation types (in-
cluding raw MFI values), and saves the results. If generate_report = TRUE, a quality control
report is also generated.

Usage

process_file(
plate_filepath,
layout_filepath,
output_dir = "normalised_data",
format = "xPONENT",
generate_report = FALSE,
process_plate = TRUE,

38 process_file

normalisation_types = c("MFI", "RAU", "nMFI"),
blank_adjustment = FALSE,
verbose = TRUE,
...

)

Arguments

plate_filepath (character(1)) Path to the Luminex plate file.

layout_filepath

(character(1)) Path to the corresponding layout file.

output_dir (character(1), default = 'normalised_data')

• Directory where the output files will be saved.

• If it does not exist, it will be created.

format (character(1), default = 'xPONENT')

• Format of the Luminex data.

• Available options: 'xPONENT', 'INTELLIFLEX', 'BIOPLEX'.

generate_report

(logical(1), default = FALSE)

• If TRUE, generates a quality control report using generate_plate_report().

process_plate (logical(1), default = TRUE)

• If TRUE, processes the plate data using process_plate().

• If FALSE, only reads the plate file and returns the plate object without pro-
cessing.

normalisation_types

(character(), default = c("MFI", "RAU", "nMFI"))

• List of normalisation types to apply.

• Supported values: c("MFI", "RAU", "nMFI").

blank_adjustment

(logical(1), default = FALSE)

• If TRUE, performs blank adjustment before processing.

verbose (logical(1), default = TRUE)

• If TRUE, prints additional information during execution.

... Additional arguments passed to read_luminex_data(), generate_plate_report()
and process_plate().

Value

A Plate object containing the processed data.

process_plate 39

Workflow

1. Read the plate file and layout file.

2. Process the plate data using the specified normalisation types (MFI, RAU, nMFI).

3. Save the processed data to CSV files in the specified output_dir. The files are named as
{plate_name}_{normalisation_type}.csv.

4. Optionally, generate a quality control report. The report is saved as an HTML file in the
output_dir, under the name {plate_name}_report.html.

Examples

Example 1: Process a plate file with default settings (all normalisation types)
plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "SerolyzeR")
example_dir <- tempdir(check = TRUE)
process_file(plate_file, layout_file, output_dir = example_dir)

Example 2: Process the plate for only RAU normalisation
process_file(plate_file, layout_file, output_dir = example_dir, normalisation_types = c("RAU"))

Example 3: Process the plate and generate a quality control report
process_file(plate_file, layout_file, output_dir = example_dir, generate_report = TRUE)

process_plate Process Plate Data and Save Normalised Output

Description

Processes a Luminex plate and computes normalised values using the specified normalisation_type.
Depending on the chosen method, the function performs blank adjustment, fits models, and extracts
values for test samples. Optionally, the results can be saved as a CSV file.

Usage

process_plate(
plate,
filename = NULL,
output_dir = "normalised_data",
write_output = TRUE,
normalisation_type = "RAU",
data_type = "Median",
sample_type_filter = "ALL",
blank_adjustment = FALSE,
verbose = TRUE,
reference_dilution = 1/400,
...

)

40 process_plate

Arguments

plate A Plate object containing raw or processed Luminex data.

filename (character(1), optional) Output CSV filename. If NULL, defaults to "{plate_name}_{normalisation_type}.csv".
File extension is auto-corrected to .csv if missing. If an absolute path is given,
output_dir is ignored.

output_dir (character(1), default = "normalised_data") Directory where the CSV will
be saved. Will be created if it doesn’t exist. If NULL, the current working direc-
tory is used.

write_output (logical(1), default = TRUE) Whether to write the output to disk.
normalisation_type

(character(1), default = 'RAU') The normalisation method to apply.

• Allowed values: c(MFI, RAU, nMFI).

data_type (character(1), default = "Median") The data type to use for normalisation
(e.g., "Median").

sample_type_filter

(character()) The types of samples to normalise. (e.g., "TEST", "STANDARD
CURVE"). It can also be a vector of sample types. In that case, dataframe with
multiple sample types will be returned. By default equals to "ALL", which cor-
responds to processing all sample types.

blank_adjustment

(logical(1), default = FALSE) Whether to apply blank adjustment before pro-
cessing.

verbose (logical(1), default = TRUE) Whether to print additional information during
execution.

reference_dilution

(numeric(1) or character(1), default = 1/400) Target dilution used for nMFI
calculation. Ignored for other types. Can be numeric (e.g., 0.0025) or string
(e.g., "1/400").

... Additional arguments passed to the model fitting function create_standard_curve_model_analyte()
and predict.Model

Details

Supported normalisation types:

• RAU (Relative Antibody Units): Requires model fitting. Produces estimates using a standard
curve. See create_standard_curve_model_analyte for details.

• nMFI (Normalised Median Fluorescence Intensity): Requires a reference dilution. See get_nmfi.

• MFI (Blank-adjusted Median Fluorescence Intensity): Returns raw MFI values (adjusted for
blanks, if requested).

Value

A data frame of computed values, with test samples as rows and analytes as columns.

process_plate 41

RAU Workflow

1. Optionally perform blank adjustment.

2. Fit a model for each analyte using standard curve data.

3. Predict RAU values for test samples.

4. Aggregate and optionally save results.

nMFI Workflow

1. Optionally perform blank adjustment.

2. Compute normalised MFI using the reference_dilution.

3. Aggregate and optionally save results.

MFI Workflow

1. Optionally perform blank adjustment.

2. Return adjusted MFI values.

See Also

create_standard_curve_model_analyte, get_nmfi

Examples

plate_file <- system.file("extdata", "CovidOISExPONTENT_CO_reduced.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_CO_layout.xlsx", package = "SerolyzeR")
plate <- read_luminex_data(plate_file, layout_file, verbose = FALSE)

example_dir <- tempdir(check = TRUE)

Process using default settings (RAU normalisation)
process_plate(plate, output_dir = example_dir)

Use a custom filename and skip blank adjustment
process_plate(plate,

filename = "no_blank.csv",
output_dir = example_dir,
blank_adjustment = FALSE

)

Use nMFI normalisation with reference dilution
process_plate(plate,

normalisation_type = "nMFI",
reference_dilution = "1/400",
output_dir = example_dir

)

42 read_intelliflex_format

read_bioplex_format Read the BIOPLEX format data

Description

Read the BIOPLEX format data

Usage

read_bioplex_format(path, verbose = TRUE)

Arguments

path Path to the BIOPLEX file (excel file)

verbose Print additional information. Default is TRUE

read_intelliflex_format

Read the Intelliflex format data

Description

Read the Intelliflex format data

Usage

read_intelliflex_format(path, verbose = TRUE)

Arguments

path Path to the INTELLIFLEX file

verbose Print additional information. Default is TRUE

read_layout_data 43

read_layout_data Read layout data from a file

Description

Read layout data from a file

Usage

read_layout_data(layout_file_path, ...)

Arguments

layout_file_path

Path to the layout file
... Additional arguments to pass to the underlying read function

Value

A matrix with the layout data. The row names are supposed to be letters A,B,C, etc. The column
names are supposed to be numbers 1,2,3, etc.

read_luminex_data Read Luminex Data

Description

Reads a Luminex plate file and returns a Plate object containing the extracted data. Optionally, a
layout file can be provided to specify the arrangement of samples on the plate.

Usage

read_luminex_data(
plate_filepath,
layout_filepath = NULL,
format = "xPONENT",
plate_file_separator = ",",
plate_file_encoding = "UTF-8",
use_layout_sample_names = TRUE,
use_layout_types = TRUE,
use_layout_dilutions = TRUE,
default_data_type = "Median",
sample_types = NULL,
dilutions = NULL,
verbose = TRUE,
...

)

44 read_luminex_data

Arguments

plate_filepath (character(1)) Path to the Luminex plate file.
layout_filepath

(character(1), optional) Path to the Luminex layout file.

format (character(1), default = 'xPONENT')

• The format of the Luminex data file.
• Supported formats: 'xPONENT', 'INTELLIFLEX', 'BIOPLEX'.

plate_file_separator

(character(1), default = ',')

• The delimiter used in the plate file (CSV format). Used only for the xPO-
NENT format.

plate_file_encoding

(character(1), default = 'UTF-8')

• The encoding used for reading the plate file. Used only for the xPONENT
format.

use_layout_sample_names

(logical(1), default = TRUE)

• Whether to use sample names from the layout file.
use_layout_types

(logical(1), default = TRUE)

• Whether to use sample types from the layout file (requires a layout file).
use_layout_dilutions

(logical(1), default = TRUE)

• Whether to use dilution values from the layout file (requires a layout file).
default_data_type

(character(1), default = 'Median')

• The default data type used if none is explicitly provided.

sample_types (character(), optional) A vector of sample types to override extracted values.

dilutions (numeric(), optional) A vector of dilutions to override extracted values.

verbose (logical(1), default = TRUE)

• Whether to print additional information and warnings.

... Additional arguments. Ignored in this method. Here included for better integra-
tion with the pipeline

Details

The function supports two Luminex data formats:

• xPONENT: Used by older Luminex machines.

• INTELLIFLEX: Used by newer Luminex devices.

• BIOPLEX: Used by Bio-Rad Luminex devices.

read_luminex_data 45

Value

A Plate object containing the parsed Luminex data.

Workflow

1. Validate input parameters, ensuring the specified format is supported.

2. Read the plate file using the appropriate parser:

• xPONENT files are read using read_xponent_format().
• INTELLIFLEX files are read using read_intelliflex_format().
• BIOPLEX files are read using read_bioplex_format().

3. Post-process the extracted data:

• Validate required data columns (Median, Count).
• Extract sample locations and analyte names.
• Parse the date and time of the experiment.

File Structure

• Plate File (plate_filepath): A CSV file containing Luminex fluorescence intensity data.

• Layout File (layout_filepath) (optional): An Excel or CSV file containing the plate layout.

– The layout file should contain a table with 8 rows and 12 columns, where each cell
corresponds to a well location.

– The values in the table represent the sample names for each well.

Sample types detection

The read_luminex_data() method automatically detects the sample types based on the sample
names, unless provided the sample_types parameter. The sample types are detected used the
translate_sample_names_to_sample_types() method. In the documentation of this method,
which can be accessed with command ?translate_sample_names_to_sample_types, you can
find the detailed description of the sample types detection.

Duplicates in sample names:
In some cases, we want to analyse the sample with the same name twice on one plate. The package
allows for such situations, but we assume that the user knows what they are doing.
When importing sample names (either from the layout file or the plate file), the function will
check for duplicates. If any are found, it will issue a warning like:
Duplicate sample names detected: A, B. Renaming to make them unique.
Then it will add simple numeric suffixes (e.g. “.1”, “.2”) to the repeated sample names so that
every name is unique while keeping the original text easy to recognize.

Examples

Read a Luminex plate file with an associated layout file
plate_file <- system.file("extdata", "CovidOISExPONTENT.csv", package = "SerolyzeR")
layout_file <- system.file("extdata", "CovidOISExPONTENT_layout.csv", package = "SerolyzeR")
plate <- read_luminex_data(plate_file, layout_file)

46 translate_sample_names_to_sample_types

Read a Luminex plate file without a layout file
plate_file <- system.file("extdata", "CovidOISExPONTENT_CO.csv", package = "SerolyzeR")
plate <- read_luminex_data(plate_file, verbose = FALSE)

read_xponent_format Read the xPONENT format data

Description

Read the xPONENT format data

Usage

read_xponent_format(
path,
exact_parse = FALSE,
encoding = "utf-8",
separator = ",",
verbose = TRUE

)

Arguments

path Path to the xPONENT file

exact_parse Whether to parse the file exactly or not Exact parsing means that the batch,
calibration and assay metadata will be parsed as well

encoding Encoding of the file

separator Separator for the CSV values

verbose Whether to print the progress. Default is TRUE

translate_sample_names_to_sample_types

Translate sample names to sample types

Description

Function translates sample names to sample types based on the sample name from Luminex file
and the sample name from the layout file, which may not be provided. The function uses regular
expressions to match the sample names to the sample types.

translate_sample_names_to_sample_types 47

Usage

translate_sample_names_to_sample_types(
sample_names,
sample_names_from_layout = NULL

)

Arguments

sample_names (character())
Vector of sample names from Luminex file

sample_names_from_layout

(character())
Vector of sample names from Layout file values in this vector may be differ-
ent than sample_names and may contain additional information about the sam-
ple type like dilution. This vector when set has to have at least the length of
sample_names.

Details

Function assigns SampleType to each of the samples from one of c(ALL, BLANK, TEST, NEGATIVE
CONTROL, STANDARD CURVE, POSITIVE CONTROL).

It parses the names as follows:

If sample_names or sample_names_from_layout equals to BLANK, BACKGROUND or B, then Sam-
pleType equals to BLANK

If sample_names or sample_names_from_layout equals to STANDARD CURVE, SC, S, contains sub-
string 1/\d+ and has prefix , S_, S , S or CP3, then SampleType equals to STANDARD CURVE. For
instance, sample with a name S_1/2 or S 1/2 will be classified as STANDARD CURVE.

If sample_names or sample_names_from_layout equals to NEGATIVE CONTROL, starts with NEG
(or Neg) or ends with NEG, then SampleType equals to NEGATIVE CONTROL

If sample_names or sample_names_from_layout starts with P followed by whitespace, POS fol-
lowed by whitespace, some sample name followed by substring 1/\d+ SampleType equals to
POSITIVE CONTROL

Otherwise, the returned SampleType is TEST

It also removes any additional suffixes created by make.unique() method, such as, .1, .4.

Value

A vector of valid sample_type strings of length equal to the length of sample_names

Examples

translate_sample_names_to_sample_types(c("B", "BLANK", "NEG", "TEST1"))
translate_sample_names_to_sample_types(c("S", "CP3"))

Index

create_standard_curve_model_analyte, 2,
40, 41

create_standard_curve_model_analyte(),
40

generate_levey_jennings_report, 3
generate_plate_report, 5
generate_plate_report(), 37, 38
get_nmfi, 7, 40, 41
get_output_dir(), 35

handle_high_dose_hook, 3, 8

is_valid_data_type, 10
is_valid_sample_type, 10

merge_plate_outputs, 11
Model, 12, 34

Plate, 6, 11, 15, 16, 37, 38, 40, 43, 45
PlateBuilder, 21
plot_counts, 24
plot_layout, 25
plot_levey_jennings, 26
plot_mfi_for_analyte, 28
plot_standard_curve_analyte, 29
plot_standard_curve_analyte_with_model,

30
plot_standard_curve_stacked, 32
predict.Model, 34, 40
predict.Model(), 12
process_dir, 18, 34
process_dir(), 11, 15
process_file, 18, 37
process_file(), 15, 34, 35, 37
process_plate, 18, 39
process_plate(), 11, 37, 38

R6, 13
read_bioplex_format, 42
read_bioplex_format(), 45

read_intelliflex_format, 42
read_intelliflex_format(), 45
read_layout_data, 43
read_luminex_data, 18, 43
read_luminex_data(), 15, 16, 37, 38, 45
read_xponent_format, 46
read_xponent_format(), 45

scale_y_continuous, 28

translate_sample_names_to_sample_types,
18, 46

translate_sample_names_to_sample_types(),
16, 45

48

	create_standard_curve_model_analyte
	generate_levey_jennings_report
	generate_plate_report
	get_nmfi
	handle_high_dose_hook
	is_valid_data_type
	is_valid_sample_type
	merge_plate_outputs
	Model
	Plate
	PlateBuilder
	plot_counts
	plot_layout
	plot_levey_jennings
	plot_mfi_for_analyte
	plot_standard_curve_analyte
	plot_standard_curve_analyte_with_model
	plot_standard_curve_stacked
	predict.Model
	process_dir
	process_file
	process_plate
	read_bioplex_format
	read_intelliflex_format
	read_layout_data
	read_luminex_data
	read_xponent_format
	translate_sample_names_to_sample_types
	Index

