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Abstract

Support Vector Machines (SVMs) have gained considerable popularity over the last
two decades for binary classification. This paper concentrates on a recent optimization
approach to SVMs, the SVM majorization approach, or SVM-Maj for short. This method
is aimed at small and medium sized Support Vector Machine (SVM) problems, in which
SVM-Maj performs well relative to other solvers. To obtain an SVM solution, most other
solvers need to solve the dual problem. In contrast, SVM-Maj solves the primal SVM opti-
mization iteratively thereby converging to the SVM solution. Furthermore, the simplicity
of SVM-Maj makes it intuitively more accessible to the researcher than the state-of-art
decomposition methods. Moreover, SVM-Maj can easily handle any well-behaved error
function, while the traditional SVM solvers focus particularly on the absolute-hinge error.
In this paper, the SVM-Maj approach is enhanced to include the use of different kernels,
the standard way in the SVM literature for handling nonlinearities in the predictor space.
In addition, we introduce the R package SVMMaj that implements this methodology.
Amongst its features are the weighting of the error for individual objects in the train-
ing dataset, handling nonlinear prediction through monotone spline transformations and
through kernels, and functions to do cross validation.

Keywords: Support Vector Machine, SVM-Maj, R, Majorization.

1. Introduction

For understanding what a support vector machine (SVM) is, consider the following data
analysis problem: there are two groups of objects, say products of type A and type B, having
some common attributes such as color, price, weight, etc. The task of separating the two types
of objects from each other is formally referred to as the binary classification task. Given the
values for the attributes of a new object, we would like to assign this new object to a given
group, or class. Such a binary classification task is dealt with routinely in medical, technical,
economic, humanitarian, and other fields.

Numerous learning methods have been designed to solve the binary classification task, in-
cluding Linear Discriminant Analysis, Binary Logistic Regression, Neural Networks, Decision
Trees, Naive Bayes classifier, and others. In this paper, we focus on a method that has gained
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considerable popularity over the last two decades, called the Support Vector Machines (SVMs)
classifier (Vapnik 1995). SVMs have emerged as one of the most popular and high-performing
learning methods for classification. They have been successfully applied to areas ranging from
bioinformatics (see, e.g., Furey et al. 2000; Guyon et al. 2002) to image recognition (see, e.g.,
Chapelle et al. 1999; Pontil and Verri 1998) and marketing (see, e.g., Cui and Curry 2005). In
essence, SVMs divide two groups of objects from each other by building a hyperplane in the
space of the predictor variables that separates them in an adequate way. The rapid success
of SVMs can be attributed to a number of key qualities: robustness of results, avoiding over-
fitting, and the possibility to handle nonlinearities of the predictor variables easily through
so-called kernel functions. In addition, the evaluation of an SVM model on test objects is
relatively fast and simple. The SVM is formulated as a well-defined quadratic optimization
problem that has a unique solution. Overfitting, that is, fitting an available training data-set
too well, is avoided via a penalty term that suppresses too complex potential fits. Nonlin-
earities can be handled in two ways: (1) by a preprocessing step of the predictor variables,
for example, by polynomial expansion or the use of splines (Groenen et al. 2007) and (2) by
using the kernel trick that allows nonlinear solutions to be computed implicitly. Note that
the use of kernels is very prominent in the SVM literature.

A variety of solvers for the SVM optimization task have been proposed in the literature. One
of the initial ideas has been to apply general-purpose quadratic optimization solvers such as
LOQO (Vanderbei 1994) and MINOS (Murtagh and Saunders 1998). One of the problems of
such solvers is that they require the whole kernel matrix to be stored in memory, which is
quadratic in the number of observations n. For small scale problems, this is not a problem, but
for medium and large scale problems other methods are needed. One attempt to overcome
the complete storage of the kernel matrix is by chunking (Boser et al. 1992; Osuna et al.
1997a). This method concentrates on a (working) subset of all training objects at a given
iteration, effectively splitting the learning task into smaller subproblems that easily fit into
the memory of a computer. Alternatively, direction search was proposed (Boser et al. 1992)
that updates all unknown coefficients at each iteration in a certain feasible direction.

More recently, decomposition methods have established themselves as the mainstream tech-
nique for solving SVMs (Osuna et al. 1997b; Saunders et al. 1998; Joachims 1999). At each
iteration, the decomposition method optimizes a subset of coefficients, and leaves the remain-
ing coefficients unchanged. Solving a series of very simple optimization subproblems, this
approach has proven to be one of the fastest for large scale SVM problems. The most pop-
ular decomposition method is the so-called Sequential Minimal Optimization (SMO) (Platt
1999), where only two coefficients are updated at each iteration, which can actually be done
analytically. SMO is the basis of popular SVM solvers such as LibSVM (Chang and Lin 2001)
and SVMlight (Joachims 1999), which has been implemented in the R packages e1071 (Meyer
et al. 2014) respectively klaR (Weihs et al. 2005). For the linear SVM case, alternative tech-
niques to the decomposition methods have recently been put forward, such as the cutting
plane algorithm (Joachims 2006).

This paper concentrates on a recent optimization approach to solving SVMs (Groenen et al.
2007, 2008), referred to as the majorization approach to SVMs, or SVM-Maj for short. This
method is aimed at small and medium sized SVM problems. An overview of some popu-
lar SVM solvers and some of their properties is given in Table 1. The other solvers are
LibSVM, SVMlight, SVMTorch (Collobert and Bengio 2001), mySVM (Rüping 2000), SVM-

Perf (Joachims 2006), and LibLINEAR (Fan et al. 2008).
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Properties SVM-Maj LIBSVM SVMlight SVMTorch mySVM SVM-Perf LIBLINEAR

Nonlinear kernels yes yes yes yes yes no no
Splines yes no no no no no no
Suitable for large n yes yes yes yes yes no yes
Suitable for large k yes yes yes no yes no yes
Suitable for large n and no yes yes no yes no

large k

Dual approach no yes yes yes yes yes no
Allows quadratic hinge yes yes* no no yes no yes
Allows Huber hinge yes no no no no no no
Allows k-fold cross val. yes yes yes no yes no yes
Language MATLAB, R C++,Java C, C++ C++ C C++ C, C++

Gui interface or command MATLAB, R cli cli cli cli cli cli

line interface (cli)
Availability in R SVMMaj e1071** klaR** no no no LiblineaR

Multi-class problems no yes yes yes no yes yes
* after modification
** for non-linear kernels, the package kernlab can be used

Table 1: Comparison table of different SVM solvers available in 2015.

In this paper, the method of Groenen et al. (2008) is enhanced to the use of different kernels,
the standard way in the SVM literature for handling nonlinearities in the predictor space.
Moreover, we offer here a new special treatment for the case where the number of objects is less
than the number of attributes. Three cases are distinguished for which SVM-Maj computes
the solution efficiently: (1) the case with many more observations n than variables k, (2) the
case with many variables k but medium sized n, and (3) the case that n is medium sized
and the kernel space or the space of the variables is of lower rank than k or n. The case of
large n is relatively more difficult for all SVM solvers, including SVM-Maj. This particularly
holds when kernels are used. For this case, the alternative of introducing nonlinearity through
splines in SVM-Maj can be used so that still for medium sized n, nonlinearity can be handled
efficiently.

Among the advantages of the SVM-Maj approach are its intuitive optimization algorithm,
its versatility, and the competitively fast estimation speed for medium sized problems. The
majorization solver is an iterative algorithm with two easily tractable alternating steps that
reveal the nature of solving the SVM optimization problem in an appealing way. The rela-
tive simplicity of SVM-Maj arguably makes it intuitively more accessible to the researcher
than the state-of-art decomposition methods. Traditional SVM solvers focus particularly on
the absolute-hinge error (the standard SVM error function), whereas the majorization al-
gorithm has been designed to incorporate any well-behaved error function. This property
can be viewed as a attractive feature of the majorization approach. The SVM-Maj package
comes with the following in-built error functions: the classic absolute-hinge, Huber-hinge,
and quadratic hinge. Furthermore, SVM-Maj solves the primal SVM optimization problem
even in the nonlinear case, in contrast to other solvers, which solve the dual problem. The
advantage of solving the primal is that SVM-Maj converges to the optimal solution in each
iterative step. In contrast, other methods solving the dual optimization problem need the
dual problem to be fully converged to attain a solution.

The main aim of this paper is to introduce the SVMMaj package for R (R Development Core
Team 2011). Its main features are: implementation of the SVM-Maj majorization algorithm
for SVMs, handling of nonlinearity through splines and kernels, the ability to handle several
error functions (among other the classic hinge, quadratic hinge and Huber hinge error).
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In addition, SVMMaj is able to assign a fixed weight to each individual objects in a training
dataset to receive different individual weights. In this way, the user can set importance of
misclassifying the object by varying the individual weight. These weights can also be set per
class. The SVMMaj package comes with a cross validation function to asses out-of-sample
performance or evaluate meta parameters that come with certain SVM models.

This paper is organized as follows. First, Section 2 gives a brief introduction to SVMs. In
Section 3, we describe the SVM-Maj algorithm and its update for each iteration is derived.
Furthermore, Section 3 also discusses some computational efficiencies, and Section 4 presents
the way nonlinearities are handled. Section 5 gives several detailed examples of how the SVM-

Maj package can be used, and Section 6 concludes. The appendix gives technical derivations
underlying the SVM-Maj algorithm.

2. Definitions

First of all, let us introduce some notations: n denotes the number of object; k denotes the
number of attributes, X is an n × k matrix containing the k attributes, without a column of
ones to specify the intercept, y is an n × 1 vector with 1 if object i belongs to class 1 and −1
if it belongs to class −1, r denotes the rank of matrix X, and λ > 0 is the penalty parameter
for the penalty term. The purpose of SVM is to produce a linear combination of predictor
variables X such that a positive prediction is classified to class +1 and a negative prediction
to class −1. Let β and α be parameters of the linear combination α+x⊤

i β. Then, for a given
intercept α and vector with attribute weights β, the predicted class is given by

ŷi = sign(x⊤
i β + α) = sign(qi + α) = sign(q̃i),

where qi = xiβ. Here, the term q̃i = qi + α is used to indicate the predicted score for object
i, which also accounts for the intercept α.

To find the optimal of the linear combination, we use the SVM loss function as a function of
α and β to be minimized. The SVM loss function can be represented in several ways. Here,
we follow the notation of Groenen et al. (2008) that allows for general error functions f1(q̃i)
and f−1(q̃i). The goal of SVMs is to minimize the SVM loss function

LSVM(α, β)

=
∑

i∈G1
wif1(q̃i) +

∑
i∈G

−1
wif−1(q̃i) + λβ⊤β

= Class 1 errors + Class -1 errors + Penalty for nonzero β,

over α and β, where G1 and G−1 respectively denote the sets of class 1 and -1 objects, and wi

is a given nonnegative importance weight of observation i. Note that Groenen et al. (2008)
proved that minimizing LSVM(α, β) is equivalent to minimizing the SVM error function in
Vapnik (1995) and Burges (1998). Figure 1 and Table 2 contain different error functions that
can be used, such as the classical hinge error standard in SVMs, the quadratic hinge, and
the Huber hinge. Figure 1 plots the error functions as function value of q̃i. All three hinge
functions have the property that their error is only larger than zero if the predicted value
q̃i < 1 for class +1 objects and q̃i > −1 for class −1 objects. The classic absolute hinge error
is linear in q̃i and is thus robust for outliers. However, it is also non-smooth at q̃i = 1. The
quadratic hinge is smooth but may be more sensitive to outliers. The Huber loss is smooth
as well as robust. Those observations xi yielding zero errors do not contribute to the SVM
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solution and could therefore be removed without changing the SVM solution. The remaining
observations xi that do have an error or have |q̃i| = 1 determine the solution and are called
support vectors, hence the name Support Vector Machine. Unfortunately, before the SVM
solution is available it is unknown which of the observations are support vectors and which
are not. Therefore, the SVM always needs all available data to obtain a solution.

Absolute hinge Quadratic hinge Huber hinge 
(delta = 2)
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Figure 1: This figure shows the hinge error functions. Note that the error function is only
nonzero if q̃ < 1.

Error function f1(q̃i)

Absolute hinge max(0, 1 − q̃i)

Quadratic hinge max(0, 1 − q̃i)
2

Huber hinge





1

2(δ + 1)
max(0, 1 − q̃i)

2 q̃i > −δ

(δ − 1)

2
− q̃i q̃i ≤ −δ

Table 2: Common error function used. The further q̃i is from wrongly predicted, the higher
its error. Note that f−1(q̃i) = f1(−q̃i), therefore, only f1(q̃i) is described below.

The weight wi of observation i can be interpreted as the relative importance of the error of
the observation. One can also assign the same weights for all observations in G1 and different
weight for those in G−1. Assigning weights per class is especially useful when one class is
substantially larger than the other. By assigning a larger weight for the smaller subset, one
can correct the dominance of the errors of the larger subset. For example, if there are n1

objects in G1 and n−1 objects in G−1, then choosing

wi =

{
(n1 + n−1)/(2n1) i ∈ G1

(n1 + n−1)/(2n−1) i ∈ G−1

is one way to obtain equal weighting of the classes.
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A more compact expression of LSVM is obtained by exploiting the symmetric relation f−1(q̃i) =
f1(−q̃i) = f1(yiq̃i). Then, the SVM loss function can be simplified into

LSVM(α, β) =
∑n

i=1 wif1(yiq̃i) + λβ⊤β

= Error + Penalty for nonzero β.
(1)

To minimize this function, we will use the SVM-Maj algorithm, discussed in the next section.

3. The SVM-Maj algorithm

The SVMMaj package minimizes the SVM loss function by using the SVM-Maj algorithm,
that is based on the ideas of majorization (see, e.g., De Leeuw and Heiser 1980; De Leeuw
1994; Heiser 1995; Lange et al. 2000; Kiers 2002; Hunter and Lange 2004; Borg and Groenen
2005). Groenen et al. (2007, 2008) developed the algorithm for linear SVMs. Here, the
SVM-Maj algorithm is extended to nonlinear situations that use a kernel matrix.

The SVM-Maj algorithm uses iterative majorization to minimize the loss function (1). The
main point of this algorithm is to iteratively replace the original function f(x) by an auxiliary
function g(x, x) at supporting point x, for which the minimum can be easily computed. The
auxiliary function, called the majorization function, has the properties that:

• the minimum x∗ of g(x, x) can be found easily, and

• g(x, x) is always larger than or equal to the f(x), and

• at the supporting point x, g(x, x) is equal to f(x).

Combining these properties gives the so-called sandwich inequality f(x∗) ≤ g(x∗, x) ≤ g(x, x) =
f(x). That is, for each support point x, we can find another point x∗ of whose function value
f(x∗) is lower or equal to the former f(x). Using this point x∗ as the next iteration’s support
point and repeating the procedure, a next update can be obtained with a lower f(x) value.
This iterative process produces a series of function values that is non-increasing and generally
decreasing. Note that this principle of majorization also works if the argument of f is a vec-
tor. Moreover, if f is strictly convex, as is the case with the SVM loss function, the updates
converge to the minimum of the original function as the number of iterations increases.

The first step is to find the majorizing functions for the different hinge errors. The ma-
jorization function of the SVM-Maj algorithm is a quadratic function so that its minimum is
obtained by setting the derivative to zero. Given the support point x, a quadratic majorization
function g(x, x) can be written as

g(x, x) = a(x)x2 − 2b(x)x + o(x). (2)

As the parameter o(x) is irrelevant for determining x̂ as it is constant for a given x, we shall
write o instead of o(x) to indicate all terms that are not dependent on x in the majorizing
function.

Conform Groenen et al. (2007, 2008), f1(yiq̃i) in (1) can be majorized by g(q̃i, q̃i, yi) = aiq̃
2
i −

2biq̃i +oi with the parameters ai, bi, and oi given in Table 3. As f1(yiq̃i) ≤ g(q̃i, q̃i, yi), we can
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Error term Parameters

Absolute hinge ai = 1
4

max(|1 − yiq̃i|, ϵ)−1

bi = yiai(1 + |yiq̃i − 1|)
oi = ai(1 + |yiq̃i − 1|)2

Quadratic hinge ai = 1
bi = yiai(1 + max(yiq̃i − 1, 0))
oi = ai(1 + max(yiq̃i − 1, 0))2

Huber hinge ai = 1
2
(k + 1)−1

bi = yiai(1 + max(yiq̃i − 1, 0) + min(yiq̃i + k, 0))
oi = ai(1 + max(yiq̃i − 1, 0) + min(yiq̃i + k, 0))2 + min(yiq̃i + k, 0)

Table 3: Parameter values of ai, bi and oi of the majorization function.

obtain the majorization function for the SVM loss function (1), using q̃ = Xβ + α1 = q + α1

and the support point q̃ = α1 + q

LSVM(α, β) =
∑

i

wif1(yiq̃i) + λβ⊤β

≤
∑

i

wig(q̃i, q̃i, yi) + λβ⊤β + o

= q̃⊤Aq̃ − 2q̃⊤b + λβ⊤β + o

= (α1 + q)⊤A(α1 + q) − 2(α1 + q)⊤b + λβ⊤β + o

= Maj(α, β), (3)

where A is an n×n diagonal matrix with elements wiai and b an n×1 vector with elements wibi

(with ai and bi from Table 3). As wi > 0 for all i, we can conclude that the diagonal matrix
A is positive definite, which implies that the majorization function is strictly quadratically
convex, thereby guaranteeing a unique minimum of the majorizing function at the right hand
side of (3). Groenen et al. (2008) showed in their article that the minimum of (3), that is, an
update for the iteration process, can be computed as followed:

(
X̃⊤AX̃ + λJ

) [α+

β+

]
= X̃⊤b, (4)

where X̃ =
[
1 X

]
and J =

[
0 0⊤

0 I

]
. Appendix A shows the derivation of this update, while

Algorithm 1 shows the steps taken by the SVM-Maj algorithm.

3.1. Computational efficiencies

Before we continue with the discussion of the extended options for the SVM-Maj algorithm,
we will introduce a few modifications of the SVM-Maj algorithm to obtain computational
efficiencies. One efficiency can be achieved by using the QR-decomposition on matrix X to
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find a more efficient update. Another efficiency improvement can be obtained in case of using
the quadratic or Huber hinge and the number of updates generally decreases when using a
relaxed update. The algorithm is summarized in Algorithm 1 and the most important steps
are discussed below and in the appendix.

Efficient updates by using QR-decomposition

Usually, the loss function will be optimized by optimizing β. However, when k > n, it is
more efficient to optimize q instead, as it has a lower dimensionality. In this situation, the
dimensional space in which the optimal parameter values lies will be smaller and therefore
it is more efficient and generally faster to compute an update. In case that r = rank(X) <
min(n, k), an even more efficient update exists. Moreover, in a higher dimensional space, one
only needs a part of the space of β to find the optimal q. The appendix discusses these issues
more in detail and introduces efficient and consistent updates for SVM-Maj for all possible
situations. An overview of all efficient updates in each occasion can be found in Table 4.

Equation 4 optimizes β to optimize the loss function. However, in some cases, there exist an
even more efficient update. Appendix A derives an efficient update for each of these cases by
making use of the singular value decomposition (SVD)

X = P Λ Q⊤,
(n × k) (n × r) (r × r) (r × k)

(5)

where P⊤P = I and Q⊤Q = I and Λ is a diagonal matrix. However, SVMMaj package uses
the QR-decomposition to determine the rank of X, as it is a computationally more efficient
way to determine the rank of X than doing so through the SVD-decomposition. Let the
QR-decomposition of X⊤ be given by X⊤ = VZ⊤ with V⊤V = I and Z a lower triangular
matrix. An additional QR-decomposition of Z gives Z = UR with U⊤U = I and R an upper
triangular matrix. Then we have

X = U R V⊤.
(n × k) (n × r) (r × r) (r × k)

(6)

Note that matrices U and V are orthonormal matrices and and therefore have the same
properties as P and Q. Thus, we can replace matrices P, Λ and Q by respectively U, R and
V. The update (4) can then be computed through

(Z̃⊤AZ̃ + λJ)

[
α+

ρ+

]
= Z̃⊤b, (7)

where Z̃ =
[
1 Z

]
=
[
1 UR

]
and where ρ = V⊤β. Furthermore, β and q can be derived

from β = Vρ and q = Zρ = URρ. Note that in most cases, the decomposition of Z is
not necessary to perform, so that only a single QR-decomposition performance is needed.
As this decomposition is already performed to determine the rank of X, it is efficient to use
update (7) in all three cases distinguished in Table 4. Nevertheless, in case n and k are both
very large, it may be more efficient not to perform a matrix decomposition at all to avoid
unnecessary computations. Instead, one can use update (4).

Quadratic and Huber hinge
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Algorithm: SVM-Maj

input : y = n × 1 vector with class labels +1 and −1 ,
X = n × k matrix of explanatory variables ,
λ > 0 the penalty parameter,
Hinge= {absolute,quadratic,huber} the hinge error function,
δ > 0 the Huber hinge parameter,
relax determining from which step to use the relaxed update (11),
method specifies whether ρ (using matrix decomposition) will be used or β.

output: αt, (ρt or βt)

t = 0;
Set ϵ to a small positive value;
Set (ρ0 or β0) and α0 to random initial values;
Compute L0 = LSVM(α0, ρ0) or LSVM(α0, β0) according to (1);
if hinge ̸= absolute & method = β then

Find S that solves (8);
else if hinge ̸= absolute & method = ρ then

Find S that solves (9);
end

while t = 0 or (Lt−1 − Lt)/Lt > ϵ do

t = t + 1;
Compute ai and bi by Table 3;
Set diagonal elements of A to wiai and b to wibi;
if hinge = absolute & method = ρ then

Find αt and ρt that solves (7):
(
Z̃⊤AZ̃ + λJ

) [αt

ρt

]
= Z̃⊤b ;

else if hinge = absolute & method = β then

Find αt and ρt that solves (4):
(
X̃⊤AX̃ + λJ

) [αt

βt

]
= X̃⊤b ;

else if hinge ̸= absolute & method = ρ then

Find αt and (ρt or βt) that solves:

[
α+

ρ+

]
= Sb

else if hinge ̸= absolute & method = β then

Find αt and (ρt or βt) that solves:

[
α+

β+

]
= Sb;

end

if t ≥ relax then

Replace αt = 2αt − αt−1;
Replace ρt = 2ρt − ρt−1 or βt = 2βt − βt−1;

end

Compute Lt = LSVM(αt, ρt) or LSVM(αt, βt) according to (1);

end

Algorithm 1: The SVM majorization algorithm
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Method Situation

β n ≥ k, r = k
q n ≤ k, r = n
θ r < min(n, k)

Table 4: An overview of the most efficient updates for each situation.

For the quadratic and Huber hinge, the parameters ai does not depend on the support point
q̃, which means that the matrix A remain fixed during the algorithm steps. In fact, the
parameters ai are the same for all i, that is, ai = a for all i. Therefore, extra computational
efficiency can be obtained by solving the linear system

(aX̃⊤X̃ + λJ)S = X̃⊤, (8)

or, when using QR-decomposition,

(aZ̃⊤Z̃ + λJ)S = Z̃⊤, (9)

so that the original update (7) can be simplified into

[
α+

ρ+

]
= Sb, (10)

so that in each iteration the update can be obtained by a single matrix multiplication instead
of solving a linear system.

Computational efficiency by the relaxed updates

The parameter updates obtained by (7) find the minimum of the majorization function in (3).
This guarantees that the next update will always be better than the previous point. However,
it turns out that often the updates converge faster when making the update twice as long by
using a relaxed update (De Leeuw and Heiser 1980):

θ∗
t+1 = θt+1 + (θt+1 − θt) = 2θt+1 − θt. (11)

This relaxation is most effective when SVM-Maj has already performed several iterations.
Preliminary experimentation revealed that this is the case when at least 20 iterations without
relaxed updates have been performed. Therefore, we will implement (11) after 20 iterations
to increase model estimation efficiency.
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4. Nonlinearities

In the previous sections, we have only discussed the SVM-Maj algorithm for the linear case.
However, often a better prediction can be obtained by allowing for nonlinearity of the predictor
variables. Therefore, one might consider to use nonlinearity in the model estimation. In the
SVMMaj package, two different implementation of nonlinearity can be used: I-splines and
kernels. One can choose one of these implementation, or both of them.

Splines are piecewise polynomial functions of a specified variable. The SVMMaj package can
transform each explanatory variable into I-splines (Ramsay 1988). This transformation will
split the original predictor variable xj into a number of spline bases vectors gathered in the
matrix Bj . After specifying the interior knots ks that define the boundaries of the pieces and
the degree ds of the polynomials, one can transform the variable xj into the basis Bj of a size
of n × (ds + ks). This spline basis Bj will then be used as a set of (ds + ks) variables to find
a linear separating plane of a higher dimension. The piecewise polynomial transformation
of variable xj can then be obtained through computing the linear combination of the spline
bases Bjγj with the initially unknown weights γj . Then, all spline bases Bj and weights γj

are gathered in B = [B1, B2, . . . , Bk] and β⊤ = [γ⊤
1 , γ⊤

2 , . . . , γ⊤
k ] . Note that here we use

I-splines as they have the property that if multiplied by positive weights, there is a guaranteed
monotone relation with the original variable xj . This property can aid the interpretation of
the weights as β can be split into a vector of positive and one of negative weights.

It is also possible to map the matrix X differently into a higher dimensional space through
so-called kernels. Let us map the explanatory variables of observation i, that is, xi into ϕ(xi)
with mapping function ϕ : ℜk → ℜm. Furthermore, let us denote kij = ϕ(xi)

⊤ϕ(xj) as the
inner product of the transformed vectors of xi and xj . Then, the kernel matrix K is denoted
as the inner product matrix with value kij in row i and column j. Note that the kernel matrix
always is of size n × n and K = ΦΦ⊤ with row i equal to ϕ(xi)

⊤. Using this property, we can
summarize the mapping of X even when m → ∞ into a matrix of finite size, even if m → ∞.
This method is also known as the ‘kernel trick’.

We will now show that this kernel matrix K can be used to find an efficient majorization
update. Then the matrix Φ is used instead of X to derive the majorization update. Let us
perform the QR-decomposition on Φ analogous to (6), that is

Φ = U R V⊤ = Z V⊤,
(n × m) (n × r) (r × r) (r × m) (n × r) (r × m)

(12)

where r denotes the rank of Φ satisfying r ≤ min(n, m) = n ≪ ∞. Note that the update (7)
does not require V. Moreover, the relation between Φ and K can be given by K = ΦΦ⊤.
Using decomposition (12) yields

K = ΦΦ⊤ = (ZV⊤)(VZ⊤) = ZZ⊤. (13)

As Z is a lower triangular matrix, it can be obtained by performing a Cholesky decomposition
on K. Therefore, without actually computing the mapped space Φ, it is still possible to
perform SVM-Maj by using the kernel matrix K.

There is a wide variety of available kernels to obtain nonlinearity of the predictors. Table 5
shows some important examples of often used kernel functions.
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Type of kernel Kernel function ϕ(xi)
⊤ϕ(xj)

linear x⊤
i xj

homogeneous polynomial (scale x⊤
i xj)degree

nonhomogeneous polynomial (scale x⊤
i xj + 1)degree

radial basis function exp(−sigma|xi − xj |2)
Laplace exp(−sigma|xi − xj |)

Table 5: Table of some examples of kernel functions, which can be used in the SVMMaj

package.

As V is usually unknown, β cannot be calculated. Nevertheless, it is still possible to predict
the class labels of an unseen sample X2. Using q = Φβ and (12), we can derive

β = Vρ

= V(R⊤U⊤U(R⊤)−1)ρ

= (VRU⊤)U(R⊤)−1ρ

= Φ⊤U(R⊤)−1ρ.

The predicted values of an unseen test sample X2 are

q2 = Φ2β = Φ2Φ⊤U(R⊤)−1ρ = K2U(R⊤)−1ρ, (14)

where Φ2 and Φ are denoted as the transformed matrix of respectively X2 and X into the
high dimensional space and K denotes the kernel matrix Φ2Φ⊤.

5. The SVMMaj package in R

The SVM-Maj algorithm for the Support Vector Machine (SVM) is implemented in the SVM-

Maj package in R. Its main functions are svmmaj, which estimates the SVM, and

svmmajcrossval, which performs a grid search of k-fold cross validations using SVM-Maj to
find the combination of input values, (such as λ and degree in the case of a polynomial kernel)
giving the best prediction performance.

The svmmaj function requires the n × k attribute matrix X and the n × 1 vector y with class
labels. Apart from the data objects, other parameter input values can be given as input
to tune the model: lambda, hinge, weights.obs, scale and parameters for nonlinearities
and settings of the algorithm itself. Table 6 shows the arguments of function svmmaj and its
default values. For example,

R> svmmaj(X, y, lambda = 2, hinge = "quadratic", scale = "interval")

runs the SVM model with λ = 2, using a quadratic hinge and for each attribute, the values
are scaled to the interval [0,1].

The function svmmajcrossval uses the same parameter input values and additionally the
parameters to be used as grid points of the k-fold cross validation. These parameters should
be given in the list object search.grid, e.g.,
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R> svmmajcrossval(X, y, search.grid = list(lambda = c(1, 2, 4)))

performs a cross validation of X and y with as grid points λ = 1, 2, 4.

As an example, we use the AusCredit data set of the libsvm data sets (Chang and Lin
2001), which is included in the SVMMaj package. This data set consists of in total 690 credit
requests, 307 of which are classified as positive and 383 as negative. These classifications
are stored in AusCredit$y with class label Rejected to represent the negative responses,
and label Accepted for the positive responses. In total, 14 attributes of each applicant has
been stored as explanatory variables in AusCredit$X. Due to confidentiality, the labels of all
explanatory variables are not available. Moreover, the observations in the data set AusCredit

is split into AusCredit.tr, consisting the first 400 observations, and AusCredit.te, with the
remaining 290 observations. AusCredit.tr will be used to estimate the model, while the
AusCredit.te is used to analyze the prediction performances.

Example 1 Train the SVM-model using the data set of Australian credit requests to classify
the creditibility of the applicant.

The command

R> library("SVMMaj")

loads the SVMMaj package into R. In this example, we will use the components X and y in the
training set AusCredit.tr, which consists of explanatory variables respectively class labels
of 400 credit requests, to train the model. Afterwards, the characteristics of the remaining
290 requests, which has been stored into component X of test set AusCredit.te, are used to
predict the classification of the applicant. Using the actual class labels, AusCredit.te$y, the
out of sample prediction performance is analyzed by comparing the ones with the predicted
using the SVM model as estimated with AusCredit.tr. Running the SVM on the training
data is done as follows.

R> model <- svmmaj(AusCredit.tr$X, AusCredit.tr$y, lambda = 100)

R> model

Model:

update method svd

attribute dimension 400 14

degrees of freedom 14

number of iterations 40

loss value 300.6324

number of support vectors 359

As a result, the trained model will be returned as an svmmaj-object. The print method of this
object shows which update method is used, the number of iterations before convergence, the
found minimum loss value and the number of support vectors. In case no kernel is used, the
matrix Z from update (7) is obtained through the QR-decomposition shown in (6) by default.
In case a nonlinear kernel is used, Z is being calculated through the Cholesky decomposition
(13). One can choose not to perform a decomposition when using a nonlinear kernel by
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Figure 2: This figure shows the distribution of predicted values q̃ of the two classes of Example
1, which can be obtained through the plot() method. These densities are created by the
density function. This function specifies beforehand the bandwidth value to plot the density,
which is shown on top of the graph.

specifying decomposition = FALSE. Then the original update (4) will be used. A graph of
the distribution of the predicted values q̃ for each class can be plotted via the plot() method
using the density function of R, see Figure 2. The distribution shows that the majority of
the Accepted class (−1) respondents received predicted q̃i close to -1 and only a few close to
+1. The same holds for the Rejected class (+1) respondents showing that the majority of
respondents are correctly classified. A more detailed description of the model can be requested
by using the summary() method.

R> summary(model)

Call:

svmmaj.default(X = AusCredit.tr$X, y = AusCredit.tr$y, lambda = 100)

Settings:

lambda 100

hinge error absolute

spline basis no

type of kernel linear

Data:

class labels Accepted Rejected

rank of X 14

number of predictor variables 14

number of objects 400

omitted objects 0

Model:
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update method svd

number of iterations 40

loss value 300.6324

number of support vectors 359

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 122 57 179

Rejected 8 213 221

Total 130 270 400

Classification Measures:

hit rate 0.837

weighted hit rate 0.838

misclassification rate 0.163

weighted missclassification rate 0.162

TP FP Precision

Accepted 0.682 0.3184 0.938

Rejected 0.964 0.0362 0.789

The Settings segment describes the parameter settings used to estimate the model. In
this example, the scales of the explanatory variables have not been changed and a linear
model is specified because no spline or nonlinear kernel is used. Furthermore, the penalty
term of the loss function consists of an absolute hinge, with a penalty parameter λ of 1. In
the Data segment, the properties of the input data are shown: the labels of each class, the
rank of the explanatory variable matrix X (in case of using I-splines, this will be the rank
of the resulting spline bases) and the size of the data (the number of objects and number
of predictor variables). SVMMaj has the possibility to handle missing values through a
specified na.action-object. In case observations with missing values are omitted, the number
of omitted observations will also be printed in this segment. The Model segment summarizes
the trained model as a result of the SVM-Maj algorithm: it specifies which update has been
used, the number of iterations needed to obtain this model, the optimal loss value and the
number of support vectors. The classification performance of the model on the data used
to estimate can be found in the last segment, Classification table, where the confusion
matrix is followed by measured true positive (TP), false positive (FP) and precision below.
True positive of a class denotes the proportion of objects of that class that are being predicted
correctly, whereas false positive denotes proportion of the incorrectly predicted objects of a
class. The precision of a class is the proportion of correctly predicted objects of the class
among all objects predicted to be classified as that class.

Next, we would like to test how well the estimated SVM model predicts an unseen sample:
the 290 objects in AusCredit.te$X is used as hold-out sample. This is done through the
predict() method.

R> predict(model, AusCredit.te$X)
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Prediction frequencies:

Accepted Rejected

frequency 85 205

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 85 0 85

Rejected 0 205 205

Total 85 205 290

Classification Measures:

hit rate 1

misclassification rate 0

TP FP Precision

Accepted 1 0 1

Rejected 1 0 1

If the actual class labels are known, one can include this object in the method to show the
prediction performance:

R> predict(model, AusCredit.te$X, AusCredit.te$y)

Prediction frequencies:

Accepted Rejected

frequency 85 205

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 76 52 128

Rejected 9 153 162

Total 85 205 290

Classification Measures:

hit rate 0.79

weighted hit rate 0.79

misclassification rate 0.21

weighted missclassification rate 0.21

TP FP Precision

Accepted 0.594 0.4062 0.894

Rejected 0.944 0.0556 0.746
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The classification measures of this unseen sample prediction are similar to these of the in-
sample predictions, which mean that this model has no problem of overfitting. Moreover,
average hit rate of 85% indicates that this model predicts the objects quite well. Note the
difference in true positive value between the classes; it appears that this model predicts classes
in class Accepted slightly better than the other class.

To show a the distribution of q̂ for all applicants or, if the actual class labels are given, for
each class, the argument show.plot=TRUE can be included, which result into a figure as in
Figure 3.

Prediction frequencies:

Accepted Rejected

frequency 85 205

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 76 52 128

Rejected 9 153 162

Total 85 205 290

Classification Measures:

hit rate 0.79

weighted hit rate 0.79

misclassification rate 0.21

weighted missclassification rate 0.21

TP FP Precision

Accepted 0.594 0.4062 0.894

Rejected 0.944 0.0556 0.746
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Figure 3: Densities of the predictions in q̃ split by class.
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As this model does not contain any nonlinearity and X is nonstandardized, q̃i for the
holdout sample can also be directly computed using the weights model$beta and constant
model$theta[1] found in the model and multiply this with the explanatory variables of the
unseen sample AusCredit.te$X, after being coerced into a matrix object.

R> model <- svmmaj(AusCredit.tr$X, AusCredit.tr$y, scale = "none", lambda = 100)

R> alpha <- model$theta[1]

R> beta <- model$beta

R> qu <- drop(alpha + data.matrix(AusCredit.te$X) %*% beta)

The predicted classes are then easily obtained by computing.

R> y <- factor(qu < 0, levels = c(TRUE, FALSE), labels = model$classes)

5.1. Cross validation

Until now, the default settings have been used. However, it is recommended to experiment
with different parameters to obtain an optimal prediction model, in particular by varying
the penalty parameter λ. To determine the optimal parameter values to be used in further
analysis, one can use the svmmajcrossval function to perform cross validation with different
parameter values. To show an example of using cross validation to determine λ, consider the
voting data set the libsvm data sets (Chang and Lin 2001). This data set corresponds with
434 members of the U.S. House of Representatives Congressmen consisting of 167 republicans
and 267 democrats. As the explanatory variables, for each of the 16 different political propo-
sitions, the votes of the politicians are registered. Using the SVM, we are trying to predict the
political wing of the last 134 members using their 16 votes on the propositions as predictor
variables. The first 300 members are used as a training sample. A five-fold cross validation
is performed on these 300 members in the training sample, with a fine grid of lambda values
λ = 10−6, 10−5.5, . . . , 105, 105.5, 106. Among these lambda values, the optimal λ value is the
one which results in the lowest misclassification rate.

Example 2 Performing cross validation using the voting data sets to find an optimal value
for lambda.

R> library("SVMMaj")

In this example, we will use the data in voting.tr to perform five-fold cross validation
to determine the optimal lambda. Then, this lambda is used in an SVM analysis on the
entire data set voting.tr. Subsequently, this model is used to predict the classification of
the unseen sample voting.te. Then, voting.te$X can be used to compare the prediction
with the actual classification voting.te$y. This procedure can be executed in R using the
following commands:

R> results.absolute <- svmmajcrossval(

+ voting.tr$X, voting.tr$y,
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+ search.grid = list(lambda = 10^seq(4, -4)),

+ hinge = "absolute", convergence = 1e-4)

R> model <- svmmaj(

+ voting.tr$X, voting.tr$y, hinge = "absolute",

+ lambda = results.absolute$param.opt$lambda)

R> q.absolute <- predict(model, voting.te$X, voting.te$y)

5.2. Hinge functions

SVMMaj allows using the quadratic hinge or the Huber hinge instead of the standard absolute
hinge. An important advantage of the quadratic hinge is that it has the potential to be
computationally much more efficient than the absolute hinge. Let us perform a similar cross
validation on the voting data set using the quadratic hinge by

R> results.quadratic <- svmmajcrossval(

+ voting.tr$X, voting.tr$y,

+ search.grid = list(lambda = 10^seq(4, -2, length.out

+ hinge = "quadratic", convergence = 1e-4)

R> model <- svmmaj(

+ voting.tr$X, voting.tr$y, hinge = "quadratic",

+ lambda = results.quadratic$param.opt$lambda)

R> q.quadratic <- predict(model, voting.te$X, voting.te$y)

A summary of the results of these examples can be found in Table 7. Figure 4 shows the hit
rate of the cross validation using different lambda values. It can be seen that both hinges have
similar out-of-sample predictive power. It is also clear that per iteration, the quadratic hinge
is much faster than the absolute hinge. The effect of the increased computational efficiency of
the quadratic hinge is in this example canceled by a large increase of the number of iterations
as it requires more iterations to converges.

Absolute Quadratic

CPU-time (sec) 1.22 1.81
Mean no. of iter 211.64 839.73
CPU-time (per iter) 0.01 0.00
Optimal p 0.40 -0.20
Hit rate (average TP) 0.56 0.54

Table 7: Results of the fivefold cross validation estimation using the svmcrossval function.
CPU-time is the time in CPU seconds needed to perform fivefold cross validation and Optimal
p the value of which 10p returns the best hit rate in the cross validation. Mean no. of iterations
denotes the average value of the sum of the number of iterations per lambda-value. CPU-time
per iter is the mean computation time needed to perform one iteration. Hit rate is the average
TP value by predicting the class labels of the holdout sample of 134 congress men using the
first 300 congress men as sample of estimation.

5.3. Nonlinearities

The package SVMMaj can also implement nonlinearity in the model. One can choose to



Hoksan Yip, Patrick J.F. Groenen, Georgi Nalbantov 21

0.00

0.25

0.50

0.75

1.00

1e−02 1e+01 1e+04
lambda

M
is

cl
as

si
fic

at
io

n 
ra

te

Absolute hinge

0.00

0.25

0.50

0.75

1.00

1e−01 1e+01 1e+03
lambda

M
is

cl
as

si
fic

at
io

n 
ra

te

Quadratic hinge

Figure 4: The function svmmajcrossval performs a five-fold cross validation of different
lambda values of both absolute hinge (left panel) and the quadratic hinge (right panel). This
figure shows the misclassification rate of different lambda values.

use I-splines, kernel matrices, or both methods to specify the nonlinearity. In the latter
case, SVMMaj will first convert the explanatory matrix X into spline-basis and subsequently
generate the kernel matrix of the spline-basis. An advantage of using I-splines over kernels is
that on can easily plot the effect of one variable on the predicted value q̂i. In the following
example, we will use the diabetes dataset of libsvm data sets (Chang and Lin 2001).

Example 3 Train a model with nonlinearities on a data set of 786 females of Pima Indian
heritage, predicting the presence of diabetes using several demographic and medial variables.

In this example, we will use the nonlinear options of svmmaj to train a model consisting
of 768 female at least 21 years old of Pima Indian heritage, of which 268 are being tested
positive for diabetes. In this model, we use 8 variables of state-of-health measures to clas-
sify these patients as positive for diabetes or negative. As the number of persons with a
positive test result is smaller than the ones with negative results, the loss term of the pa-
tients belonging to the former group will be weighted twice as heavy by the extra argument
weights.obs=list(positive=2,negative=1) to indicate the double weight on the second
group. As the rank of the explanatory matrix X is expected to be large, we will use quadratic
hinge to make use of the computational efficiency discussed before.

I-Spline

One way of applying nonlinearities in the model is using splines. In this example, we will
transform each variable into spline basis of 5 knots and a degree 2, yielding a rank of 8 × (5 +
2) = 56, that is, k = 8 times the number of columns per spline basis (5 interior knots plus the
degree of 2). Five-fold cross validation is used with a grid of λ = 10−6, 10−5, ..., 104, 105, 106

to determine the optimal λ value.

R> results.spline <- svmmajcrossval(

+ diabetes.tr$X, diabetes.tr$y,
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+ scale = "interval", search.grid = list(lambda = 10^seq(6,

+ hinge = "quadratic", spline.knots = 5, spline.degree = 2,

+ weights.obs = list(positive = 2, negative = 1))

R> model.spline <- svmmaj(

+ diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", lambda = results.spline$param.opt$lambda,

+ spline.knots = 5, spline.degree = 2, hinge = "quadratic",

+ weights.obs = list(positive = 2, negative = 1))

R> predict(

+ model.spline, diabetes.te$X, diabetes.te$y,

+ weights = list(positive = 2, negative = 1))

Prediction frequencies:

negative positive

frequency 90 78

Confusion matrix:

Predicted(yhat)

Observed (y) negative positive Total

negative 80 28 108

positive 10 50 60

Total 90 78 168

Classification Measures:

hit rate 0.774

weighted hit rate 0.789

misclassification rate 0.226

weighted missclassification rate 0.211

TP FP Precision

negative 0.741 0.259 0.889

positive 0.833 0.167 0.641

The optimal lambda for the model using I-splines can be found in
results.spline$param.opt, which is 101. This lambda value equals the penalty value
which will give the lowest misclassification rate in the cross-validation. One of the advantages
of using splines to handle nonlinear prediction is the possibility to show the effect of a
variable by plotting its estimated transformation. Figure 5 shows these plots of the splines
per variable, which can be used for interpretation of the effects of each individual variable.
In this figure, one can clearly see nonlinear effects in most variables. For example, the
diabetes pedigree (x7) shows a positive relation with respect to female patients with positive

results, but with a diminishing returns to scale. On the other hand, Age (x8) has a reverse
v-shape: respondents who are around 40 are more likely to have diabetes. Overall, glucose
concentration (x2) and BMI (x6) have the largest effect on the class prediction when its
values are large.
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Kernel

Another way of implementing nonlinearity in the model by using a kernel. In this example,
we will use the Radial Basis Function in our model training. To find the optimal λ and σ
values we performed a five fold cross validation with the grids: λ = 10−6, 10−5...104, 105, 106

and σ = 2−5, 2−4...24, 25 by the following commands.
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Figure 5: The spline plots of each of 8 variables used to predict the result of a test for diabetes
among females of Pima Indian heritages. This model has been performed with lambda = 10
and the spline basis with 5 inner knots and a degree of 2. Each graph denotes the loss term of
the corresponding variable with different values. The higher the predicted value q̃, the higher
the probability of positive test.

R> library(kernlab)

R> results.kernel <- svmmajcrossval(

+ diabetes.tr$X, diabetes.tr$y,

+ scale = "interval",

+ search.grid = list(

+ kernel.sigma = 2^seq(-4, 4, by = 2),
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+ lambda = 10^seq(-4, 4, by = 2)

+ ), hinge = "quadratic", kernel = rbfdot,

+ weights.obs = list(positive = 2, negative = 1),

+ options = list(convergence = 1e-4))

R> model.kernel <- svmmaj(

+ diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", lambda = results.kernel$param.opt$lambda,

+ kernel.sigma = results.kernel$param.opt$kernel.sigma,

+ kernel = rbfdot, hinge = "quadratic",

+ weights.obs = list(positive = 2, negative = 1))

R> predict(

+ model.kernel, diabetes.te$X, diabetes.te$y,

+ weights = list(positive = 2, negative = 1))

Prediction frequencies:

negative positive

frequency 82 86

Confusion matrix:

Predicted(yhat)

Observed (y) negative positive Total

negative 73 35 108

positive 9 51 60

Total 82 86 168

Classification Measures:

hit rate 0.738

weighted hit rate 0.768

misclassification rate 0.262

weighted missclassification rate 0.232

TP FP Precision

negative 0.676 0.324 0.890

positive 0.850 0.150 0.593

Observing the prediction results, we can see that the model using I-splines has a higher TP-
value of female persons having positive result in diabetes as well as the hit rate (average
TP-value) suggesting that for these data the I-spline transformation is better able to pick up
the nonlinearities in the predictor variables than the radial basis kernel.

6. Discussion

This paper introduces the R-package SVMMaj, This package implements the SVM-Maj al-
gorithm of (Groenen et al. 2007, 2008) with the addition of nonlinear models with kernels.
One of the advantages of the SVM-Maj approach is the competitively fast training speed for
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medium sized problems. Furthermore, it allows individual objects in a training dataset to
receive different individual weight.

Another advantage of SVM-Maj is the possibility to use different loss functions, besides the
commonly used absolute hinge. In this package, the absolute hinge, quadratic hinge and
Huber hinge has been implemented. Nevertheless, this can be expanded to any other error
function f(q) that satisfies the following condition: the second derivative of its function has
a bounded maximum, so that a quadratic majorization function can be found. If in addition
f(q) is convex, then the overall loss function (3) is strictly convex, so that the the SVM-Maj

algorithm is guaranteed to stop at the global minimum.

A. Efficient updates for SVM-Maj

Recall that the relationship between q and β can be written as

q = Xβ. (15)

In some situations, different values of β may lead to the same q, when deriving q from β.
In other situations, the opposite could happen, that is, several values of q may result into
the same β value. Thus, there is not always a one-to-one mapping of q to β and the reverse.
Therefore, one should take these possible situations into account when performing iterative
majorization. To illustrate this, we will use the singular value decomposition (SVD) of X:

X = P Λ Q⊤,
(n × k) (n × r) (r × r) (r × k)

(16)

where P and Q are orthonormal matrices which satisfy P⊤P = I and Q⊤Q = I and Λ is a
diagonal matrix. The relationship between q and β can then be written as:

q = Xβ = PΛQ⊤β, (17)

P⊤q = Λ Q⊤β.
(r × 1) (r × r) (r × 1)

(18)

Let us first examine the left part of the equation. q can be written as a combination of two
orthogonal vectors, a projection of q on P and a projection on its complement (I − PP⊤),
that is,

q = PP⊤q + (I − PP⊤)q = qB + qN . (19)

Multiplying both sides with P⊤ gives

P⊤q = P⊤(qB + qN )

= P⊤qB + P⊤(I − PP⊤)q

= P⊤qB + (P⊤ − P⊤)q

= P⊤qB + 0

= P⊤qB.

In other words, the left part of (18) is only dependent of qB. When r = n, PP⊤ equals I and
thus, q = qB + qN = qB + (I − I)q = qB. In this case there is always an unique solution of

P⊤q = Λθ, for any θ ∈ ℜr. (20)
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However, when r < n, PP⊤ = I does not hold and there are infinitely many solutions to (20)
so that an one-to-one relationship of q and β in (15) is lost indeed.

Similarly, β can be written as β = QQ⊤β + (I − QQ⊤)β = βB + βN , and Q⊤β = Q⊤(βB +
βN ) = Q⊤βB. If r < k then there is no unique solution to Q⊤β = θ with θ ∈ ℜr. Note that
βB and βN are independent to each other and that

β⊤
N βB = β⊤

BβN = β⊤(QQ⊤)(I − QQ⊤)β = 0, (21)

as QQ⊤(I − QQ⊤) = 0.

As a result, we have to take care that a proper relation between β and q is retained, when more
efficient updates are derived. In the next section, we will examine three different situations
and introduce the optimization method by optimizing the parameters which has the lowest
dimension, that is, min(r, n, k). In this way, it can be assured that qN and βN are both zero
vectors. Subsequently, we will discuss the use of each optimization method in each situation.

A.1. β-method: Full rank and more objects than variables (n > k and r = k)

When the number of variables is smaller than the number of objects, and if X is of full rank,
then QQ⊤ = I and each β will give an unique q. As dim(β) < dim(q), it is most efficient to
optimize the loss function through β. The majorization function can as follows be written as
a function of β.

Maj(β, α) = (α1 + Xβ)⊤A(α1 + Xβ) − 2(α1 + Xβ)⊤b + λβ⊤β + o. (22)

To derive an update, we set the first derivatives of (22) with respect to β and α to zero, which
yields

1⊤A(1α + Xβ) = 1⊤b

X⊤A(1α + Xβ) + λβ = X⊤b,

or in matrix form, [
1⊤A1 1⊤AX

X⊤A1 X⊤AX + λI

] [
α
β

]
=

[
1⊤b

X⊤b

]
.

Using the fact that α01 + Xβ =
[
1 X

] [α
β

]
, an update of both β and α0 can be derived by

solving the linear system

([
1⊤

X⊤

]
A
[
1 X

]
+ λ

[
0 0⊤

0 I

])[
α+

β+

]
=

[
1⊤b

X⊤b

]
,

or, in compact form
(
X̃⊤AX̃ + λJ

) [α+

β+

]
= X̃⊤b, (23)

where X̃ =
[
1 X

]
and J =

[
0 0⊤

0 I

]
.
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To prove that the the linear system (23) has a unique solution under the assumption that
X ̸= 0, we will show that the matrix X̃⊤AX̃ + λJ is positive definite. Let us examine the
following equation

[
α β⊤

] (
X̃⊤AX̃ + λJ

) [ α

β⊤

]
=
[
α β

]
X̃⊤AX̃

[
α
β

]
+ λ

[
α β⊤

]
J

[
α
β

]
(24)

= (α1 + Xβ)⊤
A (α1 + Xβ) + λβ⊤β.

From this equation, we can see that (24) equals the sum of two positive values. Furthermore,
the right part λβ⊤β of the equation equals zero only if β = 0, whereas the left part will be
zero only when (α1 + Xβ) = 0. As both equations only hold when α = 0 and β = 0, we
know that the matrix X̃⊤AX̃ + λJ is positive definite.

An update of q can be calculated by q+ = Xβ+. Note that qN necessarily equals zero, as

qN = (I − PP⊤)q = (I − PP⊤)PΛQ⊤β = (P − PP⊤P)ΛQ⊤β = 0.

A.2. q-method: Full rank and less objects than variables (n < k and r = n)

When k > n, or more general k > r, we know that there are no unique solutions to q = Xβ

and that Xβ = X(βB +βN ) = XβB, that is, q is not dependent of βN . Consider the penalty
term λβ⊤β. As QQ⊤(I − QQ⊤) = 0, the penalty term can be simplified as

λβ⊤β = λ(βB + βN )⊤(βB + βN ) = λβ⊤
BβB + λβ⊤

N βN

Moreover, as λβ⊤
N βN ≥ 0 and q does not depend on βN , βN can be set to zero, with the

result that β = βB. Nevertheless, when the number of variables k is larger than the number
of objects n, and when X is of full rank, that is r = k, then PP⊤ = I and each q will give an
unique β. As dim(q) < dim(β), it is most efficient to optimize the loss function through q.
β can then be derived using (18), that is,

β = QΛ−1P⊤q = QΛP⊤PΛ−2P⊤q = X⊤(XX⊤)−1q,

using the fact that (XX⊤)(PΛ−2P⊤)(XX⊤) = (PΛ2P)(PΛ−2P⊤)(PΛ2P) = (PΛ2P). Note
that β does not depend on qN , as β = QΛ−1P⊤q = QΛ−1P⊤qB. The penalty term λβ⊤β

can then be written as

λβ⊤β = λ(X⊤(XX⊤)−1q)⊤(X⊤(XX⊤)−1q)

= λq⊤(XX⊤)−1XX⊤(XX⊤)−1q = λq⊤(XX⊤)−1q = λq⊤K−1q,

where K = XX⊤ = PΛ2P⊤.

Therefore, the majorization function can as follows be written as a function of q.

Maj(β, α) = (α1 + q)⊤A(α1 + q) − 2(α1 + q)⊤b + λq⊤K−1q. (25)

The first-order conditions of (25) are

1⊤A(1α + q) = 1⊤b,

A(1α + q) + λK−1q = b.
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Using
[
1 I

] [
α q

]
= 1α + q = q̃, the parameters q and α can be updated by deriving

([
1⊤

I

]
A
[
1 I

]
+ λ

[
0 0⊤

0 K−1

])[
α+

q+

]
=

[
1⊤b

b

]
,

or, in compact form

(Ĩ⊤AĨ + λL)

[
α+

q+

]
= Ĩ⊤b, (26)

where Ĩ =
[
1 I

]
and L =

[
0 0⊤

0 K−1

]
.

Similar to (23), we can show that (Ĩ⊤AĨ + λL) is positive definite and thus (26) can always
be solved.

Also, the corresponding update for β, which is

β+ = QΛ−1P⊤q = X(XX⊤)−1q, (27)

equals βB, as

βN = (I − QQ⊤)β = (I − QQ⊤)QΛ−1P⊤q = (Q − QQ⊤Q)Λ−1P⊤q = 0.

A.3. θ-method: Rank is smaller than either n or k (r <min(n, k))

When r < min(n, k), the interdependence of q and X can be summarized in an r × 1 vector
θ = Q⊤β = Λ−1P⊤q from (18). As qN and βN are not of interest, it is efficient to optimize
the loss function by θ. β will then be calculated through β = Qθ, which will assure that
β = Qθ = QQ⊤β = βB, in a similar way, it can be shown that q = qB. Using the fact
that q = Xβ = PΛQ⊤β = PΛθ and θ⊤θ = β⊤QQ⊤β = β⊤

BβB = β⊤β, the majorization
function can be written as

Maj(β, α) = (α1 + PΛθ)⊤A(α1 + PΛθ) − 2(α1 + PΛθ)⊤b + λθ⊤θ, (28)

with the first-order condition

1⊤A(1α + PΛθ) = 1⊤b

ΛP⊤A(1α + PΛθ) + λIθ = ΛP⊤b.

Using
[
1 PΛ

] [
α θ

]
= 1α0 + PΛθ = q̃, the parameters θ and α0 can be updated by

deriving ([
1⊤

ΛP⊤

]
A
[
1 PΛ

]
+ λ

[
0 0⊤

0 I

])[
α+

θ+

]
=

[
1⊤b

ΛP⊤b

]
,

or, in compact form

(P̃⊤AP̃ + λJ)

[
α+

θ+

]
= P̃⊤b, (29)

where P̃ =
[
1 PΛ

]
.
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The advantage of this method is that r ≤ min(n, k), which means that it restricts to the
space of which the relationship between q and β is described. Moreover, it is assured that the
dimension of θ is the lowest of three (that is, r ≤ min(n, k)), and thus it is most efficient and
consistent algorithm. However, this method requires the SVD or the QR decomposition to be
computed, which may need much computational time in case n and k are large. Therefore, one
should consider the alternatives when the matrix X is of full rank, that is when r = min(n, k).
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