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SVEMnet-package SVEMnet: Self-Validated Ensemble Models with Relaxed Lasso and
Elastic-Net Regression

Description

The SVEMnet package implements Self-Validated Ensemble Models (SVEM) using Elastic Net (in-
cluding lasso and ridge) regression via glmnet. SVEM averages predictions from multiple models
fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights.
The package supports multi-response optimization with uncertainty-aware candidate generation for
iterative formulation and process development.
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Details

A typical workflow is:

1. Build a wide, deterministic factor expansion (optionally via bigexp_terms) and reuse it across
responses with bigexp_formula.

2. Fit one or more SVEM models with SVEMnet.

3. Optionally run whole-model testing via svem_significance_test_parallel (and svem_wmt_multi)
to assess factor relationships or reweight response goals.

4. Call svem_score_random to draw random points in the factor space, compute multi-response
Derringer–Suich scores, optional WMT-reweighted scores, and an uncertainty measure; then
use svem_select_from_score_table to pick a single "best" row and diverse medoid candi-
dates, and svem_export_candidates_csv to export candidate tables for the next experimen-
tal round.

5. Run new experiments at the suggested candidates, append the data, refit the models, and repeat
as needed (closed-loop optimization).

Core modeling and summaries

SVEMnet Fit an SVEMnet model using Elastic Net regression (including relaxed elastic net) on
fractionally weighted bootstraps.

predict.svem_model Predict method for SVEM models (ensemble-mean aggregation by default,
optional debiasing, and percentile prediction intervals when available).

coef.svem_model Averaged (optionally debiased) coefficients from an SVEM model.

svem_nonzero Bootstrap nonzero percentages for each coefficient, with an optional quick plot.

plot.svem_model Quick actual-versus-predicted plot for a fitted model (with optional group col-
orings).

Deterministic wide expansions (bigexp helpers)

The bigexp_* helpers build and reuse a locked polynomial/interaction expansion across multiple
responses and datasets:

bigexp_terms Build a deterministic expanded RHS (polynomials, interactions, optional partial-
cubic terms) with locked factor levels and numeric ranges.

bigexp_prepare Coerce new data to match a stored bigexp_spec, including factor levels and
numeric types.

bigexp_formula Reuse a locked expansion for another response to ensure an identical factor space
across models.

with_bigexp_contrasts Temporarily restore the contrast options used when a bigexp_spec was
built.

bigexp_train Convenience wrapper that builds a bigexp_spec and prepares training data in one
call.
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Random tables, optimization, and candidate generation

svem_random_table_multi Generate one shared random predictor table (with optional mixture
constraints) from cached factor-space information and obtain predictions from multiple SVEM
models at those points. Supports both Gaussian and binomial models; binomial predictions are
returned on the probability scale. This is the lower-level sampler used by svem_score_random.

svem_score_random Random-search scoring for multiple responses with Derringer–Suich desir-
abilities, user weights, optional whole-model-test (WMT) reweighting, percentile CI-based
uncertainty, and (optionally) scoring of existing experimental data. Returns a scored random-
search table and, when data is supplied, an augmented copy of the original data with <resp>_pred,
desirabilities, scores, and an uncertainty_measure.

svem_select_from_score_table Given a scored table (typically svem_score_random()$score_table),
select one "best" row under a chosen objective and a small, diverse set of medoid candidates
via PAM clustering on predictors.

svem_export_candidates_csv Concatenate one or more selection objects from svem_select_from_score_table
and export candidate tables (with metadata, predictions, and optional design-only trimming)
to CSV or return them in-memory for inspection.

Whole-model testing and plotting

svem_significance_test_parallel Parallel whole-model significance test (using foreach +
doParallel) with support for mixture-constrained sampling and reuse of a locked bigexp_spec.
Designed for continuous (Gaussian) responses.

svem_wmt_multi Helper to run svem_significance_test_parallel across multiple responses
and construct whole-model p-values and reweighting multipliers for use in svem_score_random.

plot.svem_significance_test Plot helper for visualizing multiple significance-test outputs (ob-
served vs permutation distances, fitted null, and p-values).

Auxiliary utilities and data

glmnet_with_cv Convenience wrapper around repeated cv.glmnet() selection for robust lambda
(and optional alpha) choice.

lipid_screen Example dataset for multi-response modeling, whole-model testing, and mixture-
constrained optimization demonstrations.

Families

SVEMnet currently supports:

• Gaussian responses (family = "gaussian") with identity link and optional debiasing / per-
centile prediction intervals.

• Binomial responses (family = "binomial") with logit link. The response must be 0/1 nu-
meric or a two-level factor (first level treated as 0). Use predict(..., type = "response")
for event probabilities or type = "class" for 0/1 labels (threshold = 0.5 by default).

Some higher-level utilities place additional constraints:

• svem_significance_test_parallel is designed and interpreted for continuous (Gaussian)
responses.
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• svem_score_random supports mixed Gaussian + binomial response sets, treating binomial
predictions and CIs on the probability scale, but WMT-based goal reweighting (via svem_wmt_multi
and the wmt argument) is only allowed when all responses are Gaussian.
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See Also

Useful links:

• https://arxiv.org/abs/2511.20968

bigexp_formula Construct a formula for a new response using a bigexp_spec

Description

bigexp_formula() lets you reuse an existing expansion spec for multiple responses. It keeps the
right hand side locked but changes the response variable on the left hand side.

Usage

bigexp_formula(spec, response)

Arguments

spec A "bigexp_spec" object created by bigexp_terms().

response Character scalar giving the name of the new response column in your data. If
omitted, the original formula is returned unchanged.

Details

This is useful when you want to fit separate models for several responses on the same factor space
while guaranteeing that they all use exactly the same design columns and coding.

Value

A formula of the form response ~ rhs, where the right-hand side is taken from the locked expan-
sion stored in spec.

https://arxiv.org/abs/2511.20968
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Examples

set.seed(1)
df2 <- data.frame(

y1 = rnorm(10),
y2 = rnorm(10),
X1 = rnorm(10),
X2 = rnorm(10)

)

spec2 <- bigexp_terms(
y1 ~ X1 + X2,
data = df2,
factorial_order = 2,
polynomial_order = 2

)

f2 <- bigexp_formula(spec2, "y2")
f2

bigexp_prepare Prepare data to match a bigexp_spec

Description

bigexp_prepare() coerces a new data frame so that it matches a previously built bigexp_terms
spec. It:

• applies the locked factor levels for categorical predictors,

• enforces that continuous variables remain numeric (and errors if they are not), and

• optionally warns about or errors on unseen factor levels.

Usage

bigexp_prepare(spec, data, unseen = c("warn_na", "error"))

Arguments

spec Object returned by bigexp_terms.

data New data frame (for example, training, test, or future batches).

unseen How to handle unseen factor levels in data: "warn_na" (default) maps unseen
levels to NA and issues a warning, or "error" stops with an error if any unseen
levels are encountered.
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Details

Columns that are not listed in spec$vars (for example, the response or extra metadata columns)
are left unchanged.

The goal is that model.matrix(spec$formula, data) will produce the same set of columns in the
same order across all datasets prepared with the same spec, even if some levels are missing in a
particular batch.

Value

A list with two elements:

• formula: the expanded formula stored in the spec (same as spec$formula).

• data: a copy of the input data with predictor columns coerced to match the spec (types and
levels), suitable for model.frame() / model.matrix().

See Also

bigexp_terms

Examples

set.seed(1)
train <- data.frame(

y = rnorm(10),
X1 = rnorm(10),
X2 = rnorm(10),
G = factor(sample(c("A", "B"), 10, replace = TRUE))

)

spec <- bigexp_terms(
y ~ X1 + X2 + G,
data = train,
factorial_order = 2,
polynomial_order = 2

)

newdata <- data.frame(
y = rnorm(5),
X1 = rnorm(5),
X2 = rnorm(5),
G = factor(sample(c("A", "B"), 5, replace = TRUE))

)

prep <- bigexp_prepare(spec, newdata)
str(prep$data)
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bigexp_terms Create a deterministic expansion spec for wide polynomial and inter-
action models

Description

bigexp_terms() builds a specification object that:

• decides which predictors are treated as continuous or categorical,

• optionally treats selected variables as blocking factors that enter the model only additively and
never in interactions or polynomials,

• locks factor levels from the supplied data,

• records the contrast settings used when the model matrix is first built, and

• constructs a reusable right-hand side (RHS) expression string for a large expansion that can
be shared across multiple responses and datasets.

Usage

bigexp_terms(
formula,
data,
factorial_order = 3L,
polynomial_order = 3L,
include_pc_2way = TRUE,
include_pc_3way = FALSE,
intercept = TRUE,
blocking = NULL,
discrete_numeric = NULL,
audit = c("warn", "error", "none"),
audit_numeric_rate = 0.9,
audit_unique_ratio = 0.8,
audit_min_n = 12L,
report = TRUE

)

Arguments

formula Main-effects formula of the form y ~ X1 + X2 + G or y ~ .. The right-hand side
should contain main effects only; do not include : (interactions), ^ (factorial
shortcuts), I() powers, or inline polynomial expansions. The helper will gener-
ate interactions and polynomial terms automatically.

data Data frame used to decide types and lock factor levels.
factorial_order

Integer >= 1. Maximum order of factorial interactions among the non-blocking
main effects. For example, 1 gives main effects only, 2 gives up to two-way
interactions, 3 gives up to three-way interactions, and so on.
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polynomial_order

Integer >= 1. Maximum polynomial degree for continuous non-blocking predic-
tors. A value of 1 means only linear terms; 2 adds squares I(X^2); 3 adds cubes
I(X^3); in general, all powers I(X^k) for k from 2 up to polynomial_order
are added.

include_pc_2way

Logical. If TRUE (default) and polynomial_order >= 2, include partial-cubic
two-way terms of the form Z:I(X^2) where X is continuous and Z is another
non-blocking predictor.

include_pc_3way

Logical. If TRUE and polynomial_order >= 2, include partial-cubic three-way
terms I(X^2):Z:W among non-blocking predictors.

intercept Logical. If TRUE (default), include an intercept in the expansion; if FALSE, the
generated RHS drops the intercept.

blocking Optional character vector of column names in data to treat as blocking factors.
These variables are included in the spec and typed like other predictors (cate-
gorical vs continuous), but they enter the model only as additive main effects
and never appear in interactions, polynomials, or partial-cubic terms. Impor-
tant: when using y ~ ., blocking variables are automatically excluded from the
"non-blocking" predictor set so they do not trigger a conflict error. When using
an explicit RHS (for example y ~ X1 + X2), blocking variables must not also be
explicitly listed on the right-hand side.

discrete_numeric

Optional specification of "discrete numeric" predictors for downstream sam-
pling (for example in svem_random_table_multi()). These predictors are still
treated as numeric for modeling and expansion (that is, they remain continuous
in the design matrix and may participate in polynomial and interaction terms).
This option only records a finite set of preferred numeric levels to be used when
randomly generating recipes. Supply either:

• a character vector of predictor names, in which case the allowed levels are
inferred as the sorted unique finite values observed in data; or

• a named list mapping predictor names to numeric vectors of allowed levels.
If an entry is NULL or length zero, levels are inferred from data for that
predictor.

audit How to handle suspicious typing / high-cardinality issues when building the
spec. One of "warn" (default), "error", or "none". Audits cover numeric-like
character/factor columns (including percent strings like "25%"), and very high-
cardinality categorical predictors that are likely IDs or mis-typed numerics.

audit_numeric_rate

Numeric in (0,1). If at least this fraction of non-missing values parse as numeric
(after stripping commas and an optional trailing %), the column is flagged as
numeric-like when stored as character/factor.

audit_unique_ratio

Numeric in (0, 1). For categorical predictors, warn/error if unique(non-missing)
/ n_nonmissing >= audit_unique_ratio.

audit_min_n Integer >= 1. Minimum number of non-missing values required before audits
are applied.
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report Logical. If TRUE (default), print a compact summary of the inferred predictor
types and settings (via print.bigexp_spec) when bigexp_terms() returns.

Details

The expansion for non-blocking predictors can include:

• full factorial interactions among the listed main effects, up to a chosen order;

• polynomial terms I(X^k) for continuous predictors up to a chosen degree; and

• optional partial-cubic interactions of the form Z:I(X^2) and I(X^2):Z:W.

Predictor types are inferred from data:

• factors, characters, and logicals are treated as categorical;

• all other numeric predictors are treated as continuous, and their observed ranges are stored.

Variables listed in blocking are included in the spec and are typed using the same rules as other
predictors (for example, a numeric blocking variable with many distinct values is treated as contin-
uous). However, blocking variables enter the model only as additive main effects, without interac-
tions or polynomial terms, regardless of factorial_order or polynomial_order.

Once built, a "bigexp_spec" can be reused to create consistent expansions for new datasets via
bigexp_prepare and bigexp_formula. The RHS and contrast settings are locked, so the same
spec applied to different data produces design matrices with the same columns in the same order
(up to missing levels for specific batches).

Value

An object of class "bigexp_spec" with components:

• formula: expanded formula of the form y ~ <big expansion>, using the response from the
input formula.

• rhs: right-hand side expansion string (reusable for any response).

• vars: character vector of predictor names (including blocking variables) in the order discov-
ered from the formula and data.

• is_cat: named logical vector indicating which predictors are treated as categorical (TRUE)
versus continuous (FALSE).

• levels: list of locked factor levels for categorical predictors.

• num_range: 2 x p numeric matrix of ranges for continuous variables (rows c("min","max")).

• settings: list of expansion settings, including factorial_order, polynomial_order, include_pc_2way,
include_pc_3way, intercept, blocking, and stored contrast information.

Typical workflow

In a typical multi-response workflow you:

1. Call bigexp_terms() once on your training data to build and lock the expansion (types, levels,
contrasts, RHS).
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2. Fit models using spec$formula and the original data (for example, SVEMnet(spec$formula,
data, ...) or lm(spec$formula, data)).

3. For new batches, call bigexp_prepare with the same spec so that design matrices have ex-
actly the same columns and coding.

4. For additional responses on the same factor space, use bigexp_formula to swap the left-hand
side while reusing the locked expansion.

See Also

bigexp_prepare, bigexp_formula, bigexp_train

Examples

## Example 1: small design with one factor
set.seed(1)
df <- data.frame(

y = rnorm(20),
X1 = rnorm(20),
X2 = rnorm(20),
G = factor(sample(c("A", "B"), 20, replace = TRUE))

)

## Two-way interactions and up to cubic terms in X1 and X2
spec <- bigexp_terms(

y ~ X1 + X2 + G,
data = df,
factorial_order = 2,
polynomial_order = 3

)

print(spec)

## Example 2: pure main effects (no interactions, no polynomial terms)
spec_main <- bigexp_terms(

y ~ X1 + X2 + G,
data = df,
factorial_order = 1, # main effects only
polynomial_order = 1 # no I(X^2) or higher

)

## Example 3: blocking factors (categorical and continuous)
set.seed(2)
df_block <- data.frame(

y = rnorm(30),
X1 = rnorm(30),
X2 = rnorm(30),
G = factor(sample(c("A", "B"), 30, replace = TRUE)),
Operator = factor(sample(paste0("Op", 1:3), 30, replace = TRUE)),
AmbientTemp = rnorm(30, mean = 22, sd = 2) # continuous blocking covariate

)

## Here Operator (categorical) and AmbientTemp (continuous) are blocking factors:
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## they enter additively, but do not appear in interactions or polynomials.
spec_block <- bigexp_terms(

y ~ X1 + X2 + G,
data = df_block,
factorial_order = 2,
polynomial_order = 3,
blocking = c("Operator", "AmbientTemp")

)

print(spec_block)
spec_block$rhs

## Example 4: discrete numeric predictors (finite numeric support)
## A common case is a numeric process setting that only takes a small set
## of allowed values (e.g., 0.5, 1, 2, 4). Use `discrete_numeric` in
## bigexp_terms() so downstream sampling respects those levels automatically.

set.seed(3)
D_allowed <- c(0.5, 1, 2, 4)
df_disc <- data.frame(

y = rnorm(60),
D = sample(D_allowed, 60, replace = TRUE), # numeric with discrete support
X1 = rnorm(60),
G = factor(sample(c("A", "B"), 60, replace = TRUE))

)

# Record that D should be treated as "discrete numeric" for downstream sampling.
# Levels are inferred automatically from the training data.
spec_disc <- bigexp_terms(

y ~ D + X1 + G,
data = df_disc,
factorial_order = 2,
polynomial_order = 2,
discrete_numeric = "D"

)

# Fit. The discrete support is expected to propagate into fit$sampling_schema
# (assuming the updated SVEMnet implementation that stores sampling_schema).
fit_disc <- SVEMnet(spec_disc, df_disc, nBoot = 20)

# Score random candidates; sampled D values stay in D_allowed
scored <- svem_score_random(

objects = list(y = fit_disc),
goals = list(y = list(goal = "max", weight = 1)),
n = 2000,
numeric_sampler = "random",
verbose = FALSE

)

table(scored$score_table$D)
stopifnot(all(scored$score_table$D %in% D_allowed))
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bigexp_train Build a spec and prepare training data in one call

Description

bigexp_train() is a convenience wrapper around bigexp_terms and bigexp_prepare. It:

• builds a deterministic expansion spec from the training data; and

• immediately prepares that same data to match the locked types and levels.

Usage

bigexp_train(formula, data, ...)

Arguments

formula Main-effects formula such as y ~ X1 + X2 + G or y ~ .. Only main effects should
appear on the right hand side.

data Training data frame used to lock types and levels.

... Additional arguments forwarded to bigexp_terms(), such as factorial_order,
polynomial_order, include_pc_2way, include_pc_3way, and intercept.

Details

This is handy when you want a single object that contains both the spec and the training data in a
form that is ready to pass into a modeling function. For more control, you can call bigexp_terms()
and bigexp_prepare() explicitly instead.

Value

An object of class "bigexp_train" which is a list with components:

• spec: the "bigexp_spec" object returned by bigexp_terms().

• formula: the expanded formula spec$formula.

• data: the prepared training data (predictors coerced to match spec), suitable for passing
directly to modeling functions such as lm(), glm(), or SVEMnet().

Examples

set.seed(1)
df5 <- data.frame(

y = rnorm(20),
X1 = rnorm(20),
X2 = rnorm(20)

)

tr <- bigexp_train(
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y ~ X1 + X2,
data = df5,
factorial_order = 2,
polynomial_order = 3

)

## Prepared training data and expanded formula:
str(tr$data)
tr$formula

## Example: fit a model using the expanded formula
fit_lm <- lm(tr$formula, data = tr$data)
summary(fit_lm)

coef.svem_model Coefficients for SVEM Models

Description

Extracts averaged coefficients from an svem_model fitted by SVEMnet.

Usage

## S3 method for class 'svem_model'
coef(object, debiased = FALSE, ...)

Arguments

object An object of class svem_model, typically returned by SVEMnet.

debiased Logical; if TRUE and debiased coefficients are available (Gaussian fits with parms_debiased),
return those instead of parms. Default is FALSE.

... Unused; present for S3 method compatibility.

Details

For Gaussian fits, you can optionally request debiased coefficients (if they were computed and
stored) via debiased = TRUE. In that case, the function returns object$parms_debiased. If de-
biased coefficients are not available, or if debiased = FALSE, the function returns object$parms,
which are the ensemble-averaged coefficients across bootstrap members.

For Binomial models, debiased is ignored and the averaged coefficients in object$parms are
returned.

This is a lightweight accessor around the stored components of an svem_model:

• parms: ensemble-averaged coefficients over bootstrap members, on the model’s link scale;

• parms_debiased: optional debiased coefficients (Gaussian only), if requested at fit time.

Passing debiased = TRUE has no effect if parms_debiased is NULL.
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Value

A named numeric vector of coefficients (including the intercept).

See Also

svem_nonzero for bootstrap nonzero percentages and a quick stability plot.

Examples

set.seed(1)
n <- 200
x1 <- rnorm(n)
x2 <- rnorm(n)
eps <- rnorm(n, sd = 0.3)
y_g <- 1 + 2*x1 - 0.5*x2 + eps
dat_g <- data.frame(y_g, x1, x2)

# Small nBoot to keep runtime light in examples
fit_g <- SVEMnet(y_g ~ x1 + x2, data = dat_g, nBoot = 30, relaxed = TRUE)

# Ensemble-averaged coefficients
cc <- coef(fit_g)
head(cc)

# Debiased (only if available for Gaussian fits)
ccd <- coef(fit_g, debiased = TRUE)
head(ccd)

# Binomial example (0/1 outcome)
set.seed(2)
n <- 250
x1 <- rnorm(n)
x2 <- rnorm(n)
eta <- -0.4 + 1.1*x1 - 0.7*x2
p <- 1/(1+exp(-eta))
y_b <- rbinom(n, 1, p)
dat_b <- data.frame(y_b, x1, x2)

fit_b <- SVEMnet(y_b ~ x1 + x2, data = dat_b,
family = "binomial", nBoot = 30, relaxed = TRUE)

# Averaged coefficients (binomial; debiased is ignored)
coef(fit_b)

glmnet_with_cv Fit a glmnet Model with Repeated Cross-Validation
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Description

Repeated K-fold cross-validation over a per-alpha lambda path, with a combined 1-SE rule across
repeats. Preserves fields expected by predict.svem_model() and internal prediction helpers. Op-
tionally uses glmnet’s built-in relaxed elastic net for both the warm-start path and each CV fit.
When relaxed = TRUE, the final coefficients are taken from a cv.glmnet() object at the chosen
lambda so that the returned model reflects the relaxed solution (including its chosen gamma).

Usage

glmnet_with_cv(
formula,
data,
glmnet_alpha = c(0.5, 1),
standardize = TRUE,
nfolds = 10,
repeats = 5,
choose_rule = c("min", "1se"),
seed = NULL,
exclude = NULL,
relaxed = FALSE,
relax_gamma = NULL,
family = c("gaussian", "binomial"),
...

)

Arguments

formula Model formula.

data Data frame containing the variables in the model.

glmnet_alpha Numeric vector of Elastic Net mixing parameters (alphas) in [0,1]; default
c(0.5, 1). When relaxed = TRUE, any alpha = 0 (ridge) is dropped with a
warning.

standardize Logical passed to glmnet() and cv.glmnet() (default TRUE).

nfolds Requested number of CV folds (default 10). Internally constrained so that there
are at least about 3 observations per fold and at least 5 folds when possible.

repeats Number of independent CV repeats (default 5). Each repeat reuses the same
folds across all alphas for paired comparisons.

choose_rule Character; how to choose lambda within each alpha:

• "min": lambda minimizing the cross-validated criterion.
• "1se": largest lambda within 1 combined SE of the minimum, where the

SE includes both within- and between-repeat variability.

Default is "min". In small-mixture simulations, the 1-SE rule tended to increase
RMSE on held-out data, so "min" is used as the default here.

seed Optional integer seed for reproducible fold IDs (and the ridge fallback, if used).

exclude Optional vector or function for glmnet’s exclude= argument. If a function,
cv.glmnet() applies it inside each training fold (requires glmnet >= 4.1-2).
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relaxed Logical; if TRUE, call glmnet() and cv.glmnet() with relax = TRUE and op-
tionally a gamma path (default FALSE). If cv.glmnet(relax = TRUE) fails for a
particular repeat/alpha, the function retries that fit without relaxation; the num-
ber of such fallbacks is recorded in meta$relax_cv_fallbacks.

relax_gamma Optional numeric vector passed as gamma= to glmnet() and cv.glmnet() when
relaxed = TRUE. If NULL, glmnet’s internal default gamma grid is used.

family Model family: either "gaussian" or "binomial", or the corresponding stats::gaussian()
or stats::binomial() family objects with canonical links. For Gaussian, y
must be numeric. For binomial, y must be 0/1 numeric, logical, or a factor with
exactly 2 levels (the second level is treated as 1). Non-canonical links are not
supported.

... Additional arguments forwarded to both cv.glmnet() and glmnet(), for exam-
ple: weights, parallel, type.measure, intercept, maxit, lower.limits,
upper.limits, penalty.factor, offset, standardize.response, keep, and
so on. If family is supplied here, it is ignored in favor of the explicit family
argument.

Details

This function is a convenience wrapper around glmnet() and cv.glmnet() that returns an object
in the same structural format as SVEMnet() (class "svem_model"). It is intended for:

• direct comparison of standard cross-validated glmnet fits to SVEMnet models using the same
prediction and schema tools, or

• users who want a repeated-cv.glmnet() workflow without any SVEM weighting or bootstrap
ensembling.

It is not called internally by the SVEM bootstrap routines.

The basic workflow is:

1. For each alpha in glmnet_alpha, generate a set of CV fold IDs (shared across alphas and
repeats).

2. For that alpha, run repeats independent cv.glmnet() fits, align the lambda paths, and ag-
gregate the CV curves.

3. At each lambda, compute a combined SE that accounts for both within-repeat and between-
repeat variability.

4. Apply choose_rule ("min" or "1se") to select lambda for that alpha, then choose the best
alpha by comparing these per-alpha scores.

Special cases and fallbacks:

• If there are no predictors after model.matrix() (an intercept-only model), the function re-
turns an intercept-only fit without calling glmnet(), along with a minimal schema for safe
prediction.

• If all cv.glmnet() attempts fail for every alpha (a rare edge case), the function falls back
to a manual ridge (alpha = 0) CV search over a fixed lambda grid and returns the best ridge
solution. For Gaussian models this search uses a mean-squared-error criterion; for binomial
models it uses a negative log-likelihood (deviance-equivalent) criterion.
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Family-specific behavior:

• For the Gaussian family, an optional calibration lm(y ~ y_pred) is fit on the training data
(when there is sufficient variation), and both y_pred and y_pred_debiased are stored.

• For the binomial family, y_pred is always on the probability (response) scale and debiasing
is not applied. Both the primary cross-validation and any ridge fallback use deviance-style
criteria (binomial negative log-likelihood) rather than squared error.

Design-matrix schema and contrasts:

• The training terms are stored with environment set to baseenv().

• Factor and character levels are recorded in xlevels for safe prediction.

• Per-factor contrasts are stored in contrasts, normalized so that any contrasts recorded as
character names are converted back to contrast functions at prediction time.

The returned object inherits classes "svem_cv" and "svem_model" and is designed to be compatible
with SVEMnet prediction and schema utilities. It is a standalone, standard glmnet CV workflow
that does not use SVEM-style bootstrap weighting or ensembling.

Value

A list of class c("svem_cv","svem_model") with elements:

• parms Named numeric vector of coefficients (including "(Intercept)").

• glmnet_alpha Numeric vector of alphas searched.

• best_alpha Numeric; winning alpha.

• best_lambda Numeric; winning lambda.

• y_pred In-sample predictions from the returned coefficients (fitted values for Gaussian; prob-
abilities for binomial).

• debias_fit For Gaussian, an optional lm(y ~ y_pred) calibration model; NULL otherwise.

• y_pred_debiased If debias_fit exists, its fitted values; otherwise NULL.

• cv_summary Named list (one element per alpha) of data frames with columns lambda, mean_cvm,
sd_cvm, se_combined, n_repeats, idx_min, idx_1se.

• formula Original modeling formula.

• terms Training terms object with environment set to baseenv().

• training_X Training design matrix (without intercept column).

• actual_y Training response vector used for glmnet: numeric y for Gaussian, or 0/1 numeric
y for binomial.

• xlevels Factor and character levels seen during training (for safe prediction).

• contrasts Contrasts used for factor predictors during training.

• schema List list(feature_names, terms_str, xlevels, contrasts, terms_hash) for de-
terministic prediction.

• note Character vector of notes (for example, dropped rows, intercept-only path, ridge fallback,
relaxed-coefficient source).
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• meta List with fields such as nfolds, repeats, rule, family, relaxed, relax_cv_fallbacks,
and cv_object (the final cv.glmnet() object when relaxed = TRUE and keep = TRUE, other-
wise NULL).

• diagnostics List of simple diagnostics for the selected model, currently including:

– k_final: number of coefficients estimated as nonzero including the intercept.
– k_final_no_intercept: number of nonzero slope coefficients (excludes the intercept).

• family Character scalar giving the resolved family ("gaussian" or "binomial"), mirroring
meta$family.
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Examples

set.seed(123)
n <- 100; p <- 10
X <- matrix(rnorm(n * p), n, p)
beta <- c(1, -1, rep(0, p - 2))
y <- as.numeric(X %*% beta + rnorm(n))
df_ex <- data.frame(y = y, X)
colnames(df_ex) <- c("y", paste0("x", 1:p))

# Gaussian example, v1-like behavior: choose_rule = "min"
fit_min <- glmnet_with_cv(

y ~ ., df_ex,
glmnet_alpha = 1,
nfolds = 5,
repeats = 1,
choose_rule = "min",
seed = 42,
family = "gaussian"

)

# Gaussian example, relaxed path with gamma search
fit_relax <- glmnet_with_cv(

y ~ ., df_ex,
glmnet_alpha = 1,
nfolds = 5,
repeats = 1,
relaxed = TRUE,
seed = 42,
family = "gaussian"

)

# Binomial example (numeric 0/1 response)
set.seed(456)
n2 <- 150; p2 <- 8
X2 <- matrix(rnorm(n2 * p2), n2, p2)
beta2 <- c(1.0, -1.5, rep(0, p2 - 2))
linpred <- as.numeric(X2 %*% beta2)
prob <- plogis(linpred)
y_bin <- rbinom(n2, size = 1, prob = prob)
df_bin <- data.frame(y = y_bin, X2)
colnames(df_bin) <- c("y", paste0("x", 1:p2))
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fit_bin <- glmnet_with_cv(
y ~ ., df_bin,
glmnet_alpha = c(0.5, 1),
nfolds = 5,
repeats = 2,
seed = 99,
family = "binomial"

)

lipid_screen Lipid formulation screening data

Description

An example dataset for modeling Potency, Size, and PDI as functions of formulation and process
settings. Percent composition columns are stored as proportions in [0, 1] (for example, 4.19 per-
cent is 0.0419). This table is intended for demonstration of SVEMnet multi-response modeling,
desirability-based random-search optimization, and probabilistic design-space construction.

Usage

data(lipid_screen)

Format

A data frame with one row per experimental run and the following columns:

RunID character. Optional identifier for each run.

PEG numeric. Proportion (0-1).

Helper numeric. Proportion (0-1).

Ionizable numeric. Proportion (0-1).

Cholesterol numeric. Proportion (0-1).

Ionizable_Lipid_Type factor. Categorical identity of the ionizable lipid.

N_P_ratio numeric. Molar or mass N : P ratio (unitless).

flow_rate numeric. Process flow rate (arbitrary units).

Operator factor. Categorical blocking factor.

Potency numeric. Response (for example, normalized activity).

Size numeric. Response (for example, particle size in nm).

PDI numeric. Response (polydispersity index).

Notes character. Optional free-text notes.
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Details

The four composition columns PEG, Helper, Ionizable, and Cholesterol are stored as propor-
tions in [0,1], and in many rows they sum (approximately) to 1, making them natural candidates
for mixture constraints in optimization and design-space examples.

This dataset accompanies examples showing:

• fitting three SVEM models (Potency, Size, PDI) on a shared expanded factor space via bigexp_terms
and bigexp_formula,

• random design generation using SVEM random-table helpers (for use with multi-response
optimization),

• multi-response scoring and candidate selection with svem_score_random (Derringer–Suich
desirabilities, weights, uncertainty) and svem_select_from_score_table (optimal and high-
uncertainty medoid candidates),

• returning both high-score optimal candidates and high-uncertainty exploration candidates from
the same scored table by changing the target column (for example score vs uncertainty_measure
or wmt_score),

• optional whole-model reweighting (WMT) of response weights via svem_wmt_multi (for p-
values and multipliers) together with svem_score_random (via its wmt argument),

• constructing a probabilistic design space in one step by passing process-mean specifications
via the specs argument of svem_score_random (internally using svem_append_design_space_cols
when needed).
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Examples

# 1) Load the bundled dataset
data(lipid_screen)
str(lipid_screen)

#2) Build a deterministic expansion using bigexp_terms()
# Provide main effects only on the right-hand side; expansion width
# is controlled via arguments. Here Operator is treated as a blocking
# factor: additive only, no interactions or polynomial terms.
spec <- bigexp_terms(

Potency ~ PEG + Helper + Ionizable + Cholesterol +
Ionizable_Lipid_Type + N_P_ratio + flow_rate,

data = lipid_screen,
factorial_order = 3, # up to 3-way interactions
polynomial_order = 3, # include up to cubic terms I(X^2), I(X^3)
include_pc_2way = TRUE, # partial-cubic two-way terms Z:I(X^2)
include_pc_3way = FALSE, # no partial-cubic three-way terms I(X^2):Z:W
blocking = "Operator",
discrete_numeric = c("N_P_ratio","flow_rate")

)

# 3) Reuse the same locked expansion for other responses

https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
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form_pot <- bigexp_formula(spec, "Potency")
form_siz <- bigexp_formula(spec, "Size")
form_pdi <- bigexp_formula(spec, "PDI")

# 4) Fit SVEM models with the shared factor space and expansion
set.seed(1)
fit_pot <- SVEMnet(form_pot, lipid_screen)
fit_siz <- SVEMnet(form_siz, lipid_screen)
fit_pdi <- SVEMnet(form_pdi, lipid_screen)

# 5) Collect models in a named list by response
objs <- list(Potency = fit_pot, Size = fit_siz, PDI = fit_pdi)

# 6) Define multi-response goals and weights (DS desirabilities under the hood)
# Maximize Potency (0.6), minimize Size (0.3), minimize PDI (0.1)
goals <- list(

Potency = list(goal = "max", weight = 0.6),
Size = list(goal = "min", weight = 0.3),
PDI = list(goal = "min", weight = 0.1)

)

# Mixture constraints: components sum to total, with bounds
mix <- list(list(

vars = c("PEG", "Helper", "Ionizable", "Cholesterol"),
lower = c(0.01, 0.10, 0.10, 0.10),
upper = c(0.05, 0.60, 0.60, 0.60),
total = 1.0

))

# 7) Optional: whole-model tests and WMT multipliers via svem_wmt_multi()
# This wrapper runs svem_significance_test_parallel() for each response,
# plots the distance distributions, and prints p-values and multipliers.

set.seed(123)
wmt_out <- svem_wmt_multi(

formulas = list(Potency = form_pot,
Size = form_siz,
PDI = form_pdi),

data = lipid_screen,
mixture_groups = mix,
wmt_control = list(seed = 123),
plot = TRUE

)

# Inspect WMT p-values and multipliers (also printed by the wrapper)
wmt_out$p_values
wmt_out$multipliers

# 8) Optional: define process-mean specifications for a joint design space.
# Potency at least 78, Size no more than 100, PDI less than 0.25.
# Here we only specify the bounded side; the unbounded side defaults to
# lower = -Inf or upper = Inf inside svem_score_random().
specs_ds <- list(
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Potency = list(lower = 78),
Size = list(upper = 100),
PDI = list(upper = 0.25)

)

# 9) Random-search scoring in one step via svem_score_random()
# This draws a random candidate table, computes DS desirabilities,
# a combined multi-response score, WMT-adjusted wmt_score (if `wmt`
# is supplied), CI-based uncertainty, and (when `specs` is supplied)
# appends mean-level design-space columns.
#
# The `wmt` and `specs` arguments are optional:
# - Omit `wmt` for no whole-model reweighting.
# - Omit `specs` if you do not need design-space probabilities.

set.seed(3)
scored <- svem_score_random(

objects = objs,
goals = goals,
data = lipid_screen, # scored and returned as original_data_scored
n = 25000,
mixture_groups = mix,
level = 0.95,
combine = "geom",
numeric_sampler = "random",
wmt = wmt_out, # optional: NULL for no WMT
specs = specs_ds, # optional: NULL for no design-space columns
verbose = TRUE

)

# 10) Select optimal and exploration sets from the same scored table

# Optimal medoid candidates (maximizing DS score)
opt_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "score", # score column is maximized
direction = "max",
k = 5,
top_type = "frac",
top = 0.1,
label = "round1_score_optimal"

)

# Optimal medoid candidates (maximizing WMT-adjusted wmt_score)
opt_sel_wmt <- svem_select_from_score_table(

score_table = scored$score_table,
target = "wmt_score", # wmt_score column is maximized
direction = "max",
k = 5,
top_type = "frac",
top = 0.1,
label = "round1_wmt_optimal"

)
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# Exploration medoid candidates (highest uncertainty_measure)
explore_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "uncertainty_measure", # uncertainty_measure column is maximized
direction = "max",
k = 5,
top_type = "frac",
top = 0.1,
label = "round1_explore"

)

# In-spec medoid candidates (highest joint mean-level assurance)
inspec_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "p_joint_mean", # p_joint_mean column is maximized
direction = "max",
k = 5,
top_type = "frac",
top = 0.10,
label = "round1_inspec"

)

# Single best by score, including per-response CIs
opt_sel$best

# Single best by WMT-adjusted score, including per-response CIs
opt_sel_wmt$best

# Diverse high-score candidates (medoids)
head(opt_sel_wmt$candidates)

# Highest-uncertainty setting and its medoid candidates
explore_sel$best
head(explore_sel$candidates)

# Highest probability mean-in-spec setting and its medoid candidates
inspec_sel$best
head(inspec_sel$candidates)

# 11) Scored original data (predictions, desirabilities, score, wmt_score, uncertainty)
head(scored$original_data_scored)

# 12) Example: combine new candidate settings with the best existing run
# and (optionally) export a CSV for the next experimental round.

# Best existing run from the original scored data (no new medoids; k = 0)
best_existing <- svem_select_from_score_table(

score_table = scored$original_data_scored,
target = "score",
direction = "max",
k = 0, # k <= 0 => only the best row, no medoids
top_type = "frac",
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top = 1.0,
label = "round1_existing_best"

)

# 13) Prepare candidate export tables for the next experimental round.
# svem_export_candidates_csv() accepts individual selection objects.
# Calls are commented out so examples/tests do not write files.

# Export a design-style candidate table (factors + responses + predictions)
# out.df <- svem_export_candidates_csv(
# opt_sel,
# opt_sel_wmt,
# explore_sel,
# inspec_sel,
# best_existing,
# file = "lipid_screen_round1_candidates.csv",
# overwrite = TRUE
# )
# head(out.df)

# Export all columns including desirabilities, CI widths, and design-space columns
# out.df2 <- svem_export_candidates_csv(
# opt_sel,
# opt_sel_wmt,
# explore_sel,
# inspec_sel,
# best_existing,
# file = "lipid_screen_round1_candidates_all.csv",
# overwrite = TRUE
# )
# head(out.df2)

plot.svem_binomial Plot Method for SVEM Binomial Models

Description

Diagnostics for svem_binomial fits from SVEMnet(..., family = "binomial"). Produces one of:

• type = "calibration": Reliability curve (binned average predicted probability vs observed
rate), with jittered raw points for context.

• type = "roc": ROC curve with trapezoidal AUC in the title.

• type = "pr": Precision–Recall curve with step-wise Average Precision (AP).

Usage

## S3 method for class 'svem_binomial'
plot(
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x,
type = c("calibration", "roc", "pr"),
bins = 10,
jitter_width = 0.05,
...

)

Arguments

x An object of class svem_binomial.

type One of "calibration", "roc", or "pr" (default "calibration").

bins Integer number of equal-frequency bins for calibration (default 10).

jitter_width Vertical jitter amplitude for raw points in calibration (default 0.05).

... Additional aesthetics passed to ggplot2::geom_line() or ggplot2::geom_point().

Details

For ROC/PR, simple one-class guards are used (returns a diagonal ROC and trivial PR). The func-
tion assumes binomial models store x$y_pred on the probability scale.

Value

A ggplot2 object.

Examples

## Not run:
## --- Binomial example: simulate, fit, and plot --------------------------
set.seed(2025)
n <- 600
x1 <- rnorm(n); x2 <- rnorm(n); x3 <- rnorm(n)
eta <- -0.4 + 1.1*x1 - 0.8*x2 + 0.5*x3
p_true <- plogis(eta)
y <- rbinom(n, 1, p_true)
dat_b <- data.frame(y, x1, x2, x3)

fit_b <- SVEMnet(
y ~ x1 + x2 + x3 + I(x1^2) + (x1 + x2 + x3)^2,
data = dat_b,
family = "binomial",
glmnet_alpha = c(1, 0.5),
nBoot = 60,
objective = "auto",
weight_scheme = "SVEM",
relaxed = TRUE

)

# Calibration / ROC / PR
plot(fit_b, type = "calibration", bins = 12)
plot(fit_b, type = "roc")
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plot(fit_b, type = "pr")

## End(Not run)

plot.svem_model Plot Method for SVEM Models (Gaussian / Generic)

Description

Plots actual versus predicted values for an svem_model. This is the default plot for models fit with
SVEMnet(..., family = "gaussian") and any other non-binomial models that share the svem_model
class.

Usage

## S3 method for class 'svem_model'
plot(x, plot_debiased = FALSE, ...)

Arguments

x An object of class svem_model.

plot_debiased Logical; if TRUE, include debiased predictions (when available) as an additional
series. Default FALSE.

... Additional aesthetics passed to ggplot2::geom_point().

Details

Points show fitted values against observed responses; the dashed line is the 45-degree identity. If
available and requested, debiased predictions are included as a second series.

This method assumes the fitted object stores the training response in $actual_y and in-sample
predictions in $y_pred, as produced by SVEMnet() and glmnet_with_cv().

Value

A ggplot2 object.

Examples

## Not run:
## --- Gaussian example: simulate, fit, and plot --------------------------
set.seed(2026)
n <- 300
X1 <- rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
eps <- rnorm(n, sd = 0.4)
y_g <- 1.2 + 2*X1 - 0.7*X2 + 0.3*X3 + 1.1*(X1*X2) + 0.8*(X1^2) + eps
dat_g <- data.frame(y_g, X1, X2, X3)
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fit_g <- SVEMnet(
y_g ~ (X1 + X2 + X3)^2 + I(X1^2) + I(X2^2),
data = dat_g,
family = "gaussian",
glmnet_alpha = c(1, 0.5),
nBoot = 60,
objective = "auto",
weight_scheme = "SVEM",
relaxed = TRUE

)

# Actual vs predicted (with and without debias overlay)
plot(fit_g, plot_debiased = FALSE)
plot(fit_g, plot_debiased = TRUE)

## End(Not run)

plot.svem_significance_test

Plot SVEM significance test results for one or more responses

Description

Plots the Mahalanobis-like distances for original and permuted data from one or more SVEM sig-
nificance test results returned by svem_significance_test_parallel().

Usage

## S3 method for class 'svem_significance_test'
plot(x, ..., labels = NULL)

Arguments

x An object of class svem_significance_test.

... Optional additional svem_significance_test objects to include in the same
plot.

labels Optional character vector of labels for the responses. If not provided, the func-
tion uses inferred response names (from data_d$Response or x$response) and
ensures uniqueness.

Details

If additional svem_significance_test objects are provided via ..., their distance tables ($data_d)
are stacked and plotted together using a shared x-axis grouping of "Response / Source" and a fill
aesthetic indicating "Original" vs "Permutation".
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Value

A ggplot2 object showing the distributions of distances for original vs. permuted data, grouped by
response.

predict.svem_model Predict Method for SVEM Models (Gaussian and Binomial)

Description

Generate predictions from a fitted SVEM model (Gaussian or binomial), with optional bootstrap
uncertainty and family-appropriate output scales.

Usage

## S3 method for class 'svem_model'
predict(
object,
newdata,
type = c("response", "link", "class"),
debias = FALSE,
se.fit = FALSE,
interval = FALSE,
level = 0.95,
...

)

Arguments

object A fitted SVEM model (class svem_model; binomial models typically also inherit
class svem_binomial). Created by SVEMnet().

newdata A data frame of new predictor values.

type (Binomial only) One of:

• "response" (default): predicted probabilities in [0, 1].
• "link": linear predictor (log-odds).
• "class": 0/1 class labels (threshold 0.5). Uncertainty summaries are not

available for this type.

Ignored for Gaussian models.

debias (Gaussian only) Logical; default FALSE. If TRUE, apply the linear calibration fit
lm(y ~ y_pred) learned at training when available. Ignored (and internally set
to FALSE) for binomial models.

se.fit Logical; if TRUE, return bootstrap standard errors computed from member pre-
dictions (requires coef_matrix). Not available for type = "class". For Gaus-
sian models, this forces use of bootstrap member predictions instead of aggre-
gate coefficients.
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interval Logical; if TRUE, return percentile confidence limits from member predictions
(requires coef_matrix). Not available for type = "class". For Gaussian mod-
els, this forces use of bootstrap member predictions instead of aggregate coeffi-
cients.

level Confidence level for percentile intervals. Default 0.95.
... Currently unused.

Details

This method dispatches on object$family:

• Gaussian: returns predictions on the response (identity) scale. Optional linear calibration
("debias") learned at training may be applied.

• Binomial: supports glmnet-style type = "link", "response", or "class" predictions. No
debiasing is applied; type = "response" returns probabilities in [0, 1].

Uncertainty summaries (se.fit, interval) and all binomial predictions are based on per-bootstrap
member predictions obtained from the coefficient matrix stored in object$coef_matrix. If coef_matrix
is NULL, these options are not available (and binomial prediction will fail). For Gaussian models
with se.fit = FALSE and interval = FALSE, predictions are computed directly from the aggre-
gated coefficients.

Value

If se.fit = FALSE and interval = FALSE:

• Gaussian: a numeric vector of predictions on the response (identity) scale.
• Binomial: a numeric vector for type = "response" (probabilities) or type = "link" (log-

odds), or an integer vector of 0/1 labels for type = "class".

If se.fit and/or interval are TRUE (and type != "class"), a list with components:

• fit: predictions on the requested scale.
• se.fit: bootstrap standard errors (when se.fit = TRUE).
• lwr, upr: percentile confidence limits (when interval = TRUE).

Rows containing unseen or missing factor levels produce NA predictions (and NA SEs/intervals), with
a warning.

Design-matrix reconstruction

The function rebuilds the design matrix for newdata to match the training design:

• Uses the training terms (with environment set to baseenv()).
• Harmonizes factor and character predictors to the training xlevels.
• Reuses stored per-factor contrasts when available; otherwise falls back to saved global con-

trast options.
• Zero-fills any columns present at training but absent in newdata, and reorders columns to

match the training order.

Rows containing unseen factor levels yield NA predictions (with a warning).
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Aggregation and debiasing

For Gaussian SVEM models:

Point predictions When se.fit = FALSE and interval = FALSE, predictions are computed from
the aggregated coefficients saved at fit time (object$parms; or object$parms_debiased
when debias = TRUE). This is algebraically equivalent to averaging member predictions when
the coefficients were formed as bootstrap means.

Bootstrap-based summaries When se.fit = TRUE and/or interval = TRUE, predictions are com-
puted from per-bootstrap member predictions using object$coef_matrix. For debias =
TRUE, the linear calibration is applied to member predictions before summarizing.

For binomial SVEM models, predictions are always aggregated from member predictions on the
requested scale (probability or link) using coef_matrix; the stored coefficient averages (parms,
parms_debiased) are retained for diagnostics but are not used in prediction. The debias argument
is ignored and treated as FALSE for binomial models.

For Gaussian fits, if debias = TRUE and a calibration model lm(y ~ y_pred) was learned at training,
predictions (and, when applicable, member predictions) are transformed by that calibration. This
debiasing is never applied for binomial fits.

Uncertainty

When se.fit = TRUE, standard errors are computed as the row-wise standard deviations of member
predictions on the requested scale. When interval = TRUE, percentile intervals are computed from
member predictions on the requested scale, using the requested level. Both require a non-null
coef_matrix. For type = "class" (binomial), uncertainty summaries are not available.

See Also

SVEMnet

Examples

## ---- Gaussian example -------------------------------------------------
set.seed(1)
n <- 60
X1 <- rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
y <- 1 + 0.8 * X1 - 0.6 * X2 + 0.2 * X3 + rnorm(n, 0, 0.4)
dat <- data.frame(y, X1, X2, X3)

fit_g <- SVEMnet(
y ~ (X1 + X2 + X3)^2, dat,
nBoot = 40, glmnet_alpha = c(1, 0.5),
relaxed = TRUE, family = "gaussian"

)

## Aggregate-coefficient predictions (with and without debiasing)
p_g <- predict(fit_g, dat) # debias = FALSE (default)
p_gd <- predict(fit_g, dat, debias = TRUE) # apply calibration, if available

## Bootstrap-based uncertainty (requires coef_matrix)
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out_g <- predict(
fit_g, dat,
debias = TRUE,
se.fit = TRUE,
interval = TRUE,
level = 0.90

)
str(out_g)

## ---- Binomial example ------------------------------------------------
set.seed(2)
n <- 120
X1 <- rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
eta <- -0.3 + 1.1 * X1 - 0.8 * X2 + 0.5 * X1 * X3
p <- plogis(eta)
yb <- rbinom(n, 1, p)
db <- data.frame(yb = yb, X1 = X1, X2 = X2, X3 = X3)

fit_b <- SVEMnet(
yb ~ (X1 + X2 + X3)^2, db,
nBoot = 50, glmnet_alpha = c(1, 0.5),
relaxed = TRUE, family = "binomial"

)

## Probabilities, link, and classes
p_resp <- predict(fit_b, db, type = "response")
p_link <- predict(fit_b, db, type = "link")
y_hat <- predict(fit_b, db, type = "class") # 0/1 labels (no SE or interval)

## Bootstrap-based uncertainty on the probability scale
out_b <- predict(

fit_b, db,
type = "response",
se.fit = TRUE,
interval = TRUE,
level = 0.90

)
str(out_b)

predict_cv Predict from glmnet_with_cv Fits (svem_cv Objects)

Description

Generate predictions from a fitted object returned by glmnet_with_cv() (class "svem_cv").
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Usage

predict_cv(object, newdata, debias = FALSE, strict = FALSE, ...)

## S3 method for class 'svem_cv'
predict(object, newdata, debias = FALSE, strict = FALSE, ...)

Arguments

object A fitted object returned by glmnet_with_cv() (class "svem_cv").

newdata A data frame of new predictor values.

debias Logical; if TRUE and a debiasing fit is available, apply it. Has an effect only for
Gaussian models where debias_fit is present.

strict Logical; if TRUE, enforce a strict column-name match between the aligned de-
sign for newdata and the training design (including the intercept position). De-
fault FALSE.

... Additional arguments (currently unused).

Details

The design matrix for newdata is rebuilt using the stored training terms (with environment set to
baseenv()), together with the saved factor xlevels and contrasts (cached in object$schema).
Columns are then aligned back to the training design in a robust way:

• Any training columns that model.matrix() drops for newdata (for example, a factor collaps-
ing to a single level) are added back as zero columns.

• Columns are reordered to exactly match the training order.

• Rows containing unseen factor/character levels are warned about and their predictions are set
to NA.

For Gaussian fits (family = "gaussian"), the returned values are on the original response (identity-
link) scale. For binomial fits (family = "binomial"), the returned values are probabilities in [0,1]
(logit-link inverted via plogis()).

If debias = TRUE and a calibration model lm(y ~ y_pred) is present with a finite slope, predictions
are adjusted via a + b * pred. Debiasing is only fitted and used for Gaussian models; for binomial
models the debias argument has no effect.

predict_cv() is a small convenience wrapper that simply calls the underlying S3 method predict.svem_cv(),
keeping a single code path for prediction from glmnet_with_cv() objects.

Value

A numeric vector of predictions on the response scale: numeric fitted values for Gaussian models;
probabilities in [0,1] for binomial models. Rows with unseen factor/character levels return NA.
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Examples

set.seed(1)
n <- 50; p <- 5
X <- matrix(rnorm(n * p), n, p)
y <- X[, 1] - 0.5 * X[, 2] + rnorm(n)
df_ex <- data.frame(y = as.numeric(y), X)
colnames(df_ex) <- c("y", paste0("x", 1:p))

fit <- glmnet_with_cv(
y ~ ., df_ex,
glmnet_alpha = 1,
nfolds = 5,
repeats = 2,
seed = 9,
family = "gaussian"

)

preds_raw <- predict_cv(fit, df_ex)
preds_db <- predict_cv(fit, df_ex, debias = TRUE)
cor(preds_raw, df_ex$y)

# Binomial example (probability predictions on [0,1] scale)
set.seed(2)
n2 <- 80; p2 <- 4
X2 <- matrix(rnorm(n2 * p2), n2, p2)
eta2 <- X2[, 1] - 0.8 * X2[, 2]
pr2 <- plogis(eta2)
y2 <- rbinom(n2, size = 1, prob = pr2)
df_bin <- data.frame(y = y2, X2)
colnames(df_bin) <- c("y", paste0("x", 1:p2))

fit_bin <- glmnet_with_cv(
y ~ ., df_bin,
glmnet_alpha = c(0.5, 1),
nfolds = 5,
repeats = 2,
seed = 11,
family = "binomial"

)

prob_hat <- predict_cv(fit_bin, df_bin)
summary(prob_hat)

print.bigexp_spec Print method for bigexp_spec objects

Description

This print method shows a compact summary of the expansion settings and the predictors that are
treated as continuous or categorical. It also reports any variables that were designated as blocking
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factors and therefore enter the model only additively (no interactions, no polynomials).

Usage

## S3 method for class 'bigexp_spec'
print(x, ...)

Arguments

x A "bigexp_spec" object.

... Unused.

Examples

set.seed(1)
df4 <- data.frame(

y = rnorm(10),
X1 = rnorm(10),
G = factor(sample(c("A", "B"), 10, replace = TRUE))

)

spec4 <- bigexp_terms(
y ~ X1 + G,
data = df4,
factorial_order = 2,
polynomial_order = 2

)

print(spec4)

## Example with a blocking factor:
set.seed(2)
df_block2 <- data.frame(

y = rnorm(12),
X1 = rnorm(12),
G = factor(sample(c("A", "B"), 12, replace = TRUE)),
Operator = factor(sample(letters[1:3], 12, replace = TRUE)),
AmbientTemp = rnorm(12, mean = 22, sd = 1.5)

)

spec_block2 <- bigexp_terms(
y ~ X1 + G,
data = df_block2,
factorial_order = 2,
polynomial_order = 3,
blocking = c("Operator", "AmbientTemp")

)

print(spec_block2)
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print.svem_significance_test

Print Method for SVEM Significance Test

Description

Prints the median p-value from an object of class svem_significance_test.

Usage

## S3 method for class 'svem_significance_test'
print(x, ...)

Arguments

x An object of class svem_significance_test.

... Additional arguments (unused).

SVEMnet Fit an SVEMnet model (Self-Validated Ensemble Elastic Net)

Description

Fit a Self-Validated Ensemble Model (SVEM) with elastic net or relaxed elastic net base learners us-
ing glmnet. Fractional random-weight (FRW) train/validation weights are drawn on each bootstrap
replicate, a validation-weighted information criterion (wAIC, wBIC, or wSSE) is minimized to se-
lect the penalty, and predictions are ensembled across replicates. Gaussian and binomial responses
are supported.

Usage

SVEMnet(
formula,
data,
nBoot = 200,
glmnet_alpha = c(0.5, 1),
weight_scheme = c("SVEM", "FRW_plain", "Identity"),
objective = c("auto", "wAIC", "wBIC", "wSSE"),
relaxed = "auto",
response = NULL,
unseen = c("warn_na", "error"),
family = c("gaussian", "binomial"),
...

)
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Arguments

formula A formula specifying the model to be fitted, or a bigexp_spec created by bigexp_terms().
data A data frame containing the variables in the model.
nBoot Integer. Number of bootstrap replicates (default 200). Each replicate draws

FRW weights and fits a glmnet path.
glmnet_alpha Numeric vector of elastic net mixing parameters alpha in [0, 1]. alpha = 1 is

lasso, alpha = 0 is ridge. Defaults to c(0.5, 1). When relaxed = TRUE, alpha
= 0 is automatically dropped (ridge + relaxed is not used).

weight_scheme Character. Weighting scheme for train/validation copies. One of:
• "SVEM" (default): Self-Validated Ensemble Model weights. For each repli-

cate and row, a shared uniform draw U_i ~ Unif(0, 1) is converted to
anti-correlated FRW weights w_train_i = -log(U_i) and w_valid_i =
-log(1 - U_i). Each weight vector is then rescaled to have mean 1 (sum
n).

• "FRW_plain": Fractional random-weight regression without a separate val-
idation copy. A single FRW vector w_i = -log(U_i) is used for both train-
ing and validation and rescaled to have mean 1 (sum n). This reproduces
the FRW bootstrap regression of Xu et al. (2020) and related work.

• "Identity": Uses unit weights for both training and validation (no resam-
pling). In combination with nBoot = 1 this wraps a single glmnet fit and
selects the penalty by the chosen information criterion, while still using
SVEMnet’s expansion and diagnostics.

objective Character. One of "auto", "wAIC", "wBIC", or "wSSE".
• "wAIC": Gaussian AIC-like criterion based on the weighted SSE.
• "wBIC": Gaussian BIC-like criterion based on the weighted SSE.

See Details for the exact criteria in the Gaussian and binomial cases.
relaxed Logical or character. Default "auto". If TRUE, use glmnet’s relaxed elastic-net

path and select both the penalty lambda and the relaxed refit parameter gamma on
each bootstrap. If FALSE, fit the standard glmnet path without the relaxed step.
If "auto" (default), SVEMnet uses relaxed = TRUE for family = "gaussian"
and relaxed = FALSE for family = "binomial".

response Optional character. When formula is a bigexp_spec, this names the response
column to use on the left-hand side. Defaults to the response stored in the spec.

unseen How to treat factor levels not seen in the original bigexp_spec when formula
is a bigexp_spec. One of "warn_na" (default; convert unseen levels to NA with
a warning) or "error" (stop with an error).

family Character. One of "gaussian" (default) or "binomial". For Gaussian models
SVEMnet uses the identity link; for binomial it uses the canonical logit link.
The binomial response must be numeric 0/1, logical, or a factor with exactly
two levels (the second level is treated as 1).

... Additional arguments passed to glmnet(), such as penalty.factor, lower.limits,
upper.limits, offset, or standardize.response. Any user-supplied weights
are ignored (SVEMnet supplies its own bootstrap weights). Any user-supplied
standardize is ignored; SVEMnet always calls glmnet with standardize =
TRUE.
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Details

You can pass either:

• a standard model formula, e.g., y ~ X1 + X2 + X3 + I(X1^2) + (X1 + X2 + X3)^2, or

• a bigexp_spec created by bigexp_terms(), in which case SVEMnet will build the design
matrix deterministically (locked types, levels, and contrasts) and, if requested, swap the re-
sponse to fit multiple independent responses over the same expansion.

SVEMnet implements Self-Validated Ensemble Models using elastic net and relaxed elastic net
base learners from glmnet. Each bootstrap replicate draws fractional random weights, builds a train
and validation copy, fits a path over lambda (and optionally over alpha and relaxed gamma), and
selects a path point by minimizing a validation-weighted criterion. Final predictions are obtained
by averaging replicate predictions on the chosen scale.

By default, relaxed = "auto" resolves to TRUE for Gaussian fits and FALSE for binomial fits.

The function is typically used in small-n design-of-experiments (DOE) workflows where classi-
cal train/validation splits and cross-validation can be unstable. A common pattern is: (1) build
a deterministic expansion with bigexp_terms(), (2) fit SVEM models via SVEMnet(), (3) per-
form whole-model significance testing, and (4) call svem_score_random() for constrained multi-
response optimization.

Weighting schemes:

• With weight_scheme = "SVEM", SVEMnet uses a pair of anti-correlated FRW vectors for train
and validation. All rows appear in every replicate, but train and validation contributions are
separated through the shared uniform draws.

• With weight_scheme = "FRW_plain", a single FRW vector is used for both train and valida-
tion, which reproduces FRW regression without a self-validation split. This is mainly provided
for method comparison and teaching.

• With weight_scheme = "Identity", both train and validation weights are 1. Setting nBoot =
1 in this mode yields a single glmnet fit whose penalty is chosen by the selected information
criterion, without any bootstrap variation.

Selection criteria (Gaussian): For family = "gaussian", the validation loss is a weighted sum of
squared errors on the validation copy. Let SSEw =

∑
i w

valid
i r2i denote the weighted SSE. The

criteria are:

• "wSSE": loss-only selector that minimizes the weighted SSE SSEw,

• "wAIC": Gaussian AIC analog C(λ) = n log{SSEw(λ)/n}+ 2k,

• "wBIC": Gaussian BIC analog C(λ) = n log{SSEw(λ)/n}+ log(neffadm) k.

The FRW validation weights are rescaled to have mean one, so that their sum is always
∑

i w
valid
i =

n. The AIC/BIC analogs therefore use n log(SSEw/n) as the Gaussian loss term, while the "wSSE"
selector uses SSEw directly.

The effective validation size is computed from the FRW weights using Kish’s effective sample size
neff = (

∑
i w

valid
i )2/

∑
i(w

valid
i )2 and then truncated to lie between 2 and n to form neffadm.

The AIC-style selector uses a 2k penalty; the BIC-style selector uses a log(neffadm)k penalty, so
that the loss term is scaled by total validation weight while the complexity penalty reflects the effec-
tive amount of information under unequal weights. For "wAIC" and "wBIC", path points with more
than neffadm non-intercept coefficients are treated as inadmissible when evaluating the criterion.
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Because the FRW validation weights are random rather than fixed design weights, these information-
criterion scores are used heuristically for relative model comparison within each FRW replicate,
rather than as exact AIC/BIC values.

For diagnostics, SVEMnet reports the raw Kish effective sizes across bootstraps (see diagnostics$n_eff_summary),
while neffadm is used internally in the penalty and model-size guardrail. Near-interpolating path
points are screened out via a simple model size guardrail before minimization. When objective =
"auto", SVEMnet uses "wAIC".

This structure (pseudo-likelihood using total weight and BIC penalty using a Kish-type effective
sample size) parallels survey-weighted information criteria as in Lumley and Scott (2015) and Kish
(1965).

Selection criteria (binomial): For family = "binomial", the validation loss is the weighted negative
log-likelihood on the FRW validation copy (equivalently, proportional to the binomial deviance up
to a constant factor). Let NLL denote the weighted negative log-likelihood. The same labels are
used:

• "wSSE": loss-only selector based on NLL (the name is retained for backward compatibility),
• "wAIC": deviance-style criterion C(λ) = 2NLL(λ) + 2k,
• "wBIC": deviance-style criterion C(λ) = 2NLL(λ) + log(neffadm) k.

The effective validation size neffadm and the model size guardrail are handled as in the Gaussian
case: for "wAIC" and "wBIC" we compute a Kish effective size from the FRW validation weights,
truncate it to lie between 2 and n, and require the number of nonzero coefficients (excluding the
intercept) to be less than this effective size when evaluating the criterion.

Auto rule: When objective = "auto", SVEMnet selects the criterion by family:

• family = "gaussian" -> "wAIC"

• family = "binomial" -> "wBIC"

Relaxed elastic net: When relaxed = TRUE, SVEMnet calls glmnet with relax = TRUE and traverses
a small grid of relaxed refit values (gamma). For each alpha and gamma, SVEMnet evaluates all
lambda path points on the validation copy and records the combination that minimizes the selected
criterion. Model size is always defined as the number of nonzero coefficients including the intercept,
so standard and relaxed paths are scored on the same scale.

Gaussian debiasing: For Gaussian models, SVEMnet optionally performs a simple linear calibration
of ensemble predictions on the training data. When there is sufficient variation in the fitted values
and nBoot is at least 10, the function fits lm(y ~ y_pred) and uses the coefficients to construct
debiased coefficients and debiased fitted values. Binomial fits do not use debiasing; predictions are
ensembled on the probability or link scale directly.

Implementation notes:

• Predictors are always standardized internally via glmnet(..., standardize = TRUE).
• The terms object is stored with its environment set to baseenv() so that prediction does not

accidentally capture objects from the calling environment.
• A compact schema (feature names, factor levels, contrasts, and a simple hash) is stored to

allow predict() and companion functions to rebuild model matrices deterministically, even
when the original data frame is not available.

• A separate sampling schema stores raw predictor ranges and factor levels for use in random
candidate generation for optimization.
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Value

An object of class "svem_model" (and "svem_binomial" when family = "binomial") with com-
ponents:

• parms: Vector of ensemble-averaged coefficients, including the intercept.

• parms_debiased: Vector of coefficients after optional debiasing (see Details; Gaussian only).

• debias_fit: If debiasing was performed, the calibration model lm(y ~ y_pred); otherwise
NULL.

• coef_matrix: Matrix of per-bootstrap coefficients (rows = bootstraps, columns = intercept
and predictors).

• nBoot: Number of bootstrap replicates actually used.

• glmnet_alpha: Vector of alpha values considered.

• best_alphas: Per-bootstrap alpha selected by the criterion.

• best_lambdas: Per-bootstrap lambda selected by the criterion.

• best_relax_gammas: Per-bootstrap relaxed gamma selected when relaxed = TRUE; NA oth-
erwise.

• weight_scheme: The weighting scheme that was used.

• relaxed: Logical flag indicating whether relaxed paths were used.

• relaxed_input: The user-supplied value for relaxed (one of TRUE, FALSE, or "auto"). The
resolved flag actually used is reported in relaxed.

• dropped_alpha0_for_relaxed: Logical; TRUE if alpha = 0 was dropped because relaxed
= TRUE.

• objective_input: The objective requested by the user.

• objective_used: The objective actually used after applying the "auto" rule (for example
"wAIC" or "wBIC").

• objective: Same as objective_used (for convenience).

• auto_used: Logical; TRUE if objective = "auto".

• auto_decision: The objective selected by the auto rule (wAIC or wBIC) when auto_used =
TRUE.

• diagnostics: List with summary information, including:

– k_summary: Median and IQR of selected model size (number of nonzero coefficients
including intercept).

– fallback_rate: Proportion of bootstraps that fell back to an intercept-only fit.
– n_eff_summary: Summary of raw Kish effective validation sizes neff = (

∑
i w

valid
i )2/

∑
i(w

valid
i )2

across bootstraps (before truncation to form neffadm).
– alpha_freq: Relative frequency of selected alpha values (if any).
– relax_gamma_freq: Relative frequency of selected relaxed gamma values (if relaxed =
TRUE and any were selected).

• actual_y: Numeric response vector used in fitting (0/1 for binomial).

• training_X: Numeric model matrix without the intercept column used for training.
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• y_pred: Fitted values from the ensemble on the training data. For Gaussian this is on the
response scale; for binomial it is on the probability scale.

• y_pred_debiased: Debiased fitted values on the training data (Gaussian only); NULL other-
wise.

• nobs: Number of observations used in fitting.

• nparm: Number of parameters in the full expansion (intercept plus predictors).

• formula: The formula used for fitting (possibly derived from a bigexp_spec).

• terms: terms object used for building the design matrix, with environment set to baseenv()
for safety.

• xlevels: Factor levels recorded at training time.

• contrasts: Contrasts used for building the design matrix.

• schema: Compact description for safe prediction, including feature_names, terms_str,
xlevels, contrasts, contrasts_options, and a simple hash.

• sampling_schema: Schema used to generate random candidate tables, including predictor
names, variable classes, numeric ranges, and factor levels.

• used_bigexp_spec: Logical flag indicating whether a bigexp_spec was used.

• family: The fitted family ("gaussian" or "binomial").
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Examples

set.seed(42)

n <- 30
X1 <- rnorm(n)
X2 <- rnorm(n)
X3 <- rnorm(n)
eps <- rnorm(n, sd = 0.5)
y <- 1 + 2 * X1 - 1.5 * X2 + 0.5 * X3 + 1.2 * (X1 * X2) +

0.8 * (X1^2) + eps
dat <- data.frame(y, X1, X2, X3)

# Minimal hand-written expansion
mod_relax <- SVEMnet(

y ~ (X1 + X2 + X3)^2 + I(X1^2) + I(X2^2),
data = dat,
glmnet_alpha = c(1, 0.5),
nBoot = 75,
objective = "auto",
weight_scheme = "SVEM",
relaxed = FALSE

)

pred_in_raw <- predict(mod_relax, dat, debias = FALSE)
pred_in_db <- predict(mod_relax, dat, debias = TRUE)

# ---------------------------------------------------------------------------
# Big expansion (full factorial + polynomial surface + partial-cubic crosses)
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# Build once, reuse for one or more responses
# ---------------------------------------------------------------------------
spec <- bigexp_terms(

y ~ X1 + X2 + X3,
data = dat,
factorial_order = 3,
polynomial_order = 3,
include_pc_3way = FALSE

)

# Fit using the spec (auto-prepares data)
fit_y <- SVEMnet(

spec, dat,
glmnet_alpha = c(1, 0.5),
nBoot = 50,
objective = "auto",
weight_scheme = "SVEM"

)

# A second, independent response over the same expansion
set.seed(99)
dat$y2 <- 0.5 + 1.4 * X1 - 0.6 * X2 + 0.2 * X3 + rnorm(n, 0, 0.4)
fit_y2 <- SVEMnet(

spec, dat, response = "y2",
glmnet_alpha = c(1, 0.5),
nBoot = 50,
objective = "auto",
weight_scheme = "SVEM"

)

svem_nonzero(fit_y2)

p1 <- predict(fit_y, dat)
p2 <- predict(fit_y2, dat, debias = TRUE)

# Show that a new batch expands identically under the same spec
newdat <- data.frame(

y = y,
X1 = X1 + rnorm(n, 0, 0.05),
X2 = X2 + rnorm(n, 0, 0.05),
X3 = X3 + rnorm(n, 0, 0.05)

)
prep_new <- bigexp_prepare(spec, newdat)
stopifnot(identical(

colnames(model.matrix(spec$formula, bigexp_prepare(spec, dat)$data)),
colnames(model.matrix(spec$formula, prep_new$data))

))
preds_new <- predict(fit_y, prep_new$data)

## Binomial example
set.seed(2)
n <- 120
X1 <- rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
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eta <- -0.3 + 1.1 * X1 - 0.8 * X2 + 0.5 * X1 * X3
p <- plogis(eta)
yb <- rbinom(n, 1, p)
db <- data.frame(yb = yb, X1 = X1, X2 = X2, X3 = X3)

fit_b <- SVEMnet(
yb ~ (X1 + X2 + X3)^2, db,
nBoot = 50,
glmnet_alpha = c(1, 0.5),
family = "binomial"

)

## Probabilities, link, and classes
p_resp <- predict(fit_b, db, type = "response")
p_link <- predict(fit_b, db, type = "link")
y_hat <- predict(fit_b, db, type = "class") # 0/1 labels

## Mean aggregation with uncertainty on probability scale
out_b <- predict(

fit_b, db,
type = "response",
se.fit = TRUE,
interval = TRUE,
level = 0.9

)
str(out_b)

#' ## Example with blocking (requires SVEMnet to store sampling_schema$blocking)
set.seed(2)
df_block <- data.frame(

y1 = rnorm(40),
y2 = rnorm(40),
X1 = runif(40),
X2 = runif(40),
Operator = factor(sample(paste0("Op", 1:3), 40, TRUE)),
AmbientTmp = rnorm(40, mean = 22, sd = 2)

)

spec_block <- bigexp_terms(
y1 ~ X1 + X2,
data = df_block,
factorial_order = 2,
polynomial_order = 2,
blocking = c("Operator", "AmbientTmp")

)

fit_b1 <- SVEMnet(spec_block, df_block, response = "y1", nBoot = 30)
fit_b2 <- SVEMnet(spec_block, df_block, response = "y2", nBoot = 30)

tab_block <- svem_random_table_multi(list(fit_b1, fit_b2), n = 500)
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svem_export_candidates_csv

Export SVEM candidate sets to CSV

Description

Given one or more selection objects returned by svem_select_from_score_table, concatenate
their $best rows and $candidates and export a CSV suitable for planning new experimental runs.

Each row is tagged with:

• candidate_type: "best" or "medoid".

• selection_label: derived from the label argument used in svem_select_from_score_table()
when available.

The function does not modify any response or prediction columns (for example, Potency, Potency_pred);
it simply harmonizes columns across inputs (adding NA-filled columns where necessary), concate-
nates rows, and reorders a few metadata columns for readability.

Any columns named candidate_type, selection_label, or Notes_from_SVEMnet that are present
in the final data frame are moved to the leftmost positions in that order.

Usage

svem_export_candidates_csv(
...,
file = NULL,
overwrite = FALSE,
write_file = TRUE

)

Arguments

... One or more objects returned by svem_select_from_score_table. You may
also pass a single list of such objects.

file Character scalar; path to the CSV file to be written. Required only when write_file
= TRUE.

overwrite Logical; if FALSE (default) and file already exists, an error is thrown. If TRUE,
any existing file at file is overwritten. Only used when write_file = TRUE.

write_file Logical; if TRUE (default), write the combined table to file as CSV and print
the full path. If FALSE, no file is written and file may be NULL; the concatenated
data.frame is still returned (invisibly).

Value

Invisibly, the data.frame that was written to CSV (or would be written, when write_file =
FALSE).
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Examples

# 1) Load example data
data(lipid_screen)

# 2) Build a deterministic expansion using bigexp_terms()
spec <- bigexp_terms(

Potency ~ PEG + Helper + Ionizable + Cholesterol +
Ionizable_Lipid_Type + N_P_ratio + flow_rate,

data = lipid_screen,
factorial_order = 3, # up to 3-way interactions
polynomial_order = 3, # include up to cubic terms I(X^2), I(X^3)
include_pc_2way = TRUE,
include_pc_3way = FALSE

)

# 3) Shared deterministic expansion for all three responses
form_pot <- bigexp_formula(spec, "Potency")
form_siz <- bigexp_formula(spec, "Size")
form_pdi <- bigexp_formula(spec, "PDI")

# 4) Fit SVEM models
set.seed(1)
fit_pot <- SVEMnet(form_pot, lipid_screen)
fit_siz <- SVEMnet(form_siz, lipid_screen)
fit_pdi <- SVEMnet(form_pdi, lipid_screen)

objs <- list(Potency = fit_pot, Size = fit_siz, PDI = fit_pdi)

# 5) Multi-response goals (DS desirabilities under the hood)
goals <- list(

Potency = list(goal = "max", weight = 0.6),
Size = list(goal = "min", weight = 0.3),
PDI = list(goal = "min", weight = 0.1)

)

# 6) Mixture constraints on the four lipid components
mix <- list(list(

vars = c("PEG", "Helper", "Ionizable", "Cholesterol"),
lower = c(0.01, 0.10, 0.10, 0.10),
upper = c(0.05, 0.60, 0.60, 0.60),
total = 1.0

))

# 7) Optional process-mean specifications for a design-space example
specs_ds <- list(

Potency = list(lower = 78),
Size = list(upper = 100),
PDI = list(upper = 0.25)

)

# 8) Random-search scoring (predictions stored in *_pred columns)
set.seed(3)
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scored <- svem_score_random(
objects = objs,
goals = goals,
data = lipid_screen,
n = 2500,
mixture_groups = mix,
level = 0.95,
combine = "geom",
numeric_sampler = "random",
specs = specs_ds,
verbose = FALSE

)

# 9) Build several selection objects from the scored table

# High-score optimal medoids (user-weighted score)
opt_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "score",
direction = "max",
k = 5,
top_type = "frac",
top = 0.02,
label = "round1_score_optimal"

)

# High-uncertainty exploration medoids
explore_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "uncertainty_measure",
direction = "max",
k = 5,
top_type = "frac",
top = 0.05,
label = "round1_explore"

)

# High joint mean-in-spec medoids (design-space view)
inspec_sel <- svem_select_from_score_table(

score_table = scored$score_table,
target = "p_joint_mean",
direction = "max",
k = 5,
top_type = "frac",
top = 0.10,
label = "round1_inspec"

)

# Best existing screened run (from original_data_scored; k <= 0 -> no medoids)
best_existing <- svem_select_from_score_table(

score_table = scored$original_data_scored,
target = "score",
direction = "max",
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k = 0,
top_type = "frac",
top = 1.0,
label = "round1_existing_best"

)

# 10) Combine all selection objects in a single list
candidate_sels <- list(

opt_sel,
explore_sel,
inspec_sel,
best_existing

)

# 11a) Export all candidates to CSV for the next experimental round
# svem_export_candidates_csv(
# candidate_sels,
# file = "lipid_screen_round1_candidates.csv",
# overwrite = FALSE,
# write_file = TRUE
# )

# 11b) Or inspect the combined table in-memory without writing a file
cand_tbl <- svem_export_candidates_csv(

candidate_sels,
write_file = FALSE

)
head(cand_tbl)

# 11c) Alternatively, pass selection objects directly as separate arguments
cand_tbl2 <- svem_export_candidates_csv(

opt_sel,
explore_sel,
inspec_sel,
best_existing,
write_file = FALSE

)
head(cand_tbl2)

svem_nonzero Coefficient Nonzero Percentages (SVEM)

Description

Summarizes variable-selection stability across SVEM bootstrap refits by computing the percentage
of bootstrap iterations in which each coefficient (excluding the intercept) is nonzero, using a small
tolerance. Optionally produces a quick ggplot2 summary and/or prints a compact table.
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Usage

svem_nonzero(object, tol = 1e-07, plot = TRUE, print_table = TRUE, ...)

Arguments

object An object of class svem_model with a non-empty $coef_matrix component.
svem_nonzero() is not defined for svem_cv objects.

tol Numeric tolerance for "nonzero". Coefficients with |beta| > tol are counted
as nonzero. Default is 1e-7.

plot Logical; if TRUE, draws a quick ggplot2 summary plot of the nonzero percent-
ages (default TRUE).

print_table Logical; if TRUE, prints a compact table of nonzero percentages to the console
(default TRUE).

... Unused; included for future extension.

Details

This function expects object$coef_matrix to contain the per-bootstrap coefficients (including an
intercept column), typically created by SVEMnet when save_boot = TRUE (or similar) is enabled.
Rows correspond to bootstrap fits; columns correspond to coefficients.

Internally, svem_nonzero():

• checks for and drops rows of coef_matrix that contain any non-finite values, to keep sum-
maries stable;

• drops an "(Intercept)" column if present;

• computes 100 * mean(|beta_j| > tol) across bootstrap rows for each remaining coefficient.

The plot is a simple line + point chart with labels, ordered by decreasing nonzero percentage. It is
intended as a quick diagnostic; for publication graphics, you may want to customize the output data
frame with your own plotting code.

Value

Invisibly returns a data frame with columns:

• Variable: coefficient name (excluding the intercept).

• Percent of Bootstraps Nonzero: percentage (0–100) of bootstrap fits in which |beta| >
tol.

If no non-intercept coefficients are found (for example, if only the intercept is present), an empty
data frame is returned and a message is issued.

See Also

coef.svem_model for ensemble-averaged (optionally debiased) coefficients.
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Examples

## ---------- Gaussian demo ----------
set.seed(10)
n <- 220
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
eps <- rnorm(n, sd = 0.4)
y <- 0.7 + 1.5*x1 - 0.8*x2 + 0.05*x3 + eps
dat <- data.frame(y, x1, x2, x3)

fit <- SVEMnet(y ~ (x1 + x2 + x3)^2, data = dat,
nBoot = 40, relaxed = TRUE)

# Table + plot of bootstrap nonzero percentages
nz <- svem_nonzero(fit, tol = 1e-7, plot = TRUE, print_table = TRUE)
head(nz)

## ---------- Binomial demo ----------
set.seed(11)
n <- 260
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
lp <- -0.3 + 0.9*x1 - 0.6*x2 + 0.2*x3
p <- 1/(1+exp(-lp))
y <- rbinom(n, 1, p)
dat_b <- data.frame(y, x1, x2, x3)

fit_b <- SVEMnet(y ~ x1 + x2 + x3, data = dat_b,
family = "binomial", nBoot = 40, relaxed = TRUE)

# Still summarizes bootstrap selection frequencies for binomial fits
svem_nonzero(fit_b, plot = TRUE, print_table = TRUE)

svem_random_table_multi

Generate a Random Prediction Table from Multiple SVEMnet Models
(no refit)

Description

Samples the original predictor factor space cached in fitted svem_model objects and computes pre-
dictions from each model at the same random points. This is intended for multiple responses
built over the same factor space and a deterministic factor expansion (for example via a shared
bigexp_terms), so that a shared sampling schema is available.
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Usage

svem_random_table_multi(
objects,
n = 1000,
mixture_groups = NULL,
debias = FALSE,
range_tol = 1e-08,
numeric_sampler = c("random", "uniform")

)

Arguments

objects A list of fitted svem_model objects returned by SVEMnet(). Each object must
contain a valid $sampling_schema produced by the updated SVEMnet() imple-
mentation. A single model is also accepted and treated as a length-one list.

n Number of random points to generate (rows in the output tables). Default is
1000.

mixture_groups Optional list of mixture constraint groups. Each group is a list with elements
vars, lower, upper, total (see Notes on mixtures). Mixture variables must be
numeric-like and must also appear in the models’ predictor_vars (that is, they
must be used as predictors in all models).

debias Logical; if TRUE, apply each model’s calibration during prediction when avail-
able (for Gaussian fits). This is passed to predict.svem_model(). Default is
FALSE.

range_tol Numeric tolerance for comparing numeric ranges across models (used when
checking that all $sampling_schema$num_ranges agree). Default is 1e-8.

numeric_sampler

Sampler for non-mixture numeric predictors: "random" (default), or "uniform".

• "random": random Latin hypercube when the lhs package is available; oth-
erwise independent uniforms via runif().

• "uniform": independent uniform draws within numeric ranges (fastest; no
lhs dependency).

Details

No refitting is performed. Predictions are obtained by averaging per-bootstrap member predictions
on the requested scale.

All models must share an identical predictor schema. Specifically, their $sampling_schema entries
must agree on:

• The same predictor_vars in the same order.

• The same var_classes for each predictor.

• Identical factor levels and level order for all categorical predictors.

• Numeric num_ranges that match within range_tol for all continuous predictors.

• When present, the same blocking set (up to order).
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The function stops with an informative error message if any of these checks fail.

Discrete numeric predictors (automatic). If any supplied model stores discrete-numeric sampling
information in its $sampling_schema, this function will automatically respect it (no separate user
argument).

In the updated SVEMnet() implementation this information is stored as:

• $sampling_schema$discrete_numeric: a character vector of discrete numeric variable names;
and

• $sampling_schema$discrete_levels: a named list mapping those names to allowed nu-
meric values.

(Older objects may use $sampling_schema$discrete_values instead of discrete_levels; this
function accepts both for backward compatibility.)

Discrete numeric variables are sampled independently (uniform over allowed values) and are ex-
cluded from Latin hypercube sampling; LHS (when used) is applied only to the remaining continu-
ous numeric predictors. Discrete numeric variables are not allowed to be mixture variables.

Models may be Gaussian or binomial. For binomial fits, predictions are returned on the prob-
ability scale (that is, on the response scale) by default, consistent with the default behaviour of
predict.svem_model().

Value

A list with three data frames:

• data: the sampled predictor settings, one row per random point.

• pred: one column per response, aligned to data rows.

• all: cbind(data, pred) for convenience.

Each prediction column is named by the model’s response (left-hand side) with a "_pred" suffix (for
example, "y1_pred"). If that name would collide with a predictor name or with another prediction
column, the function stops with an error and asks the user to rename the response or predictor.

Typical workflow

1. Build a deterministic expansion (for example with bigexp_terms) and fit several SVEMnet()
models for different responses on the same factor space, using the same expansion / sampling
settings.

2. Ensure that the fitted models were created with a version of SVEMnet() that populates $sampling_schema.

3. Collect the fitted models in a list and pass them to svem_random_table_multi().

4. Use $data (predictors), $pred (response columns), or $all (cbind(data, pred)) for down-
stream plotting, summarization, or cross-response comparison.

Blocking variables

If the models were fit using a bigexp_spec that included blocking variables (for example blocking
= c("Operator", "Plate_ID")) and SVEMnet() stored these in $sampling_schema$blocking,
then svem_random_table_multi() will:
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• treat those variables as blocking factors; and

• hold them fixed at a single value across the sampled table.

Specifically:

• For blocking numeric variables, the function uses the midpoint of the recorded numeric range,
(min + max) / 2, for all rows. If the variable also has stored discrete support, the midpoint is
snapped deterministically to the nearest allowed discrete value.

• For blocking categorical variables, the function uses a single reference level equal to the most
frequent observed level (mode) in the training data, with ties broken deterministically; if the
mode is unavailable, it falls back to the first stored level.

Blocking variables are not allowed to appear in mixture_groups. If any mixture group tries to use
a blocking variable, the function stops with an error.

When no blocking information is present in $sampling_schema (for example for models fit without
a bigexp_spec or without blocking), the behavior is unchanged from earlier versions: all predictors
are sampled according to the rules described under "Sampling strategy".

svem_score_random Random-search scoring for SVEM models

Description

Draw random points from the SVEM sampling schema, compute multi-response desirability scores
and (optionally) whole-model-test (WMT) reweighted scores, and attach a scalar uncertainty mea-
sure based on percentile CI widths. This function does not choose candidates; see svem_select_from_score_table
for selection and clustering.

Predictions used inside this scorer are always generated with debiasing disabled (i.e., debias =
FALSE) regardless of whether the underlying SVEM fits support calibration.

When specs is supplied, the function also attempts to append mean-level "in spec" probabilities and
related joint indicators using the SVEM bootstrap ensemble via svem_append_design_space_cols.
These quantities reflect uncertainty on the process mean at each sampled setting under the fitted
SVEM models, not unit-level predictive probabilities. If any error occurs in this spec-limit augmen-
tation, it is caught; a message may be issued when verbose = TRUE, and the affected table(s) are
returned without the spec-related columns.

Usage

svem_score_random(
objects,
goals,
data = NULL,
n = 50000,
mixture_groups = NULL,
level = 0.95,
combine = c("geom", "mean"),
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numeric_sampler = c("random", "uniform"),
wmt = NULL,
verbose = TRUE,
specs = NULL

)

Arguments

objects List of svem_model objects (from SVEMnet). When unnamed, svem_score_random()
attempts to infer response names from the left-hand sides of the model for-
mulas. Names (when present) are treated as response identifiers and should
typically match the model response names. All models must share a common
sampling schema (predictor set, factor levels, numeric ranges) compatible with
svem_random_table_multi.

goals List of per-response goal specifications. Either:

• a named list, where names may be either names(objects) or the left-hand-
side response names from the fitted models; or

• an unnamed list with the same length as objects, in which case entries are
matched to models by position.

Each goals[[response]] must be a list with at least:

• goal: one of "max", "min", "target";
• weight: nonnegative numeric weight.

For goal = "target", also provide target. Optional Derringer–Suich controls:

• For "max" or "min": lower_acceptable, upper_acceptable, shape.
• For "target": tol (symmetric), or tol_left / tol_right, and shape_left

/ shape_right.

When anchors/tolerances are not supplied, robust defaults are inferred from the
sampled table using the q0.02–q0.98 span.

data Optional data frame. When supplied (regardless of whether wmt is used), it is
scored and returned as original_data_scored, with predictions (in <resp>_pred
columns), per-response desirabilities, score (and wmt_score if applicable), and
uncertainty_measure appended. When specs is supplied and the spec-limit
augmentation succeeds, the same mean-level spec columns as in score_table
(per-response <resp>_p_in_spec_mean, <resp>_in_spec_point, and joint p_joint_mean,
joint_in_spec_point) are appended as well.

n Number of random samples to draw in the predictor space. This is the number
of rows in the sampled table used for scoring.

mixture_groups Optional mixture and simplex constraints passed to svem_random_table_multi.
Each group typically specifies mixture variable names, bounds, and a total.

level Confidence level for percentile intervals used in the CI width and uncertainty
calculations. Default 0.95.

combine How to combine per-response desirabilities into a scalar score. One of:

• "geom": weighted geometric mean (default);
• "mean": weighted arithmetic mean.
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numeric_sampler

Character string controlling how numeric predictors are sampled inside svem_random_table_multi.
One of:

• "random": Latin hypercube sampling when lhs is available, otherwise in-
dependent uniforms;

• "uniform": independent uniforms over stored numeric ranges.

wmt Optional object returned by svem_wmt_multi. When non-NULL, its multipliers
(and p_values, if present) are aligned to names(objects) and used to define
WMT weights, wmt_score. When NULL, only user weights are used and no
WMT reweighting is applied.

verbose Logical; if TRUE, print a compact summary of the run (and any WMT diagnostics
from upstream) to the console.

specs Optional named list of specification objects, one per response in objects for
which you want to define a mean-level spec constraint. Each entry should be
either NULL (no specs for that response) or a list with components:

• lower: numeric lower limit (may be -Inf, NA, or NULL for a one-sided
upper spec);

• upper: numeric upper limit (may be Inf, NA, or NULL for a one-sided lower
spec).

Names of specs, when provided, should be a subset of names(objects) or of
the model response names (left-hand sides). The specification structure matches
that used by svem_append_design_space_cols.

Details

Typical workflow: A common pattern is:

1. Fit one or more SVEMnet() models for the responses of interest.
2. Call svem_score_random() to:

• draw candidate settings in factor space,
• compute Derringer–Suich (DS) desirabilities and a combined multi-response score, and
• attach a scalar uncertainty measure derived from percentile CI widths.

3. Optionally provide specs to append mean-level "in spec" probabilities and joint indicators
based on the SVEM bootstrap ensemble (process-mean assurance).

4. Use svem_select_from_score_table to:
• select one "best" row (e.g., maximizing score or wmt_score), and
• pick a small, diverse set of medoid candidates for optimality or exploration (e.g. high
uncertainty_measure).

5. Run selected candidates, append the new data, refit the SVEM models, and repeat as needed.

Multi-response desirability scoring: Each response is mapped to a Derringer–Suich desirability
dr ∈ [0, 1] according to its goal:

• goal = "max": larger values are better;
• goal = "min": smaller values are better;
• goal = "target": values near a target are best.
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Per-response anchors (acceptable lower/upper limits or target-band tolerances) can be supplied
in goals; when not provided, robust defaults are inferred from the sampled responses using the
q0.02–q0.98 span.
Per-response desirabilities are combined into a single scalar score using either:

• a weighted arithmetic mean (combine = "mean"), or
• a weighted geometric mean (combine = "geom"), with a small floor applied inside the log to

avoid log(0).

User-provided weights in goals[[resp]]$weight are normalized to sum to one and always de-
fine weights_original and the user-weighted score.

Whole-model reweighting (WMT): When a WMT object from svem_wmt_multi is supplied
via the wmt argument, each response receives a multiplier derived from its whole-model p-value.
Final WMT weights are proportional to the product of the user weight and the multiplier, then
renormalized to sum to one:

w(final)
r ∝ w(user)

r ×mr,

where mr comes from wmt$multipliers. The user weights always define score; the WMT-
adjusted weights define wmt_score. The uncertainty measure is always weighted using the user
weights, even when WMT is supplied.
Binomial responses. If any responses are fitted with family = "binomial", supplying a non-
NULL wmt object is not allowed and the function stops with a clear error. Predictions and CI
bounds for binomial responses are interpreted on the probability (response) scale and clamped to
[0, 1] before desirability and uncertainty calculations.

Uncertainty measure: The uncertainty_measure is a weighted sum of robustly normalized
percentile CI widths across responses. For each response, we compute the bootstrap percentile CI
width CIwidthr(x) = ur(x)− ℓr(x) and then map it to the unit interval using an affine rescaling
based on the empirical q0.02 and q0.98 quantiles of the CI widths for that response (computed
from the table being scored):

W̃r(x) =
min{max(CIwidthr(x), q0.02(r)), q0.98(r)} − q0.02(r)

q0.98(r)− q0.02(r)
.

The scalar uncertainty_measure is then

uncertainty(x) =
∑
r

wr W̃r(x),

where wr are the user-normalized response weights derived from goals[[resp]]$weight. Larger
values of uncertainty_measure indicate settings where the ensemble CI is relatively wide com-
pared to the response’s typical scale and are natural targets for exploration.

Spec-limit mean-level probabilities: If specs is provided, svem_score_random() attempts
to pass the scored table and models to svem_append_design_space_cols to compute, for each
response with an active spec:

• <resp>_p_in_spec_mean: estimated probability (under the SVEM bootstrap ensemble) that
the process mean at a setting lies within the specified interval;

• <resp>_in_spec_point: 0/1 indicator that the point prediction lies within the same interval.

and joint quantities:
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• p_joint_mean: product of per-response mean-level probabilities over responses with active
specs;

• joint_in_spec_point: 0/1 indicator that all point predictions are in spec across responses
with active specs.

Names in specs may refer either to names(objects) or to the model response names; they are
automatically aligned to the fitted models.
These probabilities are defined on the conditional means at each sampled setting, not on individual
units or lots, and are best interpreted as ensemble-based assurance measures under the SVEM +
FRW pipeline. If the augmentation step fails for any reason (for example, missing predictor
columns or incompatible models), the error is caught; a message may be issued when verbose
= TRUE, and score_table and/or original_data_scored are returned without the spec-related
columns.

Value

A list with components:

score_table Data frame with predictors, predicted responses (columns <resp>_pred for each
resp in names(objects)), per-response desirabilities, score, optional wmt_score, and uncertainty_measure.
For each response r in names(objects), additional columns r_lwr, r_upr (percentile CI
bounds at level level) and r_ciw_w (weighted, normalized CI width contribution to uncertainty_measure)
are appended. When specs is supplied and the spec-limit augmentation succeeds, additional
columns <resp>_p_in_spec_mean, <resp>_in_spec_point, p_joint_mean, and joint_in_spec_point
are appended.

original_data_scored If data is supplied, that data augmented with prediction columns <resp>_pred,
per-response desirabilities, score, optional wmt_score, and uncertainty_measure; other-
wise NULL. When specs is supplied and the spec-limit augmentation succeeds, the same mean-
level spec columns as in score_table are appended to original_data_scored as well.

weights_original User-normalized response weights.

weights_final Final weights after WMT, if wmt is supplied; otherwise equal to weights_original.

wmt_p_values Named vector of per-response whole-model p-values when wmt is supplied and
contains p_values; otherwise NULL.

wmt_multipliers Named vector of per-response WMT multipliers when wmt is supplied; other-
wise NULL.

See Also

SVEMnet, svem_random_table_multi, svem_select_from_score_table, svem_append_design_space_cols(),
svem_wmt_multi

Examples

## ------------------------------------------------------------------------
## Multi-response SVEM scoring with Derringer–Suich desirabilities
## ------------------------------------------------------------------------

data(lipid_screen)
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# Build a deterministic expansion once and reuse for all responses
spec <- bigexp_terms(

Potency ~ PEG + Helper + Ionizable + Cholesterol +
Ionizable_Lipid_Type + N_P_ratio + flow_rate,

data = lipid_screen,
factorial_order = 3,
polynomial_order = 3,
include_pc_2way = TRUE,
include_pc_3way = FALSE

)

form_pot <- bigexp_formula(spec, "Potency")
form_siz <- bigexp_formula(spec, "Size")
form_pdi <- bigexp_formula(spec, "PDI")

set.seed(1)
fit_pot <- SVEMnet(form_pot, lipid_screen)
fit_siz <- SVEMnet(form_siz, lipid_screen)
fit_pdi <- SVEMnet(form_pdi, lipid_screen)

# Collect SVEM models in a named list by response
objs <- list(Potency = fit_pot, Size = fit_siz, PDI = fit_pdi)

# Targets and user weights for Derringer–Suich desirabilities
goals <- list(

Potency = list(goal = "max", weight = 0.6),
Size = list(goal = "min", weight = 0.3),
PDI = list(goal = "min", weight = 0.1)

)

# Optional mixture constraints (composition columns sum to 1)
mix <- list(list(

vars = c("PEG", "Helper", "Ionizable", "Cholesterol"),
lower = c(0.01, 0.10, 0.10, 0.10),
upper = c(0.05, 0.60, 0.60, 0.60),
total = 1.0

))

# Basic random-search scoring without WMT or design-space specs
set.seed(3)
scored_basic <- svem_score_random(

objects = objs,
goals = goals,
n = 10000, # number of random candidates
mixture_groups = mix,
combine = "geom",
numeric_sampler = "random",
verbose = FALSE

)

# Scored candidate table: predictors, <resp>_pred, <resp>_des, score, uncertainty
names(scored_basic$score_table)
head(scored_basic$score_table)
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# Scored original data (if 'data' is supplied)
# scored_basic$original_data_scored contains predictions + desirabilities

## ------------------------------------------------------------------------
## With whole-model tests (WMT) and process-mean specifications
## ------------------------------------------------------------------------

set.seed(123)
wmt_out <- svem_wmt_multi(

formulas = list(Potency = form_pot,
Size = form_siz,
PDI = form_pdi),

data = lipid_screen,
mixture_groups = mix,
wmt_control = list(seed = 123),
plot = FALSE,
verbose = FALSE

)

# Simple process-mean specs for a joint design space:
# Potency >= 78, Size <= 100, PDI <= 0.25
specs_ds <- list(

Potency = list(lower = 78),
Size = list(upper = 100),
PDI = list(upper = 0.25)

)

set.seed(4)
scored_full <- svem_score_random(

objects = objs,
goals = goals,
data = lipid_screen, # score the original runs as well
n = 25000,
mixture_groups = mix,
level = 0.95,
combine = "geom",
numeric_sampler = "random",
wmt = wmt_out, # optional: WMT reweighting
specs = specs_ds, # optional: design-space columns
verbose = TRUE

)

# The scored table now includes:
# * score, wmt_score, uncertainty_measure
# * per-response CIs: <resp>_lwr, <resp>_upr
# * design-space columns, e.g. Potency_p_in_spec_mean, p_joint_mean
names(scored_full$score_table)

## ------------------------------------------------------------------------
## Positional (unnamed) goals matched to objects by position
## ------------------------------------------------------------------------
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data(lipid_screen)

# Build a deterministic expansion once and reuse for all responses
spec <- bigexp_terms(

Potency ~ PEG + Helper + Ionizable + Cholesterol +
Ionizable_Lipid_Type + N_P_ratio + flow_rate,

data = lipid_screen,
factorial_order = 3,
polynomial_order = 3,
include_pc_2way = TRUE,
include_pc_3way = FALSE

)

form_pot <- bigexp_formula(spec, "Potency")
form_siz <- bigexp_formula(spec, "Size")
form_pdi <- bigexp_formula(spec, "PDI")

set.seed(1)
fit_pot <- SVEMnet(form_pot, lipid_screen)
fit_siz <- SVEMnet(form_siz, lipid_screen)
fit_pdi <- SVEMnet(form_pdi, lipid_screen)

# Collect SVEM models in a list.
# Here goals will be matched by position: Potency, Size, PDI.
objs <- list(fit_pot, fit_siz, fit_pdi)

# Positional goals (unnamed list): must have same length as 'objects'
goals_positional <- list(

list(goal = "max", weight = 0.6), # for Potency (objs[[1]])
list(goal = "min", weight = 0.3), # for Size (objs[[2]])
list(goal = "min", weight = 0.1) # for PDI (objs[[3]])

)

set.seed(5)
scored_pos <- svem_score_random(

objects = objs,
goals = goals_positional,
n = 5000,
numeric_sampler = "random",
verbose = FALSE

)

names(scored_pos$score_table)

svem_select_from_score_table

Select best row and diverse candidates from an SVEM score table
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Description

Given a scored random-search table (e.g. from svem_score_random()), pick a single "best" row
under a chosen objective column and sample a small, diverse set of medoid candidates from the top
of that ranking. Any per-response CI columns (e.g. *_lwr / *_upr) present in score_table are
carried through unchanged.

Optionally, a string label can be supplied to annotate the returned best row and candidates by
appending that label to a "Notes_from_SVEMnet" column. If "Notes_from_SVEMnet" is missing,
it is created. If it exists and is nonempty, the label is appended with "; " as a separator.

Usage

svem_select_from_score_table(
score_table,
target = "score",
direction = c("max", "min"),
k = 5,
top_type = c("frac", "n"),
top = 0.1,
predictor_cols = NULL,
label = NULL

)

Arguments

score_table Data frame with predictors, responses, scores, and uncertainty_measure, typ-
ically scored$score_table from svem_score_random. When medoids are re-
quested (k > 0), the predictor columns used for clustering are taken from the
"svem_predictor_cols" attribute by default. If that attribute is missing, a
heuristic is used. If you accidentally pass the full scored list, a helpful error
is thrown reminding you to use scored$score_table.

target Character scalar naming the column in score_table to optimize (e.g. "score",
"wmt_score", "uncertainty_measure").

direction Either "max" or "min" indicating whether larger or smaller values of target are
preferred.

k Integer; desired number of medoid candidates to return. If k <= 0, only the best
row is returned and no clustering is performed.

top_type Either "frac" or "n" specifying whether top is a fraction of rows or an integer
count.

top Value for the top set: a fraction in (0,1] if top_type = "frac", or an integer >=
1 if top_type = "n".

predictor_cols Optional character vector of predictor column names used to measure diver-
sity in the PAM step when k > 0. When NULL (default), the function first tries
attr(score_table, "svem_predictor_cols"). If that is unavailable, it falls
back to a heuristic that prefers non-derived predictor columns (excluding e.g.
*_pred, *_des, *_lwr, *_upr, *_ciw_w, *_p_in_spec_mean, *_in_spec_point,
score, wmt_score, uncertainty_measure, p_joint_mean, joint_in_spec_point,
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candidate_type, selection_label, Notes_from_SVEMnet). If no usable pre-
dictor columns can be inferred, a warning is issued and only best is returned.

label Optional character scalar. When non-NULL, this label is appended into a "Notes_from_SVEMnet"
column for the returned best row and candidates. If "Notes_from_SVEMnet"
is missing, it is created; if present and nonempty, the label is appended using ";
" as separator.

Value

A list with components:

best One-row data frame at the optimum of target under the specified direction, including any
columns present in score_table (e.g. *_lwr / *_upr).

candidates Data frame of medoid candidates (possibly empty or NULL) drawn from the top top of
the ranking on target, with all columns carried through from score_table.

call The matched call, including all arguments used to create this selection object.

See Also

svem_score_random, svem_select_candidates()

svem_significance_test_parallel

SVEM whole-model significance test with mixture support (parallel)

Description

Perform a permutation-based whole-model significance test for a continuous (Gaussian) SVEM fit,
with optional mixture-factor groups and parallel SVEM refits.

Usage

svem_significance_test_parallel(
formula,
data,
mixture_groups = NULL,
nPoint = 2000,
nSVEM = 10,
nPerm = 150,
percent = 90,
nBoot = 100,
glmnet_alpha = c(1),
weight_scheme = c("SVEM"),
objective = c("wAIC", "wBIC", "wSSE", "auto"),
relaxed = FALSE,
verbose = TRUE,
nCore = parallel::detectCores() - 2,



66 svem_significance_test_parallel

seed = NULL,
spec = NULL,
response = NULL,
use_spec_contrasts = TRUE,
...

)

Arguments

formula A model formula. If spec is provided, the right-hand side is ignored and re-
placed by the locked expansion in spec.

data A data frame containing the variables in the model.

mixture_groups Optional list describing one or more mixture-factor groups. Each element should
be a list with components:

• vars: character vector of column names;
• lower: numeric vector of lower bounds (same length as vars);
• upper: numeric vector of upper bounds (same length as vars);
• total: scalar specifying the sum of the mixture variables.

All mixture variables must appear in exactly one group. Defaults to NULL.

nPoint Number of random evaluation points in the factor space (default 2000).

nSVEM Number of SVEM fits on the original (unpermuted) data used to summarize the
observed surface (default 10).

nPerm Number of SVEM fits on permuted responses used to build the null reference
distribution (default 150).

percent Percentage of variance to capture in the SVD of the permutation surfaces (de-
fault 90).

nBoot Number of bootstrap iterations within each inner SVEM fit (default 100).

glmnet_alpha Numeric vector of glmnet alpha values (default c(1)).

weight_scheme Weighting scheme for SVEM (default "SVEM"). Passed to SVEMnet().

objective Objective used inside SVEMnet() to pick the bootstrap path solution. One of
"wAIC", "wBIC", or "wSSE" (default "wAIC").

relaxed Logical; default FALSE. When TRUE, inner SVEMnet() fits use glmnet’s re-
laxed elastic-net path and select both lambda and relaxed gamma on each boot-
strap. When FALSE, the standard glmnet path is used. If relaxed = TRUE and
glmnet_alpha includes 0, ridge (alpha = 0) is dropped by SVEMnet() for re-
laxed fits.

verbose Logical; if TRUE, display progress messages (default TRUE).

nCore Number of CPU cores for parallel processing. Default is parallel::detectCores()
- 2, with a floor of 1.

seed Optional integer seed for reproducible RNG (default NULL). When supplied, the
master RNG kind is set to "L'Ecuyer-CMRG" (with sample.kind = "Rounding"
when supported), and deterministic per-iteration seeds are generated on the mas-
ter and applied inside each parallel %dopar% iteration via set.seed(). This
yields reproducibility regardless of parallel scheduling and core count.
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spec Optional bigexp_spec created by bigexp_terms(). If provided, the test reuses
its locked expansion. The working formula becomes bigexp_formula(spec,
response_name), where response_name is taken from response if supplied,
otherwise from the left-hand side of formula. Categorical sampling uses spec$levels,
and numeric sampling prefers spec$num_range when available. Discrete nu-
meric predictors recorded by bigexp_terms() (spec$settings$discrete_numeric
+ spec$settings$discrete_levels) are sampled only from their recorded al-
lowed levels when building the evaluation grid.

response Optional character name for the response variable to use when spec is supplied.
If omitted, the response is taken from the left-hand side of formula.

use_spec_contrasts

Logical; default TRUE. When spec is supplied and use_spec_contrasts = TRUE,
the function replays spec$settings$contrasts_options on the parallel work-
ers for deterministic factor coding.

... Additional arguments passed to SVEMnet() and then to glmnet() (for example:
penalty.factor, offset, lower.limits, upper.limits, standardize.response,
etc.). The relaxed setting is controlled by the relaxed argument of this func-
tion and any relaxed value passed via ... is ignored with a warning.

Details

The procedure follows Karl (2024): it generates a space-filling evaluation grid in the factor space,
fits multiple SVEM models on the original data and on permuted responses, standardizes grid pre-
dictions, reduces them via an SVD-based low-rank representation, and summarizes each fit by a
Mahalanobis-type distance in the reduced space. A flexible SHASHo distribution is then fit to the
permutation distances and used to obtain a whole-model p-value for the observed surface.

Because the test is based on a finite number of permutations and a fitted null distribution, the re-
ported p-values are approximate and are intended as a diagnostic measure of global factor signal,
not as exact hypothesis tests.

All SVEM refits (for the original and permuted responses) are run in parallel using foreach +
doParallel.

Reproducible parallel RNG (Windows/macOS/Linux): when seed is supplied, the function sets the
master RNG to RNGkind("L'Ecuyer-CMRG",sample.kind = "Rounding") (falling back to "L'Ecuyer-CMRG"
on older R), and generates a deterministic, per-iteration seed schedule on the master. Each paral-
lel foreach iteration then calls set.seed() with its assigned seed before performing any random
draws (including permutations and the bootstrap randomness inside SVEMnet()). This makes results
reproducible regardless of worker scheduling (including preschedule = FALSE) and independent of
the number of cores.

The function can optionally reuse a deterministic, locked expansion built with bigexp_terms().
Supply spec (and optionally response) to ensure that categorical levels, contrasts, and the polyno-
mial/interaction structure are identical across repeated calls and across multiple responses sharing
the same factor space.

Although the implementation calls SVEMnet() internally and will technically run for any supported
family, the significance test is designed for continuous (Gaussian) responses and should be inter-
preted in that setting.
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Value

An object of class "svem_significance_test", a list with components:

• p_value: median whole-model p-value across the nSVEM original SVEM fits.

• p_values: numeric vector of length nSVEM with the per-fit p-values.

• d_Y: numeric vector of distances for the original SVEM fits.

• d_pi_Y: numeric vector of distances for the permutation fits.

• distribution_fit: fitted SHASHo distribution object.

• data_d: data frame of distances and source labels (original vs permutation), suitable for plot-
ting.
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See Also

SVEMnet, bigexp_terms, bigexp_formula

Examples

set.seed(1)

# Small toy data with a 3-component mixture A, B, C
n <- 40
sample_trunc_dirichlet <- function(n, lower, upper, total) {

k <- length(lower)
stopifnot(length(upper) == k, total >= sum(lower), total <= sum(upper))
avail <- total - sum(lower)
if (avail <= 0) return(matrix(rep(lower, each = n), nrow = n))
out <- matrix(NA_real_, n, k)
i <- 1L
while (i <= n) {

g <- rgamma(k, 1, 1)
w <- g / sum(g)
x <- lower + avail * w
if (all(x <= upper + 1e-12)) { out[i, ] <- x; i <- i + 1L }

}
out

}

lower <- c(0.10, 0.20, 0.05)
upper <- c(0.60, 0.70, 0.50)
total <- 1.0
ABC <- sample_trunc_dirichlet(n, lower, upper, total)
A <- ABC[, 1]; B <- ABC[, 2]; C <- ABC[, 3]
X <- runif(n)
F <- factor(sample(c("red", "blue"), n, replace = TRUE))
y <- 2 + 3*A + 1.5*B + 1.2*C + 0.5*X + 1*(F == "red") + rnorm(n, sd = 0.3)
dat <- data.frame(y = y, A = A, B = B, C = C, X = X, F = F)

mix_spec <- list(list(
vars = c("A", "B", "C"),
lower = lower,
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upper = upper,
total = total

))

## Example 1: direct formula interface (no locked expansion spec)
res1 <- svem_significance_test_parallel(

y ~ A + B + C + X + F,
data = dat,
mixture_groups = mix_spec,
glmnet_alpha = 1,
weight_scheme = "SVEM",
objective = "auto",
relaxed = FALSE, # default, shown for clarity
nCore = 2,
seed = 123,
verbose = FALSE

)
res1$p_value

## Example 2: using a deterministic bigexp expansion spec
## Build a wide expansion once and reuse it via `spec`
spec <- bigexp_terms(

y ~ A + B + C + X + F,
data = dat,
factorial_order = 2, # up to 2-way interactions
polynomial_order = 2 # up to quadratic terms in continuous vars

)

## Run the same significance test, but with the locked expansion:
## - `formula` is still required, but its RHS is ignored when `spec` is given
## - `response` tells the helper which LHS to use with `spec`
res2 <- svem_significance_test_parallel(

y ~ A + B + C + X + F,
data = dat,
mixture_groups = mix_spec,
glmnet_alpha = 1,
weight_scheme = "SVEM",
objective = "auto",
relaxed = FALSE,
nCore = 2,
seed = 123,
spec = spec,
response = "y",
use_spec_contrasts = TRUE,
verbose = FALSE

)
res2$p_value

svem_wmt_multi Whole-model tests for multiple SVEM responses (WMT wrapper)
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Description

Convenience wrapper around svem_significance_test_parallel for running whole-model tests
(WMT) on multiple responses that share the same dataset and mixture constraints. This helper:

• takes a formula or a list of formulas and a single data frame,

• calls svem_significance_test_parallel() for each response,

• extracts per-response p-values and converts them to WMT multipliers via a chosen transform,
and

• optionally plots the WMT objects together using plot.svem_significance_test and prints
a compact summary of p-values and multipliers.

The resulting multipliers vector is designed to be passed directly to downstream scoring functions
(for example, as an optional WMT argument to svem_score_random()), with response names
matched by names().

Usage

svem_wmt_multi(
formulas,
data,
mixture_groups = NULL,
wmt_transform = c("neglog10", "one_minus_p"),
wmt_control = list(seed = 123),
plot = TRUE,
verbose = TRUE

)

Arguments

formulas A single formula or a (preferably named) list of formulas, one per response. If
unnamed, response names are inferred from the left-hand side of each formula;
non-unique names are made unique.

data Data frame containing the predictors and responses referenced in formulas.

mixture_groups Optional mixture and simplex constraints passed to svem_significance_test_parallel.

wmt_transform Character; transformation used to convert WMT p-values into multipliers. One
of:

• "neglog10": f(p) = [− log10(p)]
strength,

• "one_minus_p": f(p) = (1− p)strength.

Currently, strength = 1 is used internally.

wmt_control Optional list of extra arguments passed directly to svem_significance_test_parallel.
By default this is list(seed = 123) so that WMT calls are reproducible; you
may override or extend this (e.g. list(seed = 999, nPerm = 300)). Any en-
tries not recognized by svem_significance_test_parallel are ignored by
that function.

plot Logical; if TRUE (default), attempt to plot all successfully computed WMT ob-
jects together via plot.svem_significance_test.
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verbose Logical; if TRUE (default), print progress and a compact summary of p-values
and multipliers.

Value

A list of class "svem_wmt_multi" with components:

wmt_objects Named list of WMT objects (one per response), as returned by svem_significance_test_parallel().
Entries are NULL where a WMT call failed.

p_values Named numeric vector of per-response p-values (bounded away from 0/1), or NA when
unavailable.

multipliers Named numeric vector of per-response WMT multipliers derived from the p-values
using wmt_transform.

wmt_transform The transformation used.

wmt_control The list of arguments passed through to svem_significance_test_parallel().

See Also

svem_significance_test_parallel, plot.svem_significance_test

Examples

data(lipid_screen)

spec <- bigexp_terms(
Potency ~ PEG + Helper + Ionizable + Cholesterol +
Ionizable_Lipid_Type + N_P_ratio + flow_rate,

data = lipid_screen,
factorial_order = 3,
polynomial_order = 3,
include_pc_2way = TRUE,
include_pc_3way = FALSE

)

form_pot <- bigexp_formula(spec, "Potency")
form_siz <- bigexp_formula(spec, "Size")
form_pdi <- bigexp_formula(spec, "PDI")

mix <- list(list(
vars = c("PEG", "Helper", "Ionizable", "Cholesterol"),
lower = c(0.01, 0.10, 0.10, 0.10),
upper = c(0.05, 0.60, 0.60, 0.60),
total = 1.0

))

set.seed(123)
wmt_out <- svem_wmt_multi(

formulas = list(Potency = form_pot,
Size = form_siz,
PDI = form_pdi),

data = lipid_screen,



with_bigexp_contrasts 73

mixture_groups = mix,
wmt_transform = "neglog10",
wmt_control = list(seed = 123),
plot = TRUE

)

wmt_out$p_values
wmt_out$multipliers

## later: pass wmt_out$multipliers into svem_score_random()

with_bigexp_contrasts Evaluate code with the spec’s recorded contrast options

Description

with_bigexp_contrasts() temporarily restores the contrasts options that were active when the spec
was built, runs a block of code, and then restores the original options. This is useful when a model-
ing function uses the global options("contrasts") to decide how to encode factors (for example,
lm(), glm(), or other modeling functions that call model.matrix() internally).

Usage

with_bigexp_contrasts(spec, code)

Arguments

spec A "bigexp_spec" object with stored contrasts_options in settings.

code Code to evaluate with temporarily restored options.

Examples

set.seed(1)
df4 <- data.frame(

y = rnorm(10),
X1 = rnorm(10),
G = factor(sample(c("A", "B"), 10, replace = TRUE))

)

spec4 <- bigexp_terms(
y ~ X1 + G,
data = df4,
factorial_order = 2,
polynomial_order = 2

)

with_bigexp_contrasts(spec4, {
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mm4 <- model.matrix(spec4$formula, df4)
head(mm4)

})
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