Package ‘STMr’

January 22, 2026
Title Strength Training Manual R-Language Functions
Version 0.1.7

Description Strength training prescription using percent-based approach requires
numerous computations and assumptions. 'STMr' package allow users to estimate
individual reps-max relationships, implement various progression tables, and
create numerous set and rep schemes. The 'STMr' package is originally created as
a tool to help writing Jovanovié¢ M. (2020) Strength Training Manual
<ISBN:979-8604459898>.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.3.3

URL https://mladenjovanovic.github.io/STMr/

BugReports https://github.com/mladenjovanovic/STMr/issues

Imports dplyr, ggfittext, ggplot2, magrittr, minpack.lm, nlme,
quantreg, stats, tidyr

Suggests testthat (>= 3.0.0)

Depends R (>=2.10)

Config/testthat/edition 3

NeedsCompilation no

Author Mladen Jovanovié [aut, cre]

Maintainer Mladen Jovanovié <coach.mladen. jovanovic@gmail.com>
Repository CRAN

Date/Publication 2026-01-21 23:40:02 UTC

Contents

+. STMr_scheme e
adj_perc_IRM

https://mladenjovanovic.github.io/STMr/
https://github.com/mladenjovanovic/STMr/issues

2 +.STMr_scheme
adj_TePS e e 6
create_example Ll e e 9
estimate_functions e e e e 10
estimate_functions_mixed e 14
estimate_functions_quantile oL o 17
estimate_rolling IRM Lo 21
generate_progression_table Lo 22
get_perc_IRM 31
GELTEPS « « v v e 32
max_perc_IRM e 33
MAX_TEPS « ¢ o v v v v e e e e e e e e e e e e e e e e 34
plot.STMr_release L e 35
plot.STMr_scheme e 36
plot_progression_table 37
plot_scheme L e 38
plot_vertical e e e 38
TElease 39
RTF_testing e 40
set_and_reps_schemes 41
sigopad .. oL e e e 48
strength_training_log L. 49
vertical_planning_functions o Lo 50

Index 56

+.STMr_scheme Method for adding set and rep schemes

Description

Method for adding set and rep schemes

Usage

S3 method for class 'STMr_scheme'
lhs + rhs

Arguments

lhs

rhs

Value

STMr_scheme object

STMr_scheme object

STMr_scheme object

adj_perc_IRM

Examples

schemel <- scheme_wave()
warmup_scheme <- scheme_perc_1RM()
plot(warmup_scheme + schemel)

adj_perc_1RM Family of functions to adjust %1RM

Description

Family of functions to adjust %1RM

Usage

adj_perc_1RM_RIR(
reps,
adjustment = 0,
mfactor = 1,
max_perc_1RM_func = max_perc_I1RM_epley,

)

adj_perc_1RM_DI(
reps,
adjustment = 0,
mfactor = 1,
max_perc_I1RM_func = max_perc_1RM_epley,

)

adj_perc_1RM_rel_int(
reps,
adjustment = 1,
mfactor = 1,
max_perc_1RM_func = max_perc_I1RM_epley,

)

adj_perc_1RM_perc_MR(
reps,
adjustment = 1,
mfactor = 1,
max_perc_I1RM_func = max_perc_1RM_epley,

4 adj_perc_IRM

Arguments
reps Numeric vector. Number of repetition to be performed
adjustment Numeric vector. Adjustment to be implemented
mfactor Numeric vector. Default is 1 (i.e., no adjustment). Use mfactor =2 to gen-

erate ballistic adjustment and tables, and mfactor = 3 to generate conservative
adjustment and tables

max_perc_1RM_func
Max %1RM function to be used. Default is max_perc_1RM_epley

Forwarded to max_perc_1RM_func. Usually the parameter value. For example
klin = 36 when using max_perc_1RM_linear as max_perc_1RM_func function

Value

Numeric vector. Predicted perc IRM

Functions

e adj_perc_1RM_RIR(): Adjust max %1RM using the Reps In Reserve (RIR) approach

* adj_perc_T1RM_DI(): Adjust max %1RM using the Deducted Intensity (DI) approach. This
approach simple deducts adjustment from estimated % 1RM

e adj_perc_1RM_rel_int(): Adjust max perc 1RM using the Relative Intensity (Rellnt) ap-
proach. This approach simple multiplies estimated perc 1RM with adjustment

* adj_perc_1RM_perc_MR(): Adjust max perc IRM using the %Max Reps (%MR) approach.
This approach simple divides target reps with adjustment

Examples

Adjustment using Reps In Reserve (RIR)
adj_perc_1RM_RIR(5)

Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_RIR(5, mfactor = 2)

Use 2 reps in reserve
adj_perc_1RM_RIR(5, adjustment = 2)

Use Linear model
adj_perc_1RM_RIR(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 2)

Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_RIR(

5,

max_perc_1RM_func = max_perc_1RM_modified_epley,

adjustment = 2,

kmod = 0.06

adj_perc_IRM

Adjustment using Deducted Intensity (DI)
adj_perc_1RM_DI(5)

Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_DI(5, mfactor = 2)

Use 10 perc deducted intensity
adj_perc_1RM_DI(5, adjustment = -0.1)

Use Linear model
adj_perc_1RM_DI(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = -0.1)

Use Modifed Epley's equation with a custom parameter values
adj_perc_T1RM_DI(

5,

max_perc_1RM_func = max_perc_1RM_modified_epley,

adjustment = -0.1,

kmod = 0.06

Adjustment using Relative Intensity (Rellnt)
adj_perc_1RM_rel_int(5)

Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_rel_int(5, mfactor = 2)

Use 90 perc relative intensity
adj_perc_1RM_rel_int(5, adjustment = 0.9)

Use Linear model
adj_perc_1RM_rel_int (5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 0.9)

Use Modifed Epley's equation with a custom parameter values
adj_perc_1RM_rel_int(

5,

max_perc_1RM_func = max_perc_1RM_modified_epley,

adjustment = 0.9,

kmod = 0.06

Adjustment using % max reps (%MR)
adj_perc_1RM_perc_MR(5)

Use ballistic adjustment (this implies doing half the reps)
adj_perc_1RM_perc_MR(5, mfactor = 2)

Use 70 perc max reps
adj_perc_1RM_perc_MR(5, adjustment = 0.7)

Use Linear model
adj_perc_1RM_perc_MR(5, max_perc_1RM_func = max_perc_1RM_linear, adjustment = 0.7)

Use Modifed Epley's equation with a custom parameter values

6 adj_reps

adj_perc_1RM_perc_MR(
5,
max_perc_1RM_func = max_perc_1RM_modified_epley,
adjustment = 0.7,
kmod = 0.06

adj_reps Family of functions to adjust number of repetition

Description

These functions are reverse version of the adj_perc_1RM family of functions. Use these when
you want to estimate number of repetitions to be used when using the known %1RM and level of
adjustment

Usage

adj_reps_RIR(
perc_1RM,
adjustment = 0,
mfactor = 1,
max_reps_func = max_reps_epley,

adj_reps_DI(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,

adj_reps_rel_int(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,

adj_reps_perc_MR(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,

adj_reps 7

Arguments
perc_1RM Numeric vector. %1RM used (use 0.5 for 50%, 0.9 for 90%)
adjustment Numeric vector. Adjustment to be implemented
mfactor Numeric vector. Default is 1 (i.e., no adjustment). Use mfactor =2 to gen-

erate ballistic adjustment and tables, and mfactor = 3 to generate conservative
adjustment and tables

max_reps_func Max reps function to be used. Default is max_reps_epley

Forwarded to max_reps_func. Usually the parameter value. For example klin
= 36 when using max_reps_linear as max_reps_func function

Value

Numeric vector. Predicted number of repetitions to be performed

Functions

e adj_reps_RIR(): Adjust number of repetitions using the Reps In Reserve (RIR) approach
* adj_reps_DI(): Adjust number of repetitions using the Deducted Intensity (DI) approach

e adj_reps_rel_int(): Adjust number of repetitions using the Relative Intensity (Rellnt) ap-
proach

* adj_reps_perc_MR(): Adjust number of repetitions using the % max reps (%MR) approach

Examples

Adjustment using Reps In Reserve (RIR)
adj_reps_RIR(0.75)

Use ballistic adjustment (this implies doing half the reps)
adj_reps_RIR(@.75, mfactor = 2)

Use 2 reps in reserve
adj_reps_RIR(0.75, adjustment = 2)

Use Linear model
adj_reps_RIR(@.75, max_reps_func = max_reps_linear, adjustment = 2)

Use Modifed Epley's equation with a custom parameter values
adj_reps_RIR(

.75,

max_reps_func = max_reps_modified_epley,

adjustment = 2,

kmod = 0.06

Adjustment using Deducted Intensity (DI)
adj_reps_DI(0.75)

Use ballistic adjustment (this implies doing half the reps)

adj_reps_DI(0.75, mfactor = 2)

Use 10% deducted intensity
adj_reps_DI(@.75, adjustment = -0.1)

Use Linear model
adj_reps_DI(0.75, max_reps_func = max_reps_linear, adjustment = -0.1)

Use Modifed Epley's equation with a custom parameter values
adj_reps_DI(

0.75,

max_reps_func = max_reps_modified_epley,

adjustment = -0.1,

kmod = 0.06

Adjustment using Relative Intensity (Rellnt)
adj_reps_rel_int(0.75)

Use ballistic adjustment (this implies doing half the reps)
adj_reps_rel_int(0.75, mfactor = 2)

Use 85% relative intensity
adj_reps_rel_int(0.75, adjustment = 0.85)

Use Linear model
adj_reps_rel_int(0.75, max_reps_func = max_reps_linear, adjustment = 0.85)

Use Modifed Epley's equation with a custom parameter values
adj_reps_rel_int(

0.75,

max_reps_func = max_reps_modified_epley,

adjustment = 0.85,

kmod = 0.06

Adjustment using % max reps (%MR)
adj_reps_perc_MR(0.75)

Use ballistic adjustment (this implies doing half the reps)
adj_reps_perc_MR(0.75, mfactor = 2)

Use 85% of max reps
adj_reps_perc_MR(0.75, adjustment = 0.85)

Use Linear model
adj_reps_perc_MR(0.75, max_reps_func = max_reps_linear, adjustment = 0.85)

Use Modifed Epley's equation with a custom parameter values
adj_reps_perc_MR(

0.75,

max_reps_func = max_reps_modified_epley,

adjustment = 0.85,

adj_reps

create_example 9

kmod = 0.06
)
create_example Create Example
Description

This function create simple example using progression_table

Usage

create_example(
progression_table,
reps = c(3, 5, 10),
volume = c("intensive"”, "normal”, "extensive"),
type = c("grinding”, "ballistic"),

Arguments

progression_table
Progression table function

reps Numeric vector. Default is c(3, 5, 10)
volume Character vector. Default is c("intensive”, "normal”, "extensive")
type Character vector. Type of max rep table. Options are grinding (Default), ballis-

tic, and conservative

Extra arguments forwarded to progression_table

Value
Data frame with the following structure

type Type of the set and rep scheme

reps Number of reps performed

volume Volume type of the set and rep scheme

Step 1 First progression step % 1RM

Step 2 Second progression step % 1RM

Step 3 Third progression step % 1RM

Step 4 Fourth progression step %1RM

Step 2-1 Diff Difference in %1RM between second and first progression step
Step 3-2 Diff Difference in %1RM between third and second progression step
Step 4-3 Diff Difference in %1RM between fourth and third progression step

10

Examples

estimate_functions

create_example(progression_RIR)

Create example using specific reps-max table and k value

create_example(
progression_RIR,

max_perc_1RM_func = max_perc_T1RM_modified_epley,

kmod = ©.0388

estimate_functions

Estimate relationship between reps and %I1RM (or weight)

Description

By default, target variable is the reps performed, while the predictors is the perc_1RM or weight.
To reverse this, use the reverse = TRUE argument

Usage

estimate_k_generic(
perc_1RM,

reps,
eRIR = 0,
k = 0.0333,
reverse = FALSE,
weighted = "none”,
)
estimate_k_generic_1RM(
weight,
reps,
eRIR = 0,
k = 0.0333,
reverse = FALSE,
weighted = "none”,
)
estimate_k(perc_1RM, reps, eRIR = @, reverse = FALSE, weighted = "none”, ...)
estimate_k_1RM(weight, reps, eRIR = @, reverse = FALSE, weighted = "none"”, ...)

estimate_kmod(
perc_1RM,
reps,

estimate_functions

11

eRIR = 0,
reverse = FALSE,
weighted = "none”,
)
estimate_kmod_1RM(
weight,
reps,
eRIR = 0,
reverse = FALSE,
weighted = "none”,
)
estimate_klin(
perc_1RM,
reps,
eRIR = 0,
reverse = FALSE,
weighted = "none”,
)
estimate_klin_1RM(
weight,
reps,
eRIR = 0,
reverse = FALSE,
weighted = "none”,

)

get_predicted_1RM_from_k_model(model)

Arguments

perc_1RM
reps
eRIR

k
reverse

weighted

%1RM

Number of repetitions done

Subjective estimation of reps-in-reserve (eRIR)

Value for the generic Epley’s equation, which is by default equal to 0.0333
Logical, default is FALSE. Should reps be used as predictor instead as a target?

What weighting should be used for the non-linear regression? Default is "none".
Other options include: "reps" (for 1/reps weighting), "load" (for using weight or
%1RM), "eRIR" (for 1/(eRIR+1) weighting), "reps x load", "reps x eRIR", "load
x eRIR", and "reps x load x eRIR"

Forwarded to nl1sLM function

12 estimate_functions
weight Weight used
model Object returned from the estimate_k_1RM function

Value

nlsLM object

Functions

estimate_k_generic(): Provides the model with generic k parameter

estimate_k_generic_1RM(): Provides the model with generic k parameter, as well as esti-
mated 1RM. This is a novel estimation function that uses the absolute weights.

estimate_k(): Estimate the parameter k in the Epley’s equation

estimate_k_1RM(): Estimate the parameter k in the Epley’s equation, as well as 1RM. This is
a novel estimation function that uses the absolute weights.

estimate_kmod(): Estimate the parameter kmod in the modified Epley’s equation

estimate_kmod_1RM(): Estimate the parameter kmod in the modified Epley’s equation, as
well as T1RM. This is a novel estimation function that uses the absolute weights

estimate_klin(): Estimate the parameter klin using the Linear/Brzycki model

estimate_klin_1RM(): Estimate the parameter klin in the Linear/Brzycki equation, as well
as 1RM. This is a novel estimation function that uses the absolute weights

get_predicted_1RM_from_k_model(): Estimate the IRM from estimate_k_1RM function

The problem with Epley’s estimation model (implemented in estimate_k_1RM function) is
that it predicts the IRM when nRM = 0. Thus, the estimated parameter in the model produced
by the estimate_k_1RM function is not 1RM, but ORM. This function calculates the weight at
nRM = 1 for both the normal and reverse model. See Examples for code

Examples

Generic Epley's model

ml <- estimate_k_generic(
perc_1RM = ¢c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Generic Epley's model that also estimates 1RM
ml <- estimate_k_generic_1RM(

weight = c(70, 110, 140),

reps = c(10, 5, 3)

)

coef(m1)

Epley's model
ml <- estimate_k(

estimate_functions

perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)
)

coef(m1)

Epley's model that also estimates 1RM
ml <- estimate_k_1RM(

weight = c(70, 110, 140),

reps = c(10, 5, 3)
)

coef(m1)

Modified Epley's model

ml <- estimate_kmod(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Modified Epley's model that also estimates 1RM
ml <- estimate_kmod_1RM(

weight = c(70, 110, 140),

reps = c(10, 5, 3)
)

coef(m1)

Linear/Brzycki model

ml <- estimate_klin(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Linear/Brzycki model thal also estimates 1RM
ml <- estimate_klin_1RM(

weight = c(70, 110, 140),

reps = c(10, 5, 3)
)

coef (m1)

Estimating 1RM from Epley's model

ml <- estimate_k_1RM(150 * c(0.9, 0.8, 0.7), c(3, 6, 12))

m2 <- estimate_k_1RM(150 * c(0.9, 0.8, 0.7), c(3, 6, 12), reverse = TRUE)

Estimated ORM values from both model
c(coef(m1)[[1]1], coef(m2)L[1]1])

14 estimate_tfunctions_mixed

But these are not 1RMs!!!

Using the "reverse" model, where nRM is the predictor (in this case m2)
makes it easier to predict 1RM

predict(m2, newdata = data.frame(nRM = 1))

But for the normal model it involve reversing the formula
To spare you from the math pain, use this
get_predicted_1RM_from_k_model(m1)

It also works for the "reverse"” model
get_predicted_1RM_from_k_model (m2)

estimate_functions_mixed

Estimate relationship between reps and weight using the non-linear
mixed-effects regression

Description

These functions provide estimated IRM and parameter values using the mixed-effect regression.
By default, target variable is the reps performed, while the predictor is the perc_1RM or weight. To
reverse this, use the reverse = TRUE argument

Usage

estimate_k_mixed(athlete, perc_1RM, reps, eRIR = @, reverse = FALSE, ...)

estimate_k_generic_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
k = 0.0333,
reverse = FALSE,
random = zeroRM ~ 1,

estimate_k_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = k + zeroRM ~ 1,

estimate_functions_mixed 15

estimate_kmod_mixed(athlete, perc_1RM, reps, eRIR = @, reverse = FALSE, ...)

estimate_kmod_T1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = kmod + oneRM ~ 1,

)
estimate_klin_mixed(athlete, perc_1RM, reps, eRIR = @, reverse = FALSE, ...)

estimate_klin_TRM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = klin + oneRM ~ 1,

)
Arguments
athlete Athlete identifier
perc_1RM % 1RM
reps Number of repetitions done
eRIR Subjective estimation of reps-in-reserve (eRIR)
reverse Logical, default is FALSE. Should reps be used as predictor instead as a target?
Forwarded to n1me function
weight Weight used
k Value for the generic Epley’s equation, which is by default equal to 0.0333
random Random parameter forwarded to nlme function. Default is k + zeroRM ~ 1 for,
estimate_k_mixed function, or k + oneRM ~ 1 for estimate_kmod_mixed and
estimate_klin_mixed functions
Value

nlme object

Functions

* estimate_k_mixed(): Estimate the parameter k in the Epley’s equation

* estimate_k_generic_1RM_mixed(): Provides the model with generic k parameter, as well
as estimated 1RM. This is a novel estimation function that uses the absolute weights

16 estimate_tfunctions_mixed

* estimate_k_1RM_mixed(): Estimate the parameter k in the Epley’s equation, as well as TRM.
This is a novel estimation function that uses the absolute weights

* estimate_kmod_mixed(): Estimate the parameter kmod in the Modified Epley’s equation

* estimate_kmod_T1RM_mixed(): Estimate the parameter kmod in the Modified Epley’s equa-
tion, as well as 1RM. This is a novel estimation function that uses the absolute weights

* estimate_klin_mixed(): Estimate the parameter klin in the Linear/Brzycki’s equation

e estimate_klin_1RM_mixed(): Estimate the parameter kl1in in the Linear/Brzycki equation,
as well as 1RM. This is a novel estimation function that uses the absolute weights

Examples

Epley's model

ml <- estimate_k_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$ Real %1RM™,
reps = RTF_testing$nRM

)

coef(m1)

Generic Epley's model that also estimates 1RM
ml <- estimate_k_generic_1RM_mixed(

athlete = RTF_testing$Athlete,

weight = RTF_testing$ Real Weight~,

reps = RTF_testing$nRM
)

coef(m1)

Epley's model that also estimates 1RM
ml <- estimate_k_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$ Real Weight~™,
reps = RTF_testing$nRM
)

coef(m1)

Modifed Epley's model

ml <- estimate_kmod_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$ Real %1RM™,
reps = RTF_testing$nRM

)

coef(m1)
Modified Epley's model that also estimates 1RM

ml <- estimate_kmod_1RM_mixed(
athlete = RTF_testing$Athlete,

estimate_functions_quantile 17

weight = RTF_testing$ Real Weight~,
reps = RTF_testing$nRM
)

coef(m1)

Linear/Brzycki model

ml <- estimate_klin_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$ Real %1RM™,
reps = RTF_testing$nRM

)

coef(m1)

Linear/Brzycki model that also estimates 1RM
ml <- estimate_klin_1RM_mixed(

athlete = RTF_testing$Athlete,

weight = RTF_testing$ Real Weight~,

reps = RTF_testing$nRM
)

coef(m1)

estimate_functions_quantile
Estimate relationship between reps and weight using the non-linear
quantile regression

Description

These functions provide estimate 1RM and parameter values using the quantile regression. By
default, target variable is the reps performed, while the predictors is the perc_1RM or weight. To
reverse this, use the reverse = TRUE argument

Usage

estimate_k_quantile(
perc_1RM,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),

estimate_k_generic_1RM_quantile(
weight,

estimate_functions_quantile

reps,

eRIR = 0,

k = 0.0333,
tau = 0.5,

reverse = FALSE,
control = quantreg::nlrq.control(maxiter = 10%4, InitialStepSize = 0),

)

estimate_k_1RM_quantile(
weight,
reps,
eRIR = 0@
tau = 0.5,
reverse FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),

I o~

)

estimate_kmod_quantile(
perc_1RM,
reps,
eRIR = 0@
tau = 0.5,
reverse FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),

I o -

)

estimate_kmod_1RM_quantile(
weight,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),

)

estimate_klin_quantile(
perc_1RM,
reps,
eRIR = @
tau = 0.5,
reverse FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),

I o~

estimate_functions_quantile 19

estimate_klin_1RM_quantile(

weight,
reps,
eRIR = 0,
tau = 0.5,
reverse = FALSE,
control = quantreg::nlrqg.control(maxiter = 10%4, InitialStepSize = 0),
)
Arguments
perc_1RM %1RM
reps Number of repetitions done
eRIR Subjective estimation of reps-in-reserve (eRIR)
tau Vector of quantiles to be estimated. Default is 0.5
reverse Logical, default is FALSE. Should reps be used as predictor instead as a target?
control Control object for the n1rq function. Defaultis: quantreg: :nlrq.control(maxiter
=10"4, InitialStepSize =0)
Forwarded to nlrq function
weight Weight used
k Value for the generic Epley’s equation, which is by default equal to 0.0333
Value

nlrq object

Functions

* estimate_k_quantile(): Estimate the parameter k in the Epley’s equation

* estimate_k_generic_1RM_quantile(): Provides the model with generic k parameter, as
well as estimated 1RM. This is a novel estimation function that uses the absolute weights

* estimate_k_1RM_quantile(): Estimate the parameter k in the Epley’s equation, as well as
1RM. This is a novel estimation function that uses the absolute weights

* estimate_kmod_quantile(): Estimate the parameter kmod in the modified Epley’s equation

* estimate_kmod_1RM_quantile(): Estimate the parameter kmod in the modified Epley’s equa-
tion, as well as 1RM. This is a novel estimation function that uses the absolute weights

e estimate_klin_quantile(): Estimate the parameter klin in the Linear/Brzycki equation

» estimate_klin_1RM_quantile(): Estimate the parameter klin in the Linear/Brzycki equa-
tion, as well as 1RM. This is a novel estimation function that uses the absolute weights

20

Examples

Epley's model

ml <- estimate_k_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Epley's model that also estimates 1RM
ml <- estimate_k_generic_1RM_quantile(
weight = c(70, 110, 140),
reps = c(10, 5, 3)
)

coef (m1)

Epley's model that also estimates 1RM
ml <- estimate_k_1RM_quantile(

weight = c(70, 110, 140),

reps = c(10, 5, 3)
)

coef(m1)

Modified Epley's model

ml <- estimate_kmod_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Modified Epley's model that also estimates 1RM
ml <- estimate_kmod_1RM_quantile(

weight = c(70, 110, 140),

reps = c(10, 5, 3)
)

coef(m1)

Linear/Brzycki model

ml <- estimate_klin_quantile(
perc_1RM = c(0.7, 0.8, 0.9),
reps = c(10, 5, 3)

)

coef(m1)

Linear/Brzycki model thal also estimates 1RM
ml <- estimate_klin_1RM_quantile(

estimate_functions_quantile

estimate_rolling_IRM

weight = c(70, 110, 140),
reps = c(10, 5, 3)
)

coef(m1)

21

estimate_rolling_1RM Estimate the rolling profile and 1RM

Description

Estimate the rolling profile and IRM

Usage

estimate_rolling_1RM(
weight,
reps,
eRIR = 0,
day_index,
window = 14,
estimate_function = estimate_k_1RM,

)

Arguments
weight Weight used
reps Number of repetitions done
eRIR Subjective estimation of reps-in-reserve (eRIR)
day_index Day index used to estimate rolling window
window Width of the rolling window. Default is 14

estimate_function
Estimation function to be used. Default is estimate_k_1RM

Forwarded to estimate_function function

Value

Data frame with day index and coefficients returned by the estimate_function function

22 generate_progression_table

Examples

estimate_rolling_T1RM(
weight = strength_training_log$weight,
reps = strength_training_log$reps,
eRIR = strength_training_log$eRIR,
day_index = strength_training_log$day,
window = 10,
estimate_function = estimate_k_1RM_quantile,
tau = 0.9

generate_progression_table
Family of functions to create progression tables

Description

Family of functions to create progression tables

Usage

generate_progression_table(
progression_table,

type = c("grinding”, "ballistic”, "conservative"),
volume = c("intensive”, "normal”, "extensive"),
reps = 1:5,
step = seq(-3, 0, 1),
)
progression_DI(
reps,
step = 0,
volume = "normal”,

adjustment = 0,

type = "grinding”,

mfactor = NULL,

step_increment = -0.025,
volume_increment = step_increment,

)

progression_RIR(
reps,
step = 0,
volume = "normal”,

adjustment = 0,

generate_progression_table

type = "grinding”,
mfactor = NULL,
step_increment

:'],
volume_increment =

step_increment,

)
progression_RIR_increment(
reps,
step = 0,
volume = "normal”,

adjustment = 0,
type = "grinding”,
mfactor = NULL,

)
progression_perc_MR(
reps,
step = 0,
volume = "normal”,

adjustment = 0,
type = "grinding”,
mfactor = NULL,

step_increment = -0.1,
volume_increment = -0.2,
)
progression_perc_MR_variable(
reps,
step = 0,
volume = "normal”,

adjustment = 0,
type = "grinding”,
mfactor = NULL,

)
progression_perc_drop(
reps,
step = 0,
volume = "normal”,

adjustment = 0,
type = "grinding”,
mfactor = NULL,

23

24 generate_progression_table

progression_rel_int(
reps,
step = 0,
volume = "normal”,
adjustment = 0,
type = "grinding”,
mfactor = NULL,

step_increment = -0.05,
volume_increment = -0.075,
)
progression_variable_DI(
reps,
step = 0,
volume = "normal”,

adjustment = 0,

type = "grinding”,

mfactor = NULL,
rep_1_step_increment = -0.02,
rep_12_step_increment = -0.04,
rep_1_volume_increment = -0.02,
rep_12_volume_increment = -0.04,

progression_variable_RIR(
reps,
step = 0,
volume = "normal”,
adjustment = 0,
type = "grinding”,
mfactor = NULL,
rep_1_step_increment = 1,
rep_12_step_increment = 2,
rep_1_volume_increment = 1,
rep_12_volume_increment = 2

’

Arguments

progression_table
Progression table function to use

type Character vector. Type of max rep table. Options are grinding (Default), ballis-
tic, and conservative.

volume Character vector: ’intensive’, 'normal’ (Default), or ’extensive’

generate_progression_table 25

reps Numeric vector. Number of repetition to be performed
step Numeric vector. Progression step. Default is 0. Use negative numbers (i.e., -1,
-2)

Extra arguments forwarded to adj_perc_1RM family of functions Use this to
supply different parameter value (i.e., k = @.035), or model function (i.e., max_perc_1RM_func
=max_perc_1RM_linear)
adjustment Numeric vector. Additional post adjustment applied to sets. Default is none
(value depends on the method).

mfactor Numeric vector. Factor to adjust max rep table. Used instead of type parameter,
unless NULL
step_increment, volume_increment
Numeric vector. Used to adjust specific progression methods
rep_1_step_increment
Numeric vector. Default 1
rep_12_step_increment
Numeric vector. Default 2
rep_1_volume_increment
Numeric vector. Default 1
rep_12_volume_increment
Numeric vector. Default 2

Value

List with two elements: adjustment and perc_1RM

Functions

* generate_progression_table(): Generates progression tables

* progression_DI(): Deducted Intensity progression table. This simplest progression table
simply deducts intensity to progress. Adjust this deducted by using the deduction parameter
(default is equal to -0.025)

* progression_RIR(): Constant RIR Increment progression table. This variant have constant
RIR increment across reps from phases to phases and RIR difference between extensive, nor-
mal, and intensive schemes. Use step_increment and volume_increment parameters to
utilize needed increments

* progression_RIR_increment(): RIR Increment progression table (see Strength Training
Manual)

* progression_perc_MR(): Constant %MR Step progression table. This variant have constant
%MR increment across reps from phases to phases and %MR difference between extensive,
normal, and intensive schemes. Use step_increment and volume_increment parameters to
utilize needed increments

* progression_perc_MR_variable(): Variable %MR Step progression table
* progression_perc_drop(): Perc Drop progression table (see Strength Training Manual)

* progression_rel_int(): Relative Intensity progression table. Use step_increment and
volume_increment parameters to utilize needed increments

26

generate_progression_table

* progression_variable_DI(): Variable Deducted Intensity progression table. This function
allows you to generate variable Deducted Intensity table, with adjustments linearly increasing
for both step progressions as well volume increment based on the reps done.

* progression_variable_RIR(): Variable RIR progression table. This function allows you
to generate variable RIR progression table, with adjustments linearly increasing for both step
progressions as well volume increment based on the reps done.

References

Jovanovi¢ M. 2020. Strength Training Manual: The Agile Periodization Approach.
Independently published.

Examples

generate_progression_table(progression_RIR)

generate_progression_table(

)

progression_RIR,

type = "grinding”,
volume = "normal”,
step_increment = 2

Create progression table using specific reps-max table and k value
generate_progression_table(

progression_RIR,

max_perc_1RM_func = max_perc_1RM_modified_epley,

kmod = 0.0388

Progression Deducted Intensity
progression_DI(10, step = seq(-3, 0, 1))

progression_DI(10, step = seq(-3, 0, 1), volume

"extensive")

progression_DI(5, step = seq(-3, @, 1), type = "ballistic”, step_increment = -0.05)
progression_DI(

)

5,

step = seq(-3, 0, 1),
type = "ballistic”,
step_increment = -0.05,
volume_increment = -0.1

Generate progression table

generate_progression_table(progression_DI, type

Use different reps-max model
generate_progression_table(

progression_DI,

type = "grinding”,

volume = "normal”,

max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

"grinding”, volume = "normal")

generate_progression_table 27

Progression RIR Constant
progression_RIR(10, step = seq(-3, 0, 1))
progression_RIR(10, step = seq(-3, @, 1), volume = "extensive")
progression_RIR(5, step = seq(-3, 0, 1), type = "ballistic"”, step_increment = 2)
progression_RIR(

5,

step = seq(-3, 0, 1),

type = "ballistic”,

step_increment = 3

Generate progression table
generate_progression_table(progression_RIR, type = "grinding", volume = "normal”)

Use different reps-max model
generate_progression_table(
progression_RIR,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

Plot progression table
plot_progression_table(progression_RIR)
plot_progression_table(progression_RIR, "adjustment")

Progression RIR Increment

progression_RIR_increment (10, step = seq(-3, 0, 1))
progression_RIR_increment(10, step = seq(-3, @, 1), volume = "extensive")
progression_RIR_increment(5, step = seq(-3, 0, 1), type = "ballistic")

Generate progression table
generate_progression_table(progression_RIR_increment, type = "grinding”, volume = "normal”)

Use different reps-max model

generate_progression_table(
progression_RIR_increment,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

)

__

Progression %MR Step Const
progression_perc_MR(10, step = seq(-3, 0, 1))
progression_perc_MR(10, step = seq(-3, 0, 1), volume = "extensive")
progression_perc_MR(5, step = seq(-3, @, 1), type = "ballistic”, step_increment = -0.2)
progression_perc_MR(

5,

28

generate_progression_table

step = seq(-3, 0, 1),
type = "ballistic”,
step_increment = -0.15,
volume_increment = -0.25

)

Generate progression table
generate_progression_table(progression_perc_MR, type = "grinding"”, volume = "normal")

Use different reps-max model
generate_progression_table(
progression_perc_MR,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

)

__

Progression %MR Step Variable

progression_perc_MR_variable(10, step = seq(-3, 0, 1))
progression_perc_MR_variable(10, step = seq(-3, @, 1), volume = "extensive")
progression_perc_MR_variable(5, step = seq(-3, 0, 1), type = "ballistic")

Generate progression table

generate_progression_table(progression_perc_MR_variable, type = "grinding"”, volume = "normal")

Use different reps-max model

generate_progression_table(
progression_perc_MR_variable,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

)

__

Progression Perc Drop

progression_perc_drop(10, step = seq(-3, 0, 1))
progression_perc_drop(10, step = seq(-3, @, 1), volume = "extensive")
progression_perc_drop(5, step = seq(-3, @, 1), type = "ballistic”)

Generate progression table
generate_progression_table(progression_perc_drop, type = "grinding”, volume = "normal")

Use different reps-max model
generate_progression_table(
progression_perc_drop,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

)

__

Progression Relative Intensity

generate_progression_table 29

progression_rel_int(10, step = seq(-3, 0, 1))
progression_rel_int(10, step = seq(-3, 0, 1), volume = "extensive")
progression_rel_int(5, step = seq(-3, @, 1), type = "ballistic")

Generate progression table
generate_progression_table(progression_rel_int, type = "grinding"”, volume = "normal")
generate_progression_table(progression_rel_int, step_increment = -0.1, volume_increment = 0.15)

Use different reps-max model
generate_progression_table(
progression_rel_int,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

)

__

Progression Variable Deducted Intensity

progression_variable_DI(10, step = seq(-3, @, 1))
progression_variable_DI(10, step = seq(-3, @, 1), volume = "extensive")
progression_variable_DI(5, step = seq(-3, 0, 1), type = "ballistic")
progression_variable_DI(

5,

step = seq(-3, 0, 1),

type = "grinding”,
rep_1_step_increment = -0.02,
rep_12_step_increment = -0.04,
rep_1_volume_increment = -0.02,
rep_12_volume_increment = -0.04

Generate progression table
generate_progression_table(
progression_variable_DI,
type = "grinding”,
volume = "normal”

Use different reps-max model

generate_progression_table(
progression_variable_DI,
type = "grinding”,

volume = "normal”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

Recreate "progression_perc_drop()" for grinding
setequal(
generate_progression_table(
progression_variable_DI,
type = "grinding”,

rep_1_step_increment = -0.025,
rep_12_step_increment = -0.05,
rep_1_volume_increment = -0.025,
rep_12_volume_increment = -0.05

)Y

generate_progression_table(
progression_perc_drop,
type = "grinding”

Progression Variable RIR
progression_variable_RIR(10, step
progression_variable_RIR(10, step

seq(-3, 0, 1))
seq(-3, @, 1), volume

generate_progression_table

"extensive")

progression_variable_RIR(5, step = seq(-3, @, 1), type = "ballistic")

progression_variable_RIR(
5,
step = seq(-3, 0, 1),
type = "grinding”,
rep_1_step_increment = 1,
rep_12_step_increment = 2,
rep_1_volume_increment = 2,
rep_12_volume_increment = 4

Generate progression table
generate_progression_table(
progression_variable_DI,
type = "grinding”,
volume = "normal”

Use different reps-max model
generate_progression_table(
progression_variable_RIR,
type = "grinding”,
volume = "normal”,

max_perc_1RM_func = max_perc_1RM_linear,

klin = 36

Recreate "progression_RIR_increment()" for grinding

setequal(

generate_progression_table(
progression_variable_RIR,
type = "grinding”,
rep_1_step_increment = 1,
rep_12_step_increment = 2,
rep_1_volume_increment = 1,
rep_12_volume_increment = 3

get_perc_IRM 31

generate_progression_table(
progression_RIR_increment,
type = "grinding”
)
)

get_perc_1RM Get %1RM

Description

Function get_perc_1RM represent a wrapper function

Usage
get_perc_1RM(reps, method = "RIR", model = "epley”, ...)
Arguments
reps Numeric vector. Number of repetition to be performed
method Character vector. Default is "RIR". Other options are "DI", "Rellnt", "%MR"
model Character vector. Default is "epley". Other options are "modified epley", "lin-
ear"
Forwarded to selected adj_perc_1RM function
Value

Numeric vector. Predicted %1RM

Examples

get_perc_1RM(5)

Use ballistic adjustment (this implies doing half the reps)
get_perc_1RM(5, mfactor = 2)

Use perc MR adjustment method
get_perc_1RM(5, "%MR", adjustment = 0.8)

Use linear model with use defined klin values
get_perc_1RM(5, "%MR", model = "linear"”, adjustment = 0.8, klin = 36)

32 get_reps

get_reps Get Reps

Description

Function get_reps represent a wrapper function. This function is the reverse version of the get_perc_1RM
function. Use it when you want to estimate number of repetitions to be used when using the known
%1RM and level of adjustment

Usage
get_reps(perc_1RM, method = "RIR", model = "epley”, ...)
Arguments
perc_1RM Numeric vector. % 1RM used (use 0.5 for 50 perc, 0.9 for 90 perc)
method Character vector. Default is "RIR". Other options are "DI", "Rellnt", "%MR"
model Character vector. Default is "epley". Other options are "modified epley", "lin-
ear”
Forwarded to selected adj_reps function
Value

Numeric vector Predicted repetitions

Examples
get_reps(0.75)

Use ballistic adjustment (this implies doing half the reps)
get_reps(0.75, mfactor = 2)

Use %MR adjustment method
get_reps(0.75, "%MR", adjustment = 0.8)

Use linear model with use defined klin values
get_reps(0.75, "%MR", model = "linear"”, adjustment = 0.8, klin = 36)

max_perc_1RM 33

max_perc_1RM Family of functions to estimate max %I1RM

Description

Family of functions to estimate max % 1RM

Usage

max_perc_1RM_epley(reps, k = 0.0333)
max_perc_T1RM_modified_epley(reps, kmod = 0.0353)

max_perc_1RM_linear(reps, klin = 33)

Arguments
reps Numeric vector. Number of repetition to be performed
k User defined k parameter in the Epley’s equation. Default is 0.0333
kmod User defined kmod parameter in the Modified Epley’s equation. Default is 0.0353
klin User defined klin parameter in the Linear equation. Default is 33
Value

Numeric vector. Predicted %1RM

Functions

* max_perc_1RM_epley(): Estimate max % 1RM using the Epley’s equation
* max_perc_1RM_modified_epley(): Estimate max % 1RM using the Modified Epley’s equa-
tion

* max_perc_1RM_linear(): Estimate max %1RM using the Linear (or Brzycki’s) equation

Examples

Epley equation
max_perc_1RM_epley(1:10)
max_perc_1RM_epley(1:10, k = 0.04)

Modified Epley equation
max_perc_I1RM_modified_epley(1:10)
max_perc_1RM_modified_epley(1:10, kmod = 0.05)

Linear/Brzycki equation
max_perc_1RM_linear(1:10)
max_perc_1RM_linear(1:10, klin = 36)

34 max_reps
max_reps Family of functions to estimate max number of repetition (nRM)
Description
Family of functions to estimate max number of repetition (nRM)
Usage
max_reps_epley(perc_1RM, k = 0.0333)
max_reps_modified_epley(perc_1RM, kmod = 0.0353)
max_reps_linear(perc_1RM, klin = 33)
Arguments
perc_1RM Numeric vector. % 1RM used (use 0.5 for 50 %, 0.9 for 90 %)
k User defined k parameter in the Epley’s equation. Default is 0.0333
kmod User defined kmod parameter in the Modified Epley’s equation. Default is 0.0353
klin User defined klin parameter in the Linear equation. Default is 33
Value

Numeric vector. Predicted maximal number of repetitions (nRM)

Functions

* max_reps_epley(): Estimate max number of repetition (nRM) using the Epley’s equation

* max_reps_modified_epley(): Estimate max number of repetition (nRM) using the Modified
Epley’s equation

* max_reps_linear(): Estimate max number of repetition (nRM) using the Linear/Brzycki’s
equation

Examples

#

Epley equation

max_reps_epley(0.85)
max_reps_epley(c(@0.75, 0.85), k = 0.04)

Modified Epley equation
max_reps_modified_epley(0.85)
max_reps_modified_epley(c(@.75, 0.85), kmod = 0.05)

#

Linear/Brzycki's equation

max_reps_linear(0.85)
max_reps_linear(c(0.75, 0.85), klin = 36)

plot.STMr_release 35

plot.STMr_release Plotting of the Release

Description

Function for creating ggplot2 plot of the Release STMr_release object

Usage

S3 method for class 'STMr_release’

plot(x, font_size = 14, load_1RM_agg_func = max, ...)
Arguments

X STMr_release object

font_size Numeric. Default is 14

load_1RM_agg_func
Function to aggregate step load_1RM from multiple sets. Default is max

Forwarded to geom_bar_text and geom_fit_text functions. Can be used to se
the highest labels size, for example, using size=5. See documentation for these
two packages for more info

Value

ggplot2 object

Examples

schemel <- scheme_step(vertical_planning = vertical_constant)
scheme2 <- scheme_step(vertical_planning = vertical_linear)
scheme3 <- scheme_step(vertical_planning = vertical_undulating)

release_df <- release(
scheme1, scheme2, scheme3,
additive_1RM_adjustment = 2.5

)

plot(release_df)

36

plot.STMr_scheme

plot.STMr_scheme

Plotting of the Set and Reps Scheme

Description

Functions for creating ggplot2 plot of the Set and Reps Scheme

Usage
S3 method for class 'STMr_scheme'
plot(x, type = "bar"”, font_size = 14, perc_str = "%", ...)
Arguments
X STMr_scheme object. See examples
type Type of plot. Options are "bar" (default), "vertical", and "fraction"
font_size Numeric. Default is 14
perc_str Percent string. Default is "%". Use "" to have more space on graph
Forwarded to geom_bar_text and geom_fit_text functions. Can be used to se
the highest labels size, for example, using size=5. See documentation for these
two packages for more info
Value

ggplot2 object

Examples

scheme <- scheme_wave(

reps = c(10, 8,
Adjusting set

6, 10, 8, 6),
s to use lower %1RM (RIR Inc method used, so RIR adjusted)

adjustment = c(4, 2, 0, 6, 4, 2),

vertical_planni
vertical_planni
progression_tab
progression_tab

)

plot(scheme)
plot(scheme, type
plot(scheme, type

ng = vertical_linear,

ng_control = list(reps_change = c(0, -2, -4)),
le = progression_RIR_increment,

le_control = list(volume = "extensive")

"vertical”)
= "fraction”)

plot_progression_table 37

plot_progression_table
Plotting of the Progression Table

Description

Function for creating ggplot2 plot of the Progression Table

Usage

plot_progression_table(
progression_table,
plot = "%IRM",
signif_digits = 3,
multiplier = 1,
font_size = 14,

Arguments

progression_table
Function for creating progression table

plot Character string. Options include "%1RM" (default) and "adjustment”

signif_digits Rounding numbers for plotting. Default is 3

multiplier Factor to multiply the adjustment. Useful when converting to percentage. De-
fault is 1

font_size Numeric. Default is 14

Forwarded to the generate_progression_table function

Value

ggplot2 object

Examples

plot_progression_table(progression_RIR_increment, "%1RM", reps = 1:5)
plot_progression_table(progression_RIR_increment, "adjustment”, reps = 1:5)

Create progression pot by using specific reps-max table and klin value
plot_progression_table(
progression_RIR,

reps = 1:5,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36

38 plot_vertical

plot_scheme Plotting of the Set and Reps Scheme

Description

Functions for creating ggplot2 plot of the Set and Reps Scheme

Usage
plot_scheme(scheme, font_size = 8, perc_str = "%")
Arguments
scheme Data Frame create by one of the package functions. See examples
font_size Numeric. Default is 8
perc_str Percent string. Default is "%". Use "" to have more space on graph
Value

ggplot2 object

Examples

scheme <- scheme_wave(
reps = c(10, 8, 6, 10, 8, 6),
Adjusting sets to use lower %1RM (RIR Inc method used, so RIR adjusted)
adjustment = c(4, 2, 0, 6, 4, 2),
vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_RIR_increment,
progression_table_control = list(volume = "extensive")

)

plot_scheme(scheme)

plot_vertical Plotting of the Vertical Planning

Description

Function for creating ggplot2 plot of the Vertical Planning function

Usage

plot_vertical(vertical_plan, reps = c(5, 5, 5), font_size = 14, ...)

release 39

Arguments

vertical_plan Vertical Plan function
reps Numeric vector
font_size Numeric. Default is 14

Forwarded to vertical_plan function

Examples

plot_vertical(vertical_block_undulating, reps = c(8, 6, 4))

release Create a Release period

Description

Release combines multiple schemes together with prescription_1RM, additive_1RM_adjustment,
and multiplicative_1RM_adjustment parameters to calculate working weight, load_1RM, and
buffer

Usage

release(
prescription_1RM = 100,
additive_1RM_adjustment = 2.5,
multiplicative_1RM_adjustment = 1,
rounding = 2.5,
max_perc_I1RM_func = max_perc_1RM_epley

Arguments

e STMr_scheme objects create by scheme_ functions
prescription_1RM
Initial prescription planning 1RM to calculate weight Default is 100
additive_1RM_adjustment
Additive 1RM adjustment across phases. Default is 2.5
multiplicative_1RM_adjustment
multiplicative 1RM adjustment across phases. Default is 1 (i.e., no adjustment)
rounding Rounding for the calculated weight. Default is 2.5
max_perc_1RM_func
Max Perc 1RM function to use when calculating load_1RM. Default is max_perc_1RM_epley

Value

STMr_relase data frame

40 RTF _testing

Examples

schemel <- scheme_step(vertical_planning = vertical_constant)
scheme2 <- scheme_step(vertical_planning = vertical_linear)
scheme3 <- scheme_step(vertical_planning = vertical_undulating)

release_df <- release(
schemel, scheme2, scheme3,
additive_1RM_adjustment = 2.5
)

plot(release_df)

RTF_testing Reps to failure testing of 12 athletes

Description

A dataset containing reps to failure testing for 12 athletes using 70, 80, and 90% of 1RM

Usage

RTF_testing

Format

A data frame with 36 rows and 6 variables:

Athlete Name of the athlete; ID

1RM Maximum weight the athlete can lift correctly for a single rep

Target %1RM %1RM we want to use for testing; 70, 80, or 90%

Target Weight Estimated weight to be lifted

Real Weight Weight that is estimated to be lifted, but rounded to closest 2.5
Real %1RM Recalculated % 1RM after rounding the weight

nRM Reps-to-failure (RTF), or the number of maximum repetitions (nRM) performed

set_and_reps_schemes

41

set_and_reps_schemes Set and Rep Schemes

Description

Set and Rep Schemes

Usage

scheme_generic(

)

reps,
adjustment,

vertical_planning,
vertical_planning_control = list(),
progression_table,
progression_table_control = list()

scheme_wave(

)

reps = c(10, 8, 6),

adjustment = -rev((seq_along(reps) - 1) * 5)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

scheme_plateau(

)

reps = c(5, 5, 5),

vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

scheme_step(

)

reps = c(5, 5, 5),

adjustment = -rev((seq_along(reps) - 1) * 10)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),

progression_table = progression_perc_drop,
progression_table_control = list(volume = "intensive")

scheme_step_reverse(

reps = c(5, 5, 5),
adjustment = -((seq_along(reps) - 1) * 10)/100,

42

vertical_planning = vertical_constant,
vertical_planning_control = list(),

progression_table = progression_perc_drop,
progression_table_control = list(volume = "intensive")

scheme_wave_descending(
reps = c(6, 8, 10),
adjustment = -rev((seq_along(reps) - 1) * 5)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

scheme_light_heavy(
reps = c(10, 5, 10, 5),
adjustment = c(-0.1, @)[(seq_along(reps)%%2) + 11,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

scheme_pyramid(
reps = c(12, 10, 8, 10, 12),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")

scheme_pyramid_reverse(
reps = c(8, 10, 12, 10, 8),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")

scheme_rep_acc(
reps = c(10, 10, 10),
adjustment = 0,
vertical_planning_control = list(step = rep(@, 4)),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

set_and_reps_schemes

set_and_reps_schemes 43

scheme_ladder(
reps = c(3, 5, 10),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,

progression_table_control = list(volume = "normal”)
)
scheme_manual (

index = NULL,

step,

sets = 1,

reps,

adjustment = 0,

perc_1RM = NULL,

progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal”)

scheme_perc_1RM(reps = c(5, 5, 5), perc_1RM = c(0.4, 0.5, 0.6), n_steps = 4)

Arguments
reps Numeric vector indicating reps prescription
adjustment Numeric vector indicating adjustments. Forwarded to progression_table.

vertical_planning

Vertical planning function. Default is vertical_constant
vertical_planning_control

Arguments forwarded to the vertical_planning function
progression_table

Progression table function. Default is progression_perc_drop
progression_table_control

Arguments forwarded to the progression_table function

index Numeric vector. If not provided, index will be create using sequence of step
step Numeric vector
sets Numeric vector. Used to replicate reps and adjustments
perc_1RM Numeric vector of user provided 1RM percentage
n_steps How many progression steps to generate? Default is 4
Value

Data frame with the following columns: reps, index, step, adjustment, and perc_1RM.

44 set_and_reps_schemes

Functions

* scheme_generic(): Generic set and rep scheme. scheme_generic is called in all other set
and rep schemes - only the default parameters differ to make easier and quicker schemes
writing and groupings

* scheme_wave(): Wave set and rep scheme

* scheme_plateau(): Plateau set and rep scheme

* scheme_step(): Step set and rep scheme

* scheme_step_reverse(): Reverse Step set and rep scheme

* scheme_wave_descending(): Descending Wave set and rep scheme

* scheme_light_heavy(): Light-Heavy set and rep scheme. Please note that the adjustment
column in the output will be wrong, hence set to NA

* scheme_pyramid(): Pyramid set and rep scheme
* scheme_pyramid_reverse(): Reverse Pyramid set and rep scheme
* scheme_rep_acc(): Rep Accumulation set and rep scheme

* scheme_ladder(): Ladder set and rep scheme. Please note that the adjustment column in
the output will be wrong, hence set to NA

¢ scheme_manual (): Manual set and rep scheme

* scheme_perc_1RM(): Manual %1RM set and rep scheme

Examples

scheme_generic(
reps = c(8, 6, 4, 8, 6, 4),
Adjusting using lower %1RM (RIR Increment method used)
adjustment = c(4, 2, 0, 6, 4, 2),
vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_RIR_increment,
progression_table_control = list(volume = "extensive")

)

Wave set and rep schemes
scheme_wave()

scheme_wave(
reps = c(8, 6, 4, 8, 6, 4),
Second wave with higher intensity
adjustment = c(-0.25, -0.15, 0.05, -0.2, -0.1, Q),
vertical_planning = vertical_block,
progression_table = progression_perc_drop,
progression_table_control = list(type = "ballistic")

)

Adjusted second wave
and using 3 steps progression
scheme_wave(

set_and_reps_schemes

)

#
#

reps = c(8, 6, 4, 8, 6, 4),

Adjusting using lower %1RM (progression_perc_drop method used)
adjustment = c(0, 0, 0, -0.1, -0.1, -0.1),

vertical_planning = vertical_linear,

vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")

Adjusted using RIR inc
This time we adjust first wave as well, first two sets easier

scheme <- scheme_wave(

)

reps = c(8, 6, 4, 8, 6, 4),

Adjusting using lower %1RM (RIR Increment method used)
adjustment = c(4, 2, 0, 6, 4, 2),

vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_RIR_increment,
progression_table_control = list(volume = "extensive")

plot(scheme)

Plateau set and rep schemes

scheme_plateau()

scheme <- scheme_plateau(

)

reps = c(3, 3, 3),
progression_table_control = list(type = "ballistic"”)

plot(scheme)

Step set and rep schemes

scheme_step()

scheme <- scheme_step(

)

reps = c(2, 2, 2),

adjustment = c(-0.1, -0.05, 0),

vertical_planning = vertical_linear_reverse,
progression_table_control = list(type = "ballistic")

plot(scheme)

Reverse Step set and rep schemes

#_ _________________________
scheme <- scheme_step_reverse()
plot(scheme)

Descending Wave set and rep schemes

scheme <- scheme_wave_descending()
plot(scheme)

45

set_and_reps_schemes

Light-Heavy set and rep schemes

scheme <- scheme_light_heavy()
plot(scheme)

Pyramid set and rep schemes

scheme <- scheme_pyramid()
plot(scheme)

Reverse Pyramid set and rep schemes

scheme <- scheme_pyramid_reverse()
plot(scheme)

Rep Accumulation set and rep schemes
scheme_rep_acc()

Generate Wave scheme with rep accumulation vertical progression

This functions doesn't allow you to use different vertical planning

options

scheme <- scheme_rep_acc(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))
plot(scheme)

Other options is to use ~
apply it after

The default vertical progression is “vertical_const()~

scheme <- scheme_wave(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))

.vertical_rep_accumulation.post()" and

.vertical_rep_accumulation.post(scheme)

We can also create "undulating” rep decrements
.vertical_rep_accumulation.post(

scheme,

rep_decrement = c(-3, -1, -2, 0)

)

“~scheme_rep_acc™ will not allow you to generate ~scheme_ladder()"
and ~scheme_scheme_light_heavy()~

You must use " .vertical_rep_accumulation.post()” to do so

scheme <- scheme_ladder ()

scheme <- .vertical_rep_accumulation.post(scheme)

plot(scheme)

Please note that reps < 1 are removed. If you do not want this,

use “remove_reps = FALSE™ parameter

scheme <- scheme_ladder()

scheme <- .vertical_rep_accumulation.post(scheme, remove_reps = FALSE)
plot(scheme)

Ladder set and rep schemes

set_and_reps_schemes

scheme <- scheme_ladder()
plot(scheme)

Manual set and rep schemes

scheme_df <- data.frame(
index = 1, # Use this just as an example
step = c(-3, -2, -1, 0),
Sets are just an easy way to repeat reps and adjustment
sets = c(5, 4, 3, 2),
reps = c(5, 4, 3, 2),
adjustment = 0
)

Step index is estimated to be sequences of steps
If you want specific indexes, use it as an argument (see next example)
scheme <- scheme_manual(

step = scheme_df$step,

sets = scheme_df$sets,

reps = scheme_df$reps,

adjustment = scheme_df$adjustment

)

plot(scheme)

Here we are going to provide our own index
scheme <- scheme_manual(

index = scheme_df$index,

step = scheme_df$step,

sets = scheme_df$sets,

reps = scheme_df$reps,

adjustment = scheme_df$adjustment

plot(scheme)

More complicated example
scheme_df <- data.frame(

step = ¢(-3, -3, -3, -3, -2, -2, -2, -1, -1, @),

sets = 1,

reps = ¢c(5, 5, 5, 5, 3, 2,1, 2,1, 1),

adjustment = c(@, -0.05, -0.1, -0.15, -0.1, -0.05, @, -0.1, @, Q)
)

scheme_df

scheme <- scheme_manual(
step = scheme_df$step,
sets = scheme_df$sets,
reps = scheme_df$reps,
adjustment = scheme_df$adjustment,

48 sig_pad
Select another progression table
progression_table = progression_DI,

Extra parameters for the progression table
progression_table_control = list(
volume = "extensive”,
type = "ballistic”,
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36
)
)
plot(scheme)
Provide %1RM manually
scheme_df <- data.frame(
index = rep(c(1, 2, 3, 4), each = 3),
reps = rep(c(5, 5, 5), 4),
perc_1RM = rep(c(0.4, 0.5, 0.6), 4)
)
warmup_scheme <- scheme_manual(
index = scheme_df$index,
reps = scheme_df$reps,
perc_1RM = scheme_df$perc_1RM
)
plot(warmup_scheme)
Manual %1RM set and rep schemes

warmup_scheme <- scheme_perc_1RM(
reps = c(10, 8, 6),
perc_1RM = c(0.4, 0.5, 0.6),
n_steps = 3
)
plot(warmup_scheme)
sig_pad Format to significant digits and pad to equal string width
Description
Format to significant digits and pad to equal string width
Usage

sig_pad(x, sig = 3L, na = NA_character_)

strength_training_log 49

Arguments
X Numeric vector.
sig Integer >= 1. Significant digits.
na Character to use for NA values.
Value

Character vector with equal nchar (non-NA values), left-padded with spaces.

strength_training_log Strength Training Log

Description

A dataset containing strength training log for a single athlete. Strength training program involves
doing two strength training sessions, over 12 week (4 phases of 3 weeks each). Session A involves
linear wave-loading pattern starting with 2x12/10/8 reps and reaching 2x8/6/4 reps. Session B
involves constant wave-loading pattern using 2x3/2/1. This dataset contains weight being used,
as well as estimated reps-in-reserve (eRIR), which represent subjective rating of the proximity to
failure

Usage

strength_training_log

Format

A data frame with 144 rows and 8 variables:

phase Phase index number. Numeric from 1 to 4

week Week index number (within phase). Numeric from 1 to 3
day Day (total) index number. Numeric from 1 to 3

session Name of the session. Can be "Session A" or "Session B"
set Set index number. Numeric from 1 to 6

weight Weight in kg being used

reps Number of reps being done

eRIR Estimated reps-in-reserve

50

vertical_planning_functions

vertical_planning_functions
Vertical Planning Functions

Description

Functions for creating vertical planning (progressions)

Usage

vertical_planning(reps, reps_change = NULL, step = NULL)

vertical_constant(reps, n_steps = 4)

vertical_linear(reps, reps_change = c(0, -1, -2, -3))

vertical_linear_reverse(reps, reps_change = c(0, 1, 2, 3))

vertical_block(reps, step = c(-2, -1, 0, -3))

vertical_block_variant(reps, step = c(-2, -1, -3, 0))

vertical_rep_accumulation(
reps,
reps_change = c(-3, -2, -1, 0),
step = c(@, 0, 0, @)

)

vertical_set_accumulation(
reps,
step = c(-2, -2, -2, -2),
reps_change = rep(@, length(step)),
accumulate_set = length(reps),
set_increment = 1,
sequence = TRUE

)

vertical_set_accumulation_reverse(
reps,
step = c(-3, -2, -1, 0),
reps_change = rep(@, length(step)),
accumulate_set = length(reps),
set_increment = 1,
sequence = TRUE

)

vertical_undulating(reps, reps_change = c(0, -2, -1, -3))

vertical_planning_functions 51

vertical_undulating_reverse(reps, reps_change = c(0, 2, 1, 3))

vertical_block_undulating(
reps,
reps_change = c(@, -2, -1, -3),
step = c(-2, -1, -3, @)

)

vertical_volume_intensity(reps, reps_change = c(@, 0, -3, -3))

.vertical_rep_accumulation.post(
scheme,
rep_decrement = c(-3, -2, -1, @),
remove_reps = TRUE

)
Arguments
reps Numeric vector indicating reps prescription
reps_change Change in reps across progression steps
step Numeric vector indicating progression steps (i.e. -3, -2, -1, 0)
n_steps Number of progression steps. Default is 4

accumulate_set Which set (position in reps) to accumulate

set_increment How many sets to increase each step? Default is 1

sequence Should the sequence of accumulated sets be repeated, or individual sets?
scheme Scheme generated by scheme_ functions

rep_decrement Rep decrements across progression step

remove_reps Should < 1 reps be removed?

Value

Data frame with reps, index, and step columns

Functions

* vertical_planning(): Generic Vertical Planning

e vertical_constant(): Constants Vertical Planning

* vertical_linear(): Linear Vertical Planning

e vertical_linear_reverse(): Reverse Linear Vertical Planning

* vertical_block(): Block Vertical Planning

e vertical_block_variant(): Block Variant Vertical Planning

e vertical_rep_accumulation(): Rep Accumulation Vertical Planning

* vertical_set_accumulation(): Set Accumulation Vertical Planning

52 vertical_planning_functions

e vertical_set_accumulation_reverse(): Set Accumulation Reverse Vertical Planning
* vertical_undulating(): Undulating Vertical Planning

e vertical_undulating_reverse(): Undulating Vertical Planning

* vertical_block_undulating(): Block Undulating Vertical Planning

* vertical_volume_intensity(): Volume-Intensity Vertical Planning

e .vertical_rep_accumulation.post(): Rep Accumulation Vertical Planning POST treat-
ment This functions is to be applied AFTER scheme is generated. Other options is to use
scheme_rep_acc function, that is flexible enough to generate most options, except for the
scheme_ladder and scheme_light_heavy. Please note that the adjustment column in the
output will be wrong, hence set to NA

Examples

Generic vertical planning function
Constant
vertical_planning(reps = c(3, 2, 1), step = c(-3, -2, -1, 0))

Linear
vertical_planning(reps = c(5, 5, 5, 5, 5), reps_change = c(0, -1, -2))

Reverse Linear
vertical_planning(reps = c(5, 5, 5, 5, 5), reps_change = c(0, 1, 2))

Block
vertical_planning(reps = c(5, 5, 5, 5, 5), step = c(-2, -1, 0, -3))

Block variant
vertical_planning(reps = c(5, 5, 5, 5, 5), step = c(-2, -1, -3, @))

Undulating
vertical_planning(reps = c(12, 10, 8), reps_change = c(0, -4, -2, -6))

Undulating + Block variant

vertical_planning(
reps = c(12, 10, 8),
reps_change = c(0, -4, -2, -6),
step = c(-2, -1, -3, 0)

)

Rep accumulation
If used with ~scheme_generic()” (or any other “scheme_~) it will provide wrong set and rep scheme.
Use “scheme_rep_acc()™ instead, or apply ~.vertical_rep_accumulation.post()"
function AFTER generating the scheme
vertical_planning(
reps = c(10, 8, 6),
reps_change = c(-3, -2, -1, 0),
step = c(0, 0, 0, 0)
)

vertical_planning_functions 53

Constant

vertical_constant(c(5, 5, 5), 4)
vertical_constant(c(3, 2, 1), 2)

plot_vertical(vertical_constant)
Linear

vertical_linear(c(10, 8, 6), c(0, -2, -4))
vertical_linear(c(5, 5, 5), c(o, -1, -2, -3))

plot_vertical(vertical_linear)
Reverse Linear

vertical_linear_reverse(c(6, 4, 2), c(0, 1, 2))
vertical_linear_reverse(c(5, 5, 5))

plot_vertical(vertical_linear_reverse)

Block

vertical_block(c(6, 4, 2))

plot_vertical(vertical_block)

Block Variant

vertical_block_variant(c(6, 4, 2))

plot_vertical(vertical_block_variant)

Rep Accumulation

If used with ~scheme_generic()~ (or any other “scheme_") it will provide wrong set and rep scheme.
Use “scheme_rep_acc()™ instead, or apply ~.vertical_rep_accumulation.post()"”
function AFTER generating the scheme

vertical_rep_accumulation(c(10, 8, 6))
plot_vertical(vertical_rep_accumulation)

Set Accumulation

Default is accumulation of the last set
vertical_set_accumulation(c(3, 2, 1))

We can have whole sequence being repeated
vertical_set_accumulation(c(3, 2, 1), accumulate_set = 1:3)

Or we can have accumulation of the individual sets

54

vertical_planning_functions

vertical_set_accumulation(c(3, 2, 1), accumulate_set = 1:3, sequence = FALSE)

We can also have two or more sequences
vertical_set_accumulation(c(10, 8, 6, 4, 2, 1), accumulate_set = c(1:2, 5:6))

And also repeat the individual sets

vertical_set_accumulation(
c(1e, 8, 6, 4, 2, 1),
accumulate_set = c(1:2, 5:6),
sequence = FALSE

)

plot_vertical(vertical_set_accumulation)
Reverse Set Accumulation

Default is accumulation of the last set
vertical_set_accumulation_reverse(c(3, 2, 1))

We can have whole sequence being repeated

vertical_set_accumulation_reverse(c(3, 2, 1), accumulate_set = 1:3)

Or we can have accumulation of the individual sets
vertical_set_accumulation_reverse(c(3, 2, 1), accumulate_set = 1:3, sequence = FALSE)

We can also have two or more sequences
vertical_set_accumulation_reverse(c(10, 8, 6, 4, 2, 1), accumulate_set = c(1:2, 5:6))

And also repeat the individual sets
vertical_set_accumulation_reverse(
c(lo, 8, 6, 4, 2, 1),

accumulate_set = c(1:2, 5:6),
sequence = FALSE

)

plot_vertical(vertical_set_accumulation_reverse)

Undulating

vertical_undulating(c(8, 6, 4))

Reverse Undulating

vertical_undulating_reverse(c(8, 6, 4))

Block Undulating

This is a combination of Block Variant (undulation in the steps) and
Undulating (undulation in reps)

vertical_block_undulating(c(8, 6, 4))

Volume-Intensity

vertical_volume_intensity(c(6, 6, 6))

vertical_planning_functions

Rep Accumulation
scheme_rep_acc()

Generate Wave scheme with rep accumulation vertical progression

This functions doesn't allow you to use different vertical planning

options

scheme <- scheme_rep_acc(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))
plot(scheme)

Other options is to use ~
apply it after

The default vertical progression is “vertical_const()"

scheme <- scheme_wave(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))

.vertical_rep_accumulation.post()" and

.vertical_rep_accumulation.post(scheme)

We can also create "undulating” rep decrements
.vertical_rep_accumulation.post(

scheme,

rep_decrement = c(-3, -1, -2, 0)
)

“scheme_rep_acc™ will not allow you to generate ~scheme_ladder()"
and ~scheme_scheme_light_heavy()~

You must use ~.vertical_rep_accumulation.post()” to do so

scheme <- scheme_ladder ()

scheme <- .vertical_rep_accumulation.post(scheme)

plot(scheme)

Please note that reps < 1 are removed. If you do not want this,

use “remove_reps = FALSE™ parameter

scheme <- scheme_ladder()

scheme <- .vertical_rep_accumulation.post(scheme, remove_reps = FALSE)
plot(scheme)

55

Index

* datasets
RTF_testing, 40
strength_training_log, 49
+.STMr_scheme, 2
.vertical_rep_accumulation.post
(vertical_planning_functions),
50

adj_perc_1RM, 3, 6, 25

adj_perc_1RM_DI (adj_perc_1RM), 3
adj_perc_1RM_perc_MR (adj_perc_1RM), 3
adj_perc_1RM_rel_int (adj_perc_1RM), 3
adj_perc_1RM_RIR (adj_perc_1RM), 3
adj_reps, 6

adj_reps_DI (adj_reps), 6
adj_reps_perc_MR (adj_reps), 6
adj_reps_rel_int (adj_reps), 6
adj_reps_RIR (adj_reps), 6

create_example, 9

estimate_functions, 10
estimate_functions_mixed, 14
estimate_functions_quantile, 17
estimate_k (estimate_functions), 10
estimate_k_1RM, 12, 2]
estimate_k_1RM (estimate_functions), 10
estimate_k_1RM_mixed
(estimate_functions_mixed), 14
estimate_k_1RM_quantile
(estimate_functions_quantile),
17
estimate_k_generic
(estimate_functions), 10
estimate_k_generic_1RM
(estimate_functions), 10
estimate_k_generic_1RM_mixed
(estimate_functions_mixed), 14
estimate_k_generic_1RM_quantile
(estimate_functions_quantile),
17

56

estimate_k_mixed, 15

estimate_k_mixed
(estimate_functions_mixed), 14

estimate_k_quantile
(estimate_functions_quantile),
17

estimate_klin (estimate_functions), 10

estimate_klin_1RM (estimate_functions),
10

estimate_klin_1RM_mixed
(estimate_functions_mixed), 14

estimate_klin_1RM_quantile
(estimate_functions_quantile),
17

estimate_klin_mixed, 15

estimate_klin_mixed
(estimate_functions_mixed), 14

estimate_klin_quantile
(estimate_functions_quantile),
17

estimate_kmod (estimate_functions), 10

estimate_kmod_1RM (estimate_functions),
10

estimate_kmod_1RM_mixed
(estimate_functions_mixed), 14

estimate_kmod_1RM_quantile
(estimate_functions_quantile),
17

estimate_kmod_mixed, 15

estimate_kmod_mixed
(estimate_functions_mixed), 14

estimate_kmod_quantile
(estimate_functions_quantile),
17

estimate_rolling_1RM, 21

generate_progression_table, 22, 37
geom_bar_text, 35, 36
geom_fit_text, 35, 36
get_perc_1RM, 31, 32

INDEX

get_predicted_1RM_from_k_model
(estimate_functions), 10
get_reps, 32

max, 35

max_perc_1RM, 33

max_perc_1RM_epley, 4, 39

max_perc_1RM_epley (max_perc_1RM), 33

max_perc_1RM_linear, 4

max_perc_1RM_linear (max_perc_1RM), 33

max_perc_T1RM_modified_epley
(max_perc_1RM), 33

max_reps, 34

max_reps_epley, 7

max_reps_epley (max_reps), 34

max_reps_linear, 7

max_reps_linear (max_reps), 34

max_reps_modified_epley (max_reps), 34

nlme, 15
nlrq, 19
nlskM, /1, 12

plot.STMr_release, 35

plot.STMr_scheme, 36

plot_progression_table, 37

plot_scheme, 38

plot_vertical, 38

progression_DI
(generate_progression_table),
22

progression_perc_drop, 43

progression_perc_drop
(generate_progression_table),
22

progression_perc_MR
(generate_progression_table),
22

progression_perc_MR_variable
(generate_progression_table),
22

progression_rel_int
(generate_progression_table),
22

progression_RIR
(generate_progression_table),
22

progression_RIR_increment
(generate_progression_table),
22

57

progression_table, 43

progression_table
(generate_progression_table),
22

progression_variable_DI
(generate_progression_table),
22

progression_variable_RIR
(generate_progression_table),
22

release, 39
RTF_testing, 40

scheme_generic (set_and_reps_schemes),
41

scheme_ladder, 52

scheme_ladder (set_and_reps_schemes), 41

scheme_light_heavy, 52

scheme_light_heavy
(set_and_reps_schemes), 41

scheme_manual (set_and_reps_schemes), 41

scheme_perc_1RM (set_and_reps_schemes),
41

scheme_plateau (set_and_reps_schemes),
41

scheme_pyramid (set_and_reps_schemes),
41

scheme_pyramid_reverse
(set_and_reps_schemes), 41

scheme_rep_acc, 52

scheme_rep_acc (set_and_reps_schemes),
41

scheme_step (set_and_reps_schemes), 41

scheme_step_reverse
(set_and_reps_schemes), 41

scheme_wave (set_and_reps_schemes), 41

scheme_wave_descending
(set_and_reps_schemes), 41

set_and_reps_schemes, 41

sig_pad, 48

strength_training_log, 49

vertical_block
(vertical_planning_functions),
50

vertical_block_undulating
(vertical_planning_functions),
50

58

vertical_block_variant
(vertical_planning_functions),
50

vertical_constant, 43

vertical_constant
(vertical_planning_functions),
50

vertical_linear
(vertical_planning_functions),
50

vertical_linear_reverse
(vertical_planning_functions),
50

vertical_planning, 43

vertical_planning
(vertical_planning_functions),
50

vertical_planning_functions, 50

vertical_rep_accumulation
(vertical_planning_functions),
50

vertical_set_accumulation
(vertical_planning_functions),
50

vertical_set_accumulation_reverse
(vertical_planning_functions),
50

vertical_undulating
(vertical_planning_functions),
50

vertical_undulating_reverse
(vertical_planning_functions),
50

vertical_volume_intensity
(vertical_planning_functions),
50

INDEX

	+.STMr_scheme
	adj_perc_1RM
	adj_reps
	create_example
	estimate_functions
	estimate_functions_mixed
	estimate_functions_quantile
	estimate_rolling_1RM
	generate_progression_table
	get_perc_1RM
	get_reps
	max_perc_1RM
	max_reps
	plot.STMr_release
	plot.STMr_scheme
	plot_progression_table
	plot_scheme
	plot_vertical
	release
	RTF_testing
	set_and_reps_schemes
	sig_pad
	strength_training_log
	vertical_planning_functions
	Index

