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This note describes Rcpp sugar which has been introduced in version

0.8.3 of Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and François, 2011).

Rcpp sugar brings a higher-level of abstraction to C++ code written using

the Rcpp API. Rcpp sugar is based on expression templates (Abrahams

and Gurtovoy, 2004; Vandevoorde and Josuttis, 2003) and provides some

‘syntactic sugar’ facilities directly in Rcpp. This is similar to how RcppAr-

madillo (Eddelbuettel et al., 2025) offers linear algebra C++ classes based

on Armadillo (Sanderson, 2010).

Rcpp | sugar | R | C++

1. Motivation

Rcpp facilitates development of internal compiled code in an R

package by abstracting low-level details of the R API (R Core Team,

2025) into a consistent set of C++ classes.

Code written using Rcpp classes is easier to read, write and

maintain, without loosing performance. Consider the following

code example which provides a function foo as a C++ extension to

R by using the Rcpp API:

RcppExport SEXP foo(SEXP x, SEXP y) {

Rcpp::NumericVector xx(x), yy(y);

int n = xx.size();

Rcpp::NumericVector res(n);

double x_ = 0.0, y_ = 0.0;

for (int i=0; i<n; i++) {

x_ = xx[i];

y_ = yy[i];

if (x_ < y_) {

res[i] = x_ * x_;

} else {

res[i] = -(y_ * y_);

}

}

return res;

}

The goal of the function foo code is simple. Given two numeric

vectors, we create a third one. This is typical low-level C++ code

that that could be written much more concisely in R thanks to

vectorisation as shown in the next example.

foo <- function(x, y) {

ifelse(x < y, x * x, -(y * y))

}

Put succinctly, the motivation of Rcpp sugar is to bring a subset

of the high-level R syntax in C++. Hence, with Rcpp sugar , the

C++ version of foo now becomes:

Rcpp::NumericVector foo(Rcpp::NumericVector x,

Rcpp::NumericVector y) {

return ifelse(x < y, x * x, -(y * y));

}

Apart from being strongly-typed and the need for explicit

return statement, the code is now identical between highly-

vectorised R and C++.

Rcpp sugar is written using expression templates and lazy eval-

uation techniques (Abrahams and Gurtovoy, 2004; Vandevoorde

and Josuttis, 2003). This not only allows a much nicer high-level

syntax, but also makes it rather efficient (as we detail in section 4

below).

2. Operators

Rcpp sugar takes advantage of C++ operator overloading. The

next few sections discuss several examples.

2.1. Binary arithmetic operators. Rcpp sugar defines the usual

binary arithmetic operators : +, -, *, /.

// two numeric vectors of the same size

NumericVector x;

NumericVector y;

// expressions involving two vectors

NumericVector res = x + y;

NumericVector res = x - y;

NumericVector res = x * y;

NumericVector res = x / y;

// one vector, one single value

NumericVector res = x + 2.0;

NumericVector res = 2.0 - x;

NumericVector res = y * 2.0;

NumericVector res = 2.0 / y;

// two expressions

NumericVector res = x * y + y / 2.0;

NumericVector res = x * (y - 2.0);

NumericVector res = x / (y * y);

The left hand side (lhs) and the right hand side (rhs) of each

binary arithmetic expression must be of the same type (for example

they should be both numeric expressions).

The lhs and the rhs can either have the same size or one of them

could be a primitive value of the appropriate type, for example

adding a NumericVector and a double.

2.2. Binary logical operators. Binary logical operators create a

logical sugar expression from either two sugar expressions of

the same type or one sugar expression and a primitive value of the

associated type.

// two integer vectors of the same size

NumericVector x;

NumericVector y;

// expressions involving two vectors
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LogicalVector res = x < y;

LogicalVector res = x > y;

LogicalVector res = x <= y;

LogicalVector res = x >= y;

LogicalVector res = x == y;

LogicalVector res = x != y;

// one vector, one single value

LogicalVector res = x < 2;

LogicalVector res = 2 > x;

LogicalVector res = y <= 2;

LogicalVector res = 2 != y;

// two expressions

LogicalVector res = (x + y) < (x*x);

LogicalVector res = (x + y) >= (x*x);

LogicalVector res = (x + y) == (x*x);

2.3. Unary operators. The unary operator- can be used to negate

a (numeric) sugar expression. whereas the unary operator!

negates a logical sugar expression:

// a numeric vector

NumericVector x;

// negate x

NumericVector res = -x;

// use it as part of a numerical expression

NumericVector res = -x * (x + 2.0);

// two integer vectors of the same size

NumericVector y;

NumericVector z;

// negate the logical expression "y < z"

LogicalVector res = !(y < z);

3. Functions

Rcpp sugar defines functions that closely match the behavior of R

functions of the same name.

3.1. Functions producing a single logical result. Given a logical

sugar expression, the all function identifies if all the elements are

TRUE. Similarly, the any function identifies if any the element is

TRUE when given a logical sugar expression.

IntegerVector x = seq_len(1000);

all(x*x < 3);

any(x*x < 3);

Either call to all and any creates an object of a class that has

member functions is_true, is_false, is_na and a conversion

to SEXP operator.

One important thing to highlight is that all is lazy. Unlike R,

there is no need to fully evaluate the expression. In the example

above, the result of all is fully resolved after evaluating only the

two first indices of the expression x * x < 3. any is lazy too, so

it will only need to resolve the first element of the example above.

3.1.1. Conversion to bool. One important thing to note concerns the

conversion to the bool type. In order to respect the concept of

missing values (NA) in R, expressions generated by any or all

can not be converted to bool. Instead one must use is_true,

is_false or is_na:

// wrong: will generate a compile error

bool res = any(x < y);

// ok

bool res = is_true(any( x < y ));

bool res = is_false(any( x < y ));

bool res = is_na(any( x < y ));

3.2. Functions producing sugar expressions.

3.2.1. is_na. Given a sugar expression of any type, is_na (just like

the other functions in this section) produces a logical sugar ex-

pression of the same length. Each element of the result expression

evaluates to TRUE if the corresponding input is a missing value, or

FALSE otherwise.

IntegerVector x =

IntegerVector::create(0, 1, NA_INTEGER, 3);

is_na(x)

all(is_na( x ))

any(!is_na( x ))

3.2.2. seq_along. Given a sugar expression of any type, seq_along

creates an integer sugar expression whose values go from 1 to the

size of the input.

IntegerVector x =

IntegerVector::create( 0, 1, NA_INTEGER, 3 );

IntegerVector y = seq_along(x);

IntegerVector z = seq_along(x * x * x * x * x * x);

This is the most lazy function, as it only needs to call the size

member function of the input expression. The input expression

need not to be resolved. The two examples above gives the same

result with the same efficiency at runtime. The compile time will

be affected by the complexity of the second expression, since the

abstract syntax tree is built at compile time.

3.2.3. seq_len. seq_len creates an integer sugar expression whose

i-th element expands to i. seq_len is particularly useful in con-

junction with sapply and lapply.

// 1, 2, ..., 10

IntegerVector x = seq_len(10);

List y = lapply(seq_len(10), seq_len);

3.2.4. pmin and pmax. Given two sugar expressions of the same type

and size, or one expression and one primitive value of the appro-

priate type, pmin (pmax) generates a sugar expression of the same

type whose i-th element expands to the lowest (highest) value be-

tween the i-th element of the first expression and the i-th element

of the second expression.
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IntegerVector x = seq_len(10);

pmin(x, x*x);

pmin(x*x, 2);

pmin(x, x*x);

pmin(x*x, 2);

3.2.5. ifelse. Given a logical sugar expression and either :

• two compatible sugar expression (same type, same size)

• one sugar expression and one compatible primitive

ifelse expands to a sugar expression whose i-th

element is the i-th element of the first expression if the i-th element

of the condition expands to TRUE or the i-th of the second expres-

sion if the i-th element of the condition expands to FALSE, or the

appropriate missing value otherwise.

IntegerVector x;

IntegerVector y;

ifelse(x < y, x, (x+y)*y)

ifelse(x > y, x, 2)

3.2.6. sapply. sapply applies a C++ function to each element of

the given expression to create a new expression. The type of the

resulting expression is deduced by the compiler from the result

type of the function.

The function can be a free C++ function such as the overload

generated by the template function below:

template <typename T>

T square(const T& x){

return x * x;

}

sapply(seq_len(10), square<int>);

Alternatively, the function can be a functor whose type has a

nested type called result_type

template <typename T>

struct square : std::function<T(T)> {

T operator()(const T& x){

return x * x;

}

}

sapply(seq_len(10), square<int>());

3.2.7. lapply. lapply is similar to sapply except that the result is

allways an list expression (an expression of type VECSXP).

3.2.8. sign. Given a numeric or integer expression, sign expands to

an expression whose values are one of 1, 0, -1 or NA, depending

on the sign of the input expression.

IntegerVector xx;

sign(xx)

sign(xx * xx)

3.2.9. diff. The i-th element of the result of diff is the difference

between the (i + 1)th and the i-th element of the input expression.

Supported types are integer and numeric.

IntegerVector xx;

diff(xx)

3.3. Mathematical functions. For the following set of functions, gen-

erally speaking, the i-th element of the result of the given function

(say, abs) is the result of applying that function to this i-th element

of the input expression. Supported types are integer and numeric.

IntegerVector x;

abs(x)

exp(x)

floor(x)

ceil(x)

pow(x, z) // x to the power of z

3.4. The d/q/p/r statistical functions. The framework provided by

Rcpp sugar also permits easy and efficient access the density,

distribution function, quantile and random number generation

functions function by R in the Rmath library.

Currently, most of these functions are vectorised for the first

element which denote size. Consequently, these calls works in C++

just as they would in R:

x1 = dnorm(y1, 0, 1); // density of y1 at m=0, sd=1

x2 = qnorm(y2, 0, 1); // quantiles of y2

x3 = pnorm(y3, 0, 1); // distribution of y3

x4 = rnorm(n, 0, 1); // 'n' RNG draws of N(0, 1)

Similar d/q/p/r functions are provided for the most common

distributions: beta, binom, cauchy, chisq, exp, f, gamma, geom,

hyper, lnorm, logis, nbeta, nbinom, nbinom_mu, nchisq, nf, norm,

nt, pois, t, unif, and weibull.

Note that the parameterization used in these sugar functions

may differ between the top-level functions exposed in an R session.

For example, the internal rexp is parameterized by scale, whereas

the R-level stats::rexp is parameterized by rate. Consult Dis-

tribution Functions for more details on the parameterization used

for these sugar functions.

One point to note is that the programmer using these functions

needs to initialize the state of the random number generator as

detailed in Section 6.3 of the ‘Writing R Extensions’ manual (R

Core Team, 2025). A nice C++ solution for this is to use a scoped

class that sets the random number generator on entry to a block

and resets it on exit. We offer the RNGScope class which allows

code such as

RcppExport SEXP getRGamma() {

RNGScope scope;

NumericVector x = rgamma(10, 1, 1);

return x;

}

As there is some computational overhead involved in using

RNGScope, we are not wrapping it around each inner function.

Rather, the user of these functions (i.e. you) should place an

RNGScope at the appropriate level of your code.
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4. Performance

TBD

5. Implementation

This section details some of the techniques used in the implemen-

tation of Rcpp sugar . Note that the user need not to be familiar

with the implementation details in order to use Rcpp sugar , so this

section can be skipped upon a first read of the paper.

Writing Rcpp sugar functions is fairly repetitive and follows a

well-structured pattern. So once the basic concepts are mastered

(which may take time given the inherent complexities in template

programming), it should be possible to extend the set of function

further following the established pattern.

5.1. The curiously recurring template pattern. Expression templates

such as those used by Rcpp sugar use a technique called the

Curiously Recurring Template Pattern (CRTP). The general form of

CRTP is:

// The Curiously Recurring Template Pattern (CRTP)

template <typename T>

struct base {

// ...

};

struct derived : base<derived> {

// ...

};

The base class is templated by the class that derives from it :

derived. This shifts the relationship between a base class and a

derived class as it allows the base class to access methods of the

derived class.

5.2. The VectorBase class. The CRTP is used as the basis for Rcpp

sugar with the VectorBase class template. All sugar expression

derive from one class generated by the VectorBase template. The

current definition of VectorBase is given here:

template <int RTYPE, bool na, typename VECTOR>

class VectorBase {

public:

struct r_type :

traits::integral_constant<int,RTYPE>{};

struct can_have_na :

traits::integral_constant<bool,na>{};

typedef typename

traits::storage_type<RTYPE>::type

stored_type;

VECTOR& get_ref(){

return static_cast<VECTOR&>(*this);

}

inline stored_type operator[](int i) const {

return static_cast<const VECTOR*>(

this)->operator[](i);

}

inline int size() const {

return static_cast<const VECTOR*>(

this)->size();

}

/* definition omitted here */

class iterator;

inline iterator begin() const {

return iterator(*this, 0);

}

inline iterator end() const {

return iterator(*this, size());

}

}

The VectorBase template has three parameters:

• RTYPE: This controls the type of expression (INTSXP, REALSXP,

. . . )

• na: This embeds in the derived type information about

whether instances may contain missing values. Rcpp vector

types (IntegerVector, . . . ) derive from VectorBase with

this parameter set to true because there is no way to know

at compile-time if the vector will contain missing values at

run-time. However, this parameter is set to false for types

that are generated by sugar expressions as these are guaran-

teed to produce expressions that are without missing values.

An example is the is_na function. This parameter is used in

several places as part of the compile time dispatch to limit the

occurrence of redundant operations.

• VECTOR: This parameter is the key of Rcpp sugar . This is the

manifestation of CRTP. The indexing operator and the size

method of VectorBase use a static cast of this to the VECTOR

type to forward calls to the actual method of the derived class.

5.3. Example: sapply. As an example, the current imple-

mentation of sapply, supported by the template class

Rcpp::sugar::Sapply is given below:

template <int RTYPE, bool NA,

typename T, typename Function>

class Sapply : public VectorBase<

Rcpp::traits::r_sexptype_traits< typename

::Rcpp::traits::result_of<Function>::type

>::rtype,

true,

Sapply<RTYPE, NA, T, Function>

> {

public:

typedef typename

::Rcpp::traits::result_of<Function>::type;

const static int RESULT_R_TYPE =

Rcpp::traits::r_sexptype_traits<

result_type>::rtype;

typedef Rcpp::VectorBase<RTYPE,NA,T> VEC;

typedef typename

Rcpp::traits::r_vector_element_converter<

RESULT_R_TYPE>::type

converter_type;
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typedef typename Rcpp::traits::storage_type<

RESULT_R_TYPE>::type STORAGE;

Sapply(const VEC& vec_, Function fun_) :

vec(vec_), fun(fun_){}

inline STORAGE operator[]( int i ) const {

return converter_type::get(fun(vec[i]));

}

inline int size() const {

return vec.size();

}

private:

const VEC& vec;

Function fun;

};

// sugar

template <int RTYPE, bool _NA_,

typename T, typename Function >

inline sugar::Sapply<RTYPE, _NA_, T, Function>

sapply(const Rcpp::VectorBase<RTYPE,_NA_,T>& t,

Function fun) {

return

sugar::Sapply<RTYPE,_NA_,T,Function>(t, fun);

}

5.3.1. The sapply function. sapply is a template function that takes

two arguments. The first argument is a sugar expression, which we

recognize because of the relationship with the VectorBase class

template. The second argument is the function to apply.

The sapply function itself does not do anything, it is just used

to trigger compiler detection of the template parameters that will

be used in the sugar::Sapply template.

5.3.2. Detection of return type of the function. In order to decide which

kind of expression is built, the Sapply template class queries the

template argument via the Rcpp::traits::result_of template.

typedef typename

::Rcpp::traits::result_of<Function>::type

result_type;

The result_of type trait is implemented as such:

template <typename T>

struct result_of{

typedef typename T::result_type type;

};

template <typename RESULT_TYPE,

typename INPUT_TYPE>

struct result_of<RESULT_TYPE (*)(INPUT_TYPE)> {

typedef RESULT_TYPE type;

};

The generic definition of result_of targets functors with a

nested result_type type.

The second definition is a partial specialization targetting func-

tion pointers.

5.3.3. Indentification of expression type. Based on the result type of

the function, the r_sexptype_traits trait is used to identify the

expression type.

const static int RESULT_R_TYPE =

Rcpp::traits::r_sexptype_traits<

result_type>::rtype;

5.3.4. Converter. The r_vector_element_converter class is used

to convert an object of the function’s result type to the actual

storage type suitable for the sugar expression.

typedef typename

Rcpp::traits::r_vector_element_converter<

RESULT_R_TYPE>::type

converter_type;

5.3.5. Storage type. The storage_type trait is used to get access

to the storage type associated with a sugar expression type. For

example, the storage type of a REALSXP expression is double.

typedef typename

Rcpp::traits::storage_type<RESULT_R_TYPE>::type

STORAGE;

5.3.6. Input expression base type. The input expression—the expres-

sion over which sapply runs—is also typedef’ed for convenience:

typedef Rcpp::VectorBase<RTYPE, NA, T> VEC;

5.3.7. Output expression base type. In order to be part of the Rcpp

sugar system, the type generated by the Sapply class template

must inherit from VectorBase.

template <int RTYPE, bool NA,

typename T, typename Function>

class Sapply : public VectorBase<

Rcpp::traits::r_sexptype_traits<

typename

::Rcpp::traits::result_of<Function>::type

>::rtype,

true,

Sapply<RTYPE,NA,T,Function>

>

The expression built by Sapply depends on the result type of

the function, may contain missing values, and the third argument

is the manifestation of the CRTP.

5.3.8. Constructor. The constructor of the Sapply class template is

straightforward, it simply consists of holding the reference to the

input expression and the function.

Sapply(const VEC& vec_, Function fun_):

vec(vec_), fun(fun_){}

private:

const VEC& vec;

Function fun;
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5.3.9. Implementation. The indexing operator and the size member

function is what the VectorBase expects. The size of the result

expression is the same as the size of the input expression and the ith

element of the result is simply retrieved by applying the function

and the converter. Both these methods are inline to maximize

performance:

inline STORAGE operator[](int i) const {

return converter_type::get(fun(vec[i]));

}

inline int size() const {

return vec.size();

}

6. Summary

TBD
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