Rcpp Quick Reference Guide

Dirk Eddelbuettel* and Romain Francois®
2https:/dirk.eddelbuettel.com; bhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This document provides short code snippets that are helpful for using the
Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and Francois, 2011; Eddel-
buettel, 2013).

Repp | quickref | R | C++

Important Notes

// If you experience comptiler errors, please check
// that you have an appropriate wversion of g++.
// See “Rcpp-FAQ' for more information.

// Many of the examples here imply the following:
#include <Rcpp.h>

using namespace Rcpp;

// The cppFunction will automatically add this.

// Or, prefiz Rcpp objects with the Rcpp namespace
// as e.g. in:
Rcpp: :NumericVector xx(10);

Create simple vectors

SEXP x; std::vector<double> y(10);

// from SEXP
NumericVector xx(x);

// of a given size (filled with 0)

NumericVector xx(10);
// ... with a default for all values
NumericVector xx(10, 2.0);

// range constructor
NumericVector xx(y.begin(), y.end());

// using create
NumericVector xx =
NumericVector: :create(1.0, 2.0, 3.0, 4.0);
NumericVector yy =
NumericVector: :create (Named ("foo") 1.0,
_["bar"] = 2.0);
// _ short for Named

Extract and set single elements

// extract single values

double x0 = xx[0];
double x1 = xx(1);
double yO = yy["foo"];
double y1 = yy["bar"];

https://cran.r-project.org/package=Rcpp

// set single values

xx[0] = 2.1;
xx(1) = 4.2;
yy["foo"] = 3.0;

// grow the wvector
yy["foobar"] = 10.0;

Using matrices

// Initializing from SEXP,

// dimensions handled automatically
SEXP x;

NumericMatrix xx(x);

// Matriz of 4 rows & 5 columns (filled with 0)
NumericMatrix xx(4, 5);

// Fill with value

int xsize = xx.nrow() * xx.ncol();

for (int i = 0; i < xsize; i++) {
xx[i] = 7;

}

// Same as above, using STL fill

std::fill(xx.begin(), xx.end(), 8);

// Assign this value to single element
// (1st row, 2nd col)
xx(0,1) = 4;

// Reference the second column

// Changes propagate to zz (same applies for Row)
NumericMatrix: :Column zzcol = xx( _, 1);

zzcol = zzcol * 2;

// Copy the second column into new object
NumericVector zzl = xx( _, 1);

// Copy submatriz (top left 3z3) into new object
NumericMatrix zz2 = xx( Range(0,2), Range(0,2));

Inline C++ Compile in R

## Note - this is R code.
## cppFunction in Rcpp allows rapid testing.
require (Rcpp)

cppFunction("

NumericVector exfun(NumericVector x, int i){
X = X*i;

return x;

iR

Rcpp Vignette | January 8, 2026

1-4


https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

2

exfun(1:5, 3)

## Use evalCpp to evaluate C++ expressions
evalCpp("std: :numeric_limits<double>::max()")

Interface with R
First step in R.

# In R, create a package shell. For details,
# see the "Writing R Extensions” manual and
# the "Rcpp-package" wignette.

Rcpp . package.skeleton("myPackage")

# Add R code to pkg R/ directory. Call C++
# function. Do type-checking in R.

myfunR <- function(Rx, Ry) {
.Call("myCfun", Rx, Ry,
package="myPackage")

ret =

return(ret)

}

require (myPackage)

aa <- 1.5
bb <- 1.5
cc <- myfunR(aa, bb)
aa == bb

# FALSE, C++ modifies aa

aa <- 1:2
bb <- 1:2
cc <- myfunR(aa, bb)

identical(aa, bb)
# TRUE, R/C++ types don't match
# so a copy was made

Additional C++.

// Add C++ code to pkg src/ directory.

using namespace Rcpp;

// Define function as extern with RcppExzport

RcppExport SEXP myCfun( SEXP x, SEXP y) {
// If R/C++ types match, use pointer to .
// Pointer is faster, but changes to zz
// propagate to R ( zz -> © == Rx).
NumericVector xx(x);

// clone is slower and uses exztra memory.
// Safe. No side effects.
NumericVector yy(clone(y));

xx[0] = yy[0] = -1.5;
int zz = xx[0];

// use wrap() to return non-SEXP objects, e.g:
// return(wrap (zz));
// Build and return a list

List ret;
ret["x"] = xx;
ret["y"] = yy;
return(ret);

}

STL interface

// sum a vector from beginning to end
double s = std::accumulate(x.begin(),
x.end(), 0.0);
// prod of elements from beginning to end
int p = std::accumulate(vec.begin(),
vec.end(), 1,
std::multiplies<int>());
// inner_product to compute sum of squares
double s2 = std::inner_product (res.begin(),
res.end(),
res.begin(), 0.0);

On the command-line.

# From shell, above package directory
R CMD build myPackage

R CMD check myPackage_1.0.tar.gz

R CMD INSTALL myPackage_1.0.tar.gz

## Optional

Back in R.

https://cran.r-project.org/package=Rcpp

Rcpp Attributes

In C++.

// Add code below into C++ file Rcpp_example.cpp

#include <Rcpp.h>
using namespace Rcpp;

// Place the 'Rcpp::ezport' tag
// right above function declaration.

// [[Repp: :export]]

double muRcpp (NumericVector x){
int n = x.size(); // Size of wector
double sum = 0; // Sum wvalue

// For loop, note cpp index shift to O
for(int i = 0; i < n; i++){
// Shorthand for sum = sum + z[i]
sum += x[i];

}

return sum/n; // Obtain and return the Mean

// Place dependent functions above call or
// declare the function definition with:
double muRcpp (NumericVector x);

// [[Rcpp: :export]]

Eddelbuettel and Francois


https://cran.r-project.org/package=Rcpp

double varRcpp(NumericVector x, bool bias = true){ NumericVector xx = rep( x, 3 );

// Calculate the mean using C++ function NumericVector xx = rep_len( x, 10 );
double mean = muRcpp(x); NumericVector xx = rep_each( x, 3 );
double sum = 0;

int n = x.size(); IntegerVector yy = rev( y );

for(int i = 0; i < n; i++){
sum += pow(x[i] - mean, 2.0); // Square
¥ // Set seed
RNGScope scope;

Random Number Generation functions}

return sum/(n-bias); // Return variance

¥ // For details see Section 6.7.1--Distribution

// functions of the “Writing R Extensions' manual.
// In some cases (e.g. Tnorm), dist-specific

Rcpp: : sourceCpp("path/to/file/Rcpp_example.cpp") // arguments can be omitted; when in doubt,

x <- 1:5 // specify all dist-specific arguments. The use
// of doubles rather than integers for dist-

// specific arguments is rTecommended. Unless

// explicitly specified, log=FALSE.

In R:.

all.equal (muRcpp(x), mean(x))
all.equal(var(x),varRcpp(x))

Rcpp Extensions // Equivalent to R calls
NumericVector xx = runif (20);

// Enable C++11 NumericVector xx1 = rnorm(20);

// [[Repp::plugins(cppl11)]] NumericVector xxl1 = rnorm(20, 0);

NumericVector xx1 = rnorm(20, 0, 1);

// Enable OpenMP (exzcludes macOS)

// [[Repp: :plugins (openmp)]] // Ezample vector of quantiles
NumericVector quants(5);

// Use the RcppArmadillo package for (int i = 0; i < 5; i++) {

// Requires different header file from Rcpp.h quants[i] = (i-2);

#include <RcppArmadillo.h> }

// [[Rcpp: :depends (ReppArmadillo)]]
// in R, dnorm(-2:2)
NumericVector yy = dnorm(quants) ;
Rcpp sugar NumericVector yy = dnorm(quants, 0.0, 1.0) ;

NumericVector x =

NumericVector: :create(-2.0,-1.0,0.0,1.0,2.0);
IntegerVector y =

IntegerVector: :create(-2, -1, 0, 1, 2);

// in R, dnorm(-2:2, mean=2, log=TRUE)
NumericVector yy = dnorm(quants, 2.0, true) ;

// Note - cannot specify sd without mean
// in R, dnorm(-2:2, mean=0, sd=2, log=TRUE)

SEmerEElEeReT i = elisl i NumericVector yy = dnorm(quants, 0.0, 2.0, true) ;

IntegerVector yy = abs( y );
// To get original R ap%, use Rf_*

bool b = all( x < 3.0 ?.is_true() ; Semile mm = T e, D)

bool b = any( y > 2 ).is_true();

NumericVector xx = ceil( x ); Environment

NumericVector xx = ceiling( x );

NumericVector yy = floor( y ); // Special environments

NumericVector yy = floor( y ); Environment: :Rcpp_namespace() ;
Environment: :base_env () ;

NumericVector xx = exp( X ); Environment::base_namespace();

NumericVector yy = exp( y ); Environment: :global_env() ;

Environment: :empty_env() ;
NumericVector xx = head( x, 2 );

IntegerVector yy = head( y, 2 ); // Obtain an R environment

Environment stats('"package:stats");
IntegerVector xx = seq_len( 10 ); Environment env( 2 ); // by position
IntegerVector yy = seq_along( y ); Environment glob = Environment::global_env();

Eddelbuettel and Frangois Rcpp Vignette | January 8, 2026



4

// Ezxtract function from specific environment
Function rnorm = stats["rnorm"];

// Assign into the environment
glOb["X"] = "fOO";
glob["y"] = 3;

// Retrieve information from environment
std::string x = glob["x"];

glob.assign( "foo" , 3 );

int foo = glob.get( "foo" );

int foo = glob.find( "foo" );
CharacterVector names = glob.ls(TRUE)
bool b = glob.exists( "foo" );
glob.remove( "foo" );

// Administration
glob.lockBinding("foo");
glob.unlockBinding("foo");

bool b = glob.bindingIsLocked("foo");
bool b = glob.bindingIsActive("foo");

// Retrieve related environments
Environment e = stats.parent();
Environment e = glob.new_child();

Calling Functions in R

// Do NOT exzpect to have a performance gain
// when calling R functions from R!

// Retrieve functions from default loaded env.
Function rnorm("rnorm");
rnorm(100, _["mean"] = 10.2, _["sd"] = 3.2 );

// Passing in an R function and obtaining results
// Make sure function conforms with return type!
NumericVector callFunction(NumericVector x,
Function f) {
NumericVector res = f(x);
return res;

/*%* R

# The following is R code ezecuted
# by sourceCpp() as a convenience.
TR=1015)

callFunction(z, sum)

*/

Modules

// Warning -- Module-based objects do mot persist
// across quit(save="yes")/reload cycles. To be
// safe, save results to R objects and remove

// module objects before exiting R.

// To create a module-containing package from R:
// Rcpp.package. skeleton("mypackage”, module=TRUE)

https://cran.r-project.org/package=Rcpp

class Bar {
public:
Bar (double x_) : x(x_), nread(0), nwrite(0) {}
double get_x( ) {
nread++;
return Xx;

}

void set_x( double x_) {
nwrite++;
X = xX_;

}

IntegerVector stats() const {
return
IntegerVector: :create(_["read"] = nread,
_["write"] = nwrite);
}
private:
double x; int nread, nwrite;

18

RCPP_MODULE (mod_bar) {
class_<Bar>( "Bar" )
.constructor<double>()
.property( "x", &Bar::get_x, &Bar::set_x,
"Docstring for x" )
.method( "stats", &Bar::stats,
"Docstring for stats")

817

/*%* R

## The following s R code.

require (mypackage) s

how(Bar)

b <- new(Bar, 10)

b$x <- 10

b_persist <- list(stats=b$stats(), z=bfz)
rm(b)

*/

References

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.
Eddelbuettel D, Francois R (2011). “Repp:
Integration.”  Journal of Statistical Software, 40(8),
10.18637/jss.v040.108. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, Frangois R, Allaire J, Ushey K, Kou Q, Russel N, Cham-
bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:

10.32614/CRAN.package.Rcpp. R package version 1.1.1.

Eddelbuettel and Francois

Seamless R and C++
1-18. doi:


https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://cran.r-project.org/package=Rcpp

	Important Notes
	Create simple vectors
	Extract and set single elements
	Using matrices
	Inline C++ Compile in R
	Interface with R
	First step in R
	Additional C++
	On the command-line
	Back in R
	STL interface
	Rcpp Attributes
	In C++
	In R:

	Rcpp Extensions

	Rcpp sugar

	Random Number Generation functions}

	Environment

	Calling Functions in R

	Modules







