
Rcpp Quick Reference Guide
Dirk Eddelbuettela and Romain Françoisb

ahttps://dirk.eddelbuettel.com; bhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This document provides short code snippets that are helpful for using the

Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and François, 2011; Eddel-

buettel, 2013).

Rcpp | quickref | R | C++

Important Notes

// If you experience compiler errors, please check

// that you have an appropriate version of g++.

// See `Rcpp-FAQ' for more information.

// Many of the examples here imply the following:

#include <Rcpp.h>

using namespace Rcpp;

// The cppFunction will automatically add this.

// Or, prefix Rcpp objects with the Rcpp namespace

// as e.g. in:

Rcpp::NumericVector xx(10);

Create simple vectors

SEXP x; std::vector<double> y(10);

// from SEXP

NumericVector xx(x);

// of a given size (filled with 0)

NumericVector xx(10);

// ... with a default for all values

NumericVector xx(10, 2.0);

// range constructor

NumericVector xx(y.begin(), y.end());

// using create

NumericVector xx =

NumericVector::create(1.0, 2.0, 3.0, 4.0);

NumericVector yy =

NumericVector::create(Named("foo") = 1.0,

_["bar"] = 2.0);

// _ short for Named

Extract and set single elements

// extract single values

double x0 = xx[0];

double x1 = xx(1);

double y0 = yy["foo"];

double y1 = yy["bar"];

// set single values

xx[0] = 2.1;

xx(1) = 4.2;

yy["foo"] = 3.0;

// grow the vector

yy["foobar"] = 10.0;

Using matrices

// Initializing from SEXP,

// dimensions handled automatically

SEXP x;

NumericMatrix xx(x);

// Matrix of 4 rows & 5 columns (filled with 0)

NumericMatrix xx(4, 5);

// Fill with value

int xsize = xx.nrow() * xx.ncol();

for (int i = 0; i < xsize; i++) {

xx[i] = 7;

}

// Same as above, using STL fill

std::fill(xx.begin(), xx.end(), 8);

// Assign this value to single element

// (1st row, 2nd col)

xx(0,1) = 4;

// Reference the second column

// Changes propagate to xx (same applies for Row)

NumericMatrix::Column zzcol = xx(_, 1);

zzcol = zzcol * 2;

// Copy the second column into new object

NumericVector zz1 = xx(_, 1);

// Copy submatrix (top left 3x3) into new object

NumericMatrix zz2 = xx(Range(0,2), Range(0,2));

Inline C++ Compile in R

Note - this is R code.

cppFunction in Rcpp allows rapid testing.

require(Rcpp)

cppFunction("

NumericVector exfun(NumericVector x, int i){

x = x*i;

return x;

}")

https://cran.r-project.org/package=Rcpp Rcpp Vignette | January 8, 2026 | 1–4

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

exfun(1:5, 3)

Use evalCpp to evaluate C++ expressions

evalCpp("std::numeric_limits<double>::max()")

Interface with R

First step in R.

In R, create a package shell. For details,

see the "Writing R Extensions" manual and

the "Rcpp-package" vignette.

Rcpp.package.skeleton("myPackage")

Add R code to pkg R/ directory. Call C++

function. Do type-checking in R.

myfunR <- function(Rx, Ry) {

ret = .Call("myCfun", Rx, Ry,

package="myPackage")

return(ret)

}

Additional C++.

// Add C++ code to pkg src/ directory.

using namespace Rcpp;

// Define function as extern with RcppExport

RcppExport SEXP myCfun(SEXP x, SEXP y) {

// If R/C++ types match, use pointer to x.

// Pointer is faster, but changes to xx

// propagate to R (xx -> x == Rx).

NumericVector xx(x);

// clone is slower and uses extra memory.

// Safe. No side effects.

NumericVector yy(clone(y));

xx[0] = yy[0] = -1.5;

int zz = xx[0];

// use wrap() to return non-SEXP objects, e.g:

// return(wrap(zz));

// Build and return a list

List ret;

ret["x"] = xx;

ret["y"] = yy;

return(ret);

}

On the command-line.

From shell, above package directory

R CMD build myPackage

R CMD check myPackage_1.0.tar.gz ## Optional

R CMD INSTALL myPackage_1.0.tar.gz

Back in R.

require(myPackage)

aa <- 1.5

bb <- 1.5

cc <- myfunR(aa, bb)

aa == bb

FALSE, C++ modifies aa

aa <- 1:2

bb <- 1:2

cc <- myfunR(aa, bb)

identical(aa, bb)

TRUE, R/C++ types don't match

so a copy was made

STL interface

// sum a vector from beginning to end

double s = std::accumulate(x.begin(),

x.end(), 0.0);

// prod of elements from beginning to end

int p = std::accumulate(vec.begin(),

vec.end(), 1,

std::multiplies<int>());

// inner_product to compute sum of squares

double s2 = std::inner_product(res.begin(),

res.end(),

res.begin(), 0.0);

Rcpp Attributes

In C++.

// Add code below into C++ file Rcpp_example.cpp

#include <Rcpp.h>

using namespace Rcpp;

// Place the 'Rcpp::export' tag

// right above function declaration.

// [[Rcpp::export]]

double muRcpp(NumericVector x){

int n = x.size(); // Size of vector

double sum = 0; // Sum value

// For loop, note cpp index shift to 0

for(int i = 0; i < n; i++){

// Shorthand for sum = sum + x[i]

sum += x[i];

}

return sum/n; // Obtain and return the Mean

}

// Place dependent functions above call or

// declare the function definition with:

double muRcpp(NumericVector x);

// [[Rcpp::export]]

2 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

double varRcpp(NumericVector x, bool bias = true){

// Calculate the mean using C++ function

double mean = muRcpp(x);

double sum = 0;

int n = x.size();

for(int i = 0; i < n; i++){

sum += pow(x[i] - mean, 2.0); // Square

}

return sum/(n-bias); // Return variance

}

In R:.

Rcpp::sourceCpp("path/to/file/Rcpp_example.cpp")

x <- 1:5

all.equal(muRcpp(x), mean(x))

all.equal(var(x),varRcpp(x))

Rcpp Extensions

// Enable C++11

// [[Rcpp::plugins(cpp11)]]

// Enable OpenMP (excludes macOS)

// [[Rcpp::plugins(openmp)]]

// Use the RcppArmadillo package

// Requires different header file from Rcpp.h

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

Rcpp sugar

NumericVector x =

NumericVector::create(-2.0,-1.0,0.0,1.0,2.0);

IntegerVector y =

IntegerVector::create(-2, -1, 0, 1, 2);

NumericVector xx = abs(x);

IntegerVector yy = abs(y);

bool b = all(x < 3.0).is_true() ;

bool b = any(y > 2).is_true();

NumericVector xx = ceil(x);

NumericVector xx = ceiling(x);

NumericVector yy = floor(y);

NumericVector yy = floor(y);

NumericVector xx = exp(x);

NumericVector yy = exp(y);

NumericVector xx = head(x, 2);

IntegerVector yy = head(y, 2);

IntegerVector xx = seq_len(10);

IntegerVector yy = seq_along(y);

NumericVector xx = rep(x, 3);

NumericVector xx = rep_len(x, 10);

NumericVector xx = rep_each(x, 3);

IntegerVector yy = rev(y);

Random Number Generation functions}

// Set seed

RNGScope scope;

// For details see Section 6.7.1--Distribution

// functions of the `Writing R Extensions' manual.

// In some cases (e.g. rnorm), dist-specific

// arguments can be omitted; when in doubt,

// specify all dist-specific arguments. The use

// of doubles rather than integers for dist-

// specific arguments is recommended. Unless

// explicitly specified, log=FALSE.

// Equivalent to R calls

NumericVector xx = runif(20);

NumericVector xx1 = rnorm(20);

NumericVector xx1 = rnorm(20, 0);

NumericVector xx1 = rnorm(20, 0, 1);

// Example vector of quantiles

NumericVector quants(5);

for (int i = 0; i < 5; i++) {

quants[i] = (i-2);

}

// in R, dnorm(-2:2)

NumericVector yy = dnorm(quants) ;

NumericVector yy = dnorm(quants, 0.0, 1.0) ;

// in R, dnorm(-2:2, mean=2, log=TRUE)

NumericVector yy = dnorm(quants, 2.0, true) ;

// Note - cannot specify sd without mean

// in R, dnorm(-2:2, mean=0, sd=2, log=TRUE)

NumericVector yy = dnorm(quants, 0.0, 2.0, true) ;

// To get original R api, use Rf_*

double zz = Rf_rnorm(0, 2);

Environment

// Special environments

Environment::Rcpp_namespace();

Environment::base_env();

Environment::base_namespace();

Environment::global_env();

Environment::empty_env();

// Obtain an R environment

Environment stats("package:stats");

Environment env(2); // by position

Environment glob = Environment::global_env();

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 3

// Extract function from specific environment

Function rnorm = stats["rnorm"];

// Assign into the environment

glob["x"] = "foo";

glob["y"] = 3;

// Retrieve information from environment

std::string x = glob["x"];

glob.assign("foo" , 3);

int foo = glob.get("foo");

int foo = glob.find("foo");

CharacterVector names = glob.ls(TRUE)

bool b = glob.exists("foo");

glob.remove("foo");

// Administration

glob.lockBinding("foo");

glob.unlockBinding("foo");

bool b = glob.bindingIsLocked("foo");

bool b = glob.bindingIsActive("foo");

// Retrieve related environments

Environment e = stats.parent();

Environment e = glob.new_child();

Calling Functions in R

// Do NOT expect to have a performance gain

// when calling R functions from R!

// Retrieve functions from default loaded env.

Function rnorm("rnorm");

rnorm(100, _["mean"] = 10.2, _["sd"] = 3.2);

// Passing in an R function and obtaining results

// Make sure function conforms with return type!

NumericVector callFunction(NumericVector x,

Function f) {

NumericVector res = f(x);

return res;

}

/*** R

The following is R code executed

by sourceCpp() as a convenience.

x = 1:5

callFunction(x, sum)

*/

Modules

// Warning -- Module-based objects do not persist

// across quit(save="yes")/reload cycles. To be

// safe, save results to R objects and remove

// module objects before exiting R.

// To create a module-containing package from R:

// Rcpp.package.skeleton("mypackage", module=TRUE)

class Bar {

public:

Bar(double x_) : x(x_), nread(0), nwrite(0) {}

double get_x() {

nread++;

return x;

}

void set_x(double x_) {

nwrite++;

x = x_;

}

IntegerVector stats() const {

return

IntegerVector::create(_["read"] = nread,

_["write"] = nwrite);

}

private:

double x; int nread, nwrite;

};

RCPP_MODULE(mod_bar) {

class_<Bar>("Bar")

.constructor<double>()

.property("x", &Bar::get_x, &Bar::set_x,

"Docstring for x")

.method("stats", &Bar::stats,

"Docstring for stats")

;}

/*** R

The following is R code.

require(mypackage) s

how(Bar)

b <- new(Bar, 10)

b$x <- 10

b_persist <- list(stats=b$stats(), x=b$x)

rm(b)

*/

References

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Cham-

bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:

10.32614/CRAN.package.Rcpp. R package version 1.1.1.

4 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://cran.r-project.org/package=Rcpp

	Important Notes
	Create simple vectors
	Extract and set single elements
	Using matrices
	Inline C++ Compile in R
	Interface with R
	First step in R
	Additional C++
	On the command-line
	Back in R
	STL interface
	Rcpp Attributes
	In C++
	In R:

	Rcpp Extensions

	Rcpp sugar

	Random Number Generation functions}

	Environment

	Calling Functions in R

	Modules

