Writing a package that uses Rcpp

Dirk Eddelbuettel* and Romain Frangois®
2https:/dirk.eddelbuettel.com; hhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This document provides a short overview of how to use Rcpp (Ed-
delbuettel et al., 2026; Eddelbuettel and Francois, 2011; Eddelbuettel,
2013) when writing an R package. It shows how usage of the function
Rcpp.package . skeleton which creates a complete and self-sufficient ex-
ample package using Rcpp. All components of the directory tree created by
Rcpp.package.skeleton are discussed in detail. This document thereby
complements the Writing R Extensions manual (R Core Team, 2025) which
is the authoritative source on how to extend R in general.

Repp | package | R | C++

1. Introduction

Repp (Eddelbuettel et al., 2026; Eddelbuettel and Francois, 2011;
Eddelbuettel, 2013) is an extension package for R which offers an
easy-to-use yet featureful interface between C++ and R. However, it
is somewhat different from a traditional R package because its key
component is a C++ library. A client package that wants to make
use of the Repp features must link against the library provided by
Repp.

It should be noted that R has only limited support for C(++)-
level dependencies between packages (R Core Team, 2025). The
LinkingTo declaration in the package DESCRIPTION file allows the
client package to retrieve the headers of the target package (here
Rcepp), but support for linking against a library is not provided by
R and has to be added manually.

This document follows the steps of the
Rcpp . package . skeleton function to illustrate a recommended
way of using Repp from a client package. We illustrate this using a
simple C++ function which will be called by an R function.

We strongly encourage the reader to become familiar with the
material in the Writing R Extensions manual (R Core Team, 2025),
as well as with other documents on R package creation such as
Leisch (2008). Given a basic understanding of how to create R
package, the present document aims to provide the additional
information on how to use Repp in such add-on packages.

2. Using Rcpp . package.skeleton

2.1. Overview. Repp provides a function
Rcpp.package.skeleton, modeled after the base R func-
tion package . skeleton, which facilitates creation of a skeleton
package using Repp.

Rcpp.package.skeleton has a number of arguments
documented on its help page (and similar to those of
package.skeleton). The main argument is the first one
which provides the name of the package one aims to create by
invoking the function. An illustration of a call using an argument
mypackage is provided below.

Rcpp.package.skeleton("mypackage")

$ 1s -1R mypackage/
DESCRIPTION

https://cran.r-project.org/package=Rcpp

NAMESPACE

R
Read-and-delete-me
man

src

mypackage/R:
RcppExports.R

mypackage/man:
mypackage-package.Rd
rcpp_hello_world.Rd

mypackage/src:
Makevars
Makevars.win
RcppExports.cpp
rcpp_hello_world.cpp
$

until Rcpp 0.10.6, see below
until Rcpp 0.10.6, see below

Using Rcpp . package . skeleton is by far the simplest approach
as it fulfils two roles. It creates the complete set of files needed for
a package, and it also includes the different components needed
for using Repp that we discuss in the following sections.

2.2. C++ code. If the attributes argument is set to TRUE', the
following C++ file is included in the src/ directory:

#include <Rcpp.h>
using namespace Rcpp;

// [[Repp: :export]]
List rcpp_hello_world() {

CharacterVector x =
CharacterVector: :create("foo",
NumericVector y =
NumericVector: :create(0.0, 1.0) ;
List z = List::create(x, y) ;

"bar") g

return z ;

The file defines the simple rcpp_hello_world function that
uses a few Repp classes and returns a List.

This function is preceded by the Rcpp: :export attribute to
automatically handle argument conversion because R has to be
taught how to e.g. handle the List class.

Rcpp . package.skeleton then invokes compileAttributes
on the package, which generates the RcppExports . cpp file (where
we indented the first two lines for the more compact display here):

1Setting attributes to TRUE is the default. This document does not cover the behavior of
Rcpp.package.skeleton when attributes is set to FALSE as we try to encourage package de-
velopers to use attributes.

Rcpp Vignette | January 8, 2026

1-4

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

// Generated by using Rcpp::compileAttributes() \

// -> do not edit by hand
// Generator token: \
// 10BE3573-1514-4C36-9D1C-5A225CD40393

#include <Rcpp.h>
using namespace Rcpp;

// rcpp_hello_world
List rcpp_hello_world();
RcppExport SEXP mypackage_rcpp_hello_world() {
BEGIN_RCPP
Rcpp: :RObject rcpp_result_gen;
Rcpp: :RNGScope rcpp_rngScope_gen;
rcpp_result_gen =
Rcpp: :wrap(rcpp_hello_world()) ;
return rcpp_result_gen;
END_RCPP
}

This file defines a function with the appropriate calling con-
vention, suitable for .Call. It needs to be regenerated each time
functions exposed by attributes are modified. This is the task of
the compileAttributes function. A discussion on attributes is be-
yond the scope of this document and more information is available
in the attributes vignette (Allaire et al., 2026).

2.3. R code. The compileAttributes also generates R code that
uses the C++ function.

Generated by using Rcpp::compileAttributes() \

-> do mot edit by hand
Generator token: \
10BE3573-1514-4C36-9D1C-5A225CD40393

rcpp_hello_world <- function() {
.Call('mypackage_rcpp_hello_world',
'mypackage')

This is also a generated file so it should not be modified manually,
rather regenerated as needed by compileAttributes.

2.4. DESCRIPTION. The skeleton generates
DESCRIPTION file, using both Imports:

Repp:

an appropriate
and LinkingTo for

Package: mypackage

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2013-09-17

Author: Who wrote it

Maintainer: Who <yourfault@somewhere.net>

Description: More about what it does (maybe
more than one line)

License: What Licence is it under 7

Imports: Rcpp (>= 0.11.0)

LinkingTo: Rcpp

Rcpp.package.skeleton adds the three last lines to the
DESCRIPTION file generated by package.skeleton.

https://cran.r-project.org/package=Rcpp

The Imports declaration indicates R-level dependency between
the client package and Repp; code from the latter is being imported
into the package described here. The LinkingTo declaration indi-
cates that the client package needs to use header files exposed by
Repp.

2.5. Now optional: Makevars and Makevars.win. This behaviour
changed with Repp release 0.11.0. These files used to be manda-
tory, now they are merely optional.

We will describe the old setting first as it was in use for a few
years. The new standard, however, is much easier and is described
below.

2.6. Releases up until 0.10.6. Unfortunately, the LinkingTo decla-
ration in itself was not enough to link to the user C++ library of
Repp. Until more explicit support for libraries is added to R, ones
needs to manually add the Repp library to the PKG_LIBS variable
in the Makevars and Makevars.win files. (This has now changed
with release 0.11.0; see below). Repp provides the unexported
function Repp: : :LdFlags () to ease the process:

Use the R_HOME indirection to support

installations of multiple R version

##

NB: No longer needed, see below

PKG_LIBS = “$(R_HOME)/bin/Rscript \
"Rcpp: : :LdFlags() "~

The Makevars.win is the equivalent, targeting windows.

Use the R_HOME indirection to support
installations of multiple R version
##
NB: No longer meeded, see below
PKG_LIBS = $(shell \
"${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe" \
"Repp: : :LdFlags(O")

2.7. Releases since 0.11.0. As of release 0.11.0, this is no longer
needed as client packages obtain the required code from Recpp
via explicit function registration. The user does not have to do
anything.

This means that PKG_LIBS can now be empty—unless some
client libraries are needed. For example, ReppCNPy needs com-
pression support and hence uses PKG_LIBS= -1z. Similarly, when
a third-party library is required, it can and should be set here.

2.8. NAMESPACE. The Rcpp.package . skeleton function also cre-
ates a file NAMESPACE.

useDynLib (mypackage)
exportPattern("” [[:alpha:]]+")
importFrom(Rcpp, evalCpp)

This file serves three purposes. First, it ensure that the
dynamic library contained in the package we are creating via
Rcpp . package . skeleton will be loaded and thereby made avail-
able to the newly created R package.

Second, it declares which functions should be globally visible
from the namespace of this package. As a reasonable default, we
export all functions.

Third, it instructs R to import a symbol from Repp. This sets
up the import of all registered function and, together with the

Eddelbuettel and Francois

https://cran.r-project.org/package=Rcpp

Imports: statement in DESCRIPTION, provides what is needed for
client packages to access Repp functionality.

2.9. Help files. Also created is a directory man containing two help
files. One is for the package itself, the other for the (single) R
function being provided and exported.

The Writing R Extensions manual (R Core Team, 2025) provides
the complete documentation on how to create suitable content for
help files.

2.10. mypackage-package.Rd. The help file
mypackage-package.Rd can be used to describe the new
package (and we once again indented some lines):

\name{mypackage-package}
\alias{mypackage-package}
\alias{mypackage}

\docType{package}

\title{

What the package does (short line)

}

\description{

More about what it does (maybe more than one line)
~~ A concise (1-5 lines) description of the
package ~~

}

\details{

\tabular{11}{

Package: \tab mypackage\cr

Type: \tab Package\cr

Version: \tab 1.0\cr

Date: \tab 2013-09-17\cr

License: \tab What license is it under?\cr
}

~~ An overview of how to use the package,
including the most important functions ~~
}

\author{

Who wrote it

Maintainer: Who <yourfault@somewhere.net>

}

\references{

~~ Literature or other references for
background information ~~

}

~~ Optionally other standard keywords, one per
line, from file KEYWORDS in the R
documentation directory -~~

\keyword{ package }

\seealso{

~~ Optional links to other man pages, e.g. ~~
~~ \code{\link [<pkg>:<pkg>-package] {<pkg>}} ~~
}

\examples{

%% ~~ simple examples of the most important

%% functions ~~

}

2.11. rcpp_hello_world.Rd. The help file
rcpp_hello_world.Rd serves as documentation for the ex-
ample R function.

Eddelbuettel and Frangois

\name{rcpp_hello_world}
\alias{rcpp_hello_world}
\docType{package}

\title{

Simple function using Rcpp
}

\description{

Simple function using Rcpp
}

\usage{

rcpp_hello_world()

}

\examples{

\dontrun{
rcpp_hello_world()

}

}

3. Using modules

This document does not cover the use of the module argument of
Rcpp.package.skeleton. It is covered in the modules vignette
(Eddelbuettel and Francois, 2026).

4. Further examples

The canonical example of a package that uses Repp is the ReppEx-
amples (Eddelbuettel and Francois, 2025) package. ReppExam-
ples contains various examples of using Repp. Hence, the ReppEx-
amples package is provided as a template for employing Repp in
packages.

Other CRAN packages using the Repp package are ReppAr-
madillo (Eddelbuettel et al., 2025), and minqa (Bates et al., 2024).
Several other packages follow older (but still supported and appro-
priate) instructions. They can serve examples on how to get data
to and from C++ routines, but should not be considered templates
for how to connect to Repp. The full list of packages using Repp
can be found at the CRAN page of Repp.

5. Other compilers

Less experienced R users on the Windows platform frequently
ask about using Repp with the Visual Studio toolchain. That is
simply not possible as R is built with the gce compiler. Different
compilers have different linking conventions. These conventions
are particularly hairy when it comes to using C++. In short, it is
not possible to simply drop sources (or header files) from Repp
into a C++ project built with Visual Studio, and this note makes no
attempt at claiming otherwise.

Repp is fully usable on Windows provided the standard Win-
dows toolchain for R is used. See the Writing R Extensions manual
(R Core Team, 2025) for details.

6. Summary

This document described how to use the Repp package for R and
C++ integration when writing an R extension package. The use of
the Rcpp . package . skeleton was shown in detail, and references
to further examples were provided.

References

Allaire JJ, Eddelbuettel D, Frangois R (2026). Rcpp Attributes.
10.32614/CRAN. package.Rcpp. Vignette included in R package Rcpp

doi:

Rcpp Vignette | January 8, 2026

3

https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp

4

Bates D, Mullen KM, Nash JC, Varadhan R (2024). minqa: Derivative-
Free Optimization Algorithms by Quadratic Approximation. doi:
10.32614/CRAN.package.minqga. R package version 1.2.8.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!
Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, Frangois R (2011). “Repp: Seamless R and C++
Integration.” Journal of Statistical Software, 40(8), 1-18. doi:
10.18637/jss.v040.108. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, Frangois R (2025). RcppExamples: Examples using Rcpp to
interface R and C++. doi:10.32614/CRAN.package.RcppExamples. R
package version 0.1.10.

Eddelbuettel D, Frangois R (2026). Exposing C++ functions and classes with
Rcpp modules. doi:10.32614/CRAN.package.Rcpp. Vignette included
in R package Rcpp.

Eddelbuettel D, Frangois R, Allaire J, Ushey K, Kou Q, Russel N, Cham-
bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:
10.32614/CRAN.package .Rcpp. R package version 1.1.1.

Eddelbuettel D, Frangois R, Bates D, Ni B, Sanderson C (2025). RcppArmadillo:
Rcpp Integration for the Armadillo Templated Linear Algebra Library. doi:
10.32614/CRAN.package .RcppArmadillo. R package version 15.2.3-
1.

Leisch F (2008). “Tutorial on Creating R Packages.” In P Brito (ed.), COMPSTAT
2008 — Proceedings in Computational Statistics. Physica Verlag, Heidelberg.
URL https://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf.

R Core Team (2025). Writing R extensions. R Foundation for Statistical
Computing, Vienna, Austria. doi:10.32614/R.manuals. URL https:
/ICRAN.R-Project.org/doc/manuals/R-exts.html.

https://cran.r-project.org/package=Rcpp

Eddelbuettel and Francois

https://doi.org/10.32614/CRAN.package.minqa
https://doi.org/10.32614/CRAN.package.minqa
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.RcppExamples
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://cran.r-project.org/package=Rcpp

	Introduction
	Using Rcpp.package.skeleton
	Overview
	 code
	 code
	DESCRIPTION
	Now optional: Makevars and Makevars.win
	Releases up until 0.10.6
	Releases since 0.11.0
	NAMESPACE
	Help files
	mypackage-package.Rd
	rcpp_hello_world.Rd

	Using modules
	Further examples
	Other compilers
	Summary

