
Writing a package that uses Rcpp
Dirk Eddelbuettela and Romain Françoisb

ahttps://dirk.eddelbuettel.com; bhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This document provides a short overview of how to use Rcpp (Ed-

delbuettel et al., 2026; Eddelbuettel and François, 2011; Eddelbuettel,

2013) when writing an R package. It shows how usage of the function

Rcpp.package.skeleton which creates a complete and self-sufficient ex-

ample package using Rcpp. All components of the directory tree created by

Rcpp.package.skeleton are discussed in detail. This document thereby

complements the Writing R Extensions manual (R Core Team, 2025) which

is the authoritative source on how to extend R in general.

Rcpp | package | R | C++

1. Introduction

Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and François, 2011;

Eddelbuettel, 2013) is an extension package for R which offers an

easy-to-use yet featureful interface between C++ and R. However, it

is somewhat different from a traditional R package because its key

component is a C++ library. A client package that wants to make

use of the Rcpp features must link against the library provided by

Rcpp.

It should be noted that R has only limited support for C(++)-

level dependencies between packages (R Core Team, 2025). The

LinkingTo declaration in the package DESCRIPTION file allows the

client package to retrieve the headers of the target package (here

Rcpp), but support for linking against a library is not provided by

R and has to be added manually.

This document follows the steps of the

Rcpp.package.skeleton function to illustrate a recommended

way of using Rcpp from a client package. We illustrate this using a

simple C++ function which will be called by an R function.

We strongly encourage the reader to become familiar with the

material in the Writing R Extensions manual (R Core Team, 2025),

as well as with other documents on R package creation such as

Leisch (2008). Given a basic understanding of how to create R

package, the present document aims to provide the additional

information on how to use Rcpp in such add-on packages.

2. Using Rcpp.package.skeleton

2.1. Overview. Rcpp provides a function

Rcpp.package.skeleton, modeled after the base R func-

tion package.skeleton, which facilitates creation of a skeleton

package using Rcpp.

Rcpp.package.skeleton has a number of arguments

documented on its help page (and similar to those of

package.skeleton). The main argument is the first one

which provides the name of the package one aims to create by

invoking the function. An illustration of a call using an argument

mypackage is provided below.

Rcpp.package.skeleton("mypackage")

$ ls -1R mypackage/

DESCRIPTION

NAMESPACE

R

Read-and-delete-me

man

src

mypackage/R:

RcppExports.R

mypackage/man:

mypackage-package.Rd

rcpp_hello_world.Rd

mypackage/src:

Makevars # until Rcpp 0.10.6, see below

Makevars.win # until Rcpp 0.10.6, see below

RcppExports.cpp

rcpp_hello_world.cpp

$

Using Rcpp.package.skeleton is by far the simplest approach

as it fulfils two roles. It creates the complete set of files needed for

a package, and it also includes the different components needed

for using Rcpp that we discuss in the following sections.

2.2. C++ code. If the attributes argument is set to TRUE1, the

following C++ file is included in the src/ directory:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

List rcpp_hello_world() {

CharacterVector x =

CharacterVector::create("foo", "bar");

NumericVector y =

NumericVector::create(0.0, 1.0) ;

List z = List::create(x, y) ;

return z ;

}

The file defines the simple rcpp_hello_world function that

uses a few Rcpp classes and returns a List.

This function is preceded by the Rcpp::export attribute to

automatically handle argument conversion because R has to be

taught how to e.g. handle the List class.

Rcpp.package.skeleton then invokes compileAttributes

on the package, which generates the RcppExports.cpp file (where

we indented the first two lines for the more compact display here):

1
Setting attributes to TRUE is the default. This document does not cover the behavior of

Rcpp.package.skeleton when attributes is set to FALSE as we try to encourage package de-

velopers to use attributes.

https://cran.r-project.org/package=Rcpp Rcpp Vignette | January 8, 2026 | 1–4

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

// Generated by using Rcpp::compileAttributes() \

// -> do not edit by hand

// Generator token: \

// 10BE3573-1514-4C36-9D1C-5A225CD40393

#include <Rcpp.h>

using namespace Rcpp;

// rcpp_hello_world

List rcpp_hello_world();

RcppExport SEXP mypackage_rcpp_hello_world() {

BEGIN_RCPP

Rcpp::RObject rcpp_result_gen;

Rcpp::RNGScope rcpp_rngScope_gen;

rcpp_result_gen =

Rcpp::wrap(rcpp_hello_world());

return rcpp_result_gen;

END_RCPP

}

This file defines a function with the appropriate calling con-

vention, suitable for .Call. It needs to be regenerated each time

functions exposed by attributes are modified. This is the task of

the compileAttributes function. A discussion on attributes is be-

yond the scope of this document and more information is available

in the attributes vignette (Allaire et al., 2026).

2.3. R code. The compileAttributes also generates R code that

uses the C++ function.

Generated by using Rcpp::compileAttributes() \

-> do not edit by hand

Generator token: \

10BE3573-1514-4C36-9D1C-5A225CD40393

rcpp_hello_world <- function() {

.Call('mypackage_rcpp_hello_world',

PACKAGE = 'mypackage')

}

This is also a generated file so it should not be modified manually,

rather regenerated as needed by compileAttributes.

2.4. DESCRIPTION. The skeleton generates an appropriate

DESCRIPTION file, using both Imports: and LinkingTo for

Rcpp:

Package: mypackage

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2013-09-17

Author: Who wrote it

Maintainer: Who <yourfault@somewhere.net>

Description: More about what it does (maybe

more than one line)

License: What Licence is it under ?

Imports: Rcpp (>= 0.11.0)

LinkingTo: Rcpp

Rcpp.package.skeleton adds the three last lines to the

DESCRIPTION file generated by package.skeleton.

The Imports declaration indicates R-level dependency between

the client package and Rcpp; code from the latter is being imported

into the package described here. The LinkingTo declaration indi-

cates that the client package needs to use header files exposed by

Rcpp.

2.5. Now optional: Makevars and Makevars.win. This behaviour

changed with Rcpp release 0.11.0. These files used to be manda-

tory, now they are merely optional.

We will describe the old setting first as it was in use for a few

years. The new standard, however, is much easier and is described

below.

2.6. Releases up until 0.10.6. Unfortunately, the LinkingTo decla-

ration in itself was not enough to link to the user C++ library of

Rcpp. Until more explicit support for libraries is added to R, ones

needs to manually add the Rcpp library to the PKG_LIBS variable

in the Makevars and Makevars.win files. (This has now changed

with release 0.11.0; see below). Rcpp provides the unexported

function Rcpp:::LdFlags() to ease the process:

Use the R_HOME indirection to support

installations of multiple R version

##

NB: No longer needed, see below

PKG_LIBS = `$(R_HOME)/bin/Rscript -e \

"Rcpp:::LdFlags()"`

The Makevars.win is the equivalent, targeting windows.

Use the R_HOME indirection to support

installations of multiple R version

##

NB: No longer needed, see below

PKG_LIBS = $(shell \

"${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe" \

-e "Rcpp:::LdFlags()")

2.7. Releases since 0.11.0. As of release 0.11.0, this is no longer

needed as client packages obtain the required code from Rcpp

via explicit function registration. The user does not have to do

anything.

This means that PKG_LIBS can now be empty—unless some

client libraries are needed. For example, RcppCNPy needs com-

pression support and hence uses PKG_LIBS= -lz. Similarly, when

a third-party library is required, it can and should be set here.

2.8. NAMESPACE. The Rcpp.package.skeleton function also cre-

ates a file NAMESPACE.

useDynLib(mypackage)

exportPattern("ˆ[[:alpha:]]+")

importFrom(Rcpp, evalCpp)

This file serves three purposes. First, it ensure that the

dynamic library contained in the package we are creating via

Rcpp.package.skeleton will be loaded and thereby made avail-

able to the newly created R package.

Second, it declares which functions should be globally visible

from the namespace of this package. As a reasonable default, we

export all functions.

Third, it instructs R to import a symbol from Rcpp. This sets

up the import of all registered function and, together with the

2 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

Imports: statement in DESCRIPTION, provides what is needed for

client packages to access Rcpp functionality.

2.9. Help files. Also created is a directory man containing two help

files. One is for the package itself, the other for the (single) R

function being provided and exported.

The Writing R Extensions manual (R Core Team, 2025) provides

the complete documentation on how to create suitable content for

help files.

2.10. mypackage-package.Rd. The help file

mypackage-package.Rd can be used to describe the new

package (and we once again indented some lines):

\name{mypackage-package}

\alias{mypackage-package}

\alias{mypackage}

\docType{package}

\title{

What the package does (short line)

}

\description{

More about what it does (maybe more than one line)

~~ A concise (1-5 lines) description of the

package ~~

}

\details{

\tabular{ll}{

Package: \tab mypackage\cr

Type: \tab Package\cr

Version: \tab 1.0\cr

Date: \tab 2013-09-17\cr

License: \tab What license is it under? \cr

}

~~ An overview of how to use the package,

including the most important functions ~~

}

\author{

Who wrote it

Maintainer: Who <yourfault@somewhere.net>

}

\references{

~~ Literature or other references for

background information ~~

}

~~ Optionally other standard keywords, one per

line, from file KEYWORDS in the R

documentation directory ~~

\keyword{ package }

\seealso{

~~ Optional links to other man pages, e.g. ~~

~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~

}

\examples{

%% ~~ simple examples of the most important

%% functions ~~

}

2.11. rcpp_hello_world.Rd. The help file

rcpp_hello_world.Rd serves as documentation for the ex-

ample R function.

\name{rcpp_hello_world}

\alias{rcpp_hello_world}

\docType{package}

\title{

Simple function using Rcpp

}

\description{

Simple function using Rcpp

}

\usage{

rcpp_hello_world()

}

\examples{

\dontrun{

rcpp_hello_world()

}

}

3. Using modules

This document does not cover the use of the module argument of

Rcpp.package.skeleton. It is covered in the modules vignette

(Eddelbuettel and François, 2026).

4. Further examples

The canonical example of a package that uses Rcpp is the RcppEx-

amples (Eddelbuettel and François, 2025) package. RcppExam-

ples contains various examples of using Rcpp. Hence, the RcppEx-

amples package is provided as a template for employing Rcpp in

packages.

Other CRAN packages using the Rcpp package are RcppAr-

madillo (Eddelbuettel et al., 2025), and minqa (Bates et al., 2024).

Several other packages follow older (but still supported and appro-

priate) instructions. They can serve examples on how to get data

to and from C++ routines, but should not be considered templates

for how to connect to Rcpp. The full list of packages using Rcpp

can be found at the CRAN page of Rcpp.

5. Other compilers

Less experienced R users on the Windows platform frequently

ask about using Rcpp with the Visual Studio toolchain. That is

simply not possible as R is built with the gcc compiler. Different

compilers have different linking conventions. These conventions

are particularly hairy when it comes to using C++. In short, it is

not possible to simply drop sources (or header files) from Rcpp

into a C++ project built with Visual Studio, and this note makes no

attempt at claiming otherwise.

Rcpp is fully usable on Windows provided the standard Win-

dows toolchain for R is used. See the Writing R Extensions manual

(R Core Team, 2025) for details.

6. Summary

This document described how to use the Rcpp package for R and

C++ integration when writing an R extension package. The use of

the Rcpp.package.skeleton was shown in detail, and references

to further examples were provided.

References

Allaire JJ, Eddelbuettel D, François R (2026). Rcpp Attributes. doi:

10.32614/CRAN.package.Rcpp. Vignette included in R package Rcpp.

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 3

https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp

Bates D, Mullen KM, Nash JC, Varadhan R (2024). minqa: Derivative-

Free Optimization Algorithms by Quadratic Approximation. doi:

10.32614/CRAN.package.minqa. R package version 1.2.8.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R (2025). RcppExamples: Examples using Rcpp to

interface R and C++. doi:10.32614/CRAN.package.RcppExamples. R

package version 0.1.10.

Eddelbuettel D, François R (2026). Exposing C++ functions and classes with

Rcpp modules. doi:10.32614/CRAN.package.Rcpp. Vignette included

in R package Rcpp.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Cham-

bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:

10.32614/CRAN.package.Rcpp. R package version 1.1.1.

Eddelbuettel D, François R, Bates D, Ni B, Sanderson C (2025). RcppArmadillo:

Rcpp Integration for the Armadillo Templated Linear Algebra Library. doi:

10.32614/CRAN.package.RcppArmadillo. R package version 15.2.3-

1.

Leisch F (2008). “Tutorial on Creating R Packages.” In P Brito (ed.), COMPSTAT

2008 – Proceedings in Computational Statistics. Physica Verlag, Heidelberg.

URL https://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf.

R Core Team (2025). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. doi:10.32614/R.manuals. URL https:

//CRAN.R-Project.org/doc/manuals/R-exts.html.

4 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://doi.org/10.32614/CRAN.package.minqa
https://doi.org/10.32614/CRAN.package.minqa
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.RcppExamples
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://cran.r-project.org/package=Rcpp

	Introduction
	Using Rcpp.package.skeleton
	Overview
	 code
	 code
	DESCRIPTION
	Now optional: Makevars and Makevars.win
	Releases up until 0.10.6
	Releases since 0.11.0
	NAMESPACE
	Help files
	mypackage-package.Rd
	rcpp_hello_world.Rd

	Using modules
	Further examples
	Other compilers
	Summary

