
Exposing C++ functions and classes
with Rcpp modules
Dirk Eddelbuettela and Romain Françoisb

ahttps://dirk.eddelbuettel.com; bhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This note discusses Rcpp modules. Rcpp modules allow programmers to

expose C++ functions and classes to R with relative ease. Rcpp modules

are inspired from the Boost.Python C++ library (Abrahams and Grosse-

Kunstleve, 2003) which provides similar features for Python.

Rcpp | modules | R | C++

1. Motivation

Exposing C++ functionality to R is greatly facilitated by the Rcpp

package and its underlying C++ library (Eddelbuettel et al., 2026;

Eddelbuettel and François, 2011). Rcpp smooths many of the

rough edges in R and C++ integration by replacing the traditional

R Application Programming Interface (API) described in ‘Writing

R Extensions’ (R Core Team, 2025) with a consistent set of C++

classes. The ‘Rcpp-jss-2011’ vignette (Eddelbuettel et al., 2026;

Eddelbuettel and François, 2011) describes the API and provides

an introduction to using Rcpp.

These Rcpp facilities offer a lot of assistance to the programmer

wishing to interface R and C++. At the same time, these facilities

are limited as they operate on a function-by-function basis. The

programmer has to implement a .Call compatible function (to

conform to the R API) using classes of the Rcpp API as described

in the next section.

1.1. Exposing functions using Rcpp. Exposing existing C++ func-

tions to R through Rcpp usually involves several steps. One ap-

proach is to write an additional wrapper function that is responsible

for converting input objects to the appropriate types, calling the

actual worker function and converting the results back to a suitable

type that can be returned to R (SEXP). Consider the norm function

below:

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

This simple function does not meet the requirements set by the

.Call convention, so it cannot be called directly by R. Exposing

the function involves writing a simple wrapper function that does

match the .Call requirements. Rcpp makes this easy.

using namespace Rcpp;

RcppExport SEXP norm_wrapper(SEXP x_, SEXP y_) {

// step 0: convert input to C++ types

double x = as<double>(x_), y = as<double>(y_);

// step 1: call the underlying C++ function

double res = norm(x, y);

// step 2: return the result as a SEXP

return wrap(res);

}

Here we use the (templated) Rcpp converter as() which can

transform from a SEXP to a number of different C++ and Rcpp

types. The Rcpp function wrap() offers the opposite functionality

and converts many known types to a SEXP.

This process is simple enough, and is used by a number of

CRAN packages. However, it requires direct involvement from the

programmer, which quickly becomes tiresome when many functions

are involved. Rcpp modules provides a much more elegant and

unintrusive way to expose C++ functions such as the norm function

shown above to R.

We should note that Rcpp now has Rcpp attributes which ex-

tends certain aspect of Rcpp modules and makes binding to simple

functions such as this one even easier. With Rcpp attributes we can

just write

#include <Rcpp.h>

// [[Rcpp::export]]

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

See the corresponding vignette (Allaire et al., 2026) for details,

but read on for Rcpp modules which provide features not covered

by Rcpp attributes, particularly when it comes to binding entire

C++ classes and more.

1.2. Exposing classes using Rcpp. Exposing C++ classes or structs

is even more of a challenge because it requires writing glue code

for each member function that is to be exposed.

Consider the simple Uniform class below:

class Uniform {

public:

Uniform(double min_, double max_) :

min(min_), max(max_) {}

NumericVector draw(int n) {

RNGScope scope;

return runif(n, min, max);

}

private:

double min, max;

};

To use this class from R, we at least need to expose the construc-

tor and the draw method. External pointers (R Core Team, 2025)

are the perfect vessel for this, and using the Rcpp:::XPtr template

from Rcpp we can expose the class with these two functions:

https://cran.r-project.org/package=Rcpp Rcpp Vignette | January 8, 2026 | 1–9

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

using namespace Rcpp;

/// create external pointer to a Uniform object

RcppExport SEXP Uniform__new(SEXP min_,

SEXP max_) {

// convert inputs to appropriate C++ types

double min = as<double>(min_),

max = as<double>(max_);

// create pointer to an Uniform object and

// wrap it as an external pointer

Rcpp::XPtr<Uniform>

ptr(new Uniform(min, max), true);

// return the external pointer to the R side

return ptr;

}

/// invoke the draw method

RcppExport SEXP Uniform__draw(SEXP xp, SEXP n_) {

// grab the object as a XPtr (smart pointer)

// to Uniform

Rcpp::XPtr<Uniform> ptr(xp);

// convert the parameter to int

int n = as<int>(n_);

// invoke the function

NumericVector res = ptr->draw(n);

// return the result to R

return res;

}

As it is generally a bad idea to expose external pointers ‘as is’,

they usually get wrapped as a slot of an S4 class.

Using cxxfunction() from the inline package, we can build

this example on the fly. Suppose the previous example code as-

signed to a text variable unifModCode, we could then do

f1 <- cxxfunction(, "", includes = unifModCode,

plugin = "Rcpp")

getDynLib(f1) ## will display info about 'f1'

The following listing shows some manual wrapping to access

the code, we will see later how this can be automated:

setClass("Uniform",

representation(pointer = "externalptr"))

helper

Uniform_method <- function(name) {

paste("Uniform", name, sep = "__")

}

syntactic sugar to allow object$method(...)

setMethod("$", "Uniform", function(x, name) {

function(...)

.Call(Uniform_method(name) ,

x@pointer, ...)

})

syntactic sugar to allow new("Uniform", ...)

setMethod("initialize", "Uniform",

function(.Object, ...) {

.Object@pointer <-

.Call(Uniform_method("new"), ...)

.Object

})

u <- new("Uniform", 0, 10)

u$draw(10L)

Rcpp considerably simplifies the code that would be involved

for using external pointers with the traditional R API. Yet this still

involves a lot of mechanical code that quickly becomes hard to

maintain and error prone. Rcpp modules offer an elegant way to

expose the Uniform class in a way that makes both the internal

C++ code and the R code easier.

2. Rcpp modules

The design of Rcpp modules has been influenced by Python modules

which are generated by the Boost.Python library (Abrahams and

Grosse-Kunstleve, 2003). Rcpp modules provide a convenient and

easy-to-use way to expose C++ functions and classes to R, grouped

together in a single entity.

A Rcpp module is created in C++ source code using the

RCPP_MODULE macro, which then provides declarative code of what

the module exposes to R.

This section provides an extensive description of how Rcpp

modules are defined in standalone C++ code and loaded into R.

Note however that defining and using Rcpp modules as part of

other R packages simplifies the way modules are actually loaded,

as detailed in Section 3 below.

2.1. Exposing C++ functions using Rcpp modules. Consider the

norm function from the previous section. We can expose it to R:

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {

function("norm", &norm);

}

The code creates an Rcpp module called mod that exposes the

norm function. Rcpp automatically deduces the conversions that

are needed for input and output. This alleviates the need for a

wrapper function using either Rcpp or the R API.

On the R side, the module is retrieved by using the Module

function from Rcpp

inc <- '

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {

function("norm", &norm);

2 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

}

'

fx <- cxxfunction(signature(),

plugin="Rcpp", include=inc)

mod <- Module("mod", getDynLib(fx))

Note that this example assumed that the previous code segment

defining the module was returned by the cxxfunction() (from the

inline package) as callable R function fx from which we can extract

the relevant pointer using getDynLib() (again from inline).

Throughout the rest of the examples in this document, we al-

ways assume that the C++ code defining a module is used to create

an object fx via a similar call to cxxfunction. As an alternative,

one can also use sourceCpp as described in Section 2.3.

A module can contain any number of calls to function to reg-

ister many internal functions to R. For example, these 6 functions:

std::string hello() {

return "hello";

}

int bar(int x) {

return x*2;

}

double foo(int x, double y) {

return x * y;

}

void bla() {

Rprintf("hello\\n");

}

void bla1(int x) {

Rprintf("hello (x = %d)\\n", x);

}

void bla2(int x, double y) {

Rprintf("hello (x = %d, y = %5.2f)\\n", x, y);

}

can be exposed with the following minimal code:

RCPP_MODULE(yada) {

using namespace Rcpp;

function("hello" , &hello);

function("bar" , &bar);

function("foo" , &foo);

function("bla" , &bla);

function("bla1" , &bla1);

function("bla2" , &bla2);

}

which can then be used from R:

yada <- Module("yada", getDynLib(fx))

yada$bar(2L)

yada$foo(2L, 10.0)

yada$hello()

yada$bla()

yada$bla1(2L)

yada$bla2(2L, 5.0)

The requirements for a function to be exposed to R via Rcpp

modules are:

• The function takes between 0 and 65 parameters.

• The type of each input parameter must be manageable by the

Rcpp::as template.

• The return type of the function must be either void or any

type that can be managed by the Rcpp::wrap template.

• The function name itself has to be unique in the module. In

other words, no two functions with the same name but differ-

ent signatures are allowed. C++ allows overloading functions.

This might be added in future versions of modules.

2.1.1. Documentation for exposed functions using Rcpp modules. In ad-

dition to the name of the function and the function pointer, it is

possible to pass a short description of the function as the third

parameter of function.

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {

function("norm", &norm,

"Provides a simple vector norm");

}

The description is used when displaying the function to the R

prompt:

mod <- Module("mod", getDynLib(fx))

show(mod$norm)

2.1.2. Formal arguments specification. function also gives the pos-

sibility to specify the formal arguments of the R function that

encapsulates the C++ function, by passing a Rcpp::List after the

function pointer.

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod_formals) {

function("norm",

&norm,

List::create(_["x"] = 0.0,

_["y"] = 0.0),

"Provides a simple vector norm");

}

A simple usage example is provided below:

mod <- Module("mod_formals", getDynLib(fx))

norm <- mod$norm

norm()

norm(x = 2, y = 3)

To set formal arguments without default values, omit the rhs.

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 3

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod_formals2) {

function("norm", &norm,

List::create(_["x"], _["y"] = 0.0),

"Provides a simple vector norm");

}

This can be used as follows:

mod <- Module("mod_formals2", getDynLib(fx))

norm <- mod$norm

args(norm)

The ellipsis (...) can be used to denote that additional argu-

ments are optional; it does not take a default value.

using namespace Rcpp;

double norm(double x, double y) {

return sqrt(x*x + y*y);

}

RCPP_MODULE(mod_formals3) {

function("norm", &norm,

List::create(_["x"], _["..."]),

"documentation for norm");

}

This works similarly from the R side where the ellipsis is also

understood:

mod <- Module("mod_formals3", getDynLib(fx))

norm <- mod$norm

args(norm)

As of mid-2024, more recent versions of R no longer tolerate

‘empty’ strings as placeholders for missing arguments. It is prefer-

able to simply not list any arguments for functions that take no

arguments. Issue #1322 has an example.

2.2. Exposing C++ classes using Rcpp modules. Rcpp modules

also provide a mechanism for exposing C++ classes, based on the

reference classes introduced in R 2.12.0.

2.2.1. Initial example. A class is exposed using the class_ keyword.

The Uniform class may be exposed to R as follows:

using namespace Rcpp;

class Uniform {

public:

Uniform(double min_, double max_) :

min(min_), max(max_) {}

NumericVector draw(int n) const {

RNGScope scope;

return runif(n, min, max);

}

double min, max;

};

double uniformRange(Uniform* w) {

return w->max - w->min;

}

RCPP_MODULE(unif_module) {

class_<Uniform>("Uniform")

.constructor<double,double>()

.field("min", &Uniform::min)

.field("max", &Uniform::max)

.method("draw", &Uniform::draw)

.method("range", &uniformRange)

;

}

unif_module <- Module("unif_module",

getDynLib(fx))

Uniform <- unif_module$Uniform

u <- new(Uniform, 0, 10)

u$draw(10L)

u$range()

u$max <- 1

u$range()

u$draw(10)

class_ is templated by the C++ class or struct that is to be

exposed to R. The parameter of the class_<Uniform> constructor

is the name we will use on the R side. It usually makes sense to

use the same name as the class name. While this is not enforced, it

might be useful when exposing a class generated from a template.

Then constructors, fields and methods are exposed.

2.2.2. Exposing constructors using Rcpp modules. Public constructors

that take from 0 and 6 parameters can be exposed to the R level

using the .constructor template method of class_.

Optionally, .constructor can take a description as the first

argument.

.constructor<double,double>("sets the min and "

"max value of the distribution")

Also, the second argument can be a function pointer (called

validator) matching the following type:

typedef bool (*ValidConstructor)(SEXP*,int);

The validator can be used to implement dispatch to the appro-

priate constructor, when multiple constructors taking the same

number of arguments are exposed. The default validator always

accepts the constructor as valid if it is passed the appropriate num-

ber of arguments. For example, with the call above, the default

validator accepts any call from R with two double arguments (or

arguments that can be cast to double).

TODO: include validator example here

4 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

2.2.3. Exposing fields and properties. class_ has three ways to expose

fields and properties, as illustrated in the example below:

using namespace Rcpp;

class Foo {

public:

Foo(double x_, double y_, double z_):

x(x_), y(y_), z(z_) {}

double x;

double y;

double get_z() { return z; }

void set_z(double z_) { z = z_; }

private:

double z;

};

RCPP_MODULE(mod_foo) {

class_<Foo>("Foo")

.constructor<double,double,double>()

.field("x", &Foo::x)

.field_readonly("y", &Foo::y)

.property("z", &Foo::get_z, &Foo::set_z)

;

}

The .field method exposes a public field with read/write ac-

cess from R. It accepts an extra parameter to give a short description

of the field:

.field("x", &Foo::x, "documentation for x")

The .field_readonly exposes a public field with read-only

access from R. It also accepts the description of the field.

.field_readonly("y", &Foo::y,

"documentation for y")

The .property method allows indirect access to fields through

a getter and a setter. The setter is optional, and the property is

considered read-only if the setter is not supplied. A description of

the property is also allowed:

// with getter and setter

.property("z", &Foo::get_z,

&Foo::set_z, "Documentation for z")

// with only getter

.property("z",

&Foo::get_z, "Documentation for z")

The type of the field (T) is deduced from the return type of the

getter, and if a setter is given its unique parameter should be of the

same type.

Getters can be member functions taking no parameter and re-

turning a T (for example get_z above), or a free function taking a

pointer to the exposed class and returning a T, for example:

double z_get(Foo* foo) { return foo->get_z(); }

Setters can be either a member function taking a T and returning

void, such as set_z above, or a free function taking a pointer to

the target class and a T:

void z_set(Foo* foo, double z) { foo->set_z(z); }

Using properties gives more flexibility in case field access has

to be tracked or has impact on other fields. For example, this class

keeps track of how many times the x field is read and written.

class Bar {

public:

Bar(double x_) : x(x_), nread(0), nwrite(0) {}

double get_x() {

nread++;

return x;

}

void set_x(double x_) {

nwrite++;

x = x_;

}

IntegerVector stats() const {

return

IntegerVector::create(_["read"] = nread,

_["write"] = nwrite);

}

private:

double x;

int nread, nwrite;

};

RCPP_MODULE(mod_bar) {

class_<Bar>("Bar")

.constructor<double>()

.property("x", &Bar::get_x, &Bar::set_x)

.method("stats", &Bar::stats)

;

}

Here is a simple usage example:

mod_bar <- Module("mod_bar", getDynLib(fx))

Bar <- mod_bar$Bar

b <- new(Bar, 10)

b$x + b$x

b$stats()

b$x <- 10

b$stats()

2.2.4. Exposing methods using Rcpp modules. class_ has several over-

loaded and templated .method functions allowing the programmer

to expose a method associated with the class.

A legitimate method to be exposed by .method can be:

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 5

• A public member function of the class, either const or non-

const, that returns void or any type that can be handled by

Rcpp::wrap, and that takes between 0 and 65 parameters

whose types can be handled by Rcpp::as.

• A free function that takes a pointer to the target class as its

first parameter, followed by 0 or more (up to 65) parameters

that can be handled by Rcpp::as and returning a type that

can be handled by Rcpp::wrap or void.

2.2.5. Documenting methods. .method can also include a short doc-

umentation of the method, after the method (or free function)

pointer.

.method("stats", &Bar::stats,

"vector indicating the number of "

"times x has been read and written")

TODO: mention overloading, need good example.

2.2.6. Const and non-const member functions. .method is able to ex-

pose both const and non-const member functions of a class. There

are however situations where a class defines two versions of the

same method, differing only in their signature by the const-ness.

It is for example the case of the member functions back of the

std::vector template from the STL.

reference back ();

const_reference back () const;

To resolve the ambiguity, it is possible to use .const_method

or .nonconst_method instead of .method in order to restrict the

candidate methods.

2.2.7. Special methods. Rcpp considers the methods [[and [[<-

special, and promotes them to indexing methods on the R side.

2.2.8. Object finalizers. The .finalizer member function of class_

can be used to register a finalizer. A finalizer is a free function that

takes a pointer to the target class and return void. The finalizer is

called before the destructor and so operates on a valid object of

the target class.

It can be used to perform operations, releasing resources, etc

. . .

The finalizer is called automatically when the R object that

encapsulates the C++ object is garbage collected.

2.2.9. Object factories. The .factory member function of class_

can be used to register a factory that can be used as alternative to

a constructor. A factory can be a static member function or a free

function that returns a pointer to the target class. Typical use-cases

include creating objects in a hierarchy:

#include <Rcpp.h>

using namespace Rcpp;

// abstract class

class Base {

public:

virtual ~Base() {}

virtual std::string name() const = 0;

};

// first derived class

class Derived1: public Base {

public:

Derived1() : Base() {}

virtual std::string name() const {

return "Derived1";

}

};

// second derived class

class Derived2: public Base {

public:

Derived2() : Base() {}

virtual std::string name() const {

return "Derived2";

}

};

Base *newBase(const std::string &name) {

if (name == "d1"){

return new Derived1;

} else if (name == "d2"){

return new Derived2;

} else {

return 0;

}

}

RCPP_MODULE(mod) {

Rcpp::class_< Base >("Base")

.factory<const std::string&>(newBase)

.method("name", &Base::name);

}

The newBase method returns a pointer to a Base object. Since

that class is an abstract class, the objects are actually instances of

Derived1 or Derived2. The same behavior is now available in R:

mod <- Module("mod", getDynLib(fx))

Base <- mod$Base

dv1 <- new(Base, "d1")

dv1$name() # returns "Derived1"

dv2 <- new(Base, "d2")

dv2$name() # returns "Derived2"

2.2.10. S4 dispatch. When a C++ class is exposed by the class_

template, a new S4 class is registered as well. The name of the S4

class is obfuscated in order to avoid name clashes (i.e. two modules

exposing the same class). This allows implementation of R-level

(S4) dispatch.

For example, consider the C++ class World exposed in module

yada:

class World {

public:

World() : msg("hello") {}

void set(std::string msg) { this->msg = msg; }

std::string greet() { return msg; }

private:

std::string msg;

};

RCPP_MODULE(yada){

6 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://en.wikipedia.org/wiki/Factory_method_pattern
https://cran.r-project.org/package=Rcpp

using namespace Rcpp;

class_<World>("World")

// expose the default constructor

.constructor()

.method("greet", &World::greet)

.method("set", &World::set)

;

}

The show method for World objects is then implemented as:

yada <- Module("yada", getDynLib(fx))

setMethod("show", yada$World , function(object) {

msg <- paste("World object with message : ",

object$greet())

writeLines(msg)

})

yada$World$new() # implicitly calls show

TODO: mention R inheritance (John ?)

2.2.11. Extending Rcpp::as and Rcpp::wrap. Sometimes it is neces-

sary to extend Rcpp::as or Rcpp::wrap for classes that are

also exposed using Rcpp modules. Instead of using the general

methods described in the Rcpp Extending vignette, one can use

the RCPP_EXPOSED_AS or RCPP_EXPOSED_WRAP macros. Alterna-

tively the RCPP_EXPOSED_CLASS macro defines both Rcpp::as

and Rcpp::wrap specializations. Do not use these macros together

with the generic extension mechanisms. Note that opposed to

the generic methods, these macros can be used after Rcpp.h has

been loaded. Here an example of a pair of Rcpp modules exposed

classes where one of them has a method taking an instance of

the other class as argument. In this case it is sufficient to use

RCPP_EXPOSED_AS to enable the transparent conversion from R to

C++:

#include <Rcpp.h>

class Foo {

public:

Foo() = default;

};

class Bar {

public:

Bar() = default;

void handleFoo(Foo foo) {

Rcpp::Rcout << "Got a Foo!" << std::endl;

};

};

RCPP_EXPOSED_AS(Foo)

RCPP_MODULE(Foo){

Rcpp::class_<Foo>("Foo")

.constructor();

}

RCPP_MODULE(Barl){

Rcpp::class_<Bar>("Bar")

.constructor()

.method("handleFoo", &Bar::handleFoo);

}

Foo <- Module("Foo", getDynLib(fx))$Foo

Bar <- Module("Barl", getDynLib(fx))$Bar

foo <- new(Foo)

bar <- new(Bar)

bar$handleFoo(foo)

#> Got a Foo!

2.2.12. Full example. The following example illustrates how to use

Rcpp modules to expose the class std::vector<double> from the

STL.

typedef std::vector<double> vec;

void vec_assign(vec* obj,

Rcpp::NumericVector data) {

obj->assign(data.begin(), data.end());

}

void vec_insert(vec* obj, int position,

Rcpp::NumericVector data) {

vec::iterator it = obj->begin() + position;

obj->insert(it, data.begin(), data.end());

}

Rcpp::NumericVector vec_asR(vec* obj) {

return Rcpp::wrap(*obj);

}

void vec_set(vec* obj, int i, double value) {

obj->at(i) = value;

}

// Fix for C++11, where we cannot directly expose

// member functions vec::resize and vec::push_back

void vec_resize (vec* obj, int n) {

obj->resize(n);

}

void vec_push_back (vec* obj, double value) {

obj->push_back(value);

}

RCPP_MODULE(mod_vec) {

using namespace Rcpp;

// we expose class std::vector<double>

// as "vec" on the R side

class_<vec>("vec")

// exposing constructors

.constructor()

.constructor<int>()

// exposing member functions

.method("size", &vec::size)

.method("max_size", &vec::max_size)

.method("capacity", &vec::capacity)

.method("empty", &vec::empty)

.method("reserve", &vec::reserve)

.method("pop_back", &vec::pop_back)

.method("clear", &vec::clear)

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 7

// exposing const member functions

.const_method("back", &vec::back)

.const_method("front", &vec::front)

.const_method("at", &vec::at)

// exposing free functions taking a

// std::vector<double>* as their first

// argument

.method("assign", &vec_assign)

.method("insert", &vec_insert)

.method("resize", &vec_resize)

.method("push_back", &vec_push_back)

.method("as.vector", &vec_asR)

// special methods for indexing

.const_method("[[", &vec::at)

.method("[[<-", &vec_set)

;

}

mod_vec <- Module("mod_vec", getDynLib(fx))

vec <- mod_vec$vec

v <- new(vec)

v$reserve(50L)

v$assign(1:10)

v$push_back(10)

v$size()

v$resize(30L)

v$capacity()

v[[0L]]

v$as.vector()

2.3. Loading modules via sourceCpp. As an alternative to the ex-

plicit creation of a Module object using the inline package via

cxxfunction and getDynLib, it is possible to use the sourceCpp

function, accepting C++ source code as either a .cpp file or a char-

acter string and described in the Rcpp attributes vignette (Allaire

et al., 2026).

The main differences with this approach are:

• The Rcpp.h header file must be explicitly included.

• The content of the module (C++ functions and classes) is im-

plicitly exposed and made available to R as individual objects,

as opposed to being accessed from a Module object with the

$ extractor.

Note that this is similar to exposing modules in R packages

using loadModule, described in Section 3.2.1 below.

As an example, consider a file called yada.cpp containing the

following C++ code:

#include <Rcpp.h>

std::string hello() {

return "hello";

}

void bla() {

Rprintf("hello\\n");

}

void bla2(int x, double y) {

Rprintf("hello (x = %d, y = %5.2f)\\n", x, y);

}

class World {

public:

World() : msg("hello") {}

void set(std::string msg) { this->msg = msg; }

std::string greet() { return msg; }

private:

std::string msg;

};

RCPP_MODULE(yada){

using namespace Rcpp;

function("hello" , &hello);

function("bla" , &bla);

function("bla2" , &bla2);

class_<World>("World")

.constructor()

.method("greet", &World::greet)

.method("set", &World::set)

;

}

sourceCpp('yada.cpp')

C++ functions hello, bla, bla2 and class World will be readily

available in R:

hello()

bla()

bla2(42, 0.42)

w <- new(World)

w$greet()

w$set("hohoho")

w$greet()

3. Using modules in other packages

3.1. Namespace import. When using Rcpp modules in a packages,

the client package needs to import Rcpp’s namespace. This is

achieved by adding the following line to the NAMESPACE file.

import(Rcpp)

In some case we have found that explicitly naming a symbol

can be preferable:

import(Rcpp, evalCpp)

3.2. Load the module in the namespace.

3.2.1. Load the module content via loadModule. Starting with release

0.9.11, the preferred way for loading a module directly into a pack-

age namespace is by calling the loadModule() function, which

takes the module name as an argument and exposes the content

of the module (C++ functions and classes) as individual objects in

the namespace. It can be placed in any .R file in the package. This

is useful as it allows to load the module from the same file as some

auxiliary R functions using the module.

8 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

Consider a package testmod defining a module yada in the

source file src/yada.cpp, with the same content as defined above

in Section 2.3 above

Then, loadModule is called in the package’s R code to expose

all C++ functions and classes as objects hello, bla, bla2, World

into the package namespace:

loadModule("yada", TRUE)

Provided the objects are also exported (see Section 3.3 below),

this makes them readily available in R:

library(testmod)

hello()

bla()

bla2(42, 0.42)

w <- new(World)

w$greet()

w$set("hohoho")

w$greet()

The loadModule function has an argument what to control

which objects are exposed in the package namespace. The special

value TRUE means that all objects are exposed.

3.2.2. Just expose the module. Alternatively to exposing a module’s

content via loadModule, it is possible to just expose the module

object to the users of the package, and let them extract the functions

and classes as needed. This uses lazy loading so that the module is

only loaded the first time the user attempts to extract a function or

a class with the dollar extractor.

yada <- Module("yada")

.onLoad <- function(libname, pkgname) {

placeholder

}

Provided yada is properly exported, the functions and classes

are accessed as e.g. yada$hello, yada$World.

3.3. Namespace exports. The content of modules or the modules as

a whole, exposed as objects in the package namespace, must be ex-

ported to be visible to users of the package. As for any other object,

this is achieved by the appropriate export() or exportPattern()

statements in the NAMESPACE file. For instance, the functions and

classes in the yada module considered above can be exported as:

export(hello, bla, bla2, World)

3.4. Support for modules in skeleton generator. Creating a

new package using Rcpp modules is easiest via the call to

Rcpp.package.skeleton() with argument module=TRUE.

Rcpp.package.skeleton("testmod", module = TRUE)

This will install code providing three example modules, exposed

using LoadModule.

3.5. Module documentation. Rcpp defines a prompt method for

the Module class, allowing generation of a skeleton of an Rd file

containing some information about the module.

yada <- Module("yada")

prompt(yada, "yada-module.Rd")

We strongly recommend using a package when working with

Modules. But in case a manually compiled shared library has to

loaded, the return argument of the getDynLib() function can be

supplied as the PACKAGE argument to the Module() function as

well.

4. Future extensions

Boost.Python has many more features that we would like to port

to Rcpp modules: class inheritance, default arguments, enum types,

. . .

5. Known shortcomings

There are some things Rcpp modules is not good at:

• serialization and deserialization of objects: modules are im-

plemented via an external pointer using a memory loca-

tion, which is non-constant and varies between session. Ob-

jects have to be re-created, which is different from the (de-

)serialization that R offers. So these objects cannot be saved

from session to session.

• multiple inheritance: currently, only simple class structures

are representable via Rcpp modules.

6. Summary

This note introduced Rcpp modules and illustrated how to expose

C++ function and classes more easily to R. We hope that R and C++

programmers find Rcpp modules useful.

References

Abrahams D, Grosse-Kunstleve RW (2003). Building Hybrid Systems with

Boost.Python. Boost Consulting. URL https://www.boost.org/doc/libs/latest/

libs/python/doc/html/article.html.

Allaire JJ, Eddelbuettel D, François R (2026). Rcpp Attributes. doi:

10.32614/CRAN.package.Rcpp. Vignette included in R package Rcpp.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Cham-

bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:

10.32614/CRAN.package.Rcpp. R package version 1.1.1.

R Core Team (2025). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. doi:10.32614/R.manuals. URL https:

//CRAN.R-Project.org/doc/manuals/R-exts.html.

Eddelbuettel and François Rcpp Vignette | January 8, 2026 | 9

https://www.boost.org/doc/libs/latest/libs/python/doc/html/article.html
https://www.boost.org/doc/libs/latest/libs/python/doc/html/article.html
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://CRAN.R-Project.org/doc/manuals/R-exts.html

	Motivation
	Exposing functions using
	Exposing classes using Rcpp

	Rcpp modules
	Exposing functions using Rcpp modules
	Documentation for exposed functions using Rcpp modules
	Formal arguments specification

	Exposing classes using Rcpp modules
	Initial example
	Exposing constructors using Rcpp modules
	Exposing fields and properties
	Exposing methods using Rcpp modules
	Documenting methods
	Const and non-const member functions
	Special methods
	Object finalizers
	Object factories
	S4 dispatch
	Extending Rcpp::as and Rcpp::wrap
	Full example

	Loading modules via sourceCpp

	Using modules in other packages
	Namespace import
	Load the module in the namespace
	Load the module content via loadModule
	Just expose the module

	Namespace exports
	Support for modules in skeleton generator
	Module documentation

	Future extensions
	Known shortcomings
	Summary

