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R has always provided an application programming interface (API) for

extensions. Based on the C language, it uses a number of macros and

other low-level constructs to exchange data structures between the R

process and any dynamically-loaded component modules authors added

to it. With the introduction of the Rcpp package, and its later refinements,

this process has become considerably easier yet also more robust. By

now, Rcpp has become the most popular extension mechanism for R. This

article introduces Rcpp, and illustrates with several examples how the

Rcpp Attributes mechanism in particular eases the transition of objects

between R and C++ code.
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Introduction

The R language and environment (R Core Team, 2025a) has es-

tablished itself as both an increasingly dominant facility for data

analysis, and the lingua franca for statistical computing in both

research and application settings.

Since the beginning, and as we argue below, “by design”, the

R system has always provided an application programming in-

terface (API) suitable for extending R with code written in C or

Fortran. Being implemented chiefly in R and C (with a generous

sprinkling of Fortran for well-established numerical subroutines),

R has always been extensible via a C interface. Both the actual

implementation and the C interface use a number of macros and

other low-level constructs to exchange data structures between

the R process and any dynamically-loaded component modules

authors added to it.

A C interface will generally also be accessible to other languages.

Particularly noteworthy here is the C++ language, developed orig-

inally as a ‘better C’, which is by its design very interoperable with

C. And with the introduction of the Rcpp package (Eddelbuettel

and François, 2011; Eddelbuettel, 2013; Eddelbuettel et al., 2026),

and its later refinements, this process of extending R has become

considerably easier yet also more robust. To date, Rcpp has become

the most popular extension system for R. This article introduces

Rcpp, and illustrates with several examples how the Rcpp Attributes

mechanism (Allaire et al., 2026) in particular eases the transition

of objects between R and C++ code.

Background. Chambers (2008, p. 3) provides a very thorough dis-

cussion of desirable traits for a system designed to program with

data, and the R system in particular. Two key themes motivate

the introductory discussion. First, the Mission is to aid exploration

in order to provide the best platform to analyse data: “to boldly

go where no one has gone before.” Second, the Prime Directive

is that the software systems we build must be trustworthy: “the

many computational steps between original data source and dis-

played result must all be trustful.” The remainder of the book then

discusses R, leading to two final chapters on interfaces.

Chambers (2016, p. 4) builds and expands on this theme. Two

core facets of what “makes” R are carried over from the previous

book. The first states what R is composed of: Everything that exists

in R is an object. The second states how these objects are created

or altered: Everything that happens in R is a function call. A third

statement is now added: Interfaces to other software are part of R.

This last addition is profound. If and when suitable and per-

formant software for a task exists, it is in fact desirable to have

a (preferably also performant) interface to this software from R.

Chambers (2016) discusses several possible approaches for simpler

interfaces and illustrates them with reference implementations to

both Python and Julia. However, the most performant interface for

R is provided at the subroutine level, and rather than discussing

the older C interface for R, Chambers (2016) prefers to discuss

Rcpp. This article follows the same school of thought and aims to

introduce Rcpp to analysts and data scientists, aiming to enable

them to use—and create— further interfaces for R which aid the

mission while staying true to the prime directive. Adding interfaces

in such a way is in fact a natural progression from the earliest de-

signs for its predecessor S which was after all designed to provide

a more usable ‘interface’ to underlying routines in Fortran.

The rest of the paper is structured as follows. We start by dis-

cussing possible first steps, chiefly to validate correct installations.

This is followed by an introduction to simple C++ functions, com-

parison to the C API, a discussion of packaging with Rcpp and

a linear algebra example. The appendix contains some empirical

illustrations of the adoption of Rcpp.

First Steps with Rcpp

Rcpp is a CRAN package and can be installed by using

install.packages('Rcpp') just like any other R package. On

some operating systems this will download pre-compiled binary

packages; on others an installation from source will be attempted.

But Rcpp is a little different from many standard R packages in

one important aspect: it helps the user to write C(++) programs

more easily. The key aspect to note here is C++ programs: to

operate, Rcpp needs not only R but also an additional toolchain

of a compiler, linker and more in order to be able to create binary

object code extending R.

We note that this requirement is no different from what is

needed with base R when compilation of extensions is attempted.

How to achieve this using only base R is described in some detail

in the Writing R Extensions manual (R Core Team, 2025b) that

is included with R. As for the toolchain requirements, on Linux

and macOS, all required components are likely to be present. The

macOS can offer additional challenges as toolchain elements can

be obtained in different ways. Some of these are addressed in the

Rcpp FAQ (Eddelbuettel and François, 2026a) in sections 2.10 and

2.16. On Windows, users will have to install the Rtools kit provided

by R Core available at https://cran.r-project.org/bin/windows/Rtools/.
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Details of these installation steps are beyond the scope of this pa-

per. However, many external resources exist that provide detailed

installation guides for R toolchains in Windows and macOS. As

a first step, and chiefly to establish that the toolchain is set up

correctly, consider a minimal use case such as the following:

library("Rcpp")

evalCpp("2 + 2")

# [1] 4

Here the Rcpp package is loaded first via the library() func-

tion. Next, we deploy one of its simplest functions, evalCpp(),

which is described in the Rcpp Attributes vignette (Allaire et al.,

2026). It takes the first (and often only) argument—a character

object—and evaluates it as a minimal C++ expression. The value

assignment and return are implicit, as is the addition of a trailing

semicolon and more. In fact, evalCpp() surrounds the expression

with the required ‘glue’ to make it a minimal source file which

can be compiled, linked and loaded. The exact details behind this

process are available in-depth when the verbose option of the

function is set. If everything is set up correctly, the newly-created

R function will be returned.

While such a simple expression is not interesting in itself, it

serves a useful purpose here to unequivocally establish whether

Rcpp is correctly set up. Having accomplished that, we can proceed

to the next step of creating simple functions.

A first C++ function using Rcpp

As a first example, consider the determination of whether a number

is odd or even. The default practice is to use modular arithmetic

to check if a remainder exists under x mod 2. Within R, this can

be implemented as follows:

isOddR <- function(num = 10L) {

result <- (num %% 2L == 1L)

return(result)

}

isOddR(42L)

# [1] FALSE

The operator %% implements the mod operation in R. For the

default (integer) argument of ten used in the example, 10 mod 2

results in zero, which is then mapped to FALSE in the context of a

logical expression.

Translating this implementation into C++, several small details

have to be considered. First and foremost, as C++ is a statically-

typed language, there needs to be additional (compile-time) infor-

mation provided for each of the variables. Specifically, a type, i.e.

the kind of storage used by a variable must be explicitly defined.

Typed languages generally offer benefits in terms of both correct-

ness (as it is harder to accidentally assign to an ill-matched type)

and performance (as the compiler can optimize code based on the

storage and cpu characteristics). Here we have an int argument,

but return a logical, or bool for short. Two more smaller differ-

ences are that each statement within the body must be concluded

with a semicolon, and that return does not require parentheses

around its argument. A graphical breakdown of all aspects of a

corresponding C++ function is given in Figure 1.

When using Rcpp, such C++ functions can be directly em-

bedded and compiled in an R script file through the use of the

cppFunction() provided by Rcpp Attributes (Allaire et al., 2026).

The first parameter of the function accepts string input that rep-

resents the C++ code. Upon calling the cppFunction(), and

similarly to the earlier example involving evalCpp(), the C++

code is both compiled and linked, and then imported into R under

the name of the function supplied (e.g. here isOddCpp()).

library("Rcpp")

cppFunction("

bool isOddCpp(int num = 10) {

bool result = (num % 2 == 1);

return result;

}")

isOddCpp(42L)

# [1] FALSE

Extending R via its C API

Let us first consider the case of ‘standard R’, i.e. the API as defined

in the core R documentation. Extending R with routines written

using the C language requires the use of internal macros and

functions documented in Chapter 5 of Writing R Extensions (R Core

Team, 2025b).

#include <R.h>

#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {

int na, nb, nab;

double *xa, *xb, *xab;

SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));

b = PROTECT(coerceVector(b, REALSXP));

na = length(a); nb = length(b);

nab = na + nb - 1;

ab = PROTECT(allocVector(REALSXP, nab));

xa = REAL(a); xb = REAL(b); xab = REAL(ab);

for (int i = 0; i < nab; i++)

xab[i] = 0.0;

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)

xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);

return ab;

}

This function computes a convolution of two vectors supplied

on input, a and b, which is defined to be abk+1 =
∑

i+ j==k

ai · b j .

Before computing the convolution (which is really just the three

lines involving two nested for loops with indices i and j), a total

of ten lines of mere housekeeping are required. Vectors a and b

are coerced to double, and a results vector ab is allocated. This

expression involves three calls to the PROTECT macro for which

a precisely matching UNPROTECT(3) is required as part of the in-

terfacing of internal memory allocation. The vectors are accessed

through pointer equivalents xa, xb and xab; and the latter has to

be explicitly zeroed prior to the convolution calculation involving

incremental summary at index i + j.

Extending R via the C++ API of Rcpp

Using the idioms of Rcpp, the above example can be written in a

much more compact fashion—leading to code that is simpler to
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Fig. 1. Graphical annotation of the is_odd_cpp function.

read and maintain.

#include "Rcpp.h"

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector

convolve_cpp(const NumericVector& a,

const NumericVector& b) {

// Declare loop counters, and vector sizes

int i, j,

na = a.size(), nb = b.size(),

nab = na + nb - 1;

// Create vector filled with 0

NumericVector ab(nab);

// Crux of the algorithm

for(i = 0; i < na; i++) {

for(j = 0; j < nb; j++) {

ab[i + j] += a[i] * b[j];

}

}

// Return result

return ab;

}

To deploy such code from within an R script or ses-

sion, first save it into a new file—which could be called con-

volve.cpp—in either the working directory, a temporary direc-

tory or a project directory. Then from within the R session, use

Rcpp::sourceCpp("convolve.cpp") (possibly using a path as

well as the filename). This not only compiles, links and loads

the code within the external file but also adds the necessary

“glue” to make the Rcpp function available in the R environ-

ment. Once the code is compiled and linked, call the newly-created

convolve_cpp() function with the appropriate parameters as

done in previous examples.

What is notable about the Rcpp version is that it has no PROTECT

or UNPROTECT which not only frees the programmer from a tedious

(and error-prone) step but more importantly also shows that mem-

ory management can be handled automatically. The result vector

is already initialized at zero as well, reducing the entire function

to just the three lines for the two nested loops, plus some vari-

able declarations and the return statement. The resulting code is

shorter, easier to read, comprehend and maintain. Furthermore,

the Rcpp code is more similar to traditional R code, which reduces

the barrier of entry.

Data Driven Performance Decisions with Rcpp

When beginning to implement an idea, more so an algorithm, there

are many ways one is able to correctly implement it. Prior to the

routine being used in production, two questions must be asked:

1. Does the implementation produce the correct results?

2. What implementation of the routine is the best?

The first question is subject to a binary pass-fail unit test verifi-

cation while the latter question is where the details of an imple-

mentation are scrutinized to extract maximal efficiency from the

routine. The quality of the best routine follows first and foremost

from its correctness. To that end, R offers many different unit

testing frameworks such as RUnit by Burger et al. (2024), which is

used to construct Rcpp’s 1385+ unit tests, and testthat by Wickham

(2011). Only when correctness is achieved is it wise to begin the

procedure of optimizing the efficiency of the routine and, in turn,

selecting the best routine.

Optimization of an algorithm involves performing a quantitative

analysis of the routine’s properties. There are two main approaches

to analyzing the behavior of a routine: theoretical analysis1 or an

empirical examination using profiling tools.2 Typically, the latter

option is more prominently used as the routine’s theoretical prop-

erties are derived prior to an implementation being started. Often

the main concern regarding an implementation in R relates to the

speed of the algorithm as it impacts how quickly analyses can be

done and reports can be provided to decision makers. Coinciden-

tally, the speed of code is one of the key governing use cases of

Rcpp. Profiling R code will reveal shortcomings related to loops,

1
Theoretical analysis is often directed to describing the limiting behavior of a function through asymptotic

notation, commonly referred to as Big O and denoted as O (·).
2
Within base R, profiling can be activated by utils::Rprof() for individual command timing information,

utils::Rprofmem() for memory information, and System.time({}) for a quick overall execution

timing. Additional profiling R packages such as profvis by Chang et al. (2024), Rperform by Tandon and

Hocking (2015), and benchmarking packages have extended the ability to analyze performance.
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e.g. for, while, and repeat; conditional statements, e.g. if-else

if-else and switch; and recursive functions, i.e. a function writ-

ten in terms of itself such that the problem is broken down on each

call in a reduced state until an answer can be obtained. In contrast,

the overhead for such operations is significantly less in C++. Thus,

critical components of a given routine should be written in Rcpp

to capture maximal efficiency.

Returning to the second question, to decide which implementa-

tion works the best, one needs to employ a benchmark to obtain

quantifiable results. Benchmarks are an ideal way to quantify how

well a method performs because they have the ability to show the

amount of time the code has been running and where bottlenecks

exist within functions. This does not imply that benchmarks are

completely infallible as user error can influence the end results.

For example, if a user decides to benchmark code in one R session

and in another session performs a heavy computation, then the

benchmark will be biased (if “wall clock” is measured).

There are different levels of magnification that a benchmark

can provide. For a more macro analysis, one should benchmark

data using benchmark(test = func(), test2 = func2()), a

function from the rbenchmark R package by Kusnierczyk (2012).

This form of benchmarking will be used when the computation is

more intensive. The motivating example isOdd() (which is only

able to accept a single integer) warrants a much more microscopic

timing comparison. In cases such as this, the objective is to obtain

precise results in the amount of nanoseconds elapsed. Using the

microbenchmark function from the microbenchmark R package

by Mersmann (2023) is more helpful to obtain timing information.

To perform the benchmark:

library("microbenchmark")

results <- microbenchmark(isOddR = isOddR(12L),

isOddCpp = isOddCpp(12L))

print(summary(results)[, c(1:7)],digits=1)

By looking at the summary of 100 evaluations, we note that

the Rcpp function performed better than the equivalent in R by

achieving a lower run time on average. The lower run time in this

part is not necessarily critical as the difference is nanoseconds on a

trivial computation. However, each section of code does contribute

to a faster overall runtime.

Random Numbers within Rcpp: An Example of Rcpp Sugar

Rcpp connects R with C++. Only the former is vectorized: C++ is

not. Rcpp Sugar, however, provides a convenient way to work with

high-performing C++ functions in a similar way to how R offers

vectorized operations. The Rcpp Sugar vignette (Eddelbuettel and

François, 2026b) details these, as well as many more functions

directly accessible to Rcpp in a way that should feel familiar to

R users. Some examples of Rcpp Sugar functions include special

math functions like gamma and beta, statistical distributions and

random number generation.

We will illustrate a case of random number generation. Consider

drawing one or more N(0,1)-distributed random variables. The

very simplest case can just use evalCpp():

evalCpp("R::rnorm(0, 1)")

# [1] -0.73748

By setting a seed, we can make this reproducible:

set.seed(123)

evalCpp("R::rnorm(0, 1)")

# [1] -0.56048

One important aspect of the behind-the-scenes code generation

for the single expression (as well as all code created via Rcpp

Attributes) is the automatic preservation of the state of the random

number generators in R. This means that from a given seed, we

will receive identical draws of random numbers whether we access

them from R or via C++ code accessing the same generators (via

the Rcpp interfaces). To illustrate, the same number is drawn via

R code after resetting the seed:

set.seed(123)

# Implicit mean of 0, sd of 1

rnorm(1)

# [1] -0.56048

We can make the Rcpp Sugar function rnorm() accessible from

R in the same way to return a vector of values:

set.seed(123)

evalCpp("Rcpp::rnorm(3)")

# [1] -0.56048 -0.23018 1.55871

Note that we use the Rcpp:: namespace explicitly here to con-

trast the vectorised Rcpp::rnorm() with the scalar R::rnorm()

also provided as a convenience wrapper for the C API of R.

And as expected, this too replicates from R as the very same

generators are used in both cases along with consistent handling

of generator state permitting to alternate:

set.seed(123)

rnorm(3)

# [1] -0.56048 -0.23018 1.55871

Translating Code from R into Rcpp: Bootstrap Example

Statistical inference relied primarily upon asymptotic theory until

Efron (1979) proposed the bootstrap. Bootstrapping is known to

be computationally intensive due to the need to use loops. Thus, it

is an ideal candidate to use as an example. Before starting to write

C++ code using Rcpp , prototype the code in R.

# Function declaration

bootstrap_r <- function(ds, B = 1000) {

# Preallocate storage for statistics

boot_stat <- matrix(NA, nrow = B, ncol = 2)

# Number of observations

n <- length(ds)

# Perform bootstrap

for(i in seq_len(B)) {

# Sample initial data

gen_data <- ds[ sample(n, n, replace=TRUE) ]

# Calculate sample data mean and SD

boot_stat[i,] <- c(mean(gen_data),

sd(gen_data))

}
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# Return bootstrap result

return(boot_stat)

}

Before continuing, check that the initial prototype R code works.

To do so, write a short R script. Note the use of set.seed() to

ensure reproducible draws.

# Set seed to generate data

set.seed(512)

# Generate data

initdata <- rnorm(1000, mean = 21, sd = 10)

# Set a new _different_ seed for bootstrapping

set.seed(883)

# Perform bootstrap

result_r <- bootstrap_r(initdata)

Figure 2 shows that the bootstrap procedure worked well!

With reassurances that the method to be implemented within

Rcpp works appropriately in R, proceed to translating the code

into Rcpp. As indicated previously, there are many convergences

between Rcpp syntax and base R via Rcpp Sugar.

#include <Rcpp.h>

// Function declaration with export tag

// [[Rcpp::export]]

Rcpp::NumericMatrix

bootstrap_cpp(Rcpp::NumericVector ds,

int B = 1000) {

// Preallocate storage for statistics

Rcpp::NumericMatrix boot_stat(B, 2);

// Number of observations

int n = ds.size();

// Perform bootstrap

for(int i = 0; i < B; i++) {

// Sample initial data

Rcpp::NumericVector gen_data =

ds[ floor(Rcpp::runif(n, 0, n)) ];

// Calculate sample mean and std dev

boot_stat(i, 0) = mean(gen_data);

boot_stat(i, 1) = sd(gen_data);

}

// Return bootstrap results

return boot_stat;

}

In the Rcpp version of the bootstrap function, there are a few

additional changes that occurred during the translation. In par-

ticular, the use of Rcpp::runif(n, 0, n) enclosed by floor(),

which rounds down to the nearest integer, in place of sample(n,

n, replace = TRUE) to sample row ids. This is an equivalent

substitution since equal weight is being placed upon all row ids

and replacement is allowed.3 Note that the upper bound of the

interval, n, will never be reached. While this may seem flawed,

it is important to note that vectors and matrices in C++ use a

3
For more flexibility in sampling see Christian Gunning’s Sample extension for RcppArmadillo and

Rcpp Gallery: Using the RcppArmadillo-based Implementation of R’s sample() or consider using the

Rcpp::sample() sugar function added in 0.12.9 by Nathan Russell.

zero-based indexing system, meaning that they begin at 0 instead

of 1 and go up to n− 1 instead of n, which is unlike R’s system.

Thus, an out of bounds error would be triggered if n was used as

that point does not exist within the data structure. The application

of this logic can be seen in the span the for loop takes in C++

when compared to R. Another syntactical change is the use of ()

in place of [] while accessing the matrix. This change is due to the

governance of C++ and its comma operator making it impossible

to place multiple indices inside the square brackets.

To validate that the translation was successful, first run the

C++ function under the same data and seed as was given for the

R function.

# Use the same seed use in R and C++

set.seed(883)

# Perform bootstrap with C++ function

result_cpp <- bootstrap_cpp(initdata)

Next, check the output between the functions using R ’s

all.equal() function that allows for an ϵ-neighborhood around

a number.

# Compare output

all.equal(result_r, result_cpp)

# [1] "Mean relative difference: 0.019931"

Lastly, make sure to benchmark the newly translated Rcpp func-

tion against the R implementation. As stated earlier, data is

paramount to making a decision related to which function to use

in an analysis or package.

library(rbenchmark)

benchmark(r = bootstrap_r(initdata),

cpp = bootstrap_cpp(initdata))[, 1:4]

# test replications elapsed relative

# 2 cpp 100 1.223 1.000

# 1 r 100 2.291 1.873

Using Rcpp as an Interface to External Libraries: Exploring

Linear Algebra Extensions

Many of the previously illustrated Rcpp examples were directed

primarily to show the gains in computational efficiency that are

possible by implementing code directly in C++; however, this is

only one potential application of Rcpp. Perhaps one of the most

understated features of Rcpp is its ability to enable Chambers

(2016)’s third statement of Interfaces to other software are part of

R. In particular, Rcpp is designed to facilitate interfacing libraries

written in C++ or C to R. Hence, if there is a specific feature

within a C++ or C library, then one can create a bridge to it using

Rcpp to enable it from within R.

An example is the use of C++ matrix algebra libraries like Ar-

madillo (Sanderson, 2010) or Eigen (Guennebaud et al., 2012). By

outsourcing complex linear algebra operations to matrix libraries,

the need to directly call functions within Linear Algebra PACK-

age (LAPACK) (Anderson et al., 1999) is negated. Moreover, the

Rcpp design allows for seamless transfer between object types by

using automatic converters governed by wrap(), C++ to R , and

as<T>(), R to C++ with the T indicating the type of object being

cast into. These two helper functions provide a non-invasive way

to work with an external object. Thus, a further benefit to using

external C++ libraries is the ability to have a portable code base

Eddelbuettel and Balamuta Rcpp Vignette | January 8, 2026 | 5

https://gallery.rcpp.org/articles/using-the-Rcpp-based-sample-implementation/


Mean Bootstrap

Samples

D
en

si
ty

20.0 20.5 21.0 21.5

0.
0

0.
4

0.
8

1.
2

SD Bootstrap

Samples

D
en

si
ty

9.5 10.0 10.5

0.
0

0.
5

1.
0

1.
5

Fig. 2. Results of the bootstrapping procedure for sample mean and variance.

that can be implemented within a standalone C++ program or

within another computational language.

Compute RNG draws from a multivariate Normal. A common appli-

cation in statistical computing is simulating from a multivariate nor-

mal distribution. The algorithm relies on a linear transformation of

the standard Normal distribution. Letting Y m×1 = Am×nZn×1+bm×1,

where A is a m× n matrix, b ∈ R
m, Z ∼ N(0n, In), and In is the

identity matrix, then Y ∼ Nm

�

µ = b,Σ = AA
T
�

. To obtain the ma-

trix A from Σ, either a Cholesky or Eigen decomposition is required.

As noted in Venables and Ripley (2002), the Eigen decomposition

is more stable in addition to being more computationally demand-

ing compared to the Cholesky decomposition. For simplicity and

speed, we have opted to implement the sampling procedure using

a Cholesky decomposition. Regardless, there is a need to involve

one of the above matrix libraries to make the sampling viable in

C++.

Here, we demonstrate how to take advantage of the Ar-

madillo linear algebra template classes (Sanderson and Curtin,

2016) via the RcppArmadillo package (Eddelbuettel and Sander-

son, 2014; Eddelbuettel et al., 2025). Prior to running this

example, the RcppArmadillo package must be installed using

install.packages('RcppArmadillo').4 One important caveat

when using additional packages within the Rcpp ecosystem is

the correct header file may not be Rcpp.h. In a majority of

cases, the additional package ships a dedicated header (as e.g.

RcppArmadillo.h here) which not only declares data structures

from both systems, but may also add complementary integration

and conversion routines. It typically needs to be listed in an

include statement along with a depends() attribute to tell R

where to find the additional header files:

4
macOS users may encounter ‘-lgfortran‘ and ‘-lquadmath‘ errors on compilations with this package if the

development environment is not appropriately set up. Section 2.16 of the Rcpp FAQ provides details

regarding the necessary ‘gfortran‘ binaries.

// Use the RcppArmadillo package

// Requires different header file from Rcpp.h

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

With this in mind, sampling from a multivariate normal distri-

bution can be obtained in a straightforward manner. Using only

Armadillo data types and values:

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// Sample N x P observations from a Standard

// Multivariate Normal given N observations, a

// vector of P means, and a P x P cov matrix

// [[Rcpp::export]]

arma::mat rmvnorm(int n,

const arma::vec& mu,

const arma::mat& Sigma) {

unsigned int p = Sigma.n_cols;

// First draw N x P values from a N(0,1)

Rcpp::NumericVector draw = Rcpp::rnorm(n*p);

// Instantiate an Armadillo matrix with the

// drawn values using advanced constructor

// to reuse allocated memory

arma::mat Z = arma::mat(draw.begin(), n, p,

false, true);

// Simpler, less performant alternative

// arma::mat Z = Rcpp::as<arma::mat>(draw);

// Generate a sample from the Transformed

// Multivariate Normal
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arma::mat Y = arma::repmat(mu, 1, n).t() +

Z * arma::chol(Sigma);

return Y;

}

As a result of using a random number generation (RNG), there

is an additional requirement to ensure reproducible results: the

necessity to explicitly set a seed (as shown above). Because of

the (programmatic) interface provided by R to its own RNGs, this

setting of the seed has to occur at the R level via the set.seed()

function as no (public) interface is provided by the R header files.

Faster linear model fits. As a second example, consider the problem

of estimating a common linear model repeatedly. One use case

might be the simulation of size and power of standard tests. Many

users of R would default to using lm(), however, the overhead

associated with this function greatly impacts speed with which an

estimate can be obtained. Another approach would be to take the

base R function lm.fit(), which is called by lm(), to compute

estimated β̂ in just about the fastest time possible. However, this

approach is also not viable as it does not report the estimated

standard errors. As a result, we cannot use any default R functions

in the context of simulating finite sample population effects on

inference.

One alternative is provided by the fastLm() function in Rcp-

pArmadillo (Eddelbuettel et al., 2025).

#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// Compute coefficients and their standard error

// during multiple linear regression given a

// design matrix X containing N observations with

// P regressors and a vector y containing of

// N responses

// [[Rcpp::export]]

Rcpp::List fastLm(const arma::mat& X,

const arma::colvec& y) {

// Dimension information

int n = X.n_rows, p = X.n_cols;

// Fit model y ~ X

arma::colvec coef = arma::solve(X, y);

// Compute the residuals

arma::colvec res = y - X*coef;

// Estimated variance of the random error

double s2 =

std::inner_product(res.begin(), res.end(),

res.begin(), 0.0)

/ (n - p);

// Standard error matrix of coefficients

arma::colvec std_err = arma::sqrt(s2 *

arma::diagvec(arma::pinv(X.t()*X)));

// Create named list with the above quantities

return Rcpp::List::create(

Rcpp::Named("coefficients") = coef,

Rcpp::Named("stderr") = std_err,

Rcpp::Named("df.residual") = n - p );

}

Fig. 3. Illustration of Rcpp.package.skeleton function.

The interface is very simple: a matrix Xn×p of regressors, and

a dependent variable yn×1 as a vector. We invoke the standard

Armadillo function solve() to fit the model y ~ X.5 We then

compute residuals, and extract the (appropriately scaled) diagonal

of the covariance matrix, also taking its square root, in order to

return both estimates β̂ and σ̂.

Rcpp in Packages

Once a project containing compiled code has matured to the point of

sharing it with collaborators6 or using it within a parallel computing

environments, the ideal way forward is to embed the code within

an R package. Not only does an R package provide a way to

automatically compile source code, but also enables the use of the

R help system to document how the written functions should be

used. As a further benefit, the package format enables the use of

unit tests to ensure that the functions are producing the correct

output. Lastly, having a package provides the option of uploading

to a repository such as CRAN for wider dissemination.

To facilitate package building, Rcpp provides a function

Rcpp.package.skeleton() that is modeled after the base R func-

tion package.skeleton(). This function automates the creation

of a skeleton package appropriate for distributing Rcpp:

library("Rcpp")

Rcpp.package.skeleton("samplePkg")

This shows how distinct directories man, R, src are created for,

respectively, the help pages, files with R code and files with C++

code. Generally speaking, all compiled code, be it from C, C++ or

Fortran sources, should be placed within the src/ directory.

Alternatively, one can achieve similar results to using

Rcpp.package.skeleton() by using a feature of the RStudio IDE.

5
We should note that this will use the standard LAPACK functionality via Armadillo whereas R uses an

internal refinement of LINPACK (Dongarra et al., 1979) via pivoting, rendering the operation numerically

more stable. That is an important robustness aspect—though common datasets on current hardware almost

never lead to actual differences. That said, if in doubt, stick with the R implementation. What is shown here

is mostly for exposition of the principles.
6

It is sometimes said that every project has two collaborators: self, and future self. Packaging code is best

practices even for code not intended for public uploading.
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Specifically, while creating a new package project there is an op-

tion to select the type of package by engaging a dropdown menu

to select “Package w/ Rcpp” in RStudio versions prior to v1.1.0.

In RStudio versions later than v1.1.0, support for package tem-

plates has been added allowing users to directly create Rcpp-based

packages that use Eigen or Armadillo.

Lastly, one more option exists for users who are familiar

with the devtools R package. To create the R package skele-

ton use devtools::create("samplePkg"). From here, part

of the structure required by Rcpp can be added by using

devtools::use_rcpp(). The remaining aspects needed by Rcpp

must be manually copied from the roxygen tags written to con-

sole and pasted into one of the package’s R files to successfully

incorporate the dynamic library and link to Rcpp’s headers.

All of these methods take care of a number of small settings

one would have to enable manually otherwise. These include an

‘Imports:’ and ‘LinkingTo:’ declaration in file DESCRIPTION, as

well as ‘useDynLib’ and ‘importFrom’ in NAMESPACE. For Rcpp At-

tributes use, the compileAttributes() function has to be called.

Similarly, to take advantage of its documentation-creation feature,

the roxygenize() function from roxygen2 has to be called.7 Ad-

ditional details on using Rcpp within a package scope are detailed

in Eddelbuettel and François (2026c).

Conclusion

R has always provided mechanisms to extend it. The bare-bones C

API is already used to great effect by a large number of packages.

By taking advantage of a number of C++ features, Rcpp has been

able to make extending R easier, offering a combination of both

speed and ease of use that has been finding increasingly widespread

utilization by researchers and data scientists. We are thrilled about

this adoption, and look forward to seeing more exciting extensions

to R being built.

Acknowledgments. We thank Bob Rudis and Lionel Henry for ex-
cellent comments and suggestion on an earlier draft of this manuscript.
Furthermore, we appreciate the improved C++ annotated function graphic
provided by Bob Rudis. This version is a pre-print of Eddelbuettel and
Balamuta (2017, 2018).

References

Allaire JJ, Eddelbuettel D, François R (2026). Rcpp Attributes. doi:

10.32614/CRAN.package.Rcpp. Vignette included in R package Rcpp.

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J,

Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999). LAPACK

Users’ Guide. Third edition. Society for Industrial and Applied Mathematics,

Philadelphia, PA. ISBN 0-89871-447-8 (paperback).

Burger M, Juenemann K, Koenig T (2024). RUnit: R Unit Test Framework.

doi:10.32614/CRAN.package.RUnit. R package version 0.4.33.1.

Chambers JM (2008). Software for Data Analysis: Programming with R. Statistics

and Computing. Springer-Verlag, Heidelberg. ISBN 978-0-387-75935-7.

Chambers JM (2016). Extending R. The R Series. Chapman and Hall/CRC,

London. ISBN 9781498775717.

Chang W, Luraschi J, , Mastny T (2024). profvis: Interactive Visualizations for

Profiling R Code. doi:10.32614/CRAN.package.profvis. R package

version 0.4.0.

Dongarra JJ, Moler CB, Bunch JR, Stewart GW (1979). LINPACK users’ guide.

SIAM.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!

Springer, New York. ISBN 978-1-4614-6867-7.

7
The littler package (Eddelbuettel and Horner, 2025) has a helper script ‘roxy.r‘ for this.

Eddelbuettel D, Balamuta JJ (2017). “Extending R with C++: A Brief Introduction

to Rcpp.” PeerJ Preprints, 5. doi:10.7287/peerj.preprints.3188v1.

URL https://peerj.com/preprints/3188v1/.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief

Introduction to Rcpp.” The American Statistician, 72(1). doi:

10.1080/00031305.2017.1375990. URL https://doi.org/10.1080/

00031305.2017.1375990.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08. URL https://doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, François R (2026a). Frequently Asked Questions About Rcpp.

doi:10.32614/CRAN.package.Rcpp. Vignette included in R package

Rcpp.

Eddelbuettel D, François R (2026b). Rcpp syntactic sugar. doi:

10.32614/CRAN.package.Rcpp. Vignette included in R package Rcpp.

Eddelbuettel D, François R (2026c). Writing a package that uses Rcpp. doi:

10.32614/CRAN.package.Rcpp. Vignette included in R package Rcpp.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Cham-

bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:

10.32614/CRAN.package.Rcpp. R package version 1.1.1.

Eddelbuettel D, François R, Bates D, Ni B, Sanderson C (2025). RcppArmadillo:

Rcpp Integration for the Armadillo Templated Linear Algebra Library. doi:

10.32614/CRAN.package.RcppArmadillo. R package version 15.2.3-

1.

Eddelbuettel D, Horner J (2025). littler: R at the Command-Line via r. doi:

10.32614/CRAN.package.littler. R package version 0.3.21.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with

High-Performance C++ Linear Algebra.” Computational Statistics and Data

Analysis, 71, 1054–1063. doi:10.1016/j.csda.2013.02.005. URL

https://dx.doi.org/10.1016/j.csda.2013.02.005.

Efron B (1979). “Bootstrap Methods: Another Look at the Jackknife.” The Annals

of Statistics, 7(1), 1–26. URL https://www.jstor.org/stable/2958830.

Guennebaud G, Jacob B, et al. (2012). “Eigen v3.” URL https://libeigen.gitlib.io/.

Kusnierczyk W (2012). rbenchmark: Benchmarking routine for R. doi:

10.32614/CRAN.package.rbenchmark. R package version 1.0.0.

Mersmann O (2023). microbenchmark: Accurate Timing Functions. doi:

10.32614/CRAN.package.microbenchmark. R package version 1.5-0.

R Core Team (2025a). R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. doi:

10.32614/R.manuals. URL https://www.R-project.org/.

R Core Team (2025b). Writing R extensions. R Foundation for Statistical

Computing, Vienna, Austria. doi:10.32614/R.manuals. URL https://

CRAN.R-Project.org/doc/manuals/R-exts.html.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast

Prototyping and Computationally Intensive Experiments.” Technical report,

NICTA. URL https://arma.sourceforge.net.

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for

Linear Algebra.” JOSS, 1(2). doi:10.21105/joss.00026. URL https:

//dx.doi.org/10.21105/joss.00026.

Tandon A, Hocking TD (2015). Rperform: Rperform - Performance testing for R

packages. R package version 0.0.0.9000.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition.

Springer, New York. ISBN 0-387-95457-0, URL https://www.stats.ox.ac.uk/

pub/MASS4/.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10.

8 | https://cran.r-project.org/package=Rcpp Eddelbuettel and Balamuta

https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RUnit
https://doi.org/10.32614/CRAN.package.profvis
https://doi.org/10.7287/peerj.preprints.3188v1
https://peerj.com/preprints/3188v1/
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.littler
https://doi.org/10.32614/CRAN.package.littler
https://doi.org/10.1016/j.csda.2013.02.005
https://dx.doi.org/10.1016/j.csda.2013.02.005
https://www.jstor.org/stable/2958830
https://libeigen.gitlib.io/
https://doi.org/10.32614/CRAN.package.rbenchmark
https://doi.org/10.32614/CRAN.package.rbenchmark
https://doi.org/10.32614/CRAN.package.microbenchmark
https://doi.org/10.32614/CRAN.package.microbenchmark
https://doi.org/10.32614/R.manuals
https://doi.org/10.32614/R.manuals
https://www.R-project.org/
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://arma.sourceforge.net
https://doi.org/10.21105/joss.00026
https://dx.doi.org/10.21105/joss.00026
https://dx.doi.org/10.21105/joss.00026
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://cran.r-project.org/package=Rcpp

	Introduction
	Background

	First Steps with 
	A first function using 
	Extending via its API
	Extending via the API of 
	Data Driven Performance Decisions with 
	Random Numbers within : An Example of Rcpp Sugar
	Translating Code from into : Bootstrap Example
	Using as an Interface to External Libraries: Exploring Linear Algebra Extensions
	Compute RNG draws from a multivariate Normal
	Faster linear model fits

	in Packages
	Conclusion

