Rcpp Extending

Dirk Eddelbuettel* and Romain Frangois®
2https:/dirk.eddelbuettel.com; bhttps://github.com/rornainfrancois

This version was compiled on January 8, 2026

This note provides an overview of the steps programmers should follow to
extend Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and Francois, 2011)
for use with their own classes. This document is based on our experience
in extending Rcpp to work with the Armadillo (Sanderson, 2010) classes,
available in the separate package RcppArmadillo (Eddelbuettel et al., 2025).
This document assumes knowledge of Rcpp as well as some knowledge of
C++ templates (Abrahams and Gurtovoy, 2004).

Repp | extending | R | C++

1. Introduction

Repp facilitates data interchange between R and C++ through the
templated functions Rcpp: :as (for conversion of objects from R
to C++) and Repp: :wrap (for conversion from C++ to R). In other
words, we convert between the so-called S-expression pointers (in
type SEXP) to a templated C++ type, and vice versa. The corre-
sponding function declarations are as follows:

// conversion from R to C++
template <typename T> T as(SEXP x);

// conversion from C++ to R
template <typename T> SEXP wrap(const T& object);

These converters are often used implicitly, as in the following
code chunk:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp: :export]]

List fx(List input) { // we get a list from R
// pull std::vector<double> from R list

// this 4s achieved through an implicit

// call to Rcpp::as

std::vector<double> x = input["x"];

// return an R list; this is achieved

// through an implicit call to Rcpp::wrap

return List::create(_["front"] = x.front(),
_["back"] = x.back());

}

Example:

Run sourceCpp compilation to include file
Rcpp: :sourceCpp(file= "code.cpp")

input <- list(x = seq(l, 10, by = 0.5))
fx(input)

$front
[1] 1
#

$back
[1] 10

https://cran.r-project.org/package=Rcpp

The Repp converter functions Repp: :as and Repp: :wrap are
extensible to user-defined types and third-party types.

2. Extending Rcpp: :wrap

The Repp::wrap converter is extensible in essentially two ways :
intrusive and non-intrusive.

2.1. Intrusive extension. When extending Rcpp with your own
data type, the recommended way is to implement a conversion to
SEXP. This lets Rcpp: :wrap know about the new data type. The
template meta programming (or TMP) dispatch is able to recognize
that a type is convertible to a SEXP and Rcpp: : wrap will use that
conversion.

The caveat is that the type must be declared before the main
header file Rcpp . h is included.

#include <RcppCommon.h>

class Foo {
public:
Foo();

// this operator enables implicit Rcpp: :wrap
operator SEXP();

#include <Rcpp.h>

This is called intrusive because the conversion to SEXP operator
has to be declared within the class.

2.2. Non-intrusive extension. It is often desirable to offer automatic
conversion to third-party types, over which the developer has no
control and can therefore not include a conversion to SEXP operator
in the class definition.

To provide automatic conversion from C++ to R, one must de-
clare a specialization of the Rcpp: :wrap template between the
includes of RcppCommon . h and Repp . h.

#include <RcppCommon.h>

// third party library that declares class Bar
#include <foobar.h>

// declaring the specialization
namespace Rcpp {

template <> SEXP wrap(const Barg);
}

// this must appear after the specialization,
// otherwise the specialization will not be
// seen by Rcpp types

#include <Rcpp.h>

Rcpp Vignette | January 8, 2026

1-3

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

It should be noted that only the declaration is required. The
implementation can appear after the Rcpp.h file is included, and
therefore take full advantage of the Repp type system.

Another non-intrusive option is to expose an external pointer.
The macro RCPP_EXPOSED_WRAP provides an easy way to expose
a C++ class to R as an external pointer. It can be used instead of
specializing Rcpp: :wrap, and should not be used simultaneously.
Note that the C++ class has to use Rcpp modules. See the Repp
modules vignette for more details.

#include <Rcpp.h>
#include <foobar.h>

RCPP_EXPOSED_WRAP (Bar)

2.3. Templates and partial specialization. It is perfectly valid to
declare a partial specialization for the Rcpp: : wrap template. The
compiler will identify the appropriate overload:

#include <RcppCommon.h>

// third party library that declares
// a template class Bling<T>
#include <foobar.h>

// declaring the partial specialization
namespace Rcpp {
namespace traits {

template <typename T>
SEXP wrap (Bling<T>&) ;

// this must appear after the specialization, or
// spectalization will not be seen by Rcpp types
#include <Rcpp.h>

3. Extending Rcpp: :as

Conversion from R to C++ is also possible in both intrusive and
non-intrusive ways.

3.1. Intrusive extension. As part of its template meta programming
dispatch logic, Rcpp: : as will attempt to use the constructor of the
target class taking a SEXP.

#include <RcppCommon.h>

class Foo{
public:
Foo();

// this ctor enables implicit Rcpp::as

Foo (SEXP) ;

// this must appear after the specialization, or
// spectalization will not be seen by Rcpp types
#include <Rcpp.h>

https://cran.r-project.org/package=Rcpp

3.2. Non-intrusive extension. It is also possible to fully specialize
Rcpp: : as to enable non-intrusive implicit conversion capabilities.

#include <RcppCommon.h>

// third party library that declares class Bar
#include <foobar.h>

// declaring the specialization
namespace Rcpp {

template <> Bar as(SEXP);
}

// this must appear after the specialization, or
// specialization will not be seen by Rcpp types
#include <Rcpp.h>

Furthermore, another non-intrusive option is to opt for sharing
an R external pointer. The macro RCPP_EXPOSED_AS provides an
easy way to extend Rcpp: :as to expose R external pointers to C++.
It can be used instead of specializing Rcpp: :as, and should not
be used simultaneously. Note that the C++ class has to use Rcpp
modules. See the Repp modules vignette for more details.

#include <Rcpp.h>
#include <foobar.h>

RCPP_EXPOSED_AS (Bar)

With this being said, there is one additional macro that
can be used to simultaneously define both Rcpp::wrap and
Rcpp: :as specialization for an external pointer. The macro
RCPP_EXPOSED_CLASS can be use to transparently exchange a class
between R and C++ as an external pointer. Do not simultane-
ously use it alongside RCPP_EXPOSED_AS, RCPP_EXPOSED_WRAP,
Rcpp: :wrap, or Rcpp: :as.

3.3. Templates and partial specialization. The signature of
Rcpp: :as does not allow partial specialization. When expos-
ing a templated class to Rcpp: :as, the programmer must spe-
cialize the Repp::traits::Exporter template class. The TMP dis-
patch will recognize that a specialization of Exporter is avail-
able and delegate the conversion to this class. Repp defines the
Rcpp: :traits: :Exporter template class as follows :

namespace Rcpp {
namespace traits {

template <typename T> class Exporter{
public:

Exporter (SEXP x) : t(x){}

inline T get() { return t; }

private:
T B3
};

This is the reason why the default behavior of Rcpp: :as is to
invoke the constructor of the type T taking a SEXP.

Since partial specialization of class templates is allowed, we can
expose a set of classes as follows:

Eddelbuettel and Francois

https://cran.r-project.org/package=Rcpp

#include <RcppCommon.h>

// third party library that declares
// a template class Bling<T>
#include <foobar.h>

// declaring the partial specialization
namespace Rcpp {
namespace traits {
template <typename T>
class Exporter< Bling<T> >;

// this must appear after the specialization, or
// spectalization will not be seen by Rcpp types
#include <Rcpp.h>

Using this approach, the requirements for the Exporter<
Bling<T> > class are:

* it should have a constructor taking a SEXP
* it should have a methods called get that returns an instance
of the B1ing<T> type.

4. Summary

The Repp package greatly facilitates the transfer of objects between
R and C++. This note has shown how to extend Repp to either user-
defined or third-party classes via the Rcpp: :as and Rcpp: : wrap
template functions. Both intrusive and non-intrusive approaches
were discussed.

References

Abrahams D, Gurtovoy A (2004). C++ Template Metaprogramming: Concepts,
Tools and Techniques from Boost and Beyond. Addison-Wesley, Boston.
Eddelbuettel D, Frangois R (2011). “Rcpp: Seamless R and C++
Integration.” Journal of Statistical Software, 40(8), 1-18. doi:

10.18637/jss.v040.108. URL https:/doi.org/10.18637/jss.v040.i08.

Eddelbuettel D, Frangois R, Allaire J, Ushey K, Kou Q, Russel N, Cham-
bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:
10.32614/CRAN.package.Rcpp. R package version 1.1.1.

Eddelbuettel D, Frangois R, Bates D, Ni B, Sanderson C (2025). RcppArmadillo:
Rcpp Integration for the Armadillo Templated Linear Algebra Library. doi:
10.32614/CRAN.package .RcppArmadillo. R package version 15.2.3-
1.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast
Prototyping and Computationally Intensive Experiments.” Technical report,
NICTA. URL https://arma.sourceforge.net.

Eddelbuettel and Frangois

Rcpp Vignette

January 8, 2026

3

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://arma.sourceforge.net

	Introduction
	Extending Rcpp::wrap
	Intrusive extension
	Non-intrusive extension
	Templates and partial specialization

	Extending Rcpp::as
	Intrusive extension
	Non-intrusive extension
	Templates and partial specialization

	Summary

