Rcpp FAQ

Dirk Eddelbuettel* and Romain Francois®
2https:/dirk.eddelbuettel.com; bhttps://github.com/romainfrancois

This version was compiled on January 8, 2026

This document attempts to answer the most Frequently Asked Questions
(FAQ) regarding the Rcpp (Eddelbuettel et al., 2026; Eddelbuettel and
Francois, 2011; Eddelbuettel, 2013) package.

Repp | FAQ | R | C++
Contents

1 Getting started
1.1 HowdolIgetstarted
1.2 WhatdoIneed
1.3 What compilercanluse
1.4 What other packages are useful
1.5 What licenses can I choose for my code

NNNN R A

2 Compiling and Linking
2.1 How do I use Repp in my package
2.2 How do I quickly prototype my code
2.2.1 Usinginline
2.2.2 Using Repp Attributes
2.3 How do I convert my prototype code to a package .
2.4 How do I quickly prototype my code in a package .
2.5 But I want to compile my code with R CMD SHLIB
2.6 But R CMD SHLIB still doesnotwork
2.7 What about LinkingTo
2.8 Does Repp work on windows
2.9 Can I use Repp with Visual Studio
2.10 I am having problems building Repp on macOS, any
helpo
2.10.1 Lackof aCompiler
2.10.2 Differing macOS R Versions Leading to Bi-
nary Failures
2.10.3 OpenMP Support
2.10.4 Additional Information and Help
2.11 Does Repp work on solaris/sunce
2.12 Does Repp work with REvolutionR
2.13 Is it related to Rho (formerly CXXR)
2.14 How do I quickly prototype my code using Attributes
2.15 What about the ‘no-linking’ feature
2.16 I am having problems building ReppArmadillo on
macOS,anyhelp

A~ B A DA D OWWWWNNMNDDNDDN

u b DD DDANAND

4]

3 Examples
3.1 CanIusetemplateswithRepp
3.1.1 Using inline with Templated Code
3.1.2 Using Repp Attributes with Templated Code
3.2 Can I do matrix algebra with Repp.
3.2.1 Using inline with ReppArmadillo
3.2.2 Using Repp Attributes with ReppArmadillo .
3.3 Can I use code from the Rmath header and library
WithRepp. . . o oo ot
3.4 CanIuseNAand InfwithRepp
3.5 CanI easily multiply matrices.

(o)W NN, NV, NG, BN V) |

N OO

https://cran.r-project.org/package=Rcpp

N

3.6 How do I write a plugin for inline and/or Rcpp
Attributes o oo
3.7 How can I pass one additional flag to the compiler
3.8 How can I set matrix row and column names
3.9 Why can long long types not be cast correctly
3.10 What LaTeX packages do I need to typeset the vignettes
3.11 Why is there a limit of 20 on some constructors
3.12 Can I use default function parameters with Repp . .
3.13 Can I use C++11, C++14, C++17, ... with Repp .
3.14 How do I use it within (Python’s) Conda setup?
3.15 Can I speed up compilation?

Support
4.1 Isthe APIdocumented
4.2 Doesitreallywork
4.3 Where can I ask further questions
4.4 Where can I read old questions and answers
4.5 Ilikeit. HowcanThelp
4.6 Idontlikeit. HowcanIhelp..............
4.7 Can I have commercial support for Repp
4.8 I want to learn quickly. Do you provide training
COUISES v v v vt v v vt e et e et e i as
4.9 Where is the code repository

Known Issues
5.1 Repp changed the (const) object I passed by value .
5.2 Issues with implicit conversion from an Repp object
to a scalar or other Repp object
5.3 Using operator= with a scalar replaced the object
instead of filling element-wise
5.4 Long Vector support on Windows
5.5 Sorting with STL on a CharacterVector produces
problematicresults
5.6 Lexicographic order of string sorting differs due to
capitalization.
5.7 Package building fails with ‘symbols not found’ . . .
5.8 Can we use exceptions and stop() across shared
libraries? i
5.9 My package errors with “‘dataptr’ not provided by
Repp” .« v e e
5.10 On macOS, ‘no matching function for call to
R_1sInternal’ 0. uuuenrnon..

O O O O 0 0 0 o

O O O

10
10
10
10
10

10
10

10
10

11

11
12

12

13
13

13

5.11 Can we grow Repp vectors like STL vectors via ’push*’ 13
5.12 Converting a large number of Date objects seems slow 14

1. Getting started

1.1. How do | get started. If you have Repp installed, please execute
the following command in R to access the introductory vignette
(which is a variant of the Eddelbuettel and Francois (2011) and
Eddelbuettel and Balamuta (2017, 2018) papers) for a detailed in-
troduction, ideally followed by at least the Repp Attributes (Allaire
et al., 2026) vignette:

Rcpp FAQ Vignette | January 8, 2026

1-14

https://dirk.eddelbuettel.com
https://github.com/romainfrancois
https://cran.r-project.org/package=Rcpp

2

vignette ("Rcpp-jss-2011")
vignette ("Rcpp-introduction")
vignette ("Rcpp-attributes")

If you do not have Repp installed, these documents should
also be available wherever you found this document, i.e., on every
mirror site of CRAN.

1.2. What do | need. Obviously, R must be installed. Repp provides
a C++ API as an extension to the R system. As such, it is bound by
the choices made by R and is also influenced by how R is configured.

In general, the standard environment for building a CRAN pack-
age from source (particularly when it contains C or C++ code) is
required. This means one needs:

* a development environment with a suitable compiler (see
below), header files and required libraries;

* R should be built in a way that permits linking and pos-
sibly embedding of R; this is typically ensured by the
—--enable-shared-1ib option;

* standard development tools such as make etc.

Also see the RStudio documentation on pre-requisites for R
package development.

1.3. What compiler can | use. On almost all platforms, the GNU
Compiler Collection (or gcc, which is also the name of its C lan-
guage compiler) can be used along with the corresponding g++
compiler for the C++ language. Depending on which C++ compi-
lation standard one wishes to use, a suitably recent variant of the
compiler may be needed. But these days the minimum standard of
C++11 is generally available, and the default compilers on all the
common platforms are now suitable.
Specific per-platform notes:

Windows users need the Rtools package from the site maintained
by Tomas Kalibera which contains all the required tools in
a single package; complete instructions specific to Windows
are in the "R Administration" manual (R Core Team, 2025a,
Appendix D).

macOS users, as noted in the "R Administration" manual (R Core
Team, 2025a, Appendix C.4), need to install the Apple De-
veloper Tools (e.g., Xcode Command Line Tools (as well as
gfortran if R or Fortran-using packages are to be built); also
see FAQ 2.10 and FAQ 2.16 below. This is frustratingly mov-
ing target; consult the r-sig-mac list (and its archives) for
(current) details.

Linux user need to install the standard development packages.
Some distributions provide helper packages which pull in all
the required packages; the r-base-dev package on Debian
and Ubuntu is an example.

The clang and clang++ compilers from the LLIVM project can
also be used. On Linux, they are inter-operable with gcc et al. On
macOS, they are unfortunately not ABI compatible.

In general, any compiler supported by R itself can be used.

1.4. What other packages are useful. Additional packages that we
have found useful are inline if one wants to create compiled func-
tions without the help of Repp as well as the different benchmarking
and unit testing packages. A short list follows, it is not meant to
be exhaustive as CRAN by now has many helpful packages:

https://cran.r-project.org/package=Rcpp

inline which is invaluable for direct compilation, linking and load-
ing of short code snippets—but now effectively superseded
by the Repp Attributes (see FAQ 2.2.2 and FAQ 2.14) feature
provided by Repp;

RUnit, tinytest, testthat can be used for unit testing; Repp uses
tinytest as it is lightweight and installs the tests along with
the package by default but note that no testing package is
required: all are optional;

rbenchmark, microbenchmark to run simple timing compar-
isons and benchmarks; they are also recommended but not
required.

1.5. What licenses can | choose for my code. The Repp package
is licensed under the terms of the GNU GPL 2 or later, just like R
itself. A key goal of the Repp package is to make extending R more
seamless. But by linking your code against R (as well as Repp),
the combination is bound by the GPL as well. This is very clearly
stated at the FSF website:

Linking a GPL covered work statically or dynamically
with other modules is making a combined work based
on the GPL covered work. Thus, the terms and condi-
tions of the GNU General Public License cover the whole
combination.

So you are free to license your work under whichever terms
you find suitable (provided they are GPL-compatible, see the FSF
site for details). However, the combined work will remain under
the terms and conditions of the GNU General Public License. This
restriction comes from both R which is GPL-licensed as well as from
Repp and whichever other GPL-licensed components you may be
linking against.

2. Compiling and Linking

2.1. How do | use Rcpp in my package. Repp has been specifically
designed to be used by other packages. Making a package that uses
Repp depends on the same mechanics that are involved in making
any R package that use compiled code — so reading the Writing R
Extensions manual (R Core Team, 2025c) is a required first step.

Further steps, specific to Repp, are described in a separate
vignette.

vignette ("Rcpp-package")

2.2. How do | quickly prototype my code. There are two toolchains
which can help with this:

* The older one is provided by the inline package and described
in Section~2.2.1.

* Starting with Repp 0.10.0, the Repp Attributes feature (de-
scribed in Section~2.2.2) offered an even easier alternative
via the function evalCpp, cppFunction and sourceCpp.

The next two subsections show an example each.

2.2.1. Using inline. The inline package (Sklyar et al., 2025) provides
the functions cfunction and cxxfunction. Below is a simple
function that uses accumulate from the (C++) Standard Template
Library to sum the elements of a numeric vector.

Eddelbuettel and Francois

https://support.posit.co/hc/en-us/articles/200486498-Package-Development-Prerequisites
https://developer.apple.com/library/archive/technotes/tn2339/_index.html
http://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-faq.html#GPLStaticVsDynamic
http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html
https://cran.r-project.org/package=Rcpp

fx <- cxxfunction(signature("numeric"),
'NumericVector xx(x);
return wrap(std::accumulate(xx.begin(),

xx.end(), 0.0));"',

"Rcpp")
res <- fx(seq(1, 10, 0.5))
res
[1] 104.5

One might want to use code that lives in a C++ file instead of
writing the code in a character string in R. This is easily achieved
by using readLines:

fx <- cxxfunction(signature(),
paste(readLines("myfile.cpp"),
n\nu) s
”RCpp”)

The verbose argument of cxxfunction is very useful as it
shows how inline runs the show.

2.2.2. Using Rcpp Attributes. Repp Attributes (Allaire et al., 2026),
and also discussed in FAQ 2.14 below, permits an even easier route
to integrating R and C++. It provides three key functions. First,
evalCpp provide a means to evaluate simple C++ expression which
is often useful for small tests, or to simply check if the toolchain
is set up correctly. Second, cppFunction can be used to create
C++ functions for R use on the fly. Third, Rcpp: : sourceCpp can
integrate entire files in order to define multiple functions.
The example above can now be rewritten as:

cppFunction('double accu(NumericVector x) {
return(std: :accumulate(x.begin(), x.end(), 0.0));

i

res <- accu(seq(1, 10, 0.5))
res
[1] 104.5

The cppFunction parses the supplied text, extracts the desired
function names, creates the required scaffolding, compiles, links
and loads the supplied code and makes it available under the
selected identifier.

Similarly, sourceCpp can read in a file and compile, link and
load the code therein.

2.3. How do | convert my prototype code to a package. Since re-
lease 0.3.5 of inline, one can combine FAQ 2.2.1 and FAQ 2.1. See
help("package.skeleton-methods") once inline is loaded and
use the skeleton-generating functionality to transform a prototype
function into the minimal structure of a package. After that you
can proceed with working on the package in the spirit of FAQ 2.1.
Repp Attributes (Allaire et al., 2026) also offers a means to
convert functions written using Repp Attributes into a function via
the compileAttributes function; see the vignette for details.

2.4. How do | quickly prototype my code in a package. The simplest
way may be to work directly with a package. Changes to both the
R and C++ code can be compiled and tested from the command
line via:

Eddelbuettel and Frangois

$ R CMD INSTALL mypkg && \
Rscript =mypkg \
'someFunctionToTickle(3.14)"

This first installs the packages, and then uses the command-line
tool Rscript (which ships with R) to load the package, and execute
the R expression following the -e switch. Such an expression can
contain multiple statements separated by semicolons. Rscript is
available on all three core operating systems.

On Linux, one can also use r from the littler package (Ed-
delbuettel and Horner, 2025) which is an alternative front end to
R designed for both #! (hashbang) scripting and command-line
use. It has slightly faster start-up times than Rscript; and both
give a guaranteed clean slate as a new session is created.

The example then becomes

$ R CMD INSTALL mypkg && \
r mypkg 'someFunctionToTickle(3.14)"'

The -1 option calls ‘suppressMessages(library(mypkg))’ before
executing the R expression. Several packages can be listed, sepa-
rated by a comma.

More choices are provided by other packages and IDEs. See
their respective documentation for details.

2.5. But | want to compile my code with R CMD SHLIB. The rec-
ommended way is to create a package and follow FAQ 2.1. The
alternate recommendation is to use inline and follow FAQ 2.2.1
because it takes care of all the details.

However, some people have shown that they prefer not to fol-
low recommended guidelines and compile their code using the
traditional R CMD SHLIB. To do so, we need to help SHLIB and
let it know about the header files that Repp provides and the C++
library the code must link against.

On the Linux command-line, you can do the following:

$ export PKG_CXXFLAGS=\
“Rscript
$ R CMD SHLIB myfile.cpp

"Rcpp: : :CxxFlags(O""

which first defines and exports two relevant environment vari-
ables which R CMD SHLIB then relies on. On other operating sys-
tems, appropriate settings may have to be used to define the envi-
ronment variables.

This approach corresponds to the very earliest ways of building
programs and can still be found in some deprecated documents
(as e.g. some of Dirk’s older ‘Intro to HPC with R’ tutorial slides).
It is still not recommended as there are tools and automation
mechanisms that can do the work for you.

Note that we always need to set PKG_CXXFLAGS (or equally
PKG_CPPFLAGS) to tell R where the Repp headers files are located.

Once R CMD SHLIB has created the dynamically-loadable file
(with extension .so on Linux, .dylib on macOS or .d11 on Win-
dows), it can be loaded in an R session via dyn.load, and the
function can be executed via .Call. Needless to say, we strongly
recommend using a package, or at least Repp Attributes as either ap-
proach takes care of a lot of these tedious and error-prone manual
steps.

2.6. But R CMD SHLIB still does not work. We have had reports
in the past where build failures occurred when users had non-
standard code in their ~/.Rprofile or Rprofile.site (or equiv-
alent) files.

Rcpp FAQ Vignette | January 8, 2026

3

4

If such code emits text on stdout, the frequent and implicit
invocation of Rscript -e "..." (asin FAQ 2.5 above) to retrieve
settings directly from Repp will fail.

You may need to uncomment such non-standard code, or protect
it by wrapping it inside if (interactive()), or possibly try to
use Rscript --vanilla instead of plain Rscript.

2.7. What about LinkingTo. R has only limited support for cross-
package linkage.

We now employ the LinkingTo field of the DESCRIPTION file
of packages using Repp. But this only helps in having R compute
the location of the header files for us.

The actual library location and argument still needs to be pro-
vided by the user. This topic can get complicated real quickly, and
there is an entire vignette devoted to it, so see Eddelbuettel (2026).

Also note that an important change arrived with Repp release
0.11.0 and concerns the automatic registration of functions; see
Section 2.15 below.

2.8. Does Rcpp work on windows. Yes of course. See the Windows
binaries provided by CRAN.

2.9. Can | use Rcpp with Visual Studio. Not a chance.

And that is not because we are meanies but because R and Visual
Studio simply do not get along. As Repp is all about extending R
with C++ interfaces, we are bound by the available toolchain. And
R simply does not compile with Visual Studio. Go complain to its
vendor if you are still upset.

(These days the ‘Code’ editor derived from it is popular and can
of course be used with R and Repp; see its documentation for the
required plugins. Such use still falls back to the default compilers
R is used with on the given system so see FAQ 1.3 above.)

2.10. | am having problems building Rcpp on macOS, any help.
There are three known issues regarding Repp build problems on
macOS. If you are building packages with ReppArmadillo, there is
yet another issue that is addressed separately in FAQ 2.16 below.

2.10.1. Lack of a Compiler. By default, macOS does not ship with an
active compiler. Depending on the R version being used, there
are different development environment setup procedures. For the
current R version, we recommend observing the official procedure
used in Section 6.3.2 macOS and Section C.3 macOS of the R
Installation and Administration manual.

2.10.2. Differing macOS R Versions Leading to Binary Failures. There
are three (or more) distinct versions of R for macOS. The first
version is a legacy version meant for macOS 10.6 (Snow Leopard)
- 10.8 (Mountain Lion). The second version is for more recent
system macOS 10.9 (Mavericks) and 10.10 (Yosemite). Finally,
the third and most up-to-date version supports macOS 10.11 (El
Capitan), 10.12 (Sierra), and 10.13 (High Sierra). The distinction
comes as a result of a change in the compilers shipped with the
operating system as highlighted previously. As a result, avoid
sending package binaries to collaborators if they are working on
older operating systems as the R binaries for these versions will not
be able to mix. In such cases, it is better to provide collaborators
with the package source and allow them to build the package
locally.

https://cran.r-project.org/package=Rcpp

2.10.3. OpenMP Support. By default, the macOS operating environ-
ment lacks the ability to parallelize sections of code using the
OpenMP standard. Within R 3.4.%, the default developer environ-
ment was changed to allow for OpenMP to be used on macOS by
using a non-default toolchain provided by R Core Team maintain-
ers for macOS. Having said this, it is still important to protect any
reference to OpenMP as some users may not yet have the ability to
use OpenMP.

To setup the appropriate protection for using OpenMP, the pro-
cess is two-fold. First, protect the inclusion of headers with:

#ifdef _OPENMP
#include <omp.h>
#endi f

Second, when parallelizing portions of code use:

#ifdef _OPENMP
// multithreaded OpenMP version of code
#else
// single-threaded version of code
#endif

Under this approach, the code will be safely parallelized when
support exists for OpenMP on Windows, macOS, and Linux.

2.10.4. Additional Information and Help. Below are additional resources
that provide information regarding compiling Repp code on macOS.

1. A helpful post was provided by Brian Ripley regarding the
use of compiling R code with macOS in April 2014 on the
r-sig-mac list, which is generally recommended for macOS-
specific questions and further consultation.

2. Another helpful write-up for installation / compilation on
macOS Mavericks is provided by the BioConductor project.

3. Lastly, another resource that exists for installation / compila-
tion help is provided at https://blog.thecoatlessprofessor.com/
programming/r-compiler-tools-for-rcpp-on-os-x/index.html.

Note: If you are running into trouble compiling code with
ReppArmadillo, please also see FAQ 2.16 listed below.

2.11. Does Rcpp work on solaris/suncc. Yes, it generally does. But
as we do not have access to such systems, some issues persist on
the CRAN test systems. And now that more time has passed since
the question was written, CRAN no longer tests on these platforms.

2.12. Does Rcpp work with REvolution R. We have not tested it
yet. Repp might need a few tweaks to work with the compilers
used by Revolution R (if those differ from the defaults). By now
REvolution R is defunct too.

2.13. Is it related to Rho (formerly CXXR). Rho, previously known
as CXXR, is an ambitious project that aims to totally refactor the R
interpreter in C++. There are a few similarities with Repp but the
projects are unrelated.

Rho / CXXR and Repp both want R to make more use of C++
but they do it in very different ways. By now, Rho is long defunct
too.

2.14. How do | quickly prototype my code using Attributes. Repp
version 0.10.0 and later offer a new feature ‘Repp Attributes’ which
is described in detail in its own vignette (Allaire et al., 2026). In
short, it offers functions evalCpp, cppFunction and sourceCpp
which extend the functionality of the cxxfunction function.

Eddelbuettel and Francois

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#macOS-packages
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#macOS
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://www.openmp.org/specifications/
https://stat.ethz.ch/pipermail/r-sig-mac/2014-April/010835.html
https://stat.ethz.ch/pipermail/r-sig-mac/2014-April/010835.html
https://contributions.bioconductor.org/cmavericks-best-practices.html
https://blog.thecoatlessprofessor.com/programming/r-compiler-tools-for-rcpp-on-os-x/index.html
https://blog.thecoatlessprofessor.com/programming/r-compiler-tools-for-rcpp-on-os-x/index.html
https://cran.r-project.org/package=Rcpp

2.15. What about the ‘no-linking’ feature. Starting with Rcpp
0.11.0, functionality provided by Repp and used by packages
built with Repp accessed via the registration facility offered by
R (and which is used by lme4 and Matrix, as well as by xts and
z00). This requires no effort from the user / programmer, and
even frees us from explicit linking instruction. In most cases, the
files src/Makevars and src/Makevars.win can now be removed.
Exceptions are the use of ReppArmadillo (which needs an en-
try PKG_LIBS=$(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)) and
packages linking to external libraries they use.

But for most packages using Repp, only two things are required:

* an entry in DESCRIPTION such as Imports: Rcpp (which
may be versioned as in Imports: Rcpp (>= 0.11.0)), and

* anentry in NAMESPACE to ensure Repp is correctly instantiated,
for example importFrom(Rcpp, evalCpp).

The name of the symbol does not really matter; once one symbol
is imported all symbols should be available.

2.16. | am having problems building RcppArmadillo on macOS,
any help. Odds are your build failures are due to the absence of
gfortran and its associated libraries. The errors that you may
receive are related to either -1gfortran or -1quadmath.

To rectify the root of these errors, there are two options available.
The first option is to download and use a fixed set of gfortran
binaries that are used to compile R for macOS (e.g. given by the
maintainers of the macOS build). The second option is to either use
pre-existing gfortran binaries on your machine or download the
latest. These options are described in-depth in Section C.3 macOS
of the R Installation and Administration manual. Please consult this
manual for up-to-date information regarding gf ortran binaries on
macOS. We have also documented other common macOS compile
issues in Section FAQ 2.10.

3. Examples

The following questions were asked on the Rcpp-devel mailing
list, which is our preferred place to ask questions as it guarantees
exposure to a number of advanced Repp users. The StackOverflow
tag for rcpp is an alternative; that site is also easily searchable.

Several dozen fully documented examples are provided at the
Repp Gallery — which is also open for new contributions.

3.1. Can | use templates with Rcpp.

I'm curious whether one can provide a class definition
inline in an R script and then initialize an instance of the
class and call a method on the class, all inline in R.

This question was initially about using templates with inline, and
we show that (older) answer first. It is also easy with Repp At-
tributes which is what we show below.

3.1.1. Using inline with Templated Code. Most certainly, consider this
simple example of a templated class which squares its argument:

inc <- 'template <typename T>
class square :
public std::function<T(T)> {
public:
T operator() (T t) const {
return tx*t;

}

Eddelbuettel and Frangois

src <- '

double x = Rcpp::as<double>(xs);

int i = Rcpp::as<int>(is);

square<double> sqdbl;

square<int> sqint;

return Rcpp::DataFrame::create(
Rcpp: :Named ("x", sqdbl(x)),
Rcpp: :Named("i", sqint(i)));

fun <- cxxfunction(signature(xs="numeric",

"integer"),

src, inc,
”RCPP”)
fun(2.2, 3L)
@ 3
1 4.84 9

3.1.2. Using Rcpp Atiributes with Templated Code. We can also use ‘Repp
Attributes’ (Allaire et al., 2026)—as described in FAQ 2.2.2 and
FAQ 2.14 above. Simply place the following code into a file and
use sourceCpp on it. It will even run the R part at the end.

#include <Rcpp.h>

template <typename T> class square :
public std::function<T(T)> {
public:
T operator()(T t) {
return t*xt ;
}
};

// [[Repp::ezport]]

Rcpp: :DataFrame fun(double x, int i) {
square<double> sqdbl;
square<int> sqint;
return Rcpp: :DataFrame::create(

Rcpp: :Named ("x", sqdbl(x)),
Rcpp: :Named("i", sqint(i)));

/*%* R
fun(2.2, 3L)
*/

3.2. Can | do matrix algebra with Rcpp.

Repp allows element-wise operations on vector and ma-
trices through operator overloading and STL interface,
but what if [want to multiply a matrix by a vector, etc

Currently, Repp does not provide binary operators to allow oper-
ations involving entire objects. Adding operators to Repp would
be a major project (if done right) involving advanced techniques
such as expression templates. We currently do not plan to go in
this direction, but we would welcome external help. Please send
us a design document.

However, we have developed the ReppArmadillo package (Ed-
delbuettel et al., 2025a; Eddelbuettel and Sanderson, 2014) that

Rcpp FAQ Vignette | January 8, 2026

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#macOS
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
https://stackoverflow.com/questions/tagged/rcpp
https://stackoverflow.com/questions/tagged/rcpp
https://gallery.rcpp.org

6

provides a bridge between Repp and Armadillo (Sanderson, 2010).
Armadillo supports binary operators on its types in a way that takes
full advantage of expression templates to remove temporaries and
allow chaining of operations. That is a mouthful of words mean-
ing that it makes the code go faster by using fiendishly clever
ways available via the so-called template meta programming, an
advanced C++ technique. Also, the ReppEigen package (Bates
and Eddelbuettel, 2013) provides an alternative using the Eigen
template library.

3.2.1. Using inline with RcppArmadillo. The following example is
adapted from the examples available at the project page of Ar-
madillo. It calculates x’ x Y™! x g

lines = '// copy the data to armadillo structures
arma::colvec x = Rcpp::as<arma::colvec> (x_);
arma::mat Y = Rcpp::as<arma::mat>(Y_) ;
arma::colvec z = Rcpp::as<arma::colvec>(z_) ;

// calculate the result
double result = arma::as_scalar(

arma::trans(x) * arma::inv(Y) * z);

// return it to R
return Rcpp::wrap(result) ;'

writeLines(a, "myfile.cpp")

If stored in a file myfile. cpp, we can use it via inline:

fx <- cxxfunction(signature("numeric",
"matrix",
"numeric"),
paste(readLines("myfile.cpp"),
T,
"RcppArmadillo")
fx(1:4, diag(4), 1:4)

The focus is on the code arma::trans(x) * arma::inv(Y)
* z, which performs the same operation as the R code t(x) %*%
solve(Y) %*% z, although Armadillo turns it into only one oper-
ation, which makes it quite fast. Armadillo benchmarks against
other C++ matrix algebra libraries are provided on the Armadillo
website.

It should be noted that code below depends on the version
0.3.5 of inline and the version 0.2.2 of ReppArmadillo.

3.2.2. Using Rcpp Attributes with ReppArmadillo. We can also write the
same example for use with Repp Attributes:

#include <RcppArmadillo.h>
// [[Rcpp: :depends (ReppArmadillo)]]

// [[Repp: :export]]
double fx(arma::colvec x, arma::mat Y,
arma: :colvec z) {
// calculate the result
double result = arma::as_scalar(
arma: :trans(x) * arma::inv(Y) * z
)§

return result;

https://cran.r-project.org/package=Rcpp

/*%* R
fz(1:4, diag(4), 1:4)
*/

Here, the additional Rcpp: :depends (RcppArmadillo) en-
sures that code can be compiled against the ReppArmadillo header,
and that the correct libraries are linked to the function built from
the supplied code example.

Note how we do not have to concern ourselves with conversion;
R object automatically become (Rcpp)Armadillo objects and we
can focus on the single computing a (scalar) result.

3.3. Can | use code from the Rmath header and library with Rcpp.

Can I call functions defined in the Rmath header file and
the standalone math library for R-as for example the
random number generators?

Yes, of course. This math library exports a subset of R, but Repp has
access to much more. Here is another simple example. Note how
we have to use and instance of the RNGScope class to set and re-set
the random-number generator. This also illustrates Rcpp sugar as
we are using a vectorised call to rnorm. Moreover, because the
RNG is reset, the two calls result in the same random draws. If we
wanted to control the draws, we could explicitly set the seed after
the RNGScope object has been instantiated.

fx <- cxxfunction(signature(),
'"RNGScope () ;
return rnorm(5, 0, 100);',
"Repp")
set.seed (42)
£x0)
[1] 137.096 -56.470 36.313 63.286 40.427
£x0)
[1] 137.096 -56.470 36.313 63.286 40.427

Newer versions of Repp also provide the actual Rmath function
in the R namespace, i.e. as R::rnorm(m,s) to obtain a scalar
random variable distributed as N(m, s).

Using Repp Attributes, this can be as simple as

cppFunction('Rcpp: :NumericVector ff(int n) {
return rnorm(n, O, 100); }')

set.seed(42)

££(5)

[1] 137.096 -56.470 36.313 63.286 40.427

££(5)

[1] -10.6125 151.1522

set.seed(42)

rnorm(5, 0, 100)

[1] 137.096 -56.470 36.313 63.286 40.427

rnorm(5, 0, 100)

[1] -10.6125 151.1522

-9.4659 201.8424 -6.2714

-9.4659 201.8424 -6.2714

This illustrates the Repp Attributes adds the required RNGScope
object for us. It also shows how setting the seed from R affects
draws done via C++ as well as R, and that identical random number
draws are obtained.

3.4. Can | use NA and Inf with Rcpp.

R knows about NA and Inf. How do I use them from
C++?

Eddelbuettel and Francois

https://libeigen.gitlab.io
https://arma.sourceforge.net/speed.html
https://arma.sourceforge.net/speed.html
https://cran.r-project.org/package=Rcpp

Yes, see the following example:

src <- 'Rcpp: :NumericVector v(4);
v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA
v[2] = R_PosInf; // Inf
v[3] = 42; // c.f. Hitchhiker Guide

return Rcpp::wrap(v) ;'
fun <- cxxfunction(signature(), src, plugin="Rcpp")
fun()
[1] -Inf NA Inf 42

Similarly, for Repp Attributes:
#include <Rcpp.h>

// [[Rcpp: :export]]

Rcpp: :NumericVector fun(void) {
Rcpp: :NumericVector v(4);
v[0] = R_NegInf; // -Inf

v[1] = NA_REAL; // NA

v[2] = R_PosInf; // Inf

v[3] = 42; // c.f. Hitchhiker Guide
return v;

3.5. Can | easily multiply matrices.
Can [multiply matrices easily?

Yes, via the ReppArmadillo package which builds upon Repp and
the wonderful Armadillo library described above in FAQ 3.2:

txt <- 'arma::mat Am = Rcpp::as< arma::mat >(A);

arma::mat Bm = Rcpp::as< arma::mat >(B);

return Rcpp::wrap(Am * Bm) ;'

mmult <- cxxfunction(signature(A="numeric",

B="numeric"),

body=txt,
plugin="RcppArmadillo")

A <- matrix(1:9, 3, 3)

B <- matrix(9:1, 3, 3)

C <- mmult(A, B)

C

Armadillo supports a full range of common linear algebra oper-
ations.

The ReppEigen package provides an alternative using the Eigen
template library.

Repp Attributes, once again, makes this even easier:

#include <RcppArmadillo.h>

// [[Rcpp: :depends (ReppArmadillo)]]

// [[Rcpp: :export]]

arma: :mat mult(arma::mat A, arma::mat B) {
return A#*B;

}

/**% R

A <- matriz(1:9, 3, 3)
B <- matriz(9:1, 3, 3)

Eddelbuettel and Frangois

mult(4,B)
*/

which can be built, and run, from R via a simple sourceCpp
call—and will also run the small R example at the end.

3.6. How do | write a plugin for inline and/or Rcpp Attributes.

How can I create my own plugin for use by the inline
package?

Here is an example which shows how to it using GSL libraries as an
example. This is merely for demonstration, it is also not perfectly
general as we do not detect locations first—but it serves as an
example:

simple example of seeding RNG and

drawing one random number

gslrng <- '

int seed = Rcpp::as<int>(par) ;
gsl_rng_env_setup();

gsl_rng *r = gsl_rng_alloc (gsl_rng_default);
gsl_rng_set (r, (unsigned long) seed);

double v = gsl_rng get (r);

gsl_rng_free(r);

return Rcpp: :wrap(v);'

plug <- Rcpp: :Rcpp.plugin.maker(
include.before = "#include <gsl/gsl_rng.h>",
libs = paste(
"-L/usr/local/lib/R/site-library/Rcpp/lib -1Rcpp",
"-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/1lib" |
"-L/usr/lib -1gsl -lgslcblas -1m")
)
registerPlugin("gslDemo", plug)
fun <- cxxfunction(signature(par="numeric"),
gslrng, plugin="gslDemo")
fun(0)

Here the Repp function Repp . plugin.maker is used to create
a plugin ‘plug’ which is then registered, and subsequently used by
inline.

The same plugins can be used by Repp Attributes as well.

3.7. How can | pass one additional flag to the compiler.

How can I pass another flag to the g++ compiler without
writing a new plugin?

The quickest way is to modify the return value from an existing
plugin. Here we use the default one from Repp itself in order to
pass the flag -std=c++11. As it does not set the PKG_CXXFLAGS
variable, we simply assign this. For other plugins, one may need
to append to the existing values instead. An older example follow
(but note that C++11 or newer is the default now with more recent
R releases)

myplugin <- getPlugin("Rcpp")
mypluginenvPKG_CXXFLAGS <- "-std=c++11"
f <- cxxfunction(signature(),
settings = myplugin, body = '
std::vector<double> x = { 1.0, 2.0, 3.0 };
return Rcpp: :wrap(x);

Rcpp FAQ Vignette | January 8, 2026

https://libeigen.gitlab.io

8

D)
£0
For Repp Attributes, the attributes Rcpp: :plugin() can be
used. Currently supported plugins are for C++11 (which is now a
standard for compilation with R, but used to be an opt-in), other
compilation standards C++14, C++17, C++420, C++23, as well
as for OpenMP.

3.8. How can | set matrix row and column names.

OK, I can create a matrix, but how do I set its row and
columns names?

Pretty much the same way as in R itself: We define a list with two
character vectors, one each for row and column names, and assign
this to the dimnames attribute:

src <- '
Rcpp: :NumericMatrix x(2,2);
x.f111(42); // or another value

Rcpp::List dimnms = // list with 2 vecs
Rcpp::List::create(// with static names
Rcpp: :CharacterVector: :create("cc", "dd"),
Rcpp: :CharacterVector: :create("ee", "ff")
)3
// and assign it
x.attr("dimnames") =
return(x);

dimnms;

fun <- cxxfunction(signature(),
src, "Repp")

fun()

The same logic, but used with Repp Attributes:

#include <Rcpp.h>

// [[Repp: :export]]
Repp: :List fun(void) {
Rcpp: :NumericMatrix x(2,2);
x.£111(42); // or another wvalue
Rcpp::List dimnms = // list with 2 vecs
Recpp: :List::create(// with static names
Rcpp: :CharacterVector: :create("cc", "dd"),
Rcpp: :CharacterVector: :create("ee", "ff"));
// and assign it
x.attr("dimnames") = dimnms;
return(x);

3.9. Why can long long types not be cast correctly. That is a good

and open question. We rely on the basic R types, notably integer
and numeric. These can be cast to and from C++ types without
problems. But there are corner cases. The following example,
contributed by a user, shows that we cannot reliably cast long
types (on a 64-bit machines).

BigInts <- cxxfunction(signature(),
'std::vector<long> bigints;
bigints.push_back(12345678901234567LL) ;
bigints.push_back(12345678901234568LL) ;

Rprintf ("Difference of %1ld\\n",
12345678901234568LL - 12345678901234567LL) ;

https://cran.r-project.org/package=Rcpp

return wrap(bigints);',
"Rcpp", "#include <vector>")
retval <- BigInts()

Unique 64-bit integers were cast to identical
lower precision numerics behind my back with
no warnings or errors whatsoever. Error.

stopifnot (length(unique(retval)) == 2)

While the difference of one is evident at the C++ level, it is no
longer present once cast to R. The 64-bit integer values get cast
to a floating point types with a 53-bit mantissa. We do not have
a good suggestion or fix for casting 64-bit integer values: 32-bit
integer values fit into integer types, up to 53 bit precision fits
into numeric and beyond that truly large integers may have to
converted (rather crudely) to text and re-parsed. Using a different
representation as for example from the GNU Multiple Precision
Arithmetic Library may be an alternative.

However, with care, and via the package bit64, R can use
integer64 as a type (but storing the 64 bits in a double), and
ReppInt64 (Eddelbuettel, 2024b) can help with conversion back
and forth.

3.10. What LaTeX packages do I need to typeset the vignettes.
I would like to typeset the vignettes. What do I need?

The TeXLive distribution seems to get bigger and bigger. What you
need to install may depend on your operating system.
Specific per-platform notes:

* Windows users probably want the MiKTeX. Suggestions for a
more detailed walk through would be appreciated.

* macOS users seem to fall into camps which like or do not
like brew / homebrew. One suggestion was to install MacTeX
but at approximately 2.5gb (as of January 2016) this is not
lightweight.

* Linux users probably want the full TeXLive set from their distri-
bution. On Debian these packages are installed to build the R
package itself: texlive-base, texlive-latex-base,
texlive-generic-recommended,
texlive-fonts-recommended,
texlive-fonts-extra, texlive-extra-utils,
texlive-latex-recommended,
texlive-latex-extra. Using texlive-full may be
a shortcut. Fedora and other distributions should have similar
packages.

3.11. Why is there a limit of 20 on some constructors.

Ok, I would like to pass N object but you only allow 20.
How come?

In essence, and in order to be able to compile it with the largest
number of compilers, Repp is constrained by the older C++ stan-
dards which do not support variadic function arguments. So we
actually use macros and code generator scripts to explicitly enu-
merate arguments, and that number has to stop at some limit. We
chose 20.

A good discussion is available at this StackOverflow question
concerning data.frame creation with Repp. One solution offers a
custom ListBuilder class to circumvent the limit; another sug-
gests to simply nest lists.

Eddelbuettel and Francois

https://gmplib.org/
https://gmplib.org/
https://www.tug.org/texlive/
https://miktex.org/
https://tug.org/mactex/mactex-download.html
https://www.tug.org/texlive/
http://www.debian.org
https://stackoverflow.com/questions/27371543
https://cran.r-project.org/package=Rcpp

3.12. Can | use default function parameters with Rcpp. Yes, you can

use default parameters with some limitations. The limitations are
mainly related to string literals and empty vectors. This is what is
currently supported:

e String literals delimited by quotes (e.g. "foo")
* Integer and Decimal numeric values (e.g. 10 or 4.5)
* Pre-defined constants including:

— Booleans: true and false
— Null Values: R_NilValue, NA_STRING, NA_INTEGER,
NA_REAL, and NA_LOGICAL.

* Selected vector types can be instantiated using the empty form

of the : : create static member function.
— CharacterVector, IntegerVector, and
NumericVector

* Matrix types instantiated using the rows, cols constructor
Repp: :<Type>Matrix n(rows,cols)

— CharacterMatrix, and

NumericMatrix

IntegerMatrix,

To illustrate, please consider the following example that pro-
vides a short how-to:

#include <Rcpp.h>

// [[Repp: :export]]
void sample_defaults(
NumericVector x =
NumericVector: :create(), // Size 0 vector
bool bias = true, // Set to true
std::string method =
"rcpp rules!") { // Set string
" << x.size() << ", ";
" << bias << ", ";

Rcpp: :Rcout << "x size:
Rcpp: :Rcout << "bias value:

Rcpp: :Rcout << "method value: " << ".";
}
/***% R
sample_defaults () # all defaults
sample_defaults(1:5) # supply = values
sample_defaults(bias = FALSE, # supply bool

method = "Rlang") # and string

*/

Note: In cpp, the default bool values are true and false
whereas in R the valid types are TRUE or FALSE.

3.13. Canluse C++11, C++14, C++17, ... with Rcpp. But of course.
In a nutshell, this boils down to what your compiler supports, and
also what R supports. We expanded a little on this in Rcpp Gallery
article providing more detail. What follows in an abridged sum-
mary.

You can always locally set appropriate PKG_CXXFLAGS as an
environment variable, or via ~/.R/Makevars. You can also set
plugins and/or R support from src/Makevars:

Eddelbuettel and Frangois

* C++11: has been supported since early 2013 via a plugin se-
lecting the language standard which is useful for sourceCpp ()
etc. For packages, R has supported it since R 3.1.0 which
added the option to select the language standard via CXX_STD
= CXX11. As of early 2017, over 120 packages on CRAN use
this. As of R 4.0.0, this is the minimum standard and no longer
needed.

* C++14: has been supported since early 2016 via a plugin se-
lecting the language standard which is useful for sourceCpp ()
etc. For packages, R supports it since R 3.4.0 adding the op-
tion to select the language standard via CXX_STD = CXX14.
It became the default with R 4.1.0.

e C++17: it has been supported (with an appropriate compiler)
via plugin starting with Repp 0.12.10, or use via sourceCpp (),
or via PKG_CXXFLAGS or other means to set compiler options.
It became the default with R 4.3.0, but compiler support may
not be widespread.

* C++20: It is also supported (given a suitable compiler) since
Repp 1.0.11.

3.14. How do | use it within (Python’s) Conda setup?. In a comment
to issue ticket #770 it is stated that running

conda install gxx_linux-64

helps within this environment as it installs the corresponding
x86_64-conda_cos6-linux-gnu-c++ compiler. Documentation
for this and other systems is provided at this page.

3.15. Can | speed up compilation?. Somewhat. One option
is to cache as much as possible via ccache by adding it to
~/ .R/Makevars.

Depending on what parts of Rcpp are being used, compilation
speed can be increased by turning use of Modules off. Starting with
version 1.0.3, the RCPP_NO_MODULES define can be used. It can be
set in src/Makevars as an argument to PKG_CXXFLAGS (or one of
the other C++ dialect options) as -DRCPP_NO_MODULES. This has
the advantage of affecting all files in the package, including the
auto-generated RcppExports. cpp where it might be trickier to set
it manually.

Beyond modules, RTTI support can also be turned off. this
implies turning Modules support off as well so. To select this
approach, use the RCPP_NO_RTTI define.

Starting with version 1.0.8 of Repp, new headers Repp/Light,
Rcpp/Lighter, Rcpp/Lightest make this much easier as they
exclude these different (layered) bits of functionality.

4. Support

4.1. Is the APl documented. You bet. We use doxygen to generate
html, latex and man page documentation from the source. The
html documentation is available for browsing, as a very large pdf
file, and all three formats are also available a zip-archives: html,
latex, and man.

4.2. Does it really work. We take quality seriously and have devel-
oped an extensive unit test suite to cover many possible uses of the
Repp APL

We are always on the look for more coverage in our testing.
Please let us know if something has not been tested enough.

Rcpp FAQ Vignette | January 8, 2026

9

https://gallery.rcpp.org/articles/rcpp-and-c++11-c++14-c++17/
https://gallery.rcpp.org/articles/rcpp-and-c++11-c++14-c++17/
https://github.com/RcppCore/Rcpp/issues/770#issuecomment-346716808
https://docs.conda.io/docs/user-guide/tasks/build-packages/compiler-tools.html
https://ccache.dev/
https://dirk.eddelbuettel.com/code/rcpp/html/index.html
https://dirk.eddelbuettel.com/code/rcpp/Rcpp_refman.pdf
https://dirk.eddelbuettel.com/code/rcpp/Rcpp_refman.pdf
https://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-html.zip
https://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-latex.zip
https://dirk.eddelbuettel.com/code/rcpp/rcpp-doc-man.zip

10

4.3. Where can | ask further questions. The Rcpp-devel mailing
list hosted at R-forge is by far the best place. You may also want
to look at the list archives to see if your question has been asked
before.

You can also use StackOverflow via its ‘repp’ tag.

4.4. Where can | read old questions and answers. The normal
Repp-devel mailing list hosting at R-forge contains an archive.

Alternatively, one can also use Mail-Archive on Recpp-devel
which offers web-based interfaces, including searching.

4.5. 1 like it. How can | help. We maintain a list of open issues in
the Github repository. We welcome pull requests and suggest that
code submissions come corresponding unit tests and, if applicable,
documentation.

If you are willing to donate time and have skills in C++, let us
know. If you are willing to donate money to sponsor improvements,
let us know too.

You can also spread the word about Repp. There are many
packages on CRAN that use C++, yet are not using Repp. You could
blog about it, or get the word out otherwise.

Last but not least the Rcpp Gallery is open for user contributions.

4.6. 1don’t like it. How can | help. It is very generous of you to still
want to help. Perhaps you can tell us what it is that you dislike.
We are very open to constructive criticism.

4.7. Can | have commercial support for Rcpp. Sure you can. Just
send us an email, and we will be happy to discuss the request.

4.8. | want to learn quickly. Do you provide training courses. Yes.
Just send us an email.

4.9. Where is the code repository. From late 2008 to late 2013, we
used the Subversion repository at R-Forge which contained Repp
and a number of related packages. It still has the full history as
well as number of support files.

We have since switched to a Git repository at Github for Repp
(as well as for ReppArmadillo and ReppEigen).

5. Known Issues

Contained within this section is a list of known issues regarding
Repp. The issues listed here are either not able to be fixed due
to breaking application binary interface (ABI), would impact the
ability to reproduce pre-existing results, or require significant work.
Generally speaking, these issues come to light only when pushing
the edge capabilities of Repp.

5.1. Rcpp changed the (const) object | passed by value. Repp
objects are wrappers around the underlying R objects’ SEXP, or
S-expression. The SEXP is a pointer variable that holds the location
of where the R object data has been stored (R Core Team, 2025b,
Section 1.1). That is to say, the SEXP does not hold the actual data
of the R object but merely a reference to where the data resides.
When creating a new Repp object for an R object to enter C++, this
object will use the same SEXP that powers the original R object
if the types match otherwise a new SEXP must be created to be
type safe. In essence, the underlying SEXP objects are passed by
reference without explicit copies being made into C++. We refer to
this arrangement as a proxy model.

As for the actual implementation, there are a few conse-
quences of the proxy model. The foremost consequence within

https://cran.r-project.org/package=Rcpp

this paradigm is that pass by value is really a pass by reference.
In essence, the distinction between the following two functions is
only visual sugar:

void implicit_ref (NumericVector X);
void explicit_ref (NumericVector& X);

In particular, when one is passing by value what occurs is the
instantiation of the new Repp object that uses the same SEXP for
the R object. As a result, the Repp object is “linked’” to the original
R object. Thus, if an operation is performed on the Repp object,
such as adding 1 to each element, the operation also updates the
R object causing the change to be propagated to R’s interactive
environment.

#include<Rcpp.h>

// [[Repp::export]]

void implicit_ref (Rcpp: :NumericVector X) {
X=X+ 1.0;

}

// [[Rcpp: :export]]

void explicit_ref (Rcpp: :NumericVector& X) {
X=X+1.0;

}

R use

a <- 1.5:4.5

b <- 1.5:4.5
implicit_ref(a)
a

[1] 2.5 3.5 4.5 5.5
explicit_ref (b)

b

[1] 2.5 3.5 4.5 5.5

There are two exceptions to this rule. The first exception is
that a deep copy of the object can be made by explicit use of
Rcpp:clone(). In this case, the cloned object has no link to the
original R object. However, there is a time cost associated with
this procedure as new memory must be allocated and the previous
values must be copied over. The second exception, which was
previously foreshadowed, is encountered when Repp and R object
types do not match. One frequent example of this case is when the
R object generated from seq() or a:b reports a class of "integer"
while the Repp object is setup to receive the class of "numeric"
as its object is set to NumericVector or NumericMatrix. In such
cases, this would lead to a new SEXP object being created behind the
scenes and, thus, there would not be a link between the Repp object
and R object. So, any changes in C++ would not be propagated to
R unless otherwise specified.

#include <Rcpp.h>
// [[Rcpp: :export]]
void int_vec_type(Rcpp::IntegerVector X) {

X=X+ 1.0;
}

// [[Repp: :export]]
void num_vec_type (Rcpp: :NumericVector X) {

Eddelbuettel and Francois

https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
https://stackoverflow.com/questions/tagged/rcpp
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://www.mail-archive.com/rcpp-devel@lists.r-forge.r-project.org/info.html
https://github.com/RcppCore/Rcpp/issues?state=open
https://github.com/RcppCore/Rcpp/issues?state=open
https://gallery.rcpp.org
https://r-forge.r-project.org/scm/?group_id=155
https://github.com/RcppCore/Rcpp
https://cran.r-project.org/package=Rcpp

X=X+ 1.0;

R use:

a <- 1:5

b <- 1:5

class(a)

[1] "integer”

int_vec_type(a)

a # wvariable a changed as a side effect

[1] 23 456

num_vec_type (b)

b # b unchanged as copy was made for numeric
[1] 12345

With this being said, there is one last area of contention with the
proxy model: the keyword const. The const declaration indicates
that an object is not allowed to be modified by any action. Due
to the way the proxy model paradigm works, there is a way to
“override” the const designation. Simply put, one can create a new
Repp object without the const declaration from a pre-existing
one. As a result, the new Repp object would be allowed to be
modified by the compiler and, thus, modifying the initial SEXP
object. Therefore, the initially secure R object would be altered.
To illustrate this phenomenon, consider the following scenario:

#include <Rcpp.h>

// [[Rcpp: :export]]
Rcpp: : IntegerVector const_override_ex(
Rcpp: : IntegerVector& X) {

Rcpp: : IntegerVector Y(X); // Create object
// from SEXP

Y=Y * 2; // Modify mew object
return Y; // Return new object
}
R use:
x <- 1:10 # an integer sequence

returning an altered wvalue
const_override_ex(x)

[1] 2 4 6 8 10 12 14 16 18 20
but the original wvalue is altered too!
X

[1] 2 4 6 8 10 12 14 16 18 20

So we see that with SEXP objects, the const declaration can be
circumvented as it is really a pointer to the underlying R object.

5.2. Issues with implicit conversion from an Rcpp object to a scalar
or other Rcpp object. Not all Repp expressions are directly com-
patible with operator=. Compatibility issues stem from many
Repp objects and functions returning an intermediary result which
requires an explicit conversion. In such cases, the user may need
to assist the compiler with the conversion.

There are two ways to assist with the conversion. The first
is to construct storage variable for a result, calculate the result,
and then store a value into it. This is typically what is needed

Eddelbuettel and Frangois

when working with Character<Type> and String in Repp due to
the Repp: :internal: :string_proxy class. Within the following
code snippet, the aforementioned approach is emphasized:

#include <Rcpp.h>
// [[Repp: :export]]

std::string explicit_string_conv(
Rcpp: :CharacterVector X) {

std::string s;
s = X[0];

// define storage
// assign from CharacterVector

return s;

If one were to use a direct allocation and assignment strategy,
e.g. std::string s = X[0], this would result in the compiler
triggering a conversion error on some platforms. The error would
be similar to:

error: no viable conversion from 'Proxy'
(aka 'string_proxy<16>') to 'std::string'
(aka 'basic_string<char, char_traits<char>,
allocator<char> >')

The second way to help the compiler is to use an explicit Repp
type conversion function, if one were to exist. Examples of Repp
type conversion functions include as<T>(), .get () for cumsum(),
is_true() and is_false() for any() or all().

5.3. Using operator= with a scalar replaced the object instead of
filling element-wise. Assignment using the operator= with either
Vector and Matrix classes will not elicit an element-wise fill.
If you seek an element-wise fill, then use the .£i11() member
method to propagate a single value throughout the object. With
this being said, the behavior of operator= differs for the Vector
and Matrix classes.

The implementation of the operator= for the Vector class will
replace the existing vector with the assigned value. This behavior is
valid even if the assigned value is a scalar value such as 3.14 or 25 as
the object is cast into the appropriate Repp object type. Therefore,
if a Vector is initialized to have a length of 10 and a scalar is
assigned via operator=, then the resulting Vector would have a
length of 1. See the following code snippet for the aforementioned
behavior.

#include<Rcpp.h>

// [[Rcpp: :export]]
void vec_scalar_assign(int n, double £fill_val) {
Rcpp: :NumericVector X(n);
Rcpp: :Rcout << "Value of Vector " <<
"on Creation: " <<
std::endl << X << std::endl;

X = fill_val;
Rcpp::Rcout << "Value of Vector " <<

"after Assignment: " <<
std::endl << X << std::endl;

R use:

Rcpp FAQ Vignette | January 8, 2026

1

12

vec_scalar_assign(5L, 3.14)

Value of Vector on Creation:

00000

Value of Vector after Assignment:
3.14

Now, the Matrix class does not define its own operator= but
instead uses the Vector class implementation. This leads to un-
expected results while attempting to use the assignment operator
with a scalar. In particular, the scalar will be coerced into a square
Matrix and then assigned. For an example of this behavior, con-
sider the following code:

#include <Rcpp.h>

// [[Rcpp::export]]
void mat_scalar_assign(int n, double fill_val) {
Rcpp: :NumericMatrix X(n, n);
Rcpp::Rcout << "Value of Matrix " <<
"on Creation: " <<
std::endl << X << std::endl;

X = fill_val;

Rcpp: :Rcout << "Value of Matrix " <<
"after Assignment: " <<
std::endl << X << std::endl;

R use:

mat_scalar_assign(2L, 3.0)
Value of Matriz on Creation:
0.00000 0.00000

0.00000 0.00000

Value of Matriz after Assignment:
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

HOH R W R W™ R W

5.4. Long Vector support on Windows. Prior to R’s 3.0.0, the largest
vector one could obtain was at most 23! — 1 elements. With the re-
lease of R’s 3.0.0, long vector support was added to allow for largest
vector possible to increase up to 2°2 elements on x64 bit operating
systems (c.f. Long Vectors help entry). Once this was established,
support for long vectors within the Repp paradigm was introduced
with Repp version 0.12.0 (c.f Repp 0.12.0 annoucement).
However, the requirement for using long vectors in Repp neces-
sitates the presence of compiler support for the R_xlen_t, which
is platform dependent on how ptrdiff_t is implemented. Unfor-
tunately, this means that on the Windows platform the definition of
R_xlen_t is of type long instead of long long when compiling
under the C++98 specification. Therefore, to solve this issue one
must compile under the specification for C++11 or later version.
There are three options to trigger compilation with C++11. The
first — and most likely option to use — will be the plugin support
offered by Repp attributes. This can be engaged by adding //
[[Repp: :plugins(cpp11)]] to the top of the C++ script. For
diagnostic and illustrative purposes, consider the following code
which checks to see if R_xlen_t is available on your platform:

https://cran.r-project.org/package=Rcpp

#include <Rcpp.h>
// Force compilation mode to C++11
// [[Rcpp::plugins(cpp11)]]

// [[Rcpp: :export]]

bool test_long_vector_support() {

#ifdef RCPP_HAS_LONG_LONG_TYPES
return true;

#else
return false;

#endif

}

R use:

test_long_vector_support ()
[1] TRUE

The remaining two options are for users who have opted to
embed Repp code within an R package. In particular, the sec-
ond option requires adding CXX_STD = CXX11 to a Makevars file
found in the /src directory. Finally, the third option is to add
SystemRequirements:C++11 in the package’s DESCRIPTION file.

Please note that the support for C++11 prior to R v3.3.0 on
Windows is limited. Therefore, plan accordingly if the goal is to
support older versions of R.

5.5. Sorting with STL on a CharacterVector produces problem-
atic results. The Standard Template Library’s (STL) std: :sort
algorithm performs adequately for the majority of Repp data
types. The notable exception that makes what would oth-
erwise be a universal quantifier into an existential quantifier
is the CharacterVector data type. Chiefly, the issue with
sorting strings is related to how the CharacterVector relies
upon the use of Repp: :internal: :string_proxy. In particular,
Rcpp: :internal: :string_proxy is not MoveAssignable since
the left hand side of operator=(const string_proxy \&rhs) is
not viewed as equivalent to the right hand side before the operation
(ISO/IEC, 2011, p. 466, Table 22). This further complicates mat-
ters when using CharacterVector with std: : swap, std: :move,
std: : copy and their variants.

To avoid unwarranted pain with sorting, the preferred approach
is to use the .sort() member function of Repp objects. The
member function correctly applies the sorting procedure to Repp
objects regardless of type. Though, sorting is slightly problematic
due to locale as explained in the next entry. In the interim, the
following code example illustrates the preferred approach alongside
the problematic STL approach:

#include <Rcpp.h>
// [[Repp: :export]]
Rcpp: :CharacterVector preferred_sort(

Rcpp: :CharacterVector x) {

Rcpp: :CharacterVector y = Rcpp::clone(x);
y.sort();

return y;

}

// [[Rcpp: :export]]

Eddelbuettel and Francois

https://stat.ethz.ch/R-manual/R-devel/library/base/html/LongVectors.html
https://dirk.eddelbuettel.com/blog/2015/07/25/
https://cran.r-project.org/package=Rcpp

Rcpp: :CharacterVector stl_sort(
Rcpp: :CharacterVector x) {

Rcpp: :CharacterVector y = Rcpp::clone(x);
std::sort(y.begin(), y.end());

return y;

}

R use:

set.seed(123)

(X <- sample(c(LETTERS[1:5], letters([1:6]1), 11))

[1] IICVI Ilf n HB n Ha n He n HE n HD n lld n ”C n IIA n Ilb n
preferred_sort (X)

[1] IIA n /IB n IICI/ /ID n I/EII /Ia n l/b n /IC n Ild n lle n Ilf n
stl_sort(X)

[1] Ilf/l /Ifl/ Ilfll /Ifl/ I/fll /If/l I/fll IIf/I I/fl/ IIC/I llfll

In closing, the results of using the STL approach do change
depending on whether 1ibc++ or 1ibstdc++ standard library is
used to compile the code. When debugging, this does make the
issue particularly complex to sort out. Principally, compilation
with 1ibc++ and STL has been shown to yield the correct results.
However, it is not wise to rely upon this library as a majority of
code is compiled against 1ibstdc++ as it more complete.

5.6. Lexicographic order of string sorting differs due to capitaliza-
tion. Comparing strings within R hinges on the ability to process
the locale or native-language environment of the string. In R, there
is a function called Scollate that performs the comparison on
locale. Unfortunately, this function has not been made publicly
available and, thus, Repp does not have access to it within its imple-
mentation of StrCmp. As a result, strings that are sorted under the
.sort () member function are ordered improperly. Specifically, if
capitalization is present, then capitalized words are sorted together
followed by the sorting of lowercase words instead of a mixture
of capitalized and lowercase words. The issue is illustrated by the
following code example:

#include <Rcpp.h>

// [[Rcpp: :export]]
Rcpp: :CharacterVector rcpp_sort(
Rcpp: :CharacterVector X) {
X.sort();
return X;

}

R use:

x <= c("B", "b", "c",
sort(x)
[1] 7a" wgv wpn wRw wew
rcpp_sort (x)
G (B DAT O Tl TR0 Ty

WAn , uau)

5.7. Package building fails with ‘symbols not found’. R 3.4.0 and
later strongly encourage registering dynamically loadable symbols.
In the stronger form (where .registration=TRUE is added to the
useDynLib() statement in NAMESPACE), only registered symbols
can be loaded. This is fully supported by Repp 0.12.12 and later,
and the required code is added to src/RcppExports. cpp.

Eddelbuettel and Frangois

However, the transition from
ated file src/RcppExports.cpp to the new one may
require running compileAttributes() twice (which
does not happen when, e.g., devtools is used). @ When
Rcpp::compileAttributes() is called, it also calls
tools: :package_native_routine_registration_skeleton(),
which crawls through usages of .Call() in the R/ source files of
the package to figure out what routines need to be registered. If
an older RcppExports.R file is discovered, its out-of-date symbol
names get picked up, and registration rules for those symbols get
written as well. This will register more symbols for the package
than are actually defined, leading to an error. This point has been
discussed at some length both in the GitHub issue tickets, on
StackOverflow and elsewhere.

So if your autogenerated file fails, and a symbols not
found error is reported by the linker, consider running
compileAttributes() twice. Deleting R/RcppExports.R and
src/RcppExports. cpp may also work.

the previously gener-

5.8. Can we use exceptions and stop() across shared libraries?.
Within limits, yes. Code that is generated via Repp Attributes (see
Allaire et al. (2026) and Section~2.2.2) generally handles this cor-
rectly and gracefully via the try-catch layer it adds shielding the
exception from propagating to another, separate dynamic library.

However, this mechanism relies on dynamic linking with the
(system library) 1ibgcc providing the C++ standard library (as
well as on using the same C++ standard library across all compiled
components). But this library is linked statically on Windows
putting a limitation on the use of stop () from within Repp Modules
(Eddelbuettel and Francois, 2026). Some more background on the
linking requirement is in this SO question.

5.9. My package errors with “‘dataptr’ not provided by Rcpp”. If
you see tests of your package fail with an error ‘... not provided by
Repp’, frequently pointing at either dataptr or enterRNGScope,
then the Repp package may not have been initialized correctly. For
your package, it is generally recommended to have both Imports:
Rcpp and LinkingTo: Rcpp in the file DESCRIPTION combined
with an explicit importFrom("Rcpp", "evalCpp") in the file
NAMESPACE. Doing so ensures that this symbol is registered when
your package is loaded by R, and as a side-effect certain other Repp
function identifiers will also be resolved properly.

5.10. On macOS, ‘no matching function for call to R_l1sInternal’.
In issue #1148 an error due to overeager includes was re-
ported. Including Rinternals.h along with the (macOS-only)
mach/boolean.h lead to linker error as mach/boolean redefines
TRUE leading to bad interactions with the Rboolean enum type. A
very simple solution is to be more careful and conservative with
#include files and a) have #include <mach/boolean.h> appear
first and b) skip the #include <Rinternals.h> as it is included

by Rcpp . h anyway.

5.11. Can we grow Rcpp vectors like STL vectors via ’push®’.
No. Use actual STL vectors instead. This has been stated clearly
many times going back to the original announcement in Feb 2010,
StackOverflow answers in Dec 2011 and in Dec 2012, the rcpp-
devel list in Jun 2013, another StackOverflow answer in Nov 2013,
an early Repp Gallery post in Dec 2013, again on StackOverflow
Dec 2014, as well as in the ‘Advanced R’ first and second editions.
For emphasis, here is a quote from the rcpp-devel post:

Rcpp FAQ Vignette | January 8, 2026

13

https://stackoverflow.com/questions/2424836/exceptions-are-not-caught-in-gcc-program
https://github.com/RcppCore/Rcpp/issues/1148
https://lists.r-forge.r-project.org/pipermail/rcpp-devel/2010-February/000410.html
https://stackoverflow.com/a/8631853/143305
https://stackoverflow.com/a/13783044/143305
https://lists.r-forge.r-project.org/pipermail/rcpp-devel/2013-June/006078.html
https://stackoverflow.com/a/19829440/143305
https://gallery.rcpp.org/articles/plyr-c-to-rcpp/
https://stackoverflow.com/a/27585789/143305
http://adv-r.had.co.nz/Rcpp.html#stl
https://adv-r.hadley.nz/rcpp.html#stl
https://lists.r-forge.r-project.org/pipermail/rcpp-devel/2013-June/006078.html

14

Those are somehow cosmetic additions. The usual sug-
gestion is not to use push_front and push_back on Rcpp

types.

We use R’s memory, and in R, resizing a vector means
moving the data. So if you push_back 3 times, you're
moving the data 3 times.

Using R own memory is the best ever decision we made
in Repp. You can always use your own data structures
to accumulate data, perhaps using stl types and then
convert back to R types, which is something we make
easy to do.

Many code examples and packages show exactly that approach
(as e.g. discussed in the Rcpp Gallery post). Anybody who claims
otherwise is (possibly intentionally) misleading.

5.12. Converting a large number of Date objects seems slow. The
Date and Datetime classes, and their vector variants, go back a
very long time to the very beginning of Repp and use in RQuantLib
(Eddelbuettel et al., 2025b) interfacing QuantLib (QuantLib Core
Team, 2021). Their intent was, essentially, to hold (single) start
and end values delineating an interval. The design is far from
optimal, but the interface is now established. We have rewritten
them once, and do not plan to rewrite them in the near future.
Those looking to parse and convert many dates at once could look
at anytime (Eddelbuettel, 2025a) where we use the Boost parser,
or similar approaches using the C++ headers-only libraries in
packages ReppCCTZ (Eddelbuettel, 2024a) and ReppDate (Eddel-
buettel, 2025b). We are not likely to carry this over to the Repp
package as there are advantages in remaining dependency-free.

References

Allaire JJ, Eddelbuettel D, Frangois R (2026). Rcpp Attributes. doi:
10.32614/CRAN. package.Rcpp. Vignette included in R package Rcpp.
Bates D, Eddelbuettel D (2013). “Fast and Elegant Numerical Linear Algebra Us-
ing the RcppEigen Package.” Journal of Statistical Software, 52(5), 1-24. doi:

10.18637/jss.v052.105. URL https://doi.org/10.18637/jss.v052.i05.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Use R!
Springer, New York. ISBN 978-1-4614-6867-7.

Eddelbuettel D (2024a). RcppCCTZ: Repp Bindings for the CCTZ Library. doi :
10.32614/CRAN.package .RcppCCTZ. R package version 0.2.13.

Eddelbuettel D (2024b). Rpplint64: Rcpp-Based Helper Functions
to Pass Int64 and nanotime Values Between R and C++ doi:
10.32614/CRAN.package .RcppInt64. R package version 0.0.5.

Eddelbuettel D (2025a). anytime: Anything to 'POSIXct’ or 'Date’ Converter.
doi:10.32614/CRAN.package.anytime. R package version 0.3.12.

Eddelbuettel D (2025b). RcppDate: ‘date’ C++ Header Libary for Date and Time
Functionality. doi:10.32614/CRAN.package.RcppDate. R package
version 0.0.6.

Eddelbuettel D (2026). Thirteen Simple Steps for Creating An R Package with
an External C++ Library. doi:10.32614/CRAN.package.Rcpp. Vignette
included in R package Rcpp.

Eddelbuettel D, Balamuta JJ (2017). “Extending R with C++: A Brief Introduction
to Repp.” Peerd Preprints, 5. doi:10.7287/peerj.preprints.3188vi.
URL https://peerj.com/preprints/3188v1/.

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief
Introduction to Rcpp.” The American Statistician, 72(1). doi:
10.1080/00031305.2017.1375990. URL https://doi.org/10.1080/
00031305.2017.1375990.

Eddelbuettel D, Frangois R (2011). “Repp: Seamless R and C++
Integration.” Journal of Statistical Software, 40(8), 1-18. doi:
10.18637/jss.v040.108. URL https://doi.org/10.18637/jss.v040.i08.

https://cran.r-project.org/package=Rcpp

Eddelbuettel D, Francois R (2026). Exposing C++ functions and classes with
Rcpp modules. doi:10.32614/CRAN.package.Rcpp. Vignette included
in R package Rcpp.

Eddelbuettel D, Frangois R, Allaire J, Ushey K, Kou Q, Russel N, Cham-
bers J, Bates D (2026). Rcpp: Seamless R and C++ Integration. doi:
10.32614/CRAN.package .Rcpp. R package version 1.1.1.

Eddelbuettel D, Frangois R, Bates D, Ni B, Sanderson C (2025a). RcppArmadillo:
Rcpp Integration for the Armadillo Templated Linear Algebra Library. doi:
10.32614/CRAN.package .RcppArmadillo. R package version 15.2.3-
1.

Eddelbuettel D, Horner J (2025). littler: R at the Command-Line via r. doi:
10.32614/CRAN.package.littler. R package version 0.3.21.

Eddelbuettel D, Nguyen K, Leitch T (2025b). RQuantLib: R Interface to the
QuantLib Library. doi:10.32614/CRAN.package.RQuantLib. R pack-
age version 0.4.26.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with
High-Performance C++ Linear Algebra.” Computational Statistics and Data
Analysis, 71, 1054—-1063. doi:10.1016/j.csda.2013.02.005. URL
https://dx.doi.org/10.1016/j.csda.2013.02.005.

ISO/IEC (2011). “C++ 2011 Standard Document 14882:2011” ISO/IEC
Standard Group for Information Technology / Programming Languages /
C++. URL https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.ntm?csnumber=50372.

QuantLib Core Team (2021). QuantLib: a free/open-source library for quantitative
finance. URL https://www.quantlib.org.

R Core Team (2025a). R Installation and Administration. R Foundation for
Statistical Computing, Vienna, Austria. doi:10.32614/R.manuals. URL
https://CRAN.R-Project.org/doc/manuals/R-admin.html.

R Core Team (2025b). R internals. R Foundation for Statistical Computing,
Vienna, Austria. doi:10.32614/R.manuals. URL https://CRAN.R-Project.
org/doc/manuals/R-ints.html.

R Core Team (2025c). Writing R extensions. R Foundation for Statistical
Computing, Vienna, Austria. doi:10.32614/R.manuals. URL https:/
CRAN.R-Project.org/doc/manuals/R-exts.html.

Sanderson C (2010). “Armadillo: An open source C++ Algebra Library for Fast
Prototyping and Computationally Intensive Experiments.” Technical report,
NICTA. URL https://arma.sourceforge.net.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, Frangois R, Soetaert K, Ranke
J (2025). inline: Functions to Inline C, C++, Fortran Function Calls from R.
doi:10.32614/CRAN.package.inline. R package version 0.3.21.

Eddelbuettel and Francois

https://gallery.rcpp.org/articles/plyr-c-to-rcpp/
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.18637/jss.v052.i05
https://doi.org/10.32614/CRAN.package.RcppCCTZ
https://doi.org/10.32614/CRAN.package.RcppCCTZ
https://doi.org/10.32614/CRAN.package.RcppInt64
https://doi.org/10.32614/CRAN.package.RcppInt64
https://doi.org/10.32614/CRAN.package.anytime
https://doi.org/10.32614/CRAN.package.RcppDate
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.7287/peerj.preprints.3188v1
https://peerj.com/preprints/3188v1/
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.1080/00031305.2017.1375990
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.Rcpp
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.RcppArmadillo
https://doi.org/10.32614/CRAN.package.littler
https://doi.org/10.32614/CRAN.package.littler
https://doi.org/10.32614/CRAN.package.RQuantLib
https://doi.org/10.1016/j.csda.2013.02.005
https://dx.doi.org/10.1016/j.csda.2013.02.005
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://www.quantlib.org
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-admin.html
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-ints.html
https://CRAN.R-Project.org/doc/manuals/R-ints.html
https://doi.org/10.32614/R.manuals
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://CRAN.R-Project.org/doc/manuals/R-exts.html
https://arma.sourceforge.net
https://doi.org/10.32614/CRAN.package.inline
https://cran.r-project.org/package=Rcpp

	Getting started
	How do I get started
	What do I need
	What compiler can I use
	What other packages are useful
	What licenses can I choose for my code

	Compiling and Linking
	How do I use in my package
	How do I quickly prototype my code
	Using inline
	Using Rcpp Attributes

	How do I convert my prototype code to a package
	How do I quickly prototype my code in a package
	But I want to compile my code with R CMD SHLIB
	But R CMD SHLIB still does not work
	What about LinkingTo
	Does work on windows
	Can I use with Visual Studio
	I am having problems building Rcpp on macOS, any help
	Lack of a Compiler
	Differing macOS R Versions Leading to Binary Failures
	OpenMP Support
	Additional Information and Help

	Does work on solaris/suncc
	Does work with REvolution R
	Is it related to Rho (formerly CXXR)
	How do I quickly prototype my code using Attributes
	What about the `no-linking' feature
	I am having problems building RcppArmadillo on macOS, any help

	Examples
	Can I use templates with
	Using inline with Templated Code
	Using Rcpp Attributes with Templated Code

	Can I do matrix algebra with Rcpp
	Using inline with RcppArmadillo
	Using Rcpp Attributes with RcppArmadillo

	Can I use code from the Rmath header and library with
	Can I use NA and Inf with
	Can I easily multiply matrices
	How do I write a plugin for and/or Rcpp Attributes
	How can I pass one additional flag to the compiler
	How can I set matrix row and column names
	Why can long long types not be cast correctly
	What LaTeX packages do I need to typeset the vignettes
	Why is there a limit of 20 on some constructors
	Can I use default function parameters with
	Can I use C++11, C++14, C++17, … with
	How do I use it within (Python's) Conda setup?
	Can I speed up compilation?

	Support
	Is the API documented
	Does it really work
	Where can I ask further questions
	Where can I read old questions and answers
	I like it. How can I help
	I don't like it. How can I help
	Can I have commercial support for
	I want to learn quickly. Do you provide training courses
	Where is the code repository

	Known Issues
	 changed the (const) object I passed by value
	Issues with implicit conversion from an object to a scalar or other object
	Using operator= with a scalar replaced the object instead of filling element-wise
	Long Vector support on Windows
	Sorting with STL on a CharacterVector produces problematic results
	Lexicographic order of string sorting differs due to capitalization
	Package building fails with `symbols not found'
	Can we use exceptions and stop() across shared libraries?
	My package errors with ```dataptr' not provided by Rcpp''
	On macOS, `no matching function for call to R_lsInternal'
	Can we grow Rcpp vectors like STL vectors via 'push*'
	Converting a large number of Date objects seems slow

