
Package ‘RSclient’
January 20, 2026

Version 0.7-12

Title Client for Rserve

Author Simon Urbanek [aut, cre, cph] (https://urbanek.nz, ORCID:
<https://orcid.org/0000-0003-2297-1732>)

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>

Depends R (>= 2.7.0)

Description Client for Rserve, allowing to connect to Rserve instances and issue commands.

License GPL-2 | file LICENSE

URL https://www.rforge.net/RSclient/

BugReports https://github.com/s-u/RSclient/issues/

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-19 23:00:02 UTC

Contents
RC-methods . 1
RCC . 2
Rclient . 6

Index 9

RC-methods Methods for the RserveConnection class

Description

Basic methods (printing, comparison) for the RserveConnection class.

1

https://orcid.org/0000-0003-2297-1732
https://www.rforge.net/RSclient/
https://github.com/s-u/RSclient/issues/

2 RCC

Usage

S3 method for class 'RserveConnection'
print(x, ...)
S3 method for class 'RserveConnection'
e1 == e2
S3 method for class 'RserveConnection'
e1 != e2

Arguments

x Rserve connection object
e1 Rserve connection object
e2 Rserve connection object
... ignored

Value

print returns x invisibly

== and != return a logical scalar

Author(s)

Simon Urbanek

RCC Functions to talk to an Rserve instance (new version)

Description

Rserve is a server providing R functionality via sockets. The following functions allow another R
session to start new Rserve sessions and evaluate commands.

Usage

RS.connect(host = NULL, port = 6311L, tls = FALSE, verify = TRUE,
proxy.target = NULL, proxy.wait = TRUE, chain, key, ca)

RS.login(rsc, user, password, pubkey, authkey)
RS.eval(rsc, x, wait = TRUE, lazy = TRUE)
RS.eval.qap(rsc, x, wait = TRUE)
RS.collect(rsc, timeout = Inf, detail = FALSE, qap = FALSE)
RS.close(rsc)
RS.assign(rsc, name, value, wait = TRUE)
RS.switch(rsc, protocol = "TLS", verify = TRUE, chain, key, ca)
RS.authkey(rsc, type = "rsa-authkey")
RS.server.eval(rsc, text)
RS.server.source(rsc, filename)
RS.server.shutdown(rsc)
RS.oobCallbacks(rsc, send, msg)

RCC 3

Arguments

host host to connect to or socket path or NULL for local host

port TCP port to connect to or 0 if unix socket is to be used

tls if TRUE then SSL/TLS encrypted connection is started

verify logical, if FALSE no verification of the server certificate is done, otherwise the
certificate is verified and the function will fail with an error if it is not valid.

chain string, optional, path to a file in PEM format that contains client certificate and
its chain. The client certificate must be first in the chain.

key string, optional, path to a file in PEM format containing the private key for the
client certificate. If a client certificate is necessary for the connection, both
chain and key must be set.

ca string, optional, path to a file or directory holding any additional certificate
authority (CA) certificates (including intermediate certificates) in PEM format
that are required for the verification of the server certificate. Only relevant if
verify=TRUE. If not set then it will be attempted to load the default trust store
of the underlying library (which typically includes trusted root certificates).

proxy.target proxy target (string) in the form <host>:<port> to be used when connecting
to a non-transparent proxy that requires target designation. Not used when con-
nected to transparent proxies or directly to Rserve instances. Note that literal
IPv6 addresses must be quoted in [].

proxy.wait if TRUE then the proxy will wait (indefinitely) if the target is unavailable due to
too high load, if FALSE then the proxy is instructed to close the connection in
such instance instead

rsc Rserve connection as obtained from RS.connect

user username for authentication (mandatory)

password password for authentication

pubkey public key for authentication

authkey authkey (as obtained from RS.authkey) for secure authentication

x expression to evaluate

wait if TRUE then the result is delivered synchronously, if FALSE then NULL is returned
instead and the result can be collected later with RS.collect

lazy if TRUE then the passed expression is not evaluated locally but passed for remote
evaluation (as if quoted, modulo substitution). Otherwise it is evaluated locally
first and the result is passed for remote evaluation.

timeout numeric, timeout (in seconds) to wait before giving up

detail if TRUE then the result payload is returned in a list with elements value (unse-
rialized result value of the command - where applicable) and rsc (connection
which returned this result) which allows to identify the source of the result and
to distinguish timeout from a NULL value. Otherwise the returned value is just
the payload value of the result.

name string, name of the symbol to assign to

4 RCC

value value to assign – if missing name is assumed to be a symbol and its evaluated
value will be used as value while the symbol name will be used as name

protocol protocol to switch to (string)

type type of the authentication to perform (string)

send callback function for OOB_SEND

msg callback function for OOB_MSG

text string that will be parsed and evaluated on the server side

filename name of the file (on the server!) to source

qap logical, if TRUE then the result is assumed to be in QAP encoding (native Rserve
protocol), otherwise it is assumed to be using R serialization.

Details

RS.connect creates a connection to a Rserve. The returned handle is to be used in all subse-
quent calls to client functions. The session associated witht he connection is alive until closed via
RS.close.

RS.close closes the Rserve connection.

RS.login performs authentication with the Rserve. The user entry is mandatory and at least
one of password, pubkey and authkey must be provided. Typical secure authentication is per-
formed with RS.login(rsc, "username", "password", authkey=RS.authkey(rsc)) which en-
sures that the authentication request is encrypted and cannot be spoofed. When using TLS connec-
tions RS.authkey is not necessary as the connection is already encrypted.

RS.eval evaluates the supplied expression remotely.

RS.eval.qap behaves like RS.eval(..., lazy=FALSE), but uses the Rserve QAP serialization of
R objects instead of the native R serialization.

RS.collect collects results from RS.eval(..., wait = FALSE) calls. Note that in this case rsc
can be either one connection or a list of connections.

RS.assign assigns a value to the remote global workspace.

RS.switch attempts to switch the protocol currently used for communication with Rserve. Cur-
rently the only supported protocol switch is from plain QAP1 to TLS secured (encrypted) QAP1.

RS.oobCallbacks sets or retrieves the callback functions associated with OOB_SEND and OOB_MSG
out-of-band commands. If neither send nor msg is specified then RS.oobCallbacks simply returns
the current callback functions, otherwise it replaces the existing ones. Both functions have the form
function(code, payload) where code is the OOB sub-code (scalar integer) and payload is the
content passed in the OOB command. For OOB_SEND the result of the callback is disarded, for
OOB_MSG the result is encoded and sent back to the server. Note that OOB commands in this client
are only processed when waiting for the response to another command (typically RS.eval). OOB
commands must be explicitly enabled in the server in order to be used (they are disabled by default).

RS.server.eval, RS.server.source and RS.server.shutdown are ‘control commands’ which
are enqueued to be processed by the server asynchronously. They return TRUE on success which
means the command was enqueued - it does not mean that the server has processed the command.
All control commands affect only future connections, they do NOT affect any already established
client connection (including the curretn one). RS.server.eval parses and evaluates the given
code in the server instance, RS.server.source sources the given file in the server (the path is

RCC 5

interpreted by the server, it is not the local path of the client!) and RS.server.shutdown attempts
a clean shutdown of the server. Note that control commands are disabled by default and must
be enabled in Rserve either in the configuration file with control enable or on the command
line with --RS-enable-control (the latter only works with Rserve 1.7 and higher). If Rserve is
configured with authentication enabled then only admin users can issues control commands (see
Rserve documentation for details).

Parallel use

It is currently possible to use Rserve connections in parallel via mcparallel or mclapply if certain
conditions are met. First, only clear connection (non-TLS) are eligible for parallel use and there
may be no OOB commands. Then it is legal to use connections in forked process as long as both the
request is sent and the result is collected in the same process while no other process uses the con-
nection. However, connections can only be created in the parent session (except if the connection
is created and subsequently closed in the child process).

One possible use is to initiate connections to a cluster and perform operations in parallel. For
example:

library(RSclient)
library(parallel)
try to connect to 50 different nodes
cannot parallelize this - must be in the parent process
c <- lapply(paste("machine", 1:50, sep=''),

function(name) try(RS.connect(name), silent=TRUE))
keep only successful connections
c <- c[sapply(c, class) == "RserveConnection"]
login to all machines in parallel (using RSA secured login)
unlist(mclapply(c,

function(c) RS.login(c, "user", "password",, RS.authkey(c)),
mc.cores=length(c)))
do parallel work ...
pre-load some "job" function to all nodes
unlist(mclapply(c, function(c) RS.assign(c, job), mc.cores=length(c)))
etc. etc. then call it in parallel on all nodes ...
mclapply(c, function(c) RS.eval(c, job()), mc.cores=length(c))

close all
sapply(c, RS.close)

Note

The current version of the RSclient package supplies two clients - one documented in Rclient
which uses R connections and one documented in RCC which uses C code and is far more versatile
and efficient. This is the documentation for the latter which is new and supports features that
are not supported by R such as unix sockets, SSL/TLS connections, protocol switching, secure
authentication and multi-server collection.

6 Rclient

Note

The RSclient package can be compiled with TLS/SSL support based on OpenSSL. Therefore the
following statements may be true if RSclient binaries are shipped together with OpenSSL: This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).
They are not true otherwise.

Author(s)

Simon Urbanek

Examples

Not run:
c <- RS.connect()
RS.eval(c, data(stackloss))
RS.eval(c, library(MASS))
RS.eval(c, rlm(stack.loss ~ ., stackloss)$coeff)
RS.eval(c, getwd())
x <- rnorm(1e5)
this sends the contents of x to the remote side and runs `sum` on
it without actually creating the binding x on the remote side
RS.eval(c, as.call(list(quote(sum), x)), lazy=FALSE)
RS.close(c)

End(Not run)

Rclient Functions to talk to an Rserve

Description

Rserve is a server providing R functionality via sockets. The following functions allow another R
session to start new Rserve sessions and evaluate commands. The support is very rudimentary and
uses only a fraction of the funtionality provided by Rserve. The typical use of Rserve is to connect
to other applications, not necessarily to connect two R processes. However, it is not uncommon to
have a cluster of Rserve machines so the following functions provide a simple client access.

For more complete cilent implementation see src/clients directory of the Rserve distribution
which show a C/C++ client. Also available from the Rserve pages is a Java client (JRclient). See
http://rosuda.org/Rserve for details.

Usage

RSconnect(host = "localhost", port = 6311)
RSlogin(c, user, pwd, silent = FALSE)
RSeval(c, expr)
RSclose(c)

Rclient 7

RSshutdown(c, pwd = NULL, ctrl = FALSE)
RSdetach(c)
RSevalDetach(c, cmd = "")
RSattach(session)
RSassign(c, obj, name = deparse(substitute(obj)))
RSserverEval(c, expr)
RSserverSource(c, file)

Arguments

host host to connect to

port TCP port to connect to

c Rserve connection

user username for authentication

pwd password for authentication

cmd command (as string) to evaluate

silent flag indicating whether a failure should raise an error or not

session session object as returned by RSdetach or RSevalDetach

obj value to assign

name name to assign to on the remote side

expr R expression to evaluate remotely

file path to a file on the server(!) that will be sourced into the main instance

ctrl logical, if TRUE then control command (CMD_ctrlShutdown) is used for shut-
down, otherwise the legacy CMD_shutdown is used instead.

Details

RSconnect creates a connection to a Rserve. The returned handle is to be used in all subsequent calls
to client functions. The session associated witht he connection is alive until closed via RSclose.

RSlogin performs authentication with the Rserve. Currently this simple client supports only plain
text authentication, encryption is not supported.

RSclose closes the Rserve connection.

RSeval evaluates the supplied expression remotely. expr can be either a string or any R expression.
Use quote to use unevaluated expressions. The implementation of RSeval is very efficient in that
it does not require any buffer on the remote side and uses native R serialization as the protocol. See
exmples below for correct use.

RSdetach detaches from the current Rserve connection. The connection is closed but can be re-
stored by using RSattach with the value returned by RSdetach. Technically the R on the other end
is still running and waiting to be atached.

RSshutdown terminates the server gracefully. It should be immediately followed by RSclose since
the server closes the connection. It can be issued only on a valid (authenticated) connection. The
password parameter is currently ignored since password-protected shutdown is not yet supported.

8 Rclient

Please note that you should not terminate servers that you did not start. More recent Rserve installa-
tion can disable regular shutdown and only allow control shutdown (avaiable to control users only)
which is invoked by specifying ctrl=TRUE.

RSevalDetach same as RSdetach but allows asynchronous evaluation of the command. The remote
Rserve is instructed to evaluate the command after the connection is detached. Please note that the
session cannot be attached until the evaluation finished. Therefore it is advisable to use another
session when attaching to verify the status of the detached session where necessary.

RSattach resume connection to an existing session in Rserve. The session argument must have
been previously returned from the RSdetach or RSevalDetach comment.

RSassign pushes an object to Rserve and assigns it to the given name. Note that the name can be an
(unevaluated) R expression itself thus allowing constructs such as RSassign(c, 1:5, quote(a$foo))
which will result in a$foo <- 1:5 remotely. However, character names are interpreted literarly.

RSserverEval and RSserverSource enqueue commands in the server instance of Rserve, i.e. their
effect will be visible for all subsequent client connections. The Rserve instance must have control
commands enabled (not the default) in order to allow those commands. RSserverEval evaluates
the supplied expression and RSserverSource sources the specified file - it must be a valid path to
a file on the server, not the client machine! Both commands are executed asynchronously in the
server, so the success of those commands only means that they were queued on the server - they
will be executed between subsequent client connections. Note that only subsequent connections
will be affected, not the one issuing those commands.

Author(s)

Simon Urbanek

Examples

Not run:
c <- RSconnect()
data(stackloss)
RSassign(c, stackloss)
RSeval(c, quote(library(MASS)))
RSeval(c, quote(rlm(stack.loss ~ ., stackloss)$coeff))
RSeval(c, "getwd()")

image <- RSeval(c, quote(try({
attach(stackloss)
library(Cairo)
Cairo(file="plot.png")
plot(Air.Flow,stack.loss,col=2,pch=19,cex=2)
dev.off()
readBin("plot.png", "raw", 999999)})))

if (inherits(image, "try-error"))
stop(image)

End(Not run)

Index

!=.RserveConnection (RC-methods), 1
∗ interface

RC-methods, 1
RCC, 2
Rclient, 6

==.RserveConnection (RC-methods), 1

print.RserveConnection (RC-methods), 1

quote, 7

RC-methods, 1
RCC, 2, 5
Rclient, 5, 6
RS.assign (RCC), 2
RS.authkey (RCC), 2
RS.close (RCC), 2
RS.collect (RCC), 2
RS.connect (RCC), 2
RS.eval (RCC), 2
RS.login (RCC), 2
RS.oobCallbacks (RCC), 2
RS.server.eval (RCC), 2
RS.server.shutdown (RCC), 2
RS.server.source (RCC), 2
RS.switch (RCC), 2
RSassign (Rclient), 6
RSattach (Rclient), 6
RSclose (Rclient), 6
RSconnect (Rclient), 6
RSdetach (Rclient), 6
RSeval (Rclient), 6
RSevalDetach (Rclient), 6
RSlogin (Rclient), 6
RSserverEval (Rclient), 6
RSserverSource (Rclient), 6
RSshutdown (Rclient), 6

9

	RC-methods
	RCC
	Rclient
	Index

