
Package ‘ROI’
January 12, 2026

Version 1.0-2

Title R Optimization Infrastructure

Description The R Optimization Infrastructure ('ROI') <doi:10.18637/jss.v094.i15>
is a sophisticated framework for handling optimization problems in R.
Additional information can be found on the 'ROI' homepage <https:
//roi.r-forge.r-project.org/>.

Depends R (>= 2.10)

Imports methods, registry (>= 0.5), slam, utils, checkmate

Suggests numDeriv

License GPL-3

Encoding UTF-8

URL https://roi.r-forge.r-project.org/,

https://r-forge.r-project.org/projects/roi/

RoxygenNote 7.3.3

NeedsCompilation no

Author Kurt Hornik [aut] (ORCID: <https://orcid.org/0000-0003-4198-9911>),
David Meyer [aut],
Florian Schwendinger [aut] (ORCID:

<https://orcid.org/0000-0002-3983-9773>),
Stefan Theussl [aut, cre] (ORCID:

<https://orcid.org/0000-0002-6523-4620>),
Diethelm Wuertz [ctb]

Maintainer Stefan Theussl <Stefan.Theussl@R-Project.org>

Repository CRAN

Date/Publication 2026-01-12 06:10:58 UTC

Contents
as.L_term . 3
as.Q_term . 4

1

https://doi.org/10.18637/jss.v094.i15
https://roi.r-forge.r-project.org/
https://roi.r-forge.r-project.org/
https://roi.r-forge.r-project.org/
https://r-forge.r-project.org/projects/roi/
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0002-3983-9773
https://orcid.org/0000-0002-6523-4620

2 Contents

bound (Constructors) . 5
bounds (Set/Get) . 5
constraint (Constructors) . 6
constraint directions . 7
constraints (Set/Get) . 8
C_constraint . 9
equal . 10
F_constraint . 11
F_objective . 12
G . 13
is.default_bound . 14
J . 15
K_zero . 16
L_constraint . 17
L_objective . 18
maximum (Set/Get) . 19
nlminb2 . 20
NO_constraint . 21
objective (Set/Get) . 22
OP . 22
OP_signature . 24
Q_constraint . 24
Q_objective . 26
rbind.constraint . 27
ROI_applicable_solvers . 27
ROI_available_solvers . 28
ROI_options . 29
ROI_plugin_add_status_code_to_db . 29
ROI_plugin_build_equality_constraints . 30
ROI_plugin_build_inequality_constraints . 31
ROI_plugin_canonicalize_solution . 32
ROI_plugin_get_solver_name . 33
ROI_plugin_make_signature . 33
ROI_plugin_register_reader_writer . 34
ROI_plugin_register_reformulation . 35
ROI_plugin_register_solver_control . 36
ROI_plugin_register_solver_method . 36
ROI_plugin_solution_prim . 37
ROI_read . 38
ROI_reformulate . 39
ROI_registered_reader . 40
ROI_registered_reformulations . 41
ROI_registered_solvers . 41
ROI_registered_solver_control . 42
ROI_registered_writer . 42
ROI_require_solver . 43
ROI_solve . 44
ROI_solver_signature . 45

as.L_term 3

ROI_write . 46
solution . 47
types (Set/Get) . 47
US30 . 48
vech . 49
V_bound . 49

Index 51

as.L_term Canonicalize the Linear Term

Description

Canonicalize the linear term of a linear constraint. Objects from the following classes can be canon-
icalized: "NULL", "numeric", "matrix", "simple_triplet_matrix" and "list".

Usage

as.L_term(x, ...)

Arguments

x an R object.

... further arguments passed to or from other methods.

Details

In the case of lists "as.Q_term" is applied to every element of the list, for NULL one can supply
the optional arguments "nrow" and "ncol" which will create a "simple_triplet_zero_matrix"
with the specified dimension.

Value

an object of class "simple_triplet_matrix"

4 as.Q_term

as.Q_term Canonicalize the Quadraric Term

Description

Canonicalize the quadraric term of a quadratic constraint. Objects from the following classes can
be canonicalized: "NULL", "numeric", "matrix", "simple_triplet_matrix" and "list".

Usage

as.Q_term(x, ...)

S3 method for class 'list'
as.Q_term(x, ...)

S3 method for class 'numeric'
as.Q_term(x, ...)

S3 method for class 'matrix'
as.Q_term(x, ...)

S3 method for class 'simple_triplet_matrix'
as.Q_term(x, ...)

S3 method for class '`NULL`'
as.Q_term(x, ...)

Arguments

x an R object.

... further arguments

Details

In the case of lists "as.Q_term" is applied to every element of the list, for NULL one can supply
the optional arguments "nrow" and "ncol" which will create a "simple_triplet_zero_matrix"
with the specified dimension.

Value

an object of class "simple_triplet_matrix"

bound (Constructors) 5

bound (Constructors) bound

Description

ROI distinguishes between 2 different types of bounds:

1. No Bounds NO_bound

2. Variable Bounds V_bound (inherits from "bound")

Usage

S3 method for class 'bound'
c(...)

is.bound(x)

Arguments

x object to be tested

... arguments (inheriting from bound) to be combined

Details

ROI provides the method V_bound as constructor for variable bounds. NO_bound is not explicitly
implemented but represented by NULL.

bounds (Set/Get) Bounds - Accessor and Mutator Functions

Description

The bounds of a given optimization problem (OP) can be accessed or mutated via the method
'bounds'.

Usage

bounds(x)

S3 method for class 'OP'
bounds(x)

bounds(x) <- value

6 constraint (Constructors)

Arguments

x an object of type 'OP' used to select the method.

value an object derived from 'bound' ('V_bound') or NULL.

Value

the extracted bounds object on get and the altered 'OP' object on set.

Examples

Not run:
lp_obj <- L_objective(c(1, 2))
lp_con <- L_constraint(c(1, 1), dir="==", rhs=2)
lp_bound <- V_bound(ui=1:2, ub=c(3, 3))
lp <- OP(objective=lp_obj, constraints=lp_con, bounds=lp_bound, maximum=FALSE)
bounds(lp)
x <- ROI_solve(lp)
x$objval
x$solution
bounds(lp) <- V_bound(ui=1:2, ub=c(1, 1))
y <- ROI_solve(lp)
y$objval
y$solution

End(Not run)

constraint (Constructors)

constraint

Description

ROI distinguishes between 5 different types of constraint:

• No Constraint NO_constraint (inherits from "constraint")

• Linear Constraint L_constraint (inherits from "constraint")

• Quadratic Constraint Q_constraint (inherits from "constraint")

• Conic Constraint C_constraint (inherits from "constraint")

• Function Constraint F_constraint (inherits from "constraint")

Usage

S3 method for class 'constraint'
c(..., recursive = FALSE)

as.constraint(x)

constraint directions 7

is.constraint(x)

S3 method for class 'constraint'
dim(x)

Arguments

recursive a logical, giving if the arguments should be combined recursively.

x an object to be coerced or tested.

... objects to be combined.

constraint directions Replicate "==", ">=" and "<=" Signs

Description

The utility functions eq, leq and geq replicate the signs "==", ">=" and "<=" n times.

Usage

eq(n)

leq(n)

geq(n)

Arguments

n an integer giving the number of times the sign should be repeated.

Examples

eq(3)
leq(2)
geq(4)

8 constraints (Set/Get)

constraints (Set/Get) Constraints - Accessor and Mutator Functions

Description

The constraints of a given optimization problem (OP) can be accessed or mutated via the method
'constraints'.

Usage

constraints(x)

S3 method for class 'OP'
constraints(x)

constraints(x) <- value

Arguments

x an object used to select the method.

value an R object.

Value

the extracted constraints object.

Author(s)

Stefan Theussl

Examples

minimize: x + 2 y
subject to: x + y >= 1
x, y >= 0
x <- OP(1:2)
constraints(x) <- L_constraint(c(1, 1), ">=", 1)
constraints(x)

C_constraint 9

C_constraint Conic Constraints

Description

Conic constraints are often written in the form

Lx+ s = rhs

where L is a m × n (sparse) matrix and s ∈ K are the slack variables restricted to some cone K
which is typically the product of simpler cones K =

∏
Ki. The right hand side rhs is a vector of

length m.

Usage

C_constraint(L, cones, rhs, names = NULL)

as.C_constraint(x, ...)

is.C_constraint(x)

S3 method for class 'C_constraint'
length(x)

S3 method for class 'C_constraint'
variable.names(object, ...)

S3 method for class 'C_constraint'
terms(x, ...)

Arguments

L a numeric vector of length n (a single constraint) or a matrix of dimension m×n,
where n is the number of objective variables and m is the number of constraints.
Matrices can be of class "simple_triplet_matrix" to allow a sparse repre-
sentation of constraints.

cones an object of class "cone" created by the combination, of K_zero, K_lin, K_soc,
K_psd, K_expp, K_expd, K_powp or K_powd.

rhs a numeric vector giving the right hand side of the constraints.

names an optional character vector giving the names of x (column names of L).

x an R object.

... further arguments passed to or from other methods (currently ignored).

object an R object.

Value

an object of class "C_constraint" which inherits from "constraint".

10 equal

Examples

minimize: x1 + x2 + x3
subject to:
x1 == sqrt(2)
||(x2, x3)|| <= x1
x <- OP(objective = c(1, 1, 1),

constraints = C_constraint(L = rbind(rbind(c(1, 0, 0)),
diag(x=-1, 3)),

cones = c(K_zero(1), K_soc(3)),
rhs = c(sqrt(2), rep(0, 3))),

types = rep("C", 3),
bounds = V_bound(li = 1:3, lb = rep(-Inf, 3)), maximum = FALSE)

equal Compare two Objects

Description

The utility function equal can be used to compare two ROI objects and is mainly used for testing
purposes.

Usage

equal(x, y, ...)

S3 method for class '`NULL`'
equal(x, y, ...)

S3 method for class 'logical'
equal(x, y, ...)

S3 method for class 'integer'
equal(x, y, ...)

S3 method for class 'numeric'
equal(x, y, ...)

S3 method for class 'character'
equal(x, y, ...)

S3 method for class 'list'
equal(x, y, ...)

S3 method for class 'simple_triplet_matrix'
equal(x, y, ...)

S3 method for class 'L_constraint'

F_constraint 11

equal(x, y, ...)

S3 method for class 'Q_constraint'
equal(x, y, ...)

S3 method for class 'V_bound'
equal(x, y, ...)

Arguments

x an R object to be compared with object y.

y an R object to be compared with object x.

... optional arguments to equal.

Value

TRUE if x and y are equal FALSE otherwise.

Examples

compare numeric values
equal(1e-4, 1e-5, tol=1e-3)
L_constraint
lc1 <- L_constraint(diag(1), dir=c("=="), rhs=1)
lc2 <- L_constraint(diag(2), dir=c("==", "<="), rhs=1:2)
equal(lc1, lc1)
equal(lc1, lc2)

F_constraint Function Constraints

Description

Function (or generally speaking nonlinear) constraints are typically of the form

f(x) ≤ b

where f() is a well-defined R function taking the objective variables x (typically a numeric vector)
as arguments. b is called the right hand side of the constraints.

Usage

F_constraint(F, dir, rhs, J = NULL, names = NULL)

S3 method for class 'F_constraint'
variable.names(object, ...)

is.F_constraint(x)

12 F_objective

as.F_constraint(x, ...)

S3 method for class '`NULL`'
as.F_constraint(x, ...)

S3 method for class 'NO_constraint'
as.F_constraint(x, ...)

S3 method for class 'constraint'
as.F_constraint(x, ...)

S3 method for class 'F_constraint'
terms(x, ...)

Arguments

F a function or a list of functions of length m. Each function takes n pa-
rameters as input and must return a scalar. Thus, n is the number of objective
variables and m is the number of constraints.

dir a character vector with the directions of the constraints. Each element must be
one of "<=", ">=" or "==".

rhs a numeric vector with the right hand side of the constraints.

J an optional function holding the Jacobian of F.

names an optional character vector giving the names of x.

object an R object.

x object to be tested.

... further arguments passed to or from other methods (currently ignored).

Value

an object of class "F_constraint" which inherits from "constraint".

Author(s)

Stefan Theussl

F_objective General (Nonlinear) Objective Function

Description

General objective function f(x) to be optimized.

G 13

Usage

F_objective(F, n, G = NULL, H = NULL, names = NULL)

S3 method for class 'F_objective'
terms(x, ...)

as.F_objective(x)

S3 method for class 'F_objective'
variable.names(object, ...)

Arguments

F an R "function" taking a numeric vector x of length n as argument.

n the number of objective variables.

G an R "function" returning the gradient at x.

H an optional function holding the Hessian of F.

names an optional character vector giving the names of x.

x an R object.

... further arguments passed to or from other methods

object an R object.

Value

an object of class "F_objective" which inherits from "objective".

Author(s)

Stefan Theussl

G Extract Gradient information

Description

Extract the gradient from its argument (typically a ROI object of class "objective").

Usage

G(x, ...)

Arguments

x an object used to select the method.

... further arguments passed down to the grad() function for calculating gradients
(only for "F_objective").

14 is.default_bound

Details

By default ROI uses the "grad" function from the numDeriv package to derive the gradient infor-
mation. An alternative function can be provided via "ROI_options". For example ROI_options("gradient",
myGrad) would tell ROI to use the function "myGrad" for the gradient calculation. The only re-
quirement to the function "myGrad" is that it has the argument "func" which takes a function with
a scalar real result.

Value

a "function".

Examples

Not run:
f <- function(x) {

return(100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2)
}
x <- OP(objective = F_objective(f, n=2L),

bounds = V_bound(li=1:2, ui=1:2, lb=c(-3, -3), ub=c(3, 3)))
G(objective(x))(c(0, 0)) ## gradient numerically approximated by numDeriv

f.gradient <- function(x) {
return(c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1])))
}
x <- OP(objective = F_objective(f, n=2L, G=f.gradient),

bounds = V_bound(li=1:2, ui=1:2, lb=c(-3, -3), ub=c(3, 3)))
G(objective(x))(c(0, 0)) ## gradient calculated by f.gradient

End(Not run)

is.default_bound Check for default bounds

Description

tests if the given object is an variable bound which represents default values only (i.e., all lower
bounds are 0 and all upper bounds as Inf).

Usage

is.default_bound(x)

Arguments

x object to be tested

J 15

Value

a logical of length one indicating wether default bounds are given

J Extract Jacobian Information

Description

Derive the Jacobian for a given constraint.

Usage

J(x, ...)

S3 method for class 'L_constraint'
J(x, ...)

S3 method for class 'Q_constraint'
J(x, ...)

Arguments

x a L_constraint, Q_constraint or F_constraint.

... further arguments

Value

a list of functions

Examples

L <- matrix(c(3, 4, 2, 2, 1, 2, 1, 3, 2), nrow=3, byrow=TRUE)
lc <- L_constraint(L = L, dir = c("<=", "<=", "<="), rhs = c(60, 40, 80))
J(lc)

16 K_zero

K_zero Cone Constructors

Description

Constructor functions for the different cone types. Currently ROI supports eight different types of
cones.

• Zero cone
Kzero = {0}

• Nonnegative (linear) cone
Klin = {x|x ≥ 0}

• Second-order cone

Ksoc = {(t, x) | ||x||2 ≤ t, x ∈ Rn, t ∈ R}

• Positive semidefinite cone

Kpsd =
{
X |min(eig(X)) ≥ 0, X = XT , X ∈ Rn×n

}
• Exponential cone

Kexpp =
{
(x, y, z) | ye

x
y ≤ z, y > 0

}
• Dual exponential cone

Kexpd =
{
(u, v, w) | − ue

v
u ≤ ew, u < 0

}
• Power cone

Kpowp =
{
(x, y, z) | xα ∗ y(1−α) ≥ |z|, x ≥ 0, y ≥ 0

}
• Dual power cone

Kpowd =

{
(u, v, w) |

(u

α

)α

∗
(

v

(1− α)

)(1−α)

≥ |w|, u ≥ 0, v ≥ 0

}

Usage

K_zero(size)

K_lin(size)

K_soc(sizes)

K_psd(sizes)

K_expp(size)

L_constraint 17

K_expd(size)

K_powp(alpha)

K_powd(alpha)

Arguments

size a integer giving the size of the cone, if the dimension of the cones is fixed (i.e.
zero, lin, expp, expd) the number of cones is sufficient to define the dimension
of the product cone.

sizes a integer giving the sizes of the cones, if the dimension of the cones is not fixed
(i.e. soc, psd) we have to define the sizes of each single cone.

alpha a numeric vector giving the alphas for the (dual) power cone.

Examples

K_zero(3) ## 3 equality constraints
K_lin(3) ## 3 constraints where the slack variable s lies in the linear cone

L_constraint Linear Constraints

Description

Linear constraints are typically of the form

Lx ≤ rhs

where L is a m × n (sparse) matrix of coefficients to the objective variables x and the right hand
side rhs is a vector of length m.

Usage

L_constraint(L, dir, rhs, names = NULL)

S3 method for class 'L_constraint'
variable.names(object, ...)

as.L_constraint(x, ...)

is.L_constraint(x)

S3 method for class 'L_constraint'
length(x)

S3 method for class 'L_constraint'
terms(x, ...)

18 L_objective

Arguments

L a numeric vector of length n (a single constraint) or a matrix of dimension m×n,
where n is the number of objective variables and m is the number of constraints.
Matrices can be of class "simple_triplet_matrix" to allow a sparse repre-
sentation of constraints.

dir a character vector with the directions of the constraints. Each element must be
one of "<=", ">=" or "==".

rhs a numeric vector with the right hand side of the constraints.

names an optional character vector giving the names of x (column names of A).

object an R object.

... further arguments passed to or from other methods (currently ignored).

x an R object.

Value

an object of class "L_constraint" which inherits from "constraint".

Author(s)

Stefan Theussl

L_objective Linear Objective Function

Description

A linear objective function is typically of the form

c⊤x

where c is a (sparse) vector of coefficients to the n objective variables x.

Usage

L_objective(L, names = NULL)

S3 method for class 'L_objective'
terms(x, ...)

as.L_objective(x)

S3 method for class 'L_objective'
variable.names(object, ...)

maximum (Set/Get) 19

Arguments

L a numeric vector of length n or an object of class "simple_triplet_matrix"
(or coercible to such) with dimension 1× n, where n is the number of objective
variables. Names will be preserved and used e.g., in the print method.

names an optional character vector giving the names of x (column names of L).

x an R object.

... further arguments passed to or from other methods

object an R object.

Value

an object of class "L_objective" which inherits from "Q_objective" and "objective".

Author(s)

Stefan Theussl

maximum (Set/Get) Maximum - Accessor and Mutator Functions

Description

The maximum of a given optimization problem (OP) can be accessed or mutated via the method
'maximum'. If 'maximum' is set to TRUE the OP is maximized, if 'maximum' is set to FALSE the OP
is minimized.

Usage

maximum(x)

maximum(x) <- value

Arguments

x an object used to select the method.

value an R object.

Value

a logical giving the direction.

20 nlminb2

Examples

maximize: x + y
subject to: x + y <= 2
x, y >= 0
x <- OP(objective = c(1, 1),

constraints = L_constraint(L = c(1, 1), dir = "<=", rhs = 2),
maximum = FALSE)

maximum(x) <- TRUE
maximum(x)

nlminb2 Nonlinear programming with nonlinear constraints.

Description

This function was contributed by Diethelm Wuertz.

Usage

nlminb2(
start,
objective,
eqFun = NULL,
leqFun = NULL,
lower = -Inf,
upper = Inf,
gradient = NULL,
hessian = NULL,
control = list()

)

Arguments

start numeric vector of start values.
objective the function to be minimized f(x).
eqFun functions specifying equal constraints of the form hi(x) = 0. Default: NULL (no

equal constraints).
leqFun functions specifying less equal constraints of the form gi(x) <= 0. Default:

NULL (no less equal constraints).
lower a numeric representing lower variable bounds. Repeated as needed. Default:

-Inf.
upper a numeric representing upper variable bounds. Repeated as needed. Default:

Inf.
gradient gradient of f(x). Default: NULL (no gradiant information).
hessian hessian of f(x). Default: NULL (no hessian provided).
control a list of control parameters. See nlminb() for details. The parameter "scale"

is set here in contrast to nlminb() .

NO_constraint 21

Value

list()

Author(s)

Diethelm Wuertz

Examples

Equal constraint function
eval_g0_eq <- function(x, params = c(1,1,-1)) {

return(params[1]*x^2 + params[2]*x + params[3])
}

eval_f0 <- function(x, ...) {
return(1)

}

NO_constraint Class: "NO_constraint"

Description

In case the constraints slot in the problem object is NULL the return value of a call of constraints()
will return an object of class "NO_constraint" which inherits from "L_constraint".

Usage

NO_constraint(n_obj)

as.NO_constraint(x, ...)

is.NO_constraint(x)

Arguments

n_obj a numeric vector of length 1 representing the number of objective variables.

x an R object.

... further arguments passed to or from other methods (currently ignored).

Value

an object of class "NO_constraint" which inherits from "L_constraint" and "constraint".

Author(s)

Stefan Theussl

22 OP

objective (Set/Get) Objective - Accessor and Mutator Functions

Description

The objective of a given optimization problem (OP) can be accessed or mutated via the method
'objective'.

Usage

objective(x)

objective(x) <- value

as.objective(x)

Arguments

x an object used to select the method.

value an R object.

Value

a function inheriting from "objective".

Author(s)

Stefan Theussl

Examples

x <- OP()
objective(x) <- 1:3

OP Optimization Problem Constructor

Description

Optimization problem constructor

Usage

OP(objective, constraints, types, bounds, maximum = FALSE)

as.OP(x)

OP 23

Arguments

objective an object inheriting from class "objective".

constraints an object inheriting from class "constraints".

types a character vector giving the types of the objective variables, with "C", "I",
and "B" corresponding to continuous, integer, and binary, respectively, or NULL
(default), taken as all-continuous. Recycled as needed.

bounds NULL (default) or a list with elements upper and lower containing the indices
and corresponding bounds of the objective variables. The default for each vari-
able is a bound between 0 and Inf.

maximum a logical giving the direction of the optimization. TRUE means that the objective
is to maximize the objective function, FALSE (default) means to minimize it.

x an R object.

Value

an object of class "OP".

Author(s)

Stefan Theussl

References

Theussl S, Schwendinger F, Hornik K (2020). ’ROI: An Extensible R Optimization Infrastructure.’
Journal of Statistical Software_, *94*(15), 1-64. doi: 10.18637/jss.v094.i15 (URL: https://doi.org/10.18637/jss.v094.i15).

Examples

Simple linear program.
maximize: 2 x_1 + 4 x_2 + 3 x_3
subject to: 3 x_1 + 4 x_2 + 2 x_3 <= 60
2 x_1 + x_2 + x_3 <= 40
x_1 + 3 x_2 + 2 x_3 <= 80
x_1, x_2, x_3 are non-negative real numbers

LP <- OP(c(2, 4, 3),
L_constraint(L = matrix(c(3, 2, 1, 4, 1, 3, 2, 2, 2), nrow = 3),

dir = c("<=", "<=", "<="),
rhs = c(60, 40, 80)),

max = TRUE)
LP

Simple quadratic program.
minimize: - 5 x_2 + 1/2 (x_1^2 + x_2^2 + x_3^2)
subject to: -4 x_1 - 3 x_2 >= -8
2 x_1 + x_2 >= 2
- 2 x_2 + x_3 >= 0

QP <- OP(Q_objective (Q = diag(1, 3), L = c(0, -5, 0)),

24 Q_constraint

L_constraint(L = matrix(c(-4,-3,0,2,1,0,0,-2,1),
ncol = 3, byrow = TRUE),

dir = rep(">=", 3),
rhs = c(-8,2,0)))

QP

OP_signature Optimization Problem Signature

Description

Takes an object of class "OP" (optimization problem) and returns the signature of the optimization
problem.

Usage

OP_signature(x)

Arguments

x an object of class "OP"

Value

A data.frame giving the signature of the the optimization problem.

Q_constraint Quadratic Constraints

Description

Quadratic constraints are typically of the form

1

2
x⊤Qix+ Lix ≤ rhsi

where Qi is the ith of m (sparse) matrices (all of dimension n × n) giving the coefficients of the
quadratic part of the equation. The m× n (sparse) matrix L holds the coefficients of the linear part
of the equation and Li refers to the ith row. The right hand side of the constraints is represented by
the vector rhs.

Q_constraint 25

Usage

Q_constraint(Q, L, dir, rhs, names = NULL)

S3 method for class 'Q_constraint'
variable.names(object, ...)

as.Q_constraint(x)

is.Q_constraint(x)

S3 method for class 'Q_constraint'
length(x)

S3 method for class 'Q_constraint'
terms(x, ...)

Arguments

Q a list of (sparse) matrices representing the quadratic part of each constraint.

L a numeric vector of length n (a single constraint) or a matrix of dimension m×n,
where n is the number of objective variables and m is the number of constraints.
Matrices can be of class "simple_triplet_matrix" to allow a sparse repre-
sentation of constraints.

dir a character vector with the directions of the constraints. Each element must be
one of "<=", ">=" or "==".

rhs a numeric vector with the right hand side of the constraints.

names an optional character vector giving the names of x (row/column names of Q,
column names of A).

object an R object.

... further arguments passed to or from other methods (currently ignored).

x an R object.

Value

an object of class "Q_constraint" which inherits from "constraint".

Author(s)

Stefan Theussl

26 Q_objective

Q_objective Quadratic Objective Function

Description

A quadratic objective function is typically of the form

1

2
x⊤Qx+ c⊤x

where Q is a (sparse) matrix defining the quadratic part of the function and c is a (sparse) vector of
coefficients to the n defining the linear part.

Usage

Q_objective(Q, L = NULL, names = NULL)

S3 method for class 'Q_objective'
terms(x, ...)

as.Q_objective(x)

S3 method for class 'Q_objective'
variable.names(object, ...)

Arguments

Q a n× n matrix with numeric entries representing the quadratic part of objective
function. Sparse matrices of class "simple_triplet_matrix" can be supplied.

L a numeric vector of length n, where n is the number of objective variables.

names an optional character vector giving the names of x (row/column names of Q,
column names of L).

x an R object.

... further arguments passed to or from other methods

object an R object.

Value

an object of class "Q_objective" which inherits from "objective".

Author(s)

Stefan Theussl

rbind.constraint 27

rbind.constraint Combine Constraints

Description

Take a sequence of constraints (ROI objects) arguments and combine by rows, i.e., putting several
constraints together.

Usage

S3 method for class 'constraint'
rbind(..., use.names = FALSE, recursive = FALSE)

Arguments

... constraints objects to be concatenated.

use.names a logical if FALSE the names of the constraints are ignored when combining
them, if TRUE the constraints are combined based on their variable.names.

recursive a logical, if TRUE, rbind .

Details

The output type is determined from the highest type of the components in the hierarchy
"L_constraint" < "Q_constraint" < "F_constraint" and
"L_constraint" < "C_constraint".

Value

an object of a class depending on the input which also inherits from "constraint". See Details.

Author(s)

Stefan Theussl

ROI_applicable_solvers

Obtain Applicable Solvers

Description

ROI_applicable_solvers takes as argument an optimization problem (object of class 'OP') and
returns a vector giving the applicable solver. The set of applicable solver is restricted on the avail-
able solvers, which means if solver "A" and "B" would be applicable but a ROI.plugin is only
installed for solver "A" only solver "A" would be listed as applicable solver.

28 ROI_available_solvers

Usage

ROI_applicable_solvers(op)

Arguments

op an ROI-object of type 'OP'.

Value

An character vector giving the applicable solver, for a certain optimization problem.

ROI_available_solvers Available Solvers

Description

ROI_available_solvers returns a data.frame of details corresponding to solvers currently available
at one or more repositories. The current list of packages is downloaded over the Internet.

Usage

ROI_available_solvers(x = NULL, method = getOption("download.file.method"))

Arguments

x an object used to select a method. It can be either an object of class "OP" or an
object of class "ROI_signature" or NULL.

method a character string giving the method to be used for downloading files. For more
information see download.file.

Details

To get an overview about the available solvers ROI_available_solvers() can be used. If a sig-
nature or an object of class "OP" is provided ROI will only return the solvers applicable the op-
timization problem. Note since NLP solver are also applicable for LP and QP they will also be
listed.

Value

a data.frame with one row per package and repository.

ROI_options 29

Examples

Not run:
ROI_available_solvers()
op <- OP(1:2)
ROI_available_solvers(op)
ROI_available_solvers(OP_signature(op))

End(Not run)

ROI_options ROI Options

Description

Allow the user to set and examine a variety of ROI options like the default solver or the function
used to compute the gradients.

Usage

ROI_options(option, value)

Arguments

option any options can be defined, using ’key, value’ pairs. If ’value’ is missing the
current set value is returned for the given ’option’. If both are missing. all set
options are returned.

value the corresponding value to set for the given option.

ROI_plugin_add_status_code_to_db

Add Status Code to the Status Database

Description

Add a status code to the status database.

Usage

ROI_plugin_add_status_code_to_db(solver, code, symbol, message, roi_code = 1L)

Arguments

solver a character string giving the name of the solver.
code an integer giving the status code of the solver.
symbol a character string giving the status symbol.
message a character string used as status message.
roi_code an integer giving the ROI status code, 1L for failure and 0L for success.

30 ROI_plugin_build_equality_constraints

See Also

Other plugin functions: ROI_plugin_build_equality_constraints(), ROI_plugin_build_inequality_constraints(),
ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(), ROI_plugin_make_signature(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

Examples

Not run:
solver <- "ecos"
ROI_plugin_add_status_code_to_db(solver, 0L, "ECOS_OPTIMAL", "Optimal solution found.", 0L)
ROI_plugin_add_status_code_to_db(solver, -7L, "ECOS_FATAL", "Unknown problem in solver.", 1L)
solver <- "glpk"
ROI_plugin_add_status_code_to_db(solver, 5L, "GLP_OPT", "Solution is optimal.", 0L)
ROI_plugin_add_status_code_to_db(solver, 1L, "GLP_UNDEF", "Solution is undefined.", 1L)

End(Not run)

ROI_plugin_build_equality_constraints

Build Functional Equality Constraints

Description

There exist different forms of functional equality constraints, this function transforms the form used
in ROI into the forms commonly used by R optimization solvers.

Usage

ROI_plugin_build_equality_constraints(x, type = c("eq_zero", "eq_rhs"))

Arguments

x an object of type "OP".

type an character giving the type of the function to be returned, possible values are
"eq_zero" or "eq_rhs". For more information see Details.

Details

There are two types of equality constraints commonly used in R

eq_zero: h(x) = 0 and

eq_rhs: h(x) = rhs .

Value

Returns one function, which combines all the functional constraints.

ROI_plugin_build_inequality_constraints 31

Note

This function only intended for plugin authors.

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_inequality_constraints(),
ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(), ROI_plugin_make_signature(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_build_inequality_constraints

Build Functional Inequality Constraints

Description

There exist different forms of functional inequality constraints, this function transforms the form
used in ROI into the forms commonly used by R optimization solvers.

Usage

ROI_plugin_build_inequality_constraints(x, type = c("leq_zero", "geq_zero"))

Arguments

x an object of type "OP".

type an character giving the type of the function to be returned, possible values are
"leq_zero" and "geq_zero". For more information see Details.

Details

There are three types of inequality constraints commonly used in R

leq_zero: h(x) ≤ 0 and

geq_zero: h(x) ≥ 0 and

leq_geq_rhs: lhs ≥ h(x) ≤ rhs .

Value

Returns one function, which combines all the functional constraints.

Note

This function only intended for plugin authors.

32 ROI_plugin_canonicalize_solution

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(), ROI_plugin_make_signature(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_canonicalize_solution

Canonicalize Solution

Description

Transform the solution to a standardized form.

Usage

ROI_plugin_canonicalize_solution(
solution,
optimum,
status,
solver,
message = NULL,
...

)

Arguments

solution a numeric or integer vector giving the solution of the optimization problem.

optimum a numeric giving the optimal value.

status an integer giving the status code (exit flag).

solver a character string giving the name of the solver.

message an optional R object giving the original solver message.

... further arguments to be stored in the solution object.

Value

an object of class "OP_solution".

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_get_solver_name(), ROI_plugin_make_signature(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_get_solver_name 33

ROI_plugin_get_solver_name

Get Solver Name

Description

Get the name of the solver plugin.

Usage

ROI_plugin_get_solver_name(pkgname)

Arguments

pkgname a string giving the package name.

Value

Returns the name of the solver as character.

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_make_signature(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_make_signature

Make Signatures

Description

Create a solver signature, the solver signatures are used to indicate which problem types can be
solved by a given solver.

Usage

ROI_plugin_make_signature(...)

Arguments

... signature definitions

Value

an object of class "ROI_signature" (inheriting from data.frame) with the supported signatures.

34 ROI_plugin_register_reader_writer

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(),
ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

Examples

ROI_make_LP_signatures
lp_signature <- ROI_plugin_make_signature(objective = "L",

constraints = "L",
types = c("C"),
bounds = c("X", "V"),
cones = c("X"),
maximum = c(TRUE, FALSE))

ROI_plugin_register_reader_writer

Register Reader / Writer Method

Description

Register a new reader / writer method to be used with read.io / write.io.

Usage

ROI_plugin_register_reader(type, solver, method)

ROI_plugin_register_writer(type, solver, signature, method)

Arguments

type a character giving the type of the file (e.g. "mps_free", "mps_fixed", "lp_cplex",
"lp_lpsolve", ...).

solver a character giving the name of the plugin (e.g. "lpsolve").

method a function registered as reader / writer method.

signature a data.frame giving the signature of the optimization problems which can be
read or written by the registered method.

Details

• File Types

• Method

ROI_plugin_register_reformulation 35

Value

NULL on success

See Also

Other input output: ROI_read(), ROI_registered_reader(), ROI_registered_writer(), ROI_write()

ROI_plugin_register_reformulation

Register Reformulation Method

Description

Register a new reformulation method to be used with ROI_reformulate.

Usage

ROI_plugin_register_reformulation(
from,
to,
method_name,
method,
description = "",
cite = "",
author = ""

)

Arguments

from a data.frame with the supported signatures.

to a data.frame with the supported signatures.

method_name a character string giving the name of the method.

method a function registered as solver method.

description a optional character string giving a description of what the reformulation does.

cite a optional character string indicating a reference, such as the name of a book.

author a optional character string giving the name of the author.

Value

TRUE on success

See Also

Other reformulate functions: ROI_reformulate(), ROI_registered_reformulations()

36 ROI_plugin_register_solver_method

ROI_plugin_register_solver_control

Register Solver Controls

Description

Register a new solver control argument.

Usage

ROI_plugin_register_solver_control(solver, args, roi_control = "X")

Arguments

solver a character string giving the solver name.

args a character vector specifying with the supported signatures.

roi_control a character vector specifying the corresponding ROI control argument.

Value

TRUE on success

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(),
ROI_plugin_make_signature(), ROI_plugin_register_solver_method(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_register_solver_method

Register Solver Method

Description

Register a new solver method.

Usage

ROI_plugin_register_solver_method(signatures, solver, method, plugin = solver)

ROI_plugin_solution_prim 37

Arguments

signatures a data.frame with the supported signatures.

solver a character string giving the solver name.

method a function registered as solver method.

plugin a character string giving the plgug-in name.

Value

TRUE on success

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(),
ROI_plugin_make_signature(), ROI_plugin_register_solver_control(), ROI_plugin_solution_prim(),
ROI_registered_solver_control()

ROI_plugin_solution_prim

Extract solution from the solver.

Description

Generic getter functions used by the function solution. These functions can be used to write a
solver specific getter function.

Usage

ROI_plugin_solution_prim(x, force = FALSE)

S3 method for class 'OP_solution'
ROI_plugin_solution_prim(x, force = FALSE)

S3 method for class 'OP_solution_set'
ROI_plugin_solution_prim(x, force = FALSE)

ROI_plugin_solution_dual(x)

ROI_plugin_solution_aux(x)

ROI_plugin_solution_psd(x)

ROI_plugin_solution_msg(x)

ROI_plugin_solution_status_code(x)

38 ROI_read

ROI_plugin_solution_status(x)

ROI_plugin_solution_objval(x, force = FALSE)

Arguments

x an R object inheriting from solution or solutions.

force a logical to control the return value in the case that the status code is equal to 1
(i.e. something went wrong). By default force is FALSE and a solution is only
provided if the status code is equal to 0 (i.e. success). If force is TRUE ROI
ignores the status code and also returns solutions where the solver signaled an
issue.

Value

the corresponding solution/s.

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(),
ROI_plugin_make_signature(), ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(),
ROI_registered_solver_control()

ROI_read Read Optimization Problems

Description

Reads an optimization problem from various file formats and returns an optimization problem of
class "OP".

Usage

ROI_read(file, type, solver = NULL, ...)

Arguments

file a character giving the name of the file the optimization problem is to be read
from.

type a character giving the type of the file (e.g. "mps_free", "mps_fixed", "lp_cplex",
"lp_lpsolve", ...).

solver an optional character giving the name of the plugin (e.g. "lpsolve").

... further arguments passed on to the read method.

Value

x an optimization problem of class "OP".

ROI_reformulate 39

See Also

Other input output: ROI_plugin_register_reader_writer, ROI_registered_reader(), ROI_registered_writer(),
ROI_write()

ROI_reformulate Reformulate a Optimization Problem

Description

Register a new reformulation method.

Usage

ROI_reformulate(x, to, method = NULL)

Arguments

x an object of class 'OP' giving the optimization problem.

to a data.frame with the supported signatures.

method a character string giving the name of the method.

Details

Currently ROI provides two reformulation methods.

1. bqp_to_lp transforms binary quadratic problems to linear mixed integer problems.

2. qp_to_socp transforms quadratic problems with linear constraints to second-order cone prob-
lems.

Value

the reformulated optimization problem.

See Also

Other reformulate functions: ROI_plugin_register_reformulation(), ROI_registered_reformulations()

Examples

Example from
Boros, Endre, and Peter L. Hammer. "Pseudo-boolean optimization."
Discrete applied mathematics 123, no. 1 (2002): 155-225.

minimize: 3 x y + y z - x - 4 y - z + 6

Q <- rbind(c(0, 3, 0),
c(3, 0, 1),
c(0, 1, 0))

40 ROI_registered_reader

L <- c(-1, -4, -1)
x <- OP(objective = Q_objective(Q = Q, L = L), types = rep("B", 3))

reformulate into a mixed integer linear problem
milp <- ROI_reformulate(x, "lp")

reformulate into a second-order cone problem
socp <- ROI_reformulate(x, "socp")

ROI_registered_reader List Registered Reader

Description

Retrieve meta information about the registered reader

Usage

ROI_registered_reader(type = NULL)

Arguments

type an optional character giving the type of the file (e.g. "mps_free", "mps_fixed",
"lp_cplex", "lp_lpsolve", ...).

Value

x a data.frame containing information about the registered readers.

See Also

Other input output: ROI_plugin_register_reader_writer, ROI_read(), ROI_registered_writer(),
ROI_write()

Examples

ROI_registered_reader()
ROI_registered_reader("mps_fixed")

ROI_registered_reformulations 41

ROI_registered_reformulations

Registered Reformulations

Description

Retrieve meta information about the registered reformulations.

Usage

ROI_registered_reformulations()

Value

a data.frame giving some information about the registered reformulation methods.

See Also

Other reformulate functions: ROI_plugin_register_reformulation(), ROI_reformulate()

Examples

ROI_registered_reformulations()

ROI_registered_solvers

Solver Tools

Description

Retrieve the names of installed or registered solvers.

Usage

ROI_registered_solvers(...)

ROI_installed_solvers(...)

Arguments

... arguments passed on to installed.packages.

Details

Whereas ROI_installed_solvers() may lists the names of installed solvers that do not neces-
sarily work, ROI_registered_solvers() lists all solvers that can be used to solve optimization
problems.

42 ROI_registered_writer

Value

a named character vector.

Author(s)

Stefan Theussl

ROI_registered_solver_control

Registered Solver Controls

Description

Retrieve the registered solver control arguments.

Usage

ROI_registered_solver_control(solver)

Arguments

solver a character string giving the solver name.

Value

a data.frame giving the control arguments.

See Also

Other plugin functions: ROI_plugin_add_status_code_to_db(), ROI_plugin_build_equality_constraints(),
ROI_plugin_build_inequality_constraints(), ROI_plugin_canonicalize_solution(), ROI_plugin_get_solver_name(),
ROI_plugin_make_signature(), ROI_plugin_register_solver_control(), ROI_plugin_register_solver_method(),
ROI_plugin_solution_prim()

ROI_registered_writer Write Optimization Problems

Description

Write an optimization problem to file.

Usage

ROI_registered_writer(signature = NULL)

ROI_require_solver 43

Arguments

signature an optimization problem of class "OP".

See Also

Other input output: ROI_plugin_register_reader_writer, ROI_read(), ROI_registered_reader(),
ROI_write()

Examples

ROI_registered_writer()
op <- OP(1:2)
ROI_registered_writer(OP_signature(op))

ROI_require_solver Require Solver

Description

Loads the specified solver and registers it in an internal data base. A request to load an already
loaded solver has no effect.

Usage

ROI_require_solver(solver, warn = 0)

Arguments

solver a character string giving the solver name.

warn an integer giving if the warn level. For warn = -1 the warning is ignored. For
warn = 0 the warning is stored and printed later. For warn = 1 the warning is
printed immediately. For warn = 2 the warning is turned into an error. Default
is warn = 0.

Value

Returns TRUE on success otherwise FALSE.

44 ROI_solve

ROI_solve Solve an Optimization Problem

Description

Solve a given optimization problem. This function uses the given solver (or searches for an appro-
priate solver) to solve the supplied optimization problem.

Usage

ROI_solve(x, solver, control = list(), ...)

Arguments

x an optimization problem of class "OP".

solver a character vector specifying the solver to use. If missing, then the default solver
returned by ROI_options is used.

control a list with additional control parameters for the solver. This is solver specific so
please consult the corresponding documentation.

... a list of control parameters (overruling those specified in control).

Value

a list containing the solution and a message from the solver.

solution the vector of optimal coefficients

objval the value of the objective function at the optimum

status a list giving the status code and message form the solver. The status code is 0 on success
(no error occurred) 1 otherwise.

message a list giving the original message provided by the solver.

Author(s)

Stefan Theussl

References

Theussl S, Schwendinger F, Hornik K (2020). ’ROI: An Extensible R Optimization Infrastructure.’
Journal of Statistical Software_, *94*(15), 1-64. doi: 10.18637/jss.v094.i15 (URL: https://doi.org/10.18637/jss.v094.i15).

ROI_solver_signature 45

Examples

Rosenbrock Banana Function

objective
f <- function(x) {

return(100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2)
}
gradient
g <- function(x) {

return(c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),
200 * (x[2] - x[1] * x[1])))

}
bounds
b <- V_bound(li = 1:2, ui = 1:2, lb = c(-3, -3), ub = c(3, 3))
op <- OP(objective = F_objective(f, n = 2L, G = g),

bounds = b)
res <- ROI_solve(op, solver = "nlminb", control = list(start = c(-1.2, 1)))
solution(res)
Portfolio optimization - minimum variance

get monthly returns of 30 US stocks
data(US30)
r <- na.omit(US30)
objective function to minimize
obj <- Q_objective(2*cov(r))
full investment constraint
full_invest <- L_constraint(rep(1, ncol(US30)), "==", 1)
create optimization problem / long-only
op <- OP(objective = obj, constraints = full_invest)
solve the problem - only works if a QP solver is registered
Not run:
res <- ROI_solve(op)
res
sol <- solution(res)
names(sol) <- colnames(US30)
round(sol[which(sol > 1/10^6)], 3)

End(Not run)

ROI_solver_signature Obtain Solver Signature

Description

Obtain the signature of a registered solver.

Usage

ROI_solver_signature(solver)

46 ROI_write

Arguments

solver a character string giving the name of the solver.

Value

the solver signature if the specified solver is registered NULL otherwise.

Examples

ROI_solver_signature("nlminb")

ROI_write Write Optimization Problems

Description

Write an optimization problem to file.

Usage

ROI_write(x, file, type, solver = NULL, ...)

Arguments

x an optimization problem of class "OP".

file a character giving the name of the file the optimization problem is to be written.

type a character giving the type of the file (e.g. "freemps", "mps_fixed", "lp_cplex",
"lp_lpsolve", ...).

solver an optional character giving the name of the plugin (e.g. "lpsolve").

... further arguments passed on to the write method.

See Also

Other input output: ROI_plugin_register_reader_writer, ROI_read(), ROI_registered_reader(),
ROI_registered_writer()

solution 47

solution Extract Solution

Description

The solution can be accessed via the method 'solution'.

Usage

solution(
x,
type = c("primal", "dual", "aux", "psd", "msg", "objval", "status", "status_code"),
force = FALSE,
...

)

Arguments

x an object of type 'OP_solution' or 'OP_solution_set'.

type a character giving the name of the solution to be extracted.

force a logical to control the return value in the case that the status code is equal to 1
(i.e. something went wrong). By default force is FALSE and a solution is only
provided if the status code is equal to 0 (i.e. success). If force is TRUE ROI
ignores the status code and also returns solutions where the solver signaled an
issue.

... further arguments passed to or from other methods.

Value

the extracted solution.

types (Set/Get) Types - Accessor and Mutator Functions

Description

The types of a given optimization problem (OP) can be accessed or mutated via the method 'types'.

Usage

types(x)

types(x) <- value

48 US30

Arguments

x an object used to select the method.

value an R object.

Value

a character vector.

Author(s)

Stefan Theussl

Examples

minimize: x + 2 y
subject to: x + y >= 1
x, y >= 0 x, y are integer
x <- OP(objective = 1:2, constraints = L_constraint(c(1, 1), ">=", 1))
types(x) <- c("I", "I")
types(x)

US30 Monthly return data for 30 of the largest US stocks

Description

This dataset contains the historical monthly returns of 30 of the largest US stocks from 1999-01-29
to 2013-12-31. This data is dividend adjusted based on the CRSP methodology.

Format

A matrix with 30 columns (representing stocks) and 180 rows (months).

Details

The selected stocks reflect the DJ 30 Industrial Average Index members as of 2013-09-20 (down-
loaded from https://www.quandl.com which was acquired by https://data.nasdaq.com/).

The data source is Quandl. Data flagged as "WIKI" in their database is public domain.

Source

https://data.nasdaq.com/

https://data.nasdaq.com/
https://data.nasdaq.com/

vech 49

vech Half-Vectorization

Description

The utility function vech performs a half-vectorization on the given matrices.

Usage

vech(...)

Arguments

... one or more matrices to be half-vectorized.

Value

a matrix

V_bound Objective Variable Bounds

Description

Constructs a variable bounds object.

Usage

V_bound(li, ui, lb, ub, nobj, ld = 0, ud = Inf, names = NULL)

as.V_bound(x)

is.V_bound(x)

Arguments

li an integer vector specifying the indices of non-standard (i.e., values != 0) lower
bounds.

ui an integer vector specifying the indices of non-standard (i.e., values != Inf) upper
bounds.

lb a numeric vector with lower bounds.
ub a numeric vector with upper bounds.
nobj an integer representing the number of objective variables
ld a numeric giving lower default bound.
ud a numeric giving upper default bound.
names a character vector giving the names of the bounds.
x object to be coerced or tested.

50 V_bound

Details

This function returns a sparse representation of objective variable bounds.

Value

An S3 object of class "V_bound" containing lower and upper bounds of the objective variables.

Examples

V_bound(li=1:3, lb=rep.int(-Inf, 3))
V_bound(li=c(1, 5, 10), ui=13, lb=rep.int(-Inf, 3), ub=100, nobj=20)

Index

∗ datasets
US30, 48

∗ input output
ROI_plugin_register_reader_writer,

34
ROI_read, 38
ROI_registered_reader, 40
ROI_registered_writer, 42
ROI_write, 46

∗ plugin functions
ROI_plugin_add_status_code_to_db,

29
ROI_plugin_build_equality_constraints,

30
ROI_plugin_build_inequality_constraints,

31
ROI_plugin_canonicalize_solution,

32
ROI_plugin_get_solver_name, 33
ROI_plugin_make_signature, 33
ROI_plugin_register_solver_control,

36
ROI_plugin_register_solver_method,

36
ROI_plugin_solution_prim, 37
ROI_registered_solver_control, 42

∗ reformulate functions
ROI_plugin_register_reformulation,

35
ROI_reformulate, 39
ROI_registered_reformulations, 41

as.C_constraint (C_constraint), 9
as.constraint (constraint

(Constructors)), 6
as.F_constraint (F_constraint), 11
as.F_objective (F_objective), 12
as.L_constraint (L_constraint), 17
as.L_objective (L_objective), 18
as.L_term, 3

as.NO_constraint (NO_constraint), 21
as.objective (objective (Set/Get)), 22
as.OP (OP), 22
as.Q_constraint (Q_constraint), 24
as.Q_objective (Q_objective), 26
as.Q_term, 4
as.V_bound (V_bound), 49

bound (Constructors), 5
bounds, 5
bounds (bounds (Set/Get)), 5
bounds (Set/Get), 5
bounds.OP (bounds (Set/Get)), 5
bounds<- (bounds (Set/Get)), 5

c.bound (bound (Constructors)), 5
c.constraint (constraint

(Constructors)), 6
C_constraint, 6, 9
constraint (Constructors), 6
constraint directions, 7
constraints, 8
constraints (constraints (Set/Get)), 8
constraints (Set/Get), 8
constraints.OP (constraints (Set/Get)),

8
constraints<- (constraints (Set/Get)), 8

dim.constraint (constraint
(Constructors)), 6

download.file, 28

eq (constraint directions), 7
equal, 10

F_constraint, 6, 11, 15
F_objective, 12

G, 13
geq (constraint directions), 7
grad, 13

51

52 INDEX

installed.packages, 41
is.bound (bound (Constructors)), 5
is.C_constraint (C_constraint), 9
is.constraint (constraint

(Constructors)), 6
is.default_bound, 14
is.F_constraint (F_constraint), 11
is.L_constraint (L_constraint), 17
is.NO_constraint (NO_constraint), 21
is.Q_constraint (Q_constraint), 24
is.V_bound (V_bound), 49

J, 15

K_expd, 9
K_expd (K_zero), 16
K_expp, 9
K_expp (K_zero), 16
K_lin, 9
K_lin (K_zero), 16
K_powd, 9
K_powd (K_zero), 16
K_powp, 9
K_powp (K_zero), 16
K_psd, 9
K_psd (K_zero), 16
K_soc, 9
K_soc (K_zero), 16
K_zero, 9, 16

L_constraint, 6, 15, 17
L_objective, 18
length.C_constraint (C_constraint), 9
length.L_constraint (L_constraint), 17
length.Q_constraint (Q_constraint), 24
leq (constraint directions), 7

maximum, 19
maximum (maximum (Set/Get)), 19
maximum (Set/Get), 19
maximum<- (maximum (Set/Get)), 19

nlminb, 20
nlminb2, 20
NO_constraint, 6, 21

objective, 22
objective (objective (Set/Get)), 22
objective (Set/Get), 22
objective<- (objective (Set/Get)), 22

OP, 5, 6, 8, 19, 22, 22, 47
OP_signature, 24

Q_constraint, 6, 15, 24
Q_objective, 26

rbind.constraint, 27
ROI_applicable_solvers, 27
ROI_available_solvers, 28
ROI_installed_solvers

(ROI_registered_solvers), 41
ROI_options, 29, 44
ROI_plugin_add_status_code_to_db, 29,

31–34, 36–38, 42
ROI_plugin_build_equality_constraints,

30, 30, 32–34, 36–38, 42
ROI_plugin_build_inequality_constraints,

30, 31, 31, 32–34, 36–38, 42
ROI_plugin_canonicalize_solution,

30–32, 32, 33, 34, 36–38, 42
ROI_plugin_get_solver_name, 30–32, 33,

34, 36–38, 42
ROI_plugin_make_signature, 30–33, 33,

36–38, 42
ROI_plugin_register_reader

(ROI_plugin_register_reader_writer),
34

ROI_plugin_register_reader_writer, 34,
39, 40, 43, 46

ROI_plugin_register_reformulation, 35,
39, 41

ROI_plugin_register_solver_control,
30–34, 36, 37, 38, 42

ROI_plugin_register_solver_method,
30–34, 36, 36, 38, 42

ROI_plugin_register_writer
(ROI_plugin_register_reader_writer),
34

ROI_plugin_solution_aux
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_dual
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_msg
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_objval
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_prim, 30–34, 36, 37,
37, 42

INDEX 53

ROI_plugin_solution_psd
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_status
(ROI_plugin_solution_prim), 37

ROI_plugin_solution_status_code
(ROI_plugin_solution_prim), 37

ROI_read, 35, 38, 40, 43, 46
ROI_reformulate, 35, 39, 41
ROI_registered_reader, 35, 39, 40, 43, 46
ROI_registered_reformulations, 35, 39,

41
ROI_registered_solver_control, 30–34,

36–38, 42
ROI_registered_solvers, 41
ROI_registered_writer, 35, 39, 40, 42, 46
ROI_require_solver, 43
ROI_solve, 44
ROI_solver_signature, 45
ROI_write, 35, 39, 40, 43, 46

solution, 37, 47

terms.C_constraint (C_constraint), 9
terms.F_constraint (F_constraint), 11
terms.F_objective (F_objective), 12
terms.L_constraint (L_constraint), 17
terms.L_objective (L_objective), 18
terms.Q_constraint (Q_constraint), 24
terms.Q_objective (Q_objective), 26
types, 47
types (types (Set/Get)), 47
types (Set/Get), 47
types<- (types (Set/Get)), 47

US30, 48

V_bound, 5, 6, 49
variable.names.C_constraint

(C_constraint), 9
variable.names.F_constraint

(F_constraint), 11
variable.names.F_objective

(F_objective), 12
variable.names.L_constraint

(L_constraint), 17
variable.names.L_objective

(L_objective), 18
variable.names.Q_constraint

(Q_constraint), 24

variable.names.Q_objective
(Q_objective), 26

vech, 49

	as.L_term
	as.Q_term
	bound (Constructors)
	bounds (Set/Get)
	constraint (Constructors)
	constraint directions
	constraints (Set/Get)
	C_constraint
	equal
	F_constraint
	F_objective
	G
	is.default_bound
	J
	K_zero
	L_constraint
	L_objective
	maximum (Set/Get)
	nlminb2
	NO_constraint
	objective (Set/Get)
	OP
	OP_signature
	Q_constraint
	Q_objective
	rbind.constraint
	ROI_applicable_solvers
	ROI_available_solvers
	ROI_options
	ROI_plugin_add_status_code_to_db
	ROI_plugin_build_equality_constraints
	ROI_plugin_build_inequality_constraints
	ROI_plugin_canonicalize_solution
	ROI_plugin_get_solver_name
	ROI_plugin_make_signature
	ROI_plugin_register_reader_writer
	ROI_plugin_register_reformulation
	ROI_plugin_register_solver_control
	ROI_plugin_register_solver_method
	ROI_plugin_solution_prim
	ROI_read
	ROI_reformulate
	ROI_registered_reader
	ROI_registered_reformulations
	ROI_registered_solvers
	ROI_registered_solver_control
	ROI_registered_writer
	ROI_require_solver
	ROI_solve
	ROI_solver_signature
	ROI_write
	solution
	types (Set/Get)
	US30
	vech
	V_bound
	Index

