Package ‘ROCR’

January 23, 2026
Version 1.0-12
Date 2026-01-22
Title Visualizing the Performance of Scoring Classifiers

Description ROC graphs, sensitivity/specificity curves, lift charts,
and precision/recall plots are popular examples of trade-off
visualizations for specific pairs of performance measures. ROCR is a
flexible tool for creating cutoff-parameterized 2D performance curves
by freely combining two from over 25 performance measures (new
performance measures can be added using a standard interface).
Curves from different cross-validation or bootstrapping runs can be
averaged by different methods, and standard deviations, standard
errors or box plots can be used to visualize the variability across
the runs. The parameterization can be visualized by printing cutoff
values at the corresponding curve positions, or by coloring the
curve according to cutoff. All components of a performance plot can
be quickly adjusted using a flexible parameter dispatching
mechanism. Despite its flexibility, ROCR is easy to use, with only
three commands and reasonable default values for all optional
parameters.

Encoding UTF-8

License GPL (>=2)

NeedsCompilation no

Depends R (>=3.6)

Imports methods, graphics, grDevices, gplots, stats

Suggests testthat, knitr, rmarkdown
URL https://ipa-tys.github.io/ROCR/

BugReports https://github.com/ipa-tys/ROCR/issues
RoxygenNote 7.3.3
VignetteBuilder knitr

https://ipa-tys.github.io/ROCR/
https://github.com/ipa-tys/ROCR/issues

2 performance

Author Tobias Sing [aut],
Oliver Sander [aut],
Niko Beerenwinkel [aut],
Thomas Lengauer [aut],
Thomas Unterthiner [ctb],
Felix G.M. Ernst [cre] (ORCID: <https://orcid.org/0000-0001-5064-0928>)

Maintainer Felix G.M. Ernst <felix.gm.ernst@outlook.com>
Repository CRAN
Date/Publication 2026-01-23 06:41:23 UTC

Contents
performance 2
performance-class e 6
plot-methods L e e 7
prediction e e e 10
prediction-class L e 11
ROCR.hiv e 12
ROCR.simple o e 13
ROCR.xval e 14

Index 15

performance Function to create performance objects
Description

All kinds of predictor evaluations are performed using this function.

Usage

performance(prediction.obj, measure, x.measure = "cutoff”, ...)

Arguments

prediction.obj An object of class prediction.

measure Performance measure to use for the evaluation. A complete list of the perfor-
mance measures that are available for measure and x.measure is given in the
"Details’ section.

X .measure A second performance measure. If different from the default, a two-dimensional
curve, with x.measure taken to be the unit in direction of the x axis, and
measure to be the unit in direction of the y axis, is created. This curve is
parametrized with the cutoff.

Optional arguments (specific to individual performance measures).

https://orcid.org/0000-0001-5064-0928

performance 3

Details

Here is the list of available performance measures. Let Y and Y be random variables representing
the class and the prediction for a randomly drawn sample, respectively. We denote by & and ©
the positive and negative class, respectively. Further, we use the following abbreviations for em-
pirical quantities: P (# positive samples), N (# negative samples), TP (# true positives), TN (# true
negatives), FP (# false positives), FN (# false negatives).

acc: Accuracy. P(Y =Y). Estimated as: T2+TN,

P+N
err: Errorrate. P(Y # Y'). Estimated as: nggN.
fpr: False positive rate. P(Y = @|Y = ©). Estimated as: EL,

fall: Fallout. Same as fpr.

tpr: True positive rate. P(Y = @|Y = @). Estimated as:)
rec: Recall. Same as tpr.

sens: Sensitivity. Same as tpr.

fnr: False negative rate. P(Y = o|Y =). Estimated as: £,
miss: Miss. Same as fnr.

tnr: True negative rate. P(Y = oY = ©).

spec: Specificity. Same as tnr.

TP

ppv: Positive predictive value. P(Y = &|Y = &). Estimated as: TPLFP-

prec: Precision. Same as ppv.
npv: Negative predictive value. P(Y = ©|Y = &). Estimated as: %
pcfall: Prediction-conditioned fallout. P(Y = ©|Y = @). Estimated as: TPi%'
. . . . R . _ Y o . . FN
pcmiss: Prediction-conditioned miss. P(Y = @[Y = ©). Estimated as: 755y -
rpp: Rate of positive predictions. P ()A/ = @). Estimated as: (TP+FP)/(TP+FP+TN+FN).

rnp: Rate of negative predictions. P(Y = ©). Estimated as: (TN+FN)/(TP+FP+TN+FN).

TP.TN—FP-FN
\/(TP+FN)-(TN+FP)-(TP+FP)-(TN+FN)
tween -1 and 1, with 1 indicating a perfect prediction, 0 indicating a random prediction. Values
below 0 indicate a worse than random prediction.

phi: Phi correlation coefficient. . Yields a number be-

mat: Matthews correlation coefficient. Same as phi.
mi: Mutual information. I(Y,Y) := H(Y) — H(Y|Y), where H is the (conditional) entropy.
Entropies are estimated naively (no bias correction).

chisq: Chi square test statistic. ?chisq. test for details. Note that R might raise a warning if the
sample size is too small.

odds: Odds ratio. gﬁ?ﬁ Note that odds ratio produces Inf or NA values for all cutoffs corre-
sponding to FN=0 or FP=0. This can substantially decrease the plotted cutoff region.
PY=9|Y=0)
P(Y=@)
f: Precision-recall F measure (van Rijsbergen, 1979). Weighted harmonic mean of precision (P)
and recall (R). F' = Ifa= %, the mean is balanced. A frequent equivalent

lift: Lift value.

1
formulation is F' = %. In this formulation, the mean is balanced if § = 1. Currently,
ROCR only accepts the alpha version as input (e.g. & = 0.5). If no value for alpha is given,

the mean will be balanced by default.

4 performance

rch: ROC convex hull. A ROC (=tpr vs fpr) curve with concavities (which represent suboptimal
choices of cutoff) removed (Fawcett 2001). Since the result is already a parametric perfor-
mance curve, it cannot be used in combination with other measures.

auc: Area under the ROC curve. This is equal to the value of the Wilcoxon-Mann-Whitney test
statistic and also the probability that the classifier will score are randomly drawn positive
sample higher than a randomly drawn negative sample. Since the output of auc is cutoff-
independent, this measure cannot be combined with other measures into a parametric curve.
The partial area under the ROC curve up to a given false positive rate can be calculated
by passing the optional parameter fpr.stop=0.5 (or any other value between 0 and 1) to
performance.

aucpr: Area under the Precision/Recall curve. Since the output of aucpr is cutoff-independent,
this measure cannot be combined with other measures into a parametric curve.

prbe: Precision-recall break-even point. The cutoff(s) where precision and recall are equal. At
this point, positive and negative predictions are made at the same rate as their prevalence in
the data. Since the output of prbe is just a cutoff-independent scalar, this measure cannot be
combined with other measures into a parametric curve.

cal: Calibration error. The calibration error is the absolute difference between predicted confi-
dence and actual reliability. This error is estimated at all cutoffs by sliding a window across
the range of possible cutoffs. The default window size of 100 can be adjusted by passing the
optional parameter window.size=200 to performance. E.g., if for several positive samples
the output of the classifier is around 0.75, you might expect from a well-calibrated classi-
fier that the fraction of them which is correctly predicted as positive is also around 0.75. In
a well-calibrated classifier, the probabilistic confidence estimates are realistic. Only for use
with probabilistic output (i.e. scores between 0 and 1).

mxe: Mean cross-entropy. Only for use with probabilistic output. M X E := — ﬁ (X yi=a In(9:)+
Zy,:e In(1 — g;)). Since the output of mxe is just a cutoff-independent scalar, this measure
cannot be combined with other measures into a parametric curve.

rmse: Root-mean-squared error. Only for use with numerical class labels. RM SE := \/ ﬁ > —9i)2.

Since the output of rmse is just a cutoff-independent scalar, this measure cannot be combined
with other measures into a parametric curve.

sar: Score combinining performance measures of different characteristics, in the attempt of creat-
ing a more "robust" measure (cf. Caruana R., ROCAI2004): SAR = 1/3 * (Accuracy + Area
under the ROC curve + Root mean-squared error).

ecost: Expected cost. For details on cost curves, cf. Drummond&Holte 2000,2004. ecost has an
obligatory x axis, the so-called *probability-cost function’; thus it cannot be combined with
other measures. While using ecost one is interested in the lower envelope of a set of lines,
it might be instructive to plot the whole set of lines in addition to the lower envelope. An
example is given in demo(ROCR).

cost: Cost of a classifier when class-conditional misclassification costs are explicitly given. Ac-
cepts the optional parameters cost. fp and cost. fn, by which the costs for false positives and
negatives can be adjusted, respectively. By default, both are set to 1.

Value

An S4 object of class performance.

performance 5

Note

Here is how to call performance() to create some standard evaluation plots:

ROC curves: measure="tpr", x.measure="fpr".
Precision/recall graphs: measure="prec", x.measure="rec".
Sensitivity/specificity plots: measure="sens", X.measure="spec".

Lift charts: measure="lift", x.measure="rpp".

Author(s)

Tobias Sing <tobias.sing@gmail.com>, Oliver Sander <osander@gmail .com>

References

A detailed list of references can be found on the ROCR homepage at https://ipa-tys.github.
i0/ROCR/.

See Also

prediction, prediction-class, performance-class, plot.performance

Examples

computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)

data(ROCR.simple)

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

pred

perf <- performance(pred,"tpr”,"fpr")
perf

plot(perf)

precision/recall curve (x-axis: recall, y-axis: precision)

perf <- performance(pred, "prec”, "rec")
perf
plot(perf)

sensitivity/specificity curve (x-axis: specificity,
y-axis: sensitivity)

perf <- performance(pred, "sens”, "spec")

perf

plot(perf)

https://ipa-tys.github.io/ROCR/
https://ipa-tys.github.io/ROCR/

6 performance-class

performance-class Class performance

Description

Object to capture the result of a performance evaluation, optionally collecting evaluations from
several cross-validation or bootstrapping runs.

Details

A performance object can capture information from four different evaluation scenarios:

* The behaviour of a cutoff-dependent performance measure across the range of all cutoffs (e.g.
performance(predObj, 'acc')). Here, x.values contains the cutoffs, y.values the cor-
responding values of the performance measure, and alpha.values is empty.

* The trade-off between two performance measures across the range of all cutoffs (e.g. performance(
predObj, "tpr', 'fpr')). In this case, the cutoffs are stored in alpha.values, while
x.values and y.values contain the corresponding values of the two performance measures.

* A performance measure that comes along with an obligatory second axis (e.g. performance(
predObj, 'ecost')). Here, the measure values are stored in y.values, while the corre-
sponding values of the obligatory axis are stored in x.values, and alpha.values is empty.

* A performance measure whose value is just a scalar (e.g. performance(predObj, 'auc')
). The value is then stored in y.values, while x.values and alpha.values are empty.

Slots

x.name Performance measure used for the x axis.
y.name Performance measure used for the y axis.

alpha.name Name of the unit that is used to create the parametrized curve. Currently, curves can
only be parametrized by cutoff, so alpha.name is either none or cutoff.

x.values A list in which each entry contains the x values of the curve of this particular cross-
validation run. x.values[[i]], y.values[[i]], and alpha.values[[i]] correspond to
each other.

y.values A list in which each entry contains the y values of the curve of this particular cross-
validation run.

alpha.values A list in which each entry contains the cutoff values of the curve of this particular
cross-validation run.

Objects from the Class

Objects can be created by using the performance function.

plot-methods 7

Author(s)

Tobias Sing <tobias.sing@gmail.com>, Oliver Sander <osander@gmail.com>

References
A detailed list of references can be found on the ROCR homepage at https://ipa-tys.github.
i0/ROCR/.

See Also

prediction performance, prediction-class, plot.performance

plot-methods Plot method for performance objects

Description

This is the method to plot all objects of class performance.

Usage
S4 method for signature 'performance,missing'’
plot(
X,
Y,
avg = "none”,
spread.estimate = "none”,

spread.scale = 1,
show.spread.at = c(),
colorize = FALSE,
colorize.palette = rev(rainbow(256, start = @, end = 4/6)),
colorkey = colorize,
colorkey.relwidth = 0.25,
colorkey.pos = "right",
print.cutoffs.at = c(),
cutoff.label.function = function(x) {
round(x, 2)

1
downsampling = @,
add = FALSE

)

S3 method for class 'performance'
plot(...)

https://ipa-tys.github.io/ROCR/
https://ipa-tys.github.io/ROCR/

8 plot-methods

Arguments

X an object of class performance
y not used

Optional graphical parameters to adjust different components of the performance
plot. Parameters are directed to their target component by prefixing them with
the name of the component (component.parameter, e.g. text.cex). The fol-
lowing components are available: xaxis, yaxis, coloraxis, box (around the
plotting region), points, text, plotCI (error bars), boxplot. The names of
these components are influenced by the R functions that are used to create them.
Thus, par(component) can be used to see which parameters are available for
a given component (with the expection of the three axes; use par(axis) here).
To adjust the canvas or the performance curve(s), the standard plot parameters
can be used without any prefix.

avg If the performance object describes several curves (from cross-validation runs
or bootstrap evaluations of one particular method), the curves from each of the
runs can be averaged. Allowed values are none (plot all curves separately),
horizontal (horizontal averaging), vertical (vertical averaging), and threshold
(threshold (=cutoff) averaging). Note that while threshold averaging is always
feasible, vertical and horizontal averaging are not well-defined if the graph can-
not be represented as a function x->y and y->x, respectively.

spread.estimate
When curve averaging is enabled, the variation around the average curve can be
visualized as standard error bars (stderror), standard deviation bars (stddev),
or by using box plots (boxplot). Note that the function plotCI, which is used
internally by ROCR to draw error bars, might raise a warning if the spread of
the curves at certain positions is 0.

spread.scale For stderror or stddev, this is a scalar factor to be multiplied with the length
of the standard error/deviation bar. For example, under normal assumptions,
spread.scale=2 can be used to get approximate 95% confidence intervals.

show.spread.at For vertical averaging, this vector determines the x positions for which the
spread estimates should be visualized. In contrast, for horizontal and threshold
averaging, the y positions and cutoffs are determined, respectively. By default,
spread estimates are shown at 11 equally spaced positions.

colorize This logical determines whether the curve(s) should be colorized according to
cutoff.

colorize.palette
If curve colorizing is enabled, this determines the color palette onto which the
cutoff range is mapped.

colorkey If true, a color key is drawn into the 4% border region (default of par (xaxs)
and par (yaxs)) of the plot. The color key visualizes the mapping from cutoffs
to colors.

colorkey.relwidth
Scalar between 0 and 1 that determines the fraction of the 4% border region that
is occupied by the colorkey.

colorkey.pos Determines if the colorkey is drawn vertically at the right side, or horizontally
at the top of the plot.

plot-methods

print.cutoffs.at

This vector specifies the cutoffs which should be printed as text along the curve
at the corresponding curve positions.

cutoff.label.function

downsampling

add

Author(s)

By default, cutoff annotations along the curve or at the color key are rounded to
two decimal places before printing. Using a custom cutoff.label.function,
any other transformation can be performed on the cutoffs instead (e.g. rounding
with different precision or taking the logarithm).

ROCR can efficiently compute most performance measures even for data sets
with millions of elements. However, plotting of large data sets can be slow
and lead to PS/PDF documents of considerable size. In that case, performance
curves that are indistinguishable from the original can be obtained by using only
a fraction of the computed performance values. Values for downsampling be-
tween 0 and 1 indicate the fraction of the original data set size to which the
performance object should be downsampled, integers above 1 are interpreted as
the actual number of performance values to which the curve(s) should be down-
sampled.

If TRUE, the curve(s) is/are added to an already existing plot; otherwise a new
plot is drawn.

Tobias Sing <tobias.sing@gmail.com>, Oliver Sander <osander@gmail.com>

References

A detailed list of references can be found on the ROCR homepage at https://ipa-tys.github.

10/ROCR/.

See Also

prediction, performance, prediction-class, performance-class

Examples

plotting a ROC curve:

library(ROCR)
data(ROCR.simple)

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

pred

n

perf <- performance(pred, "tpr", "fpr")

perf
plot(perf)

To entertain your children, make your plots nicer

using ROCR's flexible parameter passing mechanisms

(much cheaper than a finger painting set)

par(bg="lightblue", mai=c(1.2,1.5,1,1))

plot(perf, main="ROCR fingerpainting toolkit"”, colorize=TRUE,
xlab="Mary's axis”, ylab="", box.lty=7, box.lwd=5,

https://ipa-tys.github.io/ROCR/
https://ipa-tys.github.io/ROCR/

10 prediction

box.col="gold", lwd=17, colorkey.relwidth=0.5, xaxis.cex.axis=2,
xaxis.col='blue', xaxis.col.axis="blue"”, yaxis.col='green', yaxis.cex.axis=2,
yaxis.at=c(0,0.5,0.8,0.85,0.9,1), yaxis.las=1, xaxis.lwd=2, yaxis.lwd=3,
yaxis.col.axis="orange", cex.lab=2, cex.main=2)

prediction Function to create prediction objects

Description

Every classifier evaluation using ROCR starts with creating a prediction object. This function is
used to transform the input data (which can be in vector, matrix, data frame, or list form) into a
standardized format.

Usage

prediction(predictions, labels, label.ordering = NULL)

Arguments
predictions A vector, matrix, list, or data frame containing the predictions.
labels A vector, matrix, list, or data frame containing the true class labels. Must have

the same dimensions as predictions.

label.ordering The default ordering (cf.details) of the classes can be changed by supplying a
vector containing the negative and the positive class label.

Details

predictions and labels can simply be vectors of the same length. However, in the case of cross-
validation data, different cross-validation runs can be provided as the *columns* of a matrix or data
frame, or as the entries of a list. In the case of a matrix or data frame, all cross-validation runs must
have the same length, whereas in the case of a list, the lengths can vary across the cross-validation
runs. Internally, as described in section ’Value’, all of these input formats are converted to list
representation.

Since scoring classifiers give relative tendencies towards a negative (low scores) or positive (high
scores) class, it has to be declared which class label denotes the negative, and which the positive
class. Ideally, labels should be supplied as ordered factor(s), the lower level corresponding to the
negative class, the upper level to the positive class. If the labels are factors (unordered), numeric,
logical or characters, ordering of the labels is inferred from R’s built-in < relation (e.g. 0 < 1, -1 <
1,’a’ <’b’, FALSE < TRUE). Use label.ordering to override this default ordering. Please note
that the ordering can be locale-dependent e.g. for character labels ’-1" and *1°.

Currently, ROCR supports only binary classification (extensions toward multiclass classification
are scheduled for the next release, however). If there are more than two distinct label symbols,
execution stops with an error message. If all predictions use the same two symbols that are used
for the labels, categorical predictions are assumed. If there are more than two predicted values, but
all numeric, continuous predictions are assumed (i.e. a scoring classifier). Otherwise, if more than
two symbols occur in the predictions, and not all of them are numeric, execution stops with an error
message.

prediction-class 11

Value

An S4 object of class prediction.

Author(s)

Tobias Sing <tobias.sing@gmail.com>, Oliver Sander <osander@gmail.com>

References
A detailed list of references can be found on the ROCR homepage at https://ipa-tys.github.
io/ROCR/.

See Also

prediction-class, performance, performance-class, plot.performance

Examples

create a simple prediction object

library(ROCR)

data(ROCR.simple)

pred <- prediction(ROCR.simple$predictions,ROCR.simple$labels)
pred

prediction-class Class prediction

Description

Object to encapsulate numerical predictions together with the corresponding true class labels, op-
tionally collecting predictions and labels for several cross-validation or bootstrapping runs.

Slots
predictions A list, in which each element is a vector of predictions (the list has length > 1 for
x-validation data.
labels Analogously, a list in which each element is a vector of true class labels.

cutoffs A list in which each element is a vector of all necessary cutoffs. Each cutoff vector
consists of the predicted scores (duplicates removed), in descending order.

fp A list in which each element is a vector of the number (not the rate!) of false positives induced
by the cutoffs given in the corresponding ’cutoffs’ list entry.

tp As fp, but for true positives.
tn As fp, but for true negatives.
fn As fp, but for false negatives.

n.pos A list in which each element contains the number of positive samples in the given x-
validation run.

https://ipa-tys.github.io/ROCR/
https://ipa-tys.github.io/ROCR/

12 ROCR.hiv

n.neg As n.pos, but for negative samples.

n.pos.pred A listin which each element is a vector of the number of samples predicted as positive
at the cutoffs given in the corresponding ’cutoffs’ entry.

n.neg.pred As n.pos.pred, but for negatively predicted samples.

Objects from the Class

Objects can be created by using the prediction function.

Note
Every prediction object contains information about the 2x2 contingency table consisting of tp,tn,fp,
and fn, along with the marginal sums n.pos,n.neg,n.pos.pred,n.neg.pred, because these form the ba-
sis for many derived performance measures.

Author(s)

Tobias Sing <tobias.sing@gmail.com>, Oliver Sander <osander@gmail.com>

References
A detailed list of references can be found on the ROCR homepage at https://ipa-tys.github.
io/ROCR/.

See Also

prediction, performance, performance-class, plot.performance

ROCR.hiv Data set: Support vector machines and neural networks applied to the
prediction of HIV-1 coreceptor usage

Description

Linear support vector machines (libsvm) and neural networks (R package nnet) were applied to
predict usage of the coreceptors CCRS5 and CXCR4 based on sequence data of the third variable
loop of the HIV envelope protein.

Usage
data(ROCR.hiv)

Format

A list consisting of the SVM (ROCR. hiv$hiv.svm) and NN (ROCR.hiv$hiv.nn) classification data.
Each of those is in turn a list consisting of the two elements $predictions and $1labels (10 element
list representing cross-validation data).

https://ipa-tys.github.io/ROCR/
https://ipa-tys.github.io/ROCR/

ROCR:.simple 13

References

Sing, T. & Beerenwinkel, N. & Lengauer, T. "Learning mixtures of localized rules by maximizing
the area under the ROC curve". 1st International Workshop on ROC Analysis in Al, 89-96, 2004.

Examples

library(ROCR)

data(ROCR.hiv)

attach(ROCR.hiv)

pred.svm <- prediction(hiv.svm$predictions, hiv.svm$labels)

pred.svm

perf.svm <- performance(pred.svm, 'tpr', 'fpr')

perf.svm

pred.nn <- prediction(hiv.nn$predictions, hiv.svm$labels)

pred.nn

perf.nn <- performance(pred.nn, 'tpr', 'fpr')

perf.nn

plot(perf.svm, 1ty=3, col="red”,main="SVMs and NNs for prediction of

HIV-1 coreceptor usage")

plot(perf.nn, 1lty=3, col="blue",add=TRUE)

plot(perf.svm, avg="vertical”, 1lwd=3, col="red",
spread.estimate="stderror”,plotCI.lwd=2,add=TRUE)

plot(perf.nn, avg="vertical”, lwd=3, col="blue",
spread.estimate="stderror”,plotCI.1lwd=2,add=TRUE)

legend(0.6,0.6,c('SVM', 'NN'),col=c('red', 'blue'),lwd=3)

ROCR.simple Data set: Simple artificial prediction data for use with ROCR

Description

A mock data set containing a simple set of predictions and corresponding class labels.

Usage
data(ROCR.simple)

Format

A two element list. The first element, ROCR. simple$predictions, is a vector of numerical predic-
tions. The second element, ROCR. simple$labels, is a vector of corresponding class labels.

Examples

plot a ROC curve for a single prediction run

and color the curve according to cutoff.

library(ROCR)

data(ROCR.simple)

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

14 ROCR.xval

pred

perf <- performance(pred,"tpr”,"fpr")
perf

plot(perf,colorize=TRUE)

ROCR. xval Data set: Artificial cross-validation data for use with ROCR

Description

A mock data set containing 10 sets of predictions and corresponding labels as would be obtained
from 10-fold cross-validation.

Usage
data(ROCR. xval)

Format

A two element list. The first element, ROCR. xval$predictions, is itself a 10 element list. Each of
these 10 elements is a vector of numerical predictions for each cross-validation run. Likewise, the
second list entry, ROCR. xval$labels is a 10 element list in which each element is a vector of true
class labels corresponding to the predictions.

Examples

plot ROC curves for several cross-validation runs (dotted

in grey), overlaid by the vertical average curve and boxplots
showing the vertical spread around the average.

library(ROCR)

data(ROCR.xval)

pred <- prediction(ROCR.xval$predictions, ROCR.xval$labels)
pred

perf <- performance(pred,"tpr”,"fpr")

perf

plot(perf,col="grey82",1ty=3)

plot(perf,lwd=3,avg="vertical”, spread.estimate="boxplot"”,add=TRUE)

Index

+ datasets
ROCR. hiv, 12
ROCR.simple, 13
ROCR.xval, 14

performance, 2, 7,9, 11, 12
performance-class, 6
plot,performance,missing-method
(plot-methods), 7
plot-methods, 7
plot.performance, 5,7, 11, 12
plot.performance (plot-methods), 7
prediction, 5,7, 9, 10, 12
prediction-class, 11

ROCR.hiv, 12
ROCR.simple, 13
ROCR.xval, 14

15

	performance
	performance-class
	plot-methods
	prediction
	prediction-class
	ROCR.hiv
	ROCR.simple
	ROCR.xval
	Index

