

Package ‘ProfileLadder’

January 10, 2026

Type Package

Title Functional-Based Chain Ladder for Claims Reserving

Version 0.2.2

Maintainer Matúš Maciak <maciak@karlin.mff.cuni.cz>

BugReports <https://github.com/42463863/ProfileLadder/issues>

URL <https://github.com/42463863/ProfileLadder>

Description Functional claims reserving methods based on aggregated chain-ladder data, also known as a run-off triangle, implemented in three nonparametric algorithms (PARALLAX, REACT, and MACRAME) proposed in Maciak, Mizera, and Pešta (2022) <doi:10.1017/asb.2022.4>. Additional methods including permutation bootstrap for completed run-off triangles are also provided.

Depends R (>= 4.0.0)

License GPL (>= 2)

Encoding UTF-8

Imports ChainLadder (>= 0.2.12), raw (>= 0.1.8), crayon (>= 1.5.0)

Suggests pbapply (>= 1.7-4), testthat (>= 3.0.0), knitr, rmarkdown

LazyData true

Config/testthat.edition 3

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author Matúš Maciak [aut, cre],
Rastislav Matúš [aut, ctb],
Ivan Mizera [aut],
Michal Pešta [aut]

Repository CRAN

Date/Publication 2026-01-10 14:30:02 UTC

Contents

as.profileLadder	2
CameronMutual	3
covid19CZ	4
CZ.casco	5
CZ.liability	6
CZ.property	6
GFCIB	7
incrExplor	8
mcBreaks	10
mcReserve	11
mcStates	13
mcTrans	14
MidwestMutual	15
NevadaGeneral	16
observed	17
parallelReserve	18
permuteReserve	20
plot.mcSetup	22
plot.permutedReserve	23
plot.profileLadder	24
plot.profilePredict	25
predict.profileLadder	27
print.mcSetup	28
print.permutedReserve	29
print.profileLadder	30
print.profilePredict	31
set.fancy.print	32
summary.mcSetup	33
summary.permutedReserve	34
summary.profileLadder	35
xNetSubscribe	37

Index

38

as.profileLadder *S3 Method Class profileLadder*

Description

A function to make the work with the functional development profiles within run-off triangles more easy and straightforward—particularly when vizualizing the functional profiles (observed, completed, or both simultaneously) in a single plot

Usage

`as.profileLadder(x)`

Arguments

`x` an object of the class `matrix` or `triangle`

Value

an object of the class `profileLadder` which is a list with the following elements:

<code>reserve</code>	basic summary of the run-off triangle and the predicted/true reserve (if it is available otherwise NA values are provided instead)
<code>method</code>	type of the printed triangle (either a run-off triangle itself if no prediction method is applied or the completed triangle where the missing fragments are imputed by one of the algorithm, PARALLAX, REACT, or MACRAME)
<code>Triangle</code>	input (triangular shaped) run-off triangle
<code>FullTriangle</code>	completed development profiles imputed by using one of the estimation algorithm (i.e., PARALLAX, REACT, or MACRAME)—if applied—value NA provided otherwise
<code>trueComplete</code>	true fully developed profiles of the run-off triangle (if available for back-testing purposes) or NA returned otherwise

See Also

[parallelReserve\(\)](#), [mcReserve\(\)](#), [permuteReserve\(\)](#), [plot.profileLadder\(\)](#)

Examples

```
data(CameronMutual)
print(CameronMutual)

x <- as.profileLadder(CameronMutual)

print(x)
plot(x)
```

Description

An illustrative dataset—a matrix (of the dimensions 10x10) with ten completed years of claims payment developments of the Cameron Mutual Insurance company from the period 1988 – 1997. The data matrix contains ten origin/occurrence years (in rows where the first row represents the incident year 1988) with ten consecutive development periods/years (in columns).

Usage

```
data(CameronMutual)
```

Format

CameronMutual:

A simple 10×10 matrix of a class `triangle` with ten origin years (rows) each being fully developed within ten consecutive development periods/years (columns)

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

The run-off triangle (the upper-left triangular part of the data matrix) contains only positive increments making the triangle suitable for the typical benchmark reserving approach—the over-dispersed Poisson model (GLM regression model).

In practice, the upper-left triangle (the run-off triangle) is typically observed (known) while the bottom-right triangular part of the data matrix is treated as a future payments outcome (an "unknown" truth) that should be estimated/predicted. The Cameron Mutual Insurance data matrix is fully observed (i.e., obtained retrospectively) to allow for some goodness-of-fit evaluations.

Source

<https://www.casact.org/publications-research/research/research-resources>
(PP Auto Data Set, NAIC group code: 5320)

References

Meyers, G. G. and P. Shi (2011). Loss reserving data pulled from NAIC Schedule P. Available from <https://www.casact.org/publications-research/research/research-resources>

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. ASTIN Bulletin, 52(2), 449-482. DOI:10.1017/asb.2022.4 (Portfolio #1)

covid19CZ

First Occurrences of Covid-19 Cases in the Czech Republic

Description

An illustrative dataset—a matrix (of the dimensions 4×8) with the cumulative counts of the first reported cases of the Covid-19 pandemic in the Czech Republic. Four cohorts are defined by the Czech counties where the first reported case occurred during the period March 1st – 7th, 2020 (e.g., Prague, Vsetín, or Dečín), March 8th – March 14th (e.g., Brno, České Budějovice, Kladno, Mladá Boleslav, Plzeň), March 15th – March 21st (e.g., Chomutov, Český Krumlov, Písek, Tábor), and, finally, during the week in March 22nd – March 28th, 2020 (e.g., Jindřichův Hradec, Klatovy, Teplice).

Usage

`data(covid19CZ)`

Format**covid19CZ:**

A simple 4x8 matrix of a class triangle with four cohorts (rows) consecutively observed for 8 weeks (starting in March 1st 2020 with the first case in the first cohort (first row) reported in March 1st)

Details

The cumulative reported cases are provided in the table for 8 consecutive development periods (where each period represents seven consecutive days) starting in March 1st, 2020.

Source

Institute of Health Information and Statistics of the Czech Republic <https://www.uzis.cz:443/>

CZ.casco

Vehicles damages within a conventional full Casco insurance

Description

Illustrative dataset provided by the major insurance company in the Czech Republic. The dataset contains private and commercial business sold to policy holders based in the Czech Republic and covers the damages to the vehicles within a framework of the conventional full Casco insurance.

Usage

```
data(CZ.casco)
```

Format**CZ.casco:**

Two run-off triangles (objects of the class triangle) with the dimensions 17x17 with 17 origin years (from the period 2003 – 2019) and 17 development periods (years again).

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

The data are structured in the the list object CZ.casco with two elements—the run-off triangle GrossPaid containing cumulative amounts of gross paid claims, and another cummulative run-off triangle RBNS providing the amounts of the RNNS reserve. The amounts of given in thousands of the Czech crows (CZK).

Source

Anonymous major insurance company in the Czech Republic

CZ.liability	<i>Liability insurance of employees in the Czech Republic.</i>
--------------	--

Description

Illustrative dataset provided by the major insurance company in the Czech Republic. The dataset contains personal liability insurance policies and liability insurance of employees in the Czech Republic.

Usage

```
data(CZ.liability)
```

Format

CZ.liability:

Two run-off triangles (objects of the class `triangle`) with the dimensions 17x17 with 17 origin years (from the period 2003 – 2019) and 17 development periods (years again).

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

The data are structured in the the list object `CZ.liability` with two elements within the list—the run-off triangle `GrossPaid` containing cumulative amounts of gross paid claims and the run-off triangle `RBNS` with the cummulative amounts of the RNNS reserve. The amounts of given in thousands of the Czech crows (CZK).

Source

Anonymous major insurance company in the Czech Republic

CZ.property	<i>Property damages caused by fires, floods, windstorms, and explosions</i>
-------------	---

Description

Illustrative dataset provided by the major insurance company in the Czech Republic. The dataset contains large risks insurance portfolio in the Czech Republic and it covers usually commercial business and allows mainly for damages on varios property types caused by fire, flood, windstorm, explosion, and others.

Usage

```
data(CZ.property)
```

Format**CZ.property:**

Two run-off triangles (objects of the class `triangle`) with the dimensions 17x17 with 17 origin years (from the period 2003 – 2019) and 17 development periods (years again).

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

The data are structured in the the list object `CZ.property` with two elements within the list—the run-off triangle `GrossPaid` containing cumulative amounts of gross paid claims and the run-off triangle `RBNS` with the cummulative amounts of the RNNS reserve. The amounts of given in thousands of the Czech crows (CZK).

Source

An anonymous major insurance company in the Czech Republic.

GFCIB

Guarantee Fund of the Czech Insurers' Bureau Data

Description

Illustrative datasets provided by the Guarantee Fund of the Czech Insurers' Bureau (GFCIB) for the mandatory car insurance in the Czech Republic. The quarterly based payments are aggregated in four run-off triangles with the paid amounts for four separate lines of business: bodily injury, material damage, technical provision, and annuities.

Usage

`data(GFCIB)`

Format**GFCIB:**

Four run-off triangles (objects of the class `triangle`) with the dimensions 60x60 with 15 origin years (provided on a quarterly basis in individual rows) and 60 development periods/quarters (columns)

origin matrix rows with the occurrence quartal (origin)

dev matrix columns with the development period (development)

Details

The data are structured in the the list object `GCCIB` with four elements—one for each line of business: `\$bodilyInjury`, `\$materialDamage`, `\$provisions`, and `\$annuity`. The run-off triangles are all aggregated over the period from the first quartal of 2008 (Q1) till the last quartal of 2022 (Q4).

Source

The Czech Insurers' Bureau <https://www.ckp.cz>

incrExplor

Exploration of Run-Off Triangle Increments

Description

The function takes a cumulative or incremental run-off triangle (partially or completely observed) and provides some basic exploratory of the observed incremental payments. The function serves as a useful tool for a user-based insight when manually defining the states of the Markov Chain that is used to drive the reserve prediction in the MACRAME algorithm implemented within the function `mcReserve()`.

Usage

```
incrExplor(
  triangle,
  method = c("median", "mean", "max", "min"),
  out = 1,
  states = NULL,
  breaks = NULL
)
```

Arguments

<code>triangle</code>	cumulative or incremental run-off triangle (an object of the class <code>triangle</code> or <code>matrix</code>) specified in terms of a partially observed (run-off triangle) or a fully observed (completed triangle) matrix. Only the upper-left triangular part (run-off triangle) is used to provide the output analysis of the incremental payments and the underlying Markov chain setting options
<code>method</code>	method form <code>c("median", "mean", "max", "min")</code> used to summarize the run-off triangle increments within the given set of bins. Each bin with the increments is represented by a corresponding Markov state value (obtained by the <code>method</code> choice with <code>median</code> being the DEFAULT option)
<code>out</code>	integer value ranging from 1 to the number of development periods (alternatively a vector of such integers) to indicate which columns of the run-off triangle should be excluded from the exploratory analysis of the increments. By DEFAULT, the first incremental payments—i.e., the first column of the run-off triangle—are not considered (<code>out = 1</code>). No columns are excluded for <code>out = 0</code> and the whole run-off triangle is analyzed by <code>incrExplor()</code> . To specify multiple columns that should be excluded, one can use <code>out = c(1, 2, 3)</code> which will exclude the first three columns (the first three origins respectively) from the exploratory analysis

states	either an integer value to indicate an explicit number of the Markov chain states to be used or a vector of explicit Markov chain states can be provided. The DEFAULT option (states = NULL) ensures a fully data-driven (automatic) set of the Markov chain states as originally proposed in Maciak, Mizera, and Pešta (2022)
breaks	numeric vector of explicit (unique and monotonously increasing) break points to define the bins for the run-off triangle increments. If states is equal to some integer number (i.e., the explicit number of the Markov chain states is requested by states) then the value of breaks is ignored. If both states and breaks are specified (i.e., numeric vectors are provided for both) then the set of states in states must be given in a way that exactly one state value belongs to exactly one bin defined by the break points specified by breaks

Value

An object of the class `mcSetup` with the following elements:

<code>incrTriangle</code>	an object of the class <code>triangle</code> with the incremental run-off triangle
<code>triangleType</code>	type of the input run-off triangle provided for the input object <code>triangle</code> (cumulative or incremental)
<code>defaultStates</code>	the data-driven set of explicit states as used (by DEFAULT) by the <code>mcReserve()</code> function – the MACRAME prediction algorithm
<code>defaultBreaks</code>	the set of explicit data-driven breaks as used (by DEFAULT) by the <code>mcReserve()</code> function – the MACRAME prediction algorithm
<code>increments</code>	table with basic empirical characteristics of the increments of the input run-off triangle (without the first origin payments—the values in the first column of the run-off triangle). Two sets of increments are provided: the raw incremental payments in the first row of the table and the standardized increments (i.e., row incremental payments divided by the maximum payment within the row (while not considering the columns specified by the <code>out</code> parameter)
<code>userDefined</code>	a list with all information regarding the user modified input (numeric vector <code>increments</code> with the increments being analyzed; numeric value in <code>outColumns</code> denoting the excluded columns in the run-off triangle; <code>method</code> used to summarize the increments within the bins; numeric vector with the resulting Markov chain states in <code>states</code> and the corresponding numeric vector with the break points in <code>breaks</code> defining the bins for the run-off triangle increments)

References

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. *ASTIN Bulletin*, 52(2), 449-482. DOI:10.1017/asb.2022.4

See Also

`mcBreaks()`, `mcStates()`, `mcReserve()`, `permuteReserve()`

Examples

```
data(CameronMutual)

## default Markov Chain states with (roughly) equally occupied bins
incrExplor(CameronMutual)

## five Markov Chain states (with roughly equally occupied bins)
incrExplor(CameronMutual, states = 5)

## explicitly defined breaks for five increment bins while the Markov states
## are obtained as medians of the increments within each bin
incrExplor(CameronMutual, breaks = c(20, 500, 1000, 2000))

## explicitly defined breaks for five bins and the Markov states
## are given as the maximum increments within each bin
incrExplor(CameronMutual, breaks = c(20, 500, 1000, 2000), method = "max")

## manually defined breaks for the bins and the corresponding states
## exactly one state must be within each break
incrExplor(CameronMutual, breaks = c(20, 500, 1000),
           states = c(10, 250, 800, 1500))
```

mcBreaks

Access Markov Chain Breaks for Run-Off Triangle Increments

Description

Retrieves the Markov chain components from the output of the `incrExplor()` function or the `mcReserve()` function. In particular, the function returns the set of breaks used to define the bins for the incremental run-off triangle increments.

Usage

```
mcBreaks(object)
```

Arguments

object	An object of the class <code>profileLadder</code> returned from the function <code>mcReserve()</code> or an object of the class <code>mcSetup</code> returned from the function <code>incrExplor()</code> .
--------	---

Value

The vector of the break points that define the set of bins for the run-off triangle increments.

See Also

[mcReserve\(\)](#), [incrExplor\(\)](#), [mcStates\(\)](#), [mcTrans\(\)](#)

Examples

```
## DEFAULT performance of the incrExplor() function and the MACRAME algorithm
output1 <- incrExplor(CameronMutual)
output2 <- mcReserve(CameronMutual)

## Extracting the DEFAULT break points from both outputs
mcBreaks(output1)
mcBreaks(output2)

## Extracting the corresponding break points for 4 Markov states
mcBreaks(incrExplor(CameronMutual, states = 4))
```

mcReserve

MACRAME Based Development Profile Reserve

Description

The function takes a cumulative (or incremental) run-off triangle (partially or completely observed) and returns the reserve prediction obtained by the MACRAME algorithm (see Maciąk, Mizera, and Pešta (2022) for further details).

Usage

```
mcReserve(
  chainLadder,
  cum = TRUE,
  residuals = FALSE,
  states = NULL,
  breaks = NULL
)
```

Arguments

chainLadder	a cumulative or incremental run-off triangle (the triangle must be of the class <code>triangle</code> or <code>matrix</code>) in terms of a square matrix with a fully observed upper-left triangular part. If the lower-right part is also provided the function will also return standard residuals but only the upper-left (run-off) triangle is be used for the reserve prediction purposes
cum	logical to indicate the type of the input triangle that is provided (DEFAULT value is <code>TRUE</code> for the cumulative triangle, <code>FALSE</code> if <code>chainLadder</code> is of the incremental type)
residuals	logical to indicate whether (incremental) residuals should be provided in output or not. If the run-off triangle is completely observed then the residuals are obtained in terms of the true increments minus the predicted ones. If the bottom-right triangle is not available (which is a typical situation in practice) then the residuals are obtained in terms of a back-fitting approach (see Maciąk, Mizera,

and Pešta (2022) for further details). However, the back-fitted residuals are only calculated when no user specification of the states (in `states`) and breaks (in `breaks`) is provided (as it is usually not appropriate to use the same states/breaks for the flipped run-off triangle)

<code>states</code>	numeric value to provide either the number of the Markov states to be used or it can specify an explicit set of the states instead. The default setting (<code>states = NULL</code>) provides the set of states in a fully data-driven manner as proposed in Maciak, Mizera, and Pešta (2022) while any choice of <code>breaks</code> is ignored. If the number of states is specified by <code>states</code> , the states are obtained analogously as in Maciak, Mizera, and Pešta (2022), however, the number of actual states is adjusted and the parameter <code>breaks</code> is again ignored
<code>breaks</code>	If parameter <code>states</code> provides an explicit vector of Markov chain states (the smallest state should be larger than the smallest observed increment in the run-off triangle and, similarly, the largest state should be smaller than the largest observed increment) then the corresponding bins (<code>breaks</code>) for the run-off triangle increments are defined automatically by the midpoints between the provided states (with <code>breaks</code> being set to <code>NULL</code> DEFAULT)

Value

An object of the type `list` with with the following elements:

<code>reserve</code>	numeric vector with four values: Total paid amount (i.e., the sum of the last observed diagonal in a cumulative run-off triangle); Estimated ultimate (i.e., the sum of the last column in the completed cumulative run-off triangle); Estimated reserve (i.e., the sum of the last column in the completed cumulative triangle minus the sum of the last observed diagonal in <code>chainLadder</code>); True reserve if a completed <code>chainLadder</code> is provided for the input (i.e., the sum of the last column in <code>chainLadder</code> minus the sum of the last diagonal in <code>chainLadder</code>)
<code>method</code>	algorithm used for the reserve estimation
<code>Triangle</code>	the input run-off triangle provided in <code>chainLadder</code>
<code>FullTriangle</code>	completed run-off triangle (the upper-left triangular part is identical with the input triangle in <code>chainLadder</code> and the lower-right triangular part is completed by the MACRAME algorithm)
<code>trueCompleted</code>	true completed triangle (if available) where the upper-left part is used by the MACRAME algorithm to estimate the reserve and the lower-right part is provided for some evaluation purposes. If the full triangle is not available NA is returned instead

residuals	a triangle with the corresponding residuals (for <code>residuals = TRUE</code>). The residuals are either provided in the upper-left triangle (so-called back-fitted incremental residuals if true completed triangle is not available) or the residuals are given in the lower-right triangle (i.e., standard incremental residuals—if the true completed triangle is given)
-----------	--

References

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. ASTIN Bulletin, 52(2), 449-482. DOI:10.1017/asb.2022.4

See Also

[incrExplor\(\)](#), [permuteReserve\(\)](#), [mcBreaks\(\)](#), [mcStates\(\)](#), [mcTrans\(\)](#)

Examples

```
## run-off (upper-left) triangle with NA values
data(MW2014, package = "ChainLadder")
print(MW2014)

## MACRAME reserve prediction with the DEFAULT Markov chain setting
mcReserve(MW2014, residuals = TRUE)

## complete run-off triangle with 'unknown' truth (lower-bottom run-off triangle)
## with incremental residuals (true increments minus predicted ones)
data(CameronMutual)
mcReserve(CameronMutual, residuals = TRUE)

## the same output in terms of the reserve prediction but back-fitted residuals
## are provided instead (as the run-off triangle only is provided)
data(observed(CameronMutual))
mcReserve(observed(CameronMutual), residuals = TRUE)

## MACRAME reserve prediction with the underlying Markov chain with five
## explicit Markov chain states
mcReserve(CameronMutual, residuals = TRUE, states = c(200, 600, 1000))
```

Description

Retrieves the Markov chain components from a `profileLadder` object returned from the function `mcReserve()` or the `mcSetup` object returned from the function `incrExplor()`. In particular, the function returns the vector of the states used by the underlying Markov Chain utilized for reserve prediction in the MACRAME algorithm.

Usage

```
mcStates(object)
```

Arguments

object An object of the class `profileLadder` returned from the function `mcReserve()` or an object of the class `mcSetup` returned from the function `incrExplor()`.

Value

The vector of the Markov chain states that are used by the MACRAME algorithm.

See Also

[mcReserve\(\)](#), [incrExplor\(\)](#), [mcBreaks\(\)](#), [mcTrans\(\)](#)

Examples

```
## MACRAME reserve prediction with the DEFAULT Markov chain setup
output <- mcReserve(CameronMutual)

## Extracting the corresponding Markov states
mcStates(output)

#' ## Extracting the corresponding states when explicit breaks are used
mcStates(mcReserve(CameronMutual, breaks = c(1000, 2000, 3000)))
```

mcTrans

Access Markov Chain Transition Matrix in the MACRAME Algorithm

Description

Retrieves the Markov chain components from a `profileLadder` object returned from the function `mcReserve()` – in particular, the function returns the matrix of the estimated transition probabilities used by the underlying Markov Chain to provide the reserve prediction.

Usage

```
mcTrans(object)
```

Arguments

object An object of class `profileLadder`.

Value

The matrix of the estimated Markov chain transition probabilities

See Also

[mcReserve\(\)](#), [mcBreaks\(\)](#), [mcStates\(\)](#)

Examples

```
## MACRAME reserve prediction with the DEFAULT Markov chain setup
output <- mcReserve(CameronMutual)

## Extracting the corresponding break points
mcTrans(output)
```

MidwestMutual

Midwest Family Mutual Insurance Company Data

Description

An illustrative dataset—a matrix (of the dimensions 10x10) with ten completed years of claims payment developments of the Midwest Family Mutual Insurance company from the period 1988 – 1997. The data matrix contains ten origin/occurrence years (with the first row representing the incident year 1988) and ten consecutive development periods/years (in columns).

Usage

```
data(MidwestMutual)
```

Format

MidwestMutual:

A simple 10x10 matrix of a class triangle with ten origin years (rows) each being fully developed within ten consecutive development periods/years (columns)

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

The run-off triangle (the upper-left triangular part of the data matrix) contains only positive increments making the triangle suitable for the standard modelling approach—the over-dispersed Poisson model (GLM approach).

In practice, the run-off triangle only (the upper triangular part) of the data matrix is known while the bottom-right triangular part is treated as a future outcome (an "unknown" truth) that should be estimated/predicted. The Midwest Family Mutual Insurance data matrix is fully observed to allow for some retrospective goodness-of-fit evaluations.

Source

<https://www.casact.org/publications-research/research/research-resources>
(Other Liability Data Set, NAIC group code: 23574)

References

Meyers, G. G. and P. Shi (2011). Loss reserving data pulled from NAIC Schedule P. Available from <https://www.casact.org/publications-research/research/research-resources>

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. ASTIN Bulletin, 52(2), 449-482. DOI:10.1017/asb.2022.4 (Portfolio #2)

NevadaGeneral

Nevada General Insurance Company Data

Description

An illustrative dataset—a matrix (of the dimensions 10x10) with ten completed years of claims payment developments of the Nevada General Insurance company from the period 1988 – 1997. However, the data matrix only contains four non-zero origin/occurrence years (from the period 1994 – 1997) all being fully developed for ten consecutive development periods/years (in columns). The remaining matrix rows are all zeros. The resulting run-off triangle (the upper-left triangular part of the data matrix) is, therefore, sparse and very uninformative.

Usage

```
data(NevadaGeneral)
```

Format

NevadaGeneral:

A simple 10x10 matrix of a class `triangle` with ten origin years (rows) each being fully developed within ten consecutive development periods (columns). However, only for development profiles are nonzero and standard (parametric) reserving techniques (e.g. the ODP model) are not applicable

origin matrix rows with the occurrence year (origin)

dev matrix columns with the development period (development)

Details

In practice, the reserve for such sparse run-off triangles is not estimated by any stochastic model but, instead, an expert judgement is used to set the reserve. Nevertheless, the nonparametric reserving provided by PARALLAX, REACT, or MACRAME can still achieve resonable reserve predictions

Source

<https://www.casact.org/publications-research/research/research-resources>
(PP Auto Data Set, NAIC group code: 10007)

References

Meyers, G. G. and P. Shi (2011). Loss reserving data pulled from NAIC Schedule P. Available from <https://www.casact.org/publications-research/research/research-resources>

observed

*Observed Run-Off Triangle Layout vs. Predicted (Unknown) Layout***Description**

Simple layout function to allow work with fully developed run-off triangles (i.e., completed squares that also contain typically unknown (future) claim payments). Such data are not common in actuarial practice but they are usefull for retrospective analysis and back-testing purposes.

Usage

```
observed(object, cum = TRUE)
```

Arguments

object	either an integer value to denote the dimension of the run-off triangle layout (i.e., the value that represents the number of origins (rows) and also the number of the development periods (columns)). Alternatively, a cumulative or incremental run-off triangle (i.e, an object of the class <code>matrix</code> or <code>triangle</code>) can be provided in <code>object</code> . In such case the output returns the standard run-off triangle with NA values in the lower-right triangular part of the matrix (regardless of wheter the input triangle in <code>object</code> forms a run-off triangle or it is a fully observed triangle—data matrix)
cum	logical to indicate whether the output run-off triangle is supposed to be of a cumulative type (DEFAULT) or an incremental type (<code>cum = FALSE</code>). If the input in <code>object</code> is an integer value (i.e., the dimension of the run-off triangle) then the choice of the <code>cum</code> parameter is ignored

Value

If `object` is an integer value then the function returns a TRUE/FALSE layout matrix with the TRUE values for the observed (known) part of the run-off triangle (the upper-left triangular part of the matrix) and values FALSE otherwise. If `object` is a matrix (an object of the class `matrix` or `triangle`) then the function returns the observed (known) part of the run-off triangle with NA values elsewhere. Depending on the choice of the `cum` parameter, either a cumulative (DEFAULT) or incremental (`cum = FALSE`) run-off triangle is returned

See Also

[plot.profileLadder\(\)](#), [parallelReserve\(\)](#), [mcReserve\(\)](#)

Examples

```
## observed/unobserved layout for the run-off triangle with 5 origins
print(observed(5))
print(!observed(5))

## fully observed run-off triangle with typically unknown (future) payments
```

```
## included in the lower-right triangular part for evaluation purposes
data(CameronMutual) ## the full data matrix
observed(CameronMutual) ## cummulative run-off triangle
observed(CameronMutual, cum = FALSE) ## incremental run-off triangle
```

parallelReserve*Parallel Based Development Profile Reserve*

Description

The function takes a cumulative (or incremental) run-off triangle (partially or completely observed) and returns the reserve prediction obtained by the PARALLAX or REACT algorithm (see Maciak, Mizera, and Pešta (2022) for more details). If a full data matrix is provided as the input then the algorithms uses only on the relevant part of the data—the run-off triangle only (i.e., the top-left triangular part of the matrix) but standard incremental residuals (true incremental payments minus predicted increments) are returned for retrospective validation purposes (if `residuals = TRUE`). If the run-off triangle is provided only, then the algorithm calculates so-called back-fitted (incremental) residuals instead (see Maciak, Mizera, and Pešta (2022) for details).

Usage

```
parallelReserve(
  chainLadder,
  method = "parallax",
  cum = TRUE,
  residuals = FALSE
)
```

Arguments

<code>chainLadder</code>	cumulative or incremental run-off triangle (the triangle must be of the class <code>triangle</code> or <code>matrix</code>) in terms of a square matrix (i.e., a fully observed run-off triangle) or a standard run-off triangle instead (i.e., the top-left triangular part of the matrix)
<code>method</code>	prediction method to be used: PARALLAX (DEFAULT <code>method = "parallax"</code>) or REACT (<code>method = "react"</code>)
<code>cum</code>	logical (TRUE for a cumulative triangle and FALSE for an incremental triangle)
<code>residuals</code>	logical to indicate whether incremental residuals should be provided or not. If the run-off triangle is complete then the residuals are obtained in terms of true increments minus the predicted increments. If the bottom-right part of the triangle is not available the residuals are provided in terms of the backfitting approach (see Maciak, Mizera, and Pesta (2022) for further details)

Value

An object of the class `profileLadder` which is a list with the following elements:

<code>reserve</code>	numeric vector with four values summarizing the reserve: Total paid amount (i.e., the sum of the last observed diagonal in a cumulative run-off triangle); Total estimated amount (i.e., the sum of the last column in the completed cumulative triangle); Estimated reserve (i.e., the sum of the last column in the completed cumulative triangle minus the sum of the last observed diagonal in <code>chainLadder</code>); True reserve—if the completed (true) <code>chainLadder</code> is provided in the input (i.e., the sum of the last column in <code>chainLadder</code> minus the sum of the last diagonal in <code>chainLadder</code>)
<code>method</code>	algorithm used for the reserve estimation (PARALLAX or REACT)
<code>Triangle</code>	the run-off triangle considered as the input for the underlying estimation algorithm (PARALLAX or REACT)
<code>FullTriangle</code>	completed functional development profiles (the lower-right triangular part in completed) estimated by the PARALLAX algorithm or the REACT algorithm
<code>trueCompleted</code>	true (complete) run-off triangle (if available) and NA value provided otherwise
<code>residuals</code>	a triangle with the corresponding residuals (for <code>residuals</code> = TRUE). The residuals are either provided in the upper-left triangle (so-called back-fitted incremental residuals if true completed triangle is not available) or the residuals are given in the lower-right triangle (i.e., standard incremental residuals—if the true completed triangle is given)

References

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. ASTIN Bulletin, 52(2), 449-482. DOI:10.1017/asb.2022.4

See Also

[mcReserve\(\)](#), [permuteReserve\(\)](#), [summary.profileLadder\(\)](#)

Examples

```
## run-off (upper-left) triangle with NA values (bottom-right part)
data(MW2014, package = "ChainLadder")
print(MW2014)
parallelReserve(MW2014, residuals = TRUE)

## completed run-off triangle with 'unknown' truth (lower-bottom part)
## for the estimation purposes only the upper-left triangle is used
data(CameronMutual)
parallelReserve(CameronMutual, residuals = TRUE)

## the previous output is identical (in term of the reserve prediction)
## but back-fitted residuals are provided in the output instead
print(observed(CameronMutual))
parallelReserve(observed(CameronMutual), residuals = TRUE)
```

permuteReserve

Permutation Bootstrap Reserve (PARALLAX, REACT, MACRAME)

Description

The function takes a completed run-off triangle provided either by some classical parametric reserving technique (ODP model, Mack model, or Tweedie model) or some functional-based alternative (PARALLAX, REACT, or MACRAME) and estimates the overall reserve distribution in terms of the permutation bootstrap approach proposed in Maciak, Mizera, and Pešta (2022).

Usage

```
permuteReserve(
  object,
  B = 500,
  std = TRUE,
  quantile = 0.995,
  adjustMC = TRUE,
  outputAll = TRUE,
  pb = TRUE
)
```

Arguments

object	an object which is the result of some functional-based reserving method implemented in the ProfileLadder package (functions <code>parallelReserve()</code> and <code>mcReserve()</code> in particular) or some parametric approach from the ChainLadder package (specifically the functions <code>chainladder()</code> , <code>glmReserve()</code> , <code>tweedieReserve()</code> , and <code>MackChainLadder()</code>). The following object's classes are allowed: <code>profileLadder</code> , <code>ChainLadder</code> , <code>glmReserve</code> , <code>tweedieReserve</code> , and <code>MackChainLadder</code> .
B	number of the bootstrap permutations to be performed (by DEFAULT the number of permutations is set to $B = 500$)
std	logical to indicate whether the run-off triangle should be standardized by the first column increments (TRUE by DEFAULT) or not (std = FALSE). For more details about the triangle standardization, see Maciak, Mizera, and Pešta (2022)
quantile	quantile level for the <code>BootVar</code> . characteristic of the bootstrapped distribution (the DEFAULT choice <code>quantile = 0.995</code> is explicitly required by the Solvency II principle used by actuaries in practice)
adjustMC	logical (TRUE by DEFAULT) to indicate whether the Markov chain states and the corresponding breaks should be adjusted for every bootstrap permutation or the same set of Markov states and breaks is used for each permuted run-off triangle (only applies if the input object is an output of the MACRAME algorithm—the function <code>mcReserve()</code>)

outputAll	logical to indicate whether whole permuted triangles should be stored and provided in the output (outputAll = TRUE set by default), or just the main summary characteristics are given instead (outputAll = FALSE)
pb	logical (TRUE by DEFAULT) to indicate whether a progress bar for bootstrap resampling should be used or not (required the R package pbapply) to be installed

Value

An object of the class permutedReserve which is a list with the following elements:

eSummary	numeric vector with four values summarizing the estimated reserve: Paid amount (i.e., the sum of the last observed diagonal in the given cumulative run-off triangle); Estimated ultimate (i.e., the sum of the last column in the completed cumulative triangle); Estimated reserve (i.e., the sum of the last column in the completed cumulative triangle minus the sum of the last observed diagonal); True reserve if a completed (true) run-off triangle is available
pSummary	numeric vector with four values summarizing the overall reserve distribution: Boot.Mean gives the verage of B permutation bootstrap reserves; Std.Er . provides the corresponding standard error of B permutation bootstrap reserves; The value of BootCov% stands for a percentage proportion between the standard error and the average; Finally, BootVar . 995 provides the estimated 0.995 quantile (by DEFAULT) of the bootstrap reserve distribution (for quantile = 0 . 995 and, otherwise, it is modified acordingly) given relatively with respect to the permutation bootstrapped mean reserve
pReserves	a numeric vector of the length B with the estimated (permuted) reserves for each row-permuted run-off triangle in B independent Monte Carlo simulation runs
pUltimates	A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n stands for the number of the origin/development periods and B is the number os simulated ultimate payments –the last column in the completed run-off triangle.
pLatest	A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n again stands for the number of the origin/development periods and B is the number of simulated incremental diagonals
pLatestCum	A matrix of the dimensions B x n (provided in the output if outputAll = TRUE) where n is the number of the origin/development periods and B stands for the number of simulated cumulative diagonals
pFirst	A matrix of the dimension B x n (provided in the output if outputAll = TRUE) where n stands for the number of the origin/development periods and B is the number of simulated first payment columns (all columns are identical for std = TRUE)
Triangle	The input run-off triangle
FullTriangle	The completed run-off triangle by using one of the PARALLAX, REACT, or MACRAME estimation method
trueComplete	The true complete run-off triangle (if available) and NA value otherwise

info	a numeric vector summarizing the bootstrap computational efficiency: In particular, the OS/Architecture type, the number of permutations (B), the input run-off triangle dimension (n) and the computation time needed for the permutation bootstrap calculations
------	---

References

Maciak, M., Mizera, I., and Pešta, M. (2022). Functional Profile Techniques for Claims Reserving. *ASTIN Bulletin*, 52(2), 449-482. DOI:10.1017/asb.2022.4

European Parliament and Council (2009). Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency II). *Official Journal of the European Union*, 1–155.
<https://data.europa.eu/eli/dir/2009/138/oj>

See Also

[parallelReserve\(\)](#), [mcReserve\(\)](#), [plot.permutedReserve\(\)](#), [summary.permutedReserve\(\)](#)

Examples

```
## REACT algorithm and the permutation bootstrap reserve
data(CameronMutual)
output <- parallelReserve(CameronMutual, method = "react")
summary(permuteReserve(output, B = 100))

## MACRAME algorithm with a pre-specified number of states using the same MC
## states and the same break for each permuted run-off triangle
output <- mcReserve(CameronMutual, states = 5)
plot(permuteReserve(output, B = 100, adjustMC = FALSE))

## Permutation bootstrap applied to a completed run-off triangle
## obtained by a parametric Over-dispersed Poisson model (from ChainLadder pkg)
library("ChainLadder")
output <- permuteReserve(glmReserve(MW2008), B = 100)
summary(output, triangle.summary = TRUE)
```

Description

The function provides a graphical visualization of the results obtained from the `incrExplor()` function. In particular, the considered run-off triangle increments are distributed into the bins according the given Markov chain breaks and states. Two figures are provided: The first figure contains a histogram of the standard incremental residuals with a corresponding kernel density estimate. The second figure shows how the increments are distributed into the given set of bins (defined by the break points). In addition, the corresponding Markov chain states are displayed

Usage

```
## S3 method for class 'mcSetup'
plot(x, ...)
```

Arguments

x	an object of the class <code>mcSetup</code> – i.e., the output of the <code>incrExplor()</code> function
...	other graphical parameters to plot

Value

The function returns a layout with two plots: A histogram with the run-off triangle increments and the barplot with the increments being distributed into the given set of bins

See Also

[incrExplor\(\)](#), [mcReserve\(\)](#)

Examples

```
## run-off triangle increments within the default bins
x <- incrExplor(CameronMutual)
plot(x)

## run-off triangle increments and user-defined number of bins
x <- incrExplor(CameronMutual, states = 5)
plot(x)

## run-off triangle increments within the user-specified bins
x <- incrExplor(CameronMutual, breaks = c(500, 1000, 1500))
plot(x)
```

`plot.permutedReserve` *Plotting the Output of the Permutation Bootstrap*

Description

The function provides a graphical visualization of the results obtained from the permutation bootstrap (see Maciąk, Mizera, and Pesta (2022) for further details) applied to the output of some parametric or nonparametric reserving technique. In particular, the classical parametric methods include GLM based reserving, the Mack Chain Ladder model, and the Tweedie model (all implemented in the package `ChainLadder`). Nonparametric (so-called functional-based) methods include three algorithms implemented in the `ProfileLadder` package (PARALLAX, REACT, and MACRAME)

Usage

```
## S3 method for class 'permutedReserve'
plot(x, ...)
```

Arguments

- x an object of the class `permutedReserve` – i.e., the output of the `permuteReserve()` function
- ... other graphical parameters to plot

Value

The function returns a layout for four plots. The first panel shows a simple barplot type visualization of the estimated reserve, the estimated ultimate, and the true reserve (if available). The second panel provides a histogram for (permuted) bootstrapped reserves with a nonparametric estimate of the corresponding density. The third panel provides a detailed inspection of the bootstrapped ultimates (with true ultimates if provided) and, finally, the last panel shows the observed diagonal vs. simulated ones.

See Also

[permuteReserve\(\)](#)

Examples

```
## reserve estimated by MACRAME and the corresponding visualization
x <- mcReserve(CameronMutual)
plot(permuteReserve(x, B = 100))
```

plot.profileLadder *Plotting Development Profiles*

Description

The function provides a graphical representation of the functional profiles estimated by the PAR-ALLAX, REACT, or MACRAME algorithm (see Maciak, Mizera, and Pesta (2022) for further details). The function takes an object of the class `profileLadder` which is the output of the `parallelReserve()` function or the `mcReserve()` function. Alternatively, the function can be also applied to visualise the run-off triangle itself—if the triangle is of the class `profileLadder`.

Usage

```
## S3 method for class 'profileLadder'
plot(
  x,
  xlab = "Development period",
  ylab = "Cumulative claims",
  main = "",
  default.legend = TRUE,
  ...
)
```

Arguments

x	an object of the class <code>profileLadder</code> (output from <code>parallelReserve()</code> , <code>mcReserve()</code> , or <code>as.profileLadder()</code>)
xlab	label for the x axis
ylab	label for the y axis
main	title of the plot
default.legend	logical to indicate whether a default plot legend (utilizing the information from the R class <code>profileLadder</code>) should be provided (DEFAULT)
...	other graphical parameters to plot

Value

A graph with the observed functional development profiles from the input run-off triangle, the estimated/predicted functional segments (i.e., functional profile completion provided by the corresponding estimation method—PARALLAX, REACT, or MACRAME) the and the true future profiles (if these are available)

See Also

[as.profileLadder\(\)](#), [parallelReserve\(\)](#), [mcReserve\(\)](#)

Examples

```
## completed run-off triangle with the 'unknown' (future) payments
print(triangle <- GFCIB$bodilyInjury[1:15, 1:15])
plot(mcReserve(triangle))

## completed run-off triangle with unknown future
print(observed(triangle))
plot(mcReserve(observed(triangle)))

## the run-off triangle with future payments without MACRAME completion
plot(as.profileLadder(triangle))
```

plot.profilePredict *Plotting Predicted Run-Off Diagonal*

Description

The function provides a graphical visualization of a 1-step-ahead prediction for the functional (development) profiles (so called new running diagonal) obtained by the S3 method `predict()` applied to the output of the PARALLAX, REACT, or MACRAME algorithm—the R functions `parallelReserve()` or `mcReserve()`.

Usage

```
## S3 method for class 'profilePredict'
plot(
  x,
  xlab = "Development period",
  ylab = "Cumulative claims",
  main = "",
  trueProfiles = NULL,
  default.legend = TRUE,
  ...
)
```

Arguments

<code>x</code>	an object of the class <code>profileLadder</code> which is the output from <code>parallelReserve()</code> or <code>mcReserve()</code>
<code>xlab</code>	label for the x axis
<code>ylab</code>	label for the y axis
<code>main</code>	title of the plot
<code>trueProfiles</code>	optional parameter (set to <code>NULL</code> by default) providing true profiles, if available. In such case, the predicted diagonal is also graphically compared with the true profile developments. The parameter can be a vector (of the same length as the number of rows in the run-off triangle) providing true values of the next running diagonal or it can be a matrix (an object of the class <code>matrix</code> or <code>triangle</code>) with the dimensions $n \times m$ (where $n \times n$ is the dimension of the run-off triangle and $m > n$).
<code>default.legend</code>	logical to indicate whether a default plot legend (utilizing the information from the R class <code>profileLadder</code>) should be provided (DEFAULT)
<code>...</code>	other graphical parameters to plot

Value

A graph with the observed functional development profiles from the input run-off triangle and the predicted new running diagonal (1-step-ahead prediction)

See Also

[\[parallelReserve\(\), mcReserve\(\), predict.profileLadder\(\)\]](#)

Examples

```
## new running diagonal provided by PARALLAX
print(CameronMutual)
plot(predict(parallelReserve(CameronMutual)))

## new running diagonal with the true profiles
print(covid19CZ)
plot(predict(mcReserve(covid19CZ[,4:7])), trueProfiles = covid19CZ)
```

`predict.profileLadder` *One-year-ahead prediction based on PARALLAX, REACT, or MACRAME*

Description

The function provides a one-year-ahead prediction for a given run-off triangle (i.e., estimating a new running diagonal based on some nonparametric, functional-based prediction algorithm, PARALLAX, REACT, or MACRAME).

Usage

```
## S3 method for class 'profileLadder'  
predict(object, ...)
```

Arguments

<code>object</code>	an object of the class <code>profileLadder</code> which is the output from the <code>parallelReserve()</code> function or the <code>mcReserve</code> function
<code>...</code>	further arguments passed to <code>predict()</code>

Value

An object of the class `profilePredict` which is a list with the following elements:

<code>reserve</code>	The overall predicted amount of the next year payments—the new running diagonal in an extended (cumulative) run-off triangle minus the last observed diagonal (in the cumulative triangle again)
<code>methods</code>	Provides the information about the underlying nonparametric (functional-based) method that is used for the 1-year-ahead prediction (PRALLAX, REACT, or MACRAME)
<code>newDiagonal</code>	Numeric vector representing the prediction of the new running diagonal (ordered in a way that first value corresponds to the payment for the last occurrence period (typically the largest amount) and the last value corresponds with the next-year payment for the first occurrence periods—typically the smallest amount)
<code>extTriangle</code>	The extended run-off triangle—the R object of the class <code>triangle</code> that also contains the new predicted diagonal—the 1-year-ahead prediction

See Also

[parallelReserve\(\)](#), [mcReserve\(\)](#)

Examples

```
## full run-off triangle completion
parallelReserve(CameronMutual)

## one-year-ahead prediction based on PARALLAX
predict(parallelReserve(CameronMutual))
```

print.mcSetup*Print Objects of the S3 Class mcSetup*

Description

Function to organize and print the output provided by the function `incrExplor()`

Usage

```
## S3 method for class 'mcSetup'
print(x, ...)
```

Arguments

<code>x</code>	an object of the class <code>mcSetup</code> resulting from a call of the <code>incrExplor()</code> function
<code>...</code>	further arguments passed to <code>print</code>

Value

displays information resulting from a call of the `incrExplor()` function

See Also

[incrExplor\(\)](#), [mcReserve\(\)](#), [mcBreaks\(\)](#), [mcStates\(\)](#)

Examples

```
data(CameronMutual)
x <- incrExplor(CameronMutual)
print(x)
```

print.permutedReserve *Print Objects of the S3 Class permutedReserve*

Description

Function to organize and print the output provided by the permutation bootstrap method implemented in the function `permuteReserve()`

Usage

```
## S3 method for class 'permutedReserve'  
print(x, ...)
```

Arguments

`x` an object of the class `permutedReserve` resulting from a call of the functions `permuteReserve()`
`...` further arguments passed to `print`

Value

Displays information about the estimated reserve (by one of the estimation algorithms – PARALLAX, REACT, or MACRAME) and the overall reserve distribution resulting from a call of the `permuteReserve()` function

See Also

[permuteReserve\(\)](#)

Examples

```
## reserve point prediction by the PARALLAX method  
output <- parallelReserve(CameronMutual)  
  
## reserve distribution prediction by the permutation bootstrap  
x <- permuteReserve(output, B = 100)  
  
## summary of the results  
print(x)
```

print.profileLadder *Print Objects of the S3 Class profileLadder*

Description

Function to organize and print the outputs provided by the function parallelReserve() and the function mcReserve

Usage

```
## S3 method for class 'profileLadder'
print(x, fancy.print = getOption("profileLadder.fancy", TRUE), ...)
```

Arguments

x	an object of the class profileLadder resulting from a call of one of the functions parallelReserve(), mcReserve, or as.profileLadder()
fancy.print	logical to indicate whether fancy run-off triangle should be printed or a standard output should be used instead. The default choice is TRUE. Note that that fancy print option uses by DEFAULT zero decimal digits. Specific colors for the fancy print option and the number of decimal points to be used can be set by the function set.fancy.print(). The fancy print option can be suppressed by options(profileLadder.fancy = FALSE).
...	further arguments passed to print()

Value

displays information resulting from a call of the parallelReserve() function or the mcReserve function

See Also

[as.profileLadder\(\)](#), [set.fancy.print\(\)](#), [parallelReserve\(\)](#), [mcReserve\(\)](#)

Examples

```
data(CameronMutual)
## full run-off triangle printed with the fancy mode
x <- as.profileLadder(CameronMutual)
print(x)

## run-off triangle with unobserved future payments
x <- as.profileLadder(observed(CameronMutual))
print(x)

## the same run-off triangle using a standard printing method
options(profileLadder.fancy = FALSE)
print(x)
```

print.profilePredict *Print Objects of the S3 Class profilePredict*

Description

Function to organize and print the 1-year prediction based on the PARALLAX and REACT algorithm (`parallelReserve()`) or the MACRAME algorithm (`mcReserve()`)

Usage

```
## S3 method for class 'profilePredict'  
print(x, fancy.print =getOption("profileLadder.fancy", TRUE), ...)
```

Arguments

<code>x</code>	an object of the class <code>profileLadder</code> resulting from a call of one of the functions <code>parallelReserve()</code> or <code>mcReserve</code>
<code>fancy.print</code>	logical to indicate whether a fancy run-off triangle should be printed in the output (DEFAULT) or a standard print option should be used instead. Note that that the fancy print option uses, by DEFAULT, zero number of decimal digits. Specific colors for the fancy print option and the number of decimal points to be used can be set by the function <code>set.fancy.print()</code> . The fancy print option can be suppressed by <code>options(profileLadder.fancy = FALSE)</code> .
<code>...</code>	further arguments passed to <code>print()</code>

Value

displays information resulting from a call of the `predict()` applied to the output of the `parallelReserve()` or `mcReserve()` function—the one year ahead prediction in the run-off triangle

See Also

[parallelReserve\(\)](#), [mcReserve\(\)](#), [set.fancy.print\(\)](#)

Examples

```
data(CameronMutual)  
predict(parallelReserve(CameronMutual))
```

`set.fancy.print`*Set Custom Color Styles for profileLadder Output*

Description

Function to set user-modified color layout for the run-off triangle visualization and the overall output presentation

Usage

```
set.fancy.print(  
  color.known = "#333333",  
  color.predicted = "#CC00CC",  
  color.unknown = "#999999",  
  color.info = "#CC00CC",  
  display.digits = 0  
)
```

Arguments

<code>color.known</code>	Color (e.g., a hexadecimal code) for the run-off triangle part (the upper-left triangle)
<code>color.predicted</code>	Color (e.g., a hexadecimal code) for the predicted part of the run-off triangle (the bottom-right triangle)
<code>color.unknown</code>	Color (e.g., a hexadecimal code) for the 'unknown' future (the bottom-right triangle which is typically not available for insurance practice but is often provided for retrospective evaluations)
<code>color.info</code>	Color (e.g., a hexadecimal code) for the information messages in the outputs of the prediction functions <code>parallelReserve()</code> , <code>mcReserve()</code> , and <code>permuteReserve()</code>
<code>display.digits</code>	the number of digits to be used when using the fancy print option for run-off triangles. No decimal point are used by DEFAULT (i.e., <code>display.digits = 0</code> by DEFAULT)

Value

Sets the user-defined option for fancy print color styles

See Also

[print.profileLadder\(\)](#)

Examples

```
## fancy print option for the run-off triangle
print(as.profileLadder(observed(CameronMutual)), fancy.print = TRUE)

## fancy print option for the run-off triangle with two decimals
set.fancy.print(display.digits = 2)
print(as.profileLadder(observed(CameronMutual)))

## standard print option for the run-off triangle
print(as.profileLadder(observed(CameronMutual)), fancy.print = FALSE)

## PARALLAX based run-off triangle completion (fancy print)
options(profileLadder.fancy = TRUE)
parallelReserve(CameronMutual)

## PARALLAX based run-off triangle completion (standard print)
options(profileLadder.fancy = FALSE)
parallelReserve(CameronMutual)
```

summary.mcSetup

Summary Method for the S3 Class Object mcSetup

Description

The function provides an overall summary of the output from the function `incrExplor()`

Usage

```
## S3 method for class 'mcSetup'
summary(object, ...)
```

Arguments

object	an object of the class <code>mcSetup</code> – the output from the <code>incrExplor()</code> function
...	not used

Value

Returns a standard summary table (with basic description characteristics) for raw run-off triangle increments and their standardized (by using the maximum increment) counterparts. The function also returns the corresponding bins for the increments and their representations in terms of the Markov chain states.

See Also

[incrExplor\(\)](#), [mcBreaks\(\)](#), [mcStates\(\)](#)

Examples

```
data(CameronMutual)
summary(CameronMutual)

## default summary output
summary(incrExplor(CameronMutual))

## summary output for user-modified settings
summary(incrExplor(CameronMutual, states = 5, method = "mean"))
```

summary.permutedReserve

Summary Method for the S3 Objects permutedReserve

Description

The function provides an overall summary of the output from the function `permuteReserve()` (i.e., the summary of the object of the class `permutedReserve`)

Usage

```
## S3 method for class 'permutedReserve'
summary(object, triangle.summary = FALSE, ...)
```

Arguments

object	an object of the class <code>permutedReserve</code> – i.e., the output from the <code>permuteReserve()</code> functions
triangle.summary	logical (FALSE by DEFAULT) indicating whether a brief table with the empirical summary of the permuted run-off triangles (the first column, the last running diagonal, and the ultimate amounts in particular) should be printed in the output or not
...	not used

Value

Summary of the completed functional profiles (provided by one of the functions `parallelReserve()` or `mcReserve()`) and the overall reserve distribution obtained in terms of the permutation bootstrap – the function `permuteReserve()`. The output is a list with the following items:

origins	a matrix with the row-specific summary of the completed functional profiles (except the first fully developed profile—i.e., the first row in the run-off triangle). The first column of the matrix (First) gives the first origin payments; The second column (Latest) gives the last available (cumulative) payments (i.e., values from the last running diagonal in the run-off triangle); The third column
---------	---

(Dev.To.Date) gives a relative proportion of the paid amount (Latest) with respect to the estimated ultimate (Ultimate) given in the fourth column; The column denoted as IBNR gives the estimated amount still left to pay (Incurred But Not Reported); The sixth column provides the estimated standard errors (S.E.) of IBNR obtained from the permutation bootstrap; The last column returns the corresponding coefficients of variation (CV).

overall	Table with the summary of the true/estimated reserve: Paid amount represents the sum of the last running diagonal; Estimated reserve gives the reserve estimate provided by one of the estimation algorithm (PARALLAX, REACT, or MACRAME); True reserve is given as a sum of the last column (if available, NA otherwise); Finally, some Accuracy in terms of Reserve% is given as a percentage of the estimated reserve with respect to the true reserve (see Maciak, Mizerá, and Pešta (2022) and Dev.To.Date gives the proportion of the overall estimated ultimate and the overall paid amount
dist	Table with basic empirical characteristics of the overall reserve distribution provided by the permutation bootstrap: Boot.Mean stands for the empirical mean of the bootstrap distribution; Std.Er. gives the corresponding standard error of the bootstrap distribution; BootCov% stands for a percentage proportion between the standard error and the empirical mean of the bootstrap distribution; Finally, BootVar.xxx provides the estimated quantile of the bootstrap reserve distribution (0.995 by DEFAULT).

See Also

[parallelReserve\(\)](#), [mcReserve\(\)](#), [permuteReserve\(\)](#)

Examples

```
data(CameronMutual)
summary(CameronMutual)

## summary for the point reserve prediction
summary(parallelReserve(CameronMutual))

## summary for the overall reserve distribution
summary(permuteReserve(parallelReserve(CameronMutual)))
```

summary.profileLadder *Summary Method for Objects of the S3 Class Method profileLadder*

Description

The function provides an overall summary of the output from the functions `parallelReserve()` and `mcReserve()` (summary of the object of the class `profileLadder`)

Usage

```
## S3 method for class 'profileLadder'
summary(object, plotOption = FALSE, ...)
```

Arguments

object	an object of the class <code>profileLadder</code> – i.e., either a run-off triangle itself or the output from the <code>parallelReserve()</code> or <code>mcReserve()</code> functions
plotOption	logical to indicate whether a graphical output should be also provided (set by <code>DEFAULT</code> to <code>FALSE</code>). If the incremental residuals (standard or back-fitted) are provided within the object <code>x</code> the plot provides a summary of the residuals (otherwise a simple barplot summarizing the estimated reserve is given)
...	not used

Value

Summary of the completed functional profiles and the estimated reserve (provided by the function `parallelReserve()` or `mcReserve()`). Summary of the incremental residuals (standard or back-fitted) is also provided if the residuals are available. The output is a list with the following items:

origins	a matrix with the row-specific summary of the completed functional profiles (except the first fully developed profile—i.e., the first row in the run-off triangle). The first column of the matrix (<code>First</code>) gives the first origin payments; The second column (<code>Latest</code>) gives the last available (cumulative) payments (i.e., values from the last running diagonal in the run-off triangle); The third column (<code>Dev.To.Date</code>) gives a relative proportion of the paid amount (<code>Latest</code>) with respect to the estimated ultimate (<code>Ultimate</code>) given in the fourth column; Finally, the last column (<code>IBNR</code>) gives the estimated amount still left to pay (Incurred But Not Reported)
overall	Table with the summary of the true/estimated reserve: Paid amount represents the sum of the last running diagonal; Estimated reserve gives the reserve estimate provided by one of the estimation algorithm (PARALLAX, REACT, or MACRAME); True reserve is given as a sum of the last column (if available, NA otherwise); Finally, some Accuracy in terms of Reserve% is given as a percentage of the estimated reserve with respect to the true reserve (see Maciak, Mizera, and Pešta (2022) and <code>Dev.To.Date</code> gives the proportion of the overall estimated ultimate and the overall paid amount
resids	Table with basic empirical description characteristics of the residuals (standard or back-fitted) if the residuals are provided in <code>x</code>

See Also

[as.profileLadder\(\)](#), [parallelReserve\(\)](#), [mcReserve\(\)](#)

Examples

```
data(CameronMutual)
summary(CameronMutual)
```

```
## standard summary output
summary(mcReserve(CameronMutual))

## summary output with plotOption = TRUE
summary(mcReserve(CameronMutual), plotOption = TRUE)

## summary output with (standard) residuals and plotOption = TRUE
summary(mcReserve(CameronMutual, residuals = TRUE), plotOption = TRUE)

## summary output with (back-fitted) residuals and plotOption = TRUE
summary(mcReserve(observed(CameronMutual), residuals = TRUE), plotOption = TRUE)
```

xNetSubscribe*Internet Provider Monthly Income Data*

Description

An illustrative dataset—a matrix (of the dimensions 12x12) with a monthly-based income (in EUR) of a local internet data provider with the income structured by the customers subscribing within the given month (in 2023) reported in the rows and monthly-based payments reported in columns. The data matrix represents the incremental type of the run-off triangle.

Usage

```
data(xNetSubscribe)
```

Format**xNetSubscribe:**

A simple 12x12 (triangular) matrix of the class `triangle` with twelve consecutive months (January 2023 – December 2023) when new customers subscribed to the stream service (rows) and monthly-based payments (columns)

Index

as.profileLadder, 2
as.profileLadder(), 25, 30, 36

CameronMutual, 3
covid19CZ, 4
CZ.casco, 5
CZ.liability, 6
CZ.property, 6

GFCIB, 7

incrExplor, 8
incrExplor(), 10, 13, 14, 23, 28, 33

mcBreaks, 10
mcBreaks(), 9, 13–15, 28, 33
mcReserve, 11
mcReserve(), 3, 9, 10, 14, 15, 17, 19, 22, 23,
25–28, 30, 31, 35, 36

mcStates, 13
mcStates(), 9, 10, 13, 15, 28, 33

mcTrans, 14
mcTrans(), 10, 13, 14

MidwestMutual, 15

NevadaGeneral, 16

observed, 17

parallelReserve, 18
parallelReserve(), 3, 17, 22, 25–27, 30, 31,
35, 36

permuteReserve, 20
permuteReserve(), 3, 9, 13, 19, 24, 29, 35

plot.mcSetup, 22
plot.permutedReserve, 23
plot.permutedReserve(), 22

plot.profileLadder, 24
plot.profileLadder(), 3, 17

plot.profilePredict, 25

predict.profileLadder, 27

predict.profileLadder(), 26
print.mcSetup, 28
print.permutedReserve, 29
print.profileLadder, 30
print.profileLadder(), 32
print.profilePredict, 31

set.fancy.print, 32
set.fancy.print(), 30, 31
summary.mcSetup, 33
summary.permutedReserve, 34
summary.permutedReserve(), 22
summary.profileLadder, 35
summary.profileLadder(), 19

xNetSubscribe, 37