

Package ‘PriceIndices’

January 21, 2026

Title Calculating Bilateral and Multilateral Price Indexes

Version 0.2.7

Description Preparing a scanner data set for price dynamics calculations (data selecting, data classification, data matching, data filtering). Computing bilateral and multilateral indexes. For details on these methods see: Diewert and Fox (2020) [doi:10.1080/07350015.2020.1816176](https://doi.org/10.1080/07350015.2020.1816176), Bialek (2019) [doi:10.2478/jos-2019-0014](https://doi.org/10.2478/jos-2019-0014) or Bialek (2020) [doi:10.2478/jos-2020-0037](https://doi.org/10.2478/jos-2020-0037).

Depends R (>= 3.5.0)

Imports lubridate (>= 1.7.4), dplyr (>= 0.8.3), ggplot2 (>= 3.2.0), reshape, reclin2, stringr, strex

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Jacek Bialek [aut, cre] (ORCID: <https://orcid.org/0000-0002-0952-5327>)

Maintainer Jacek Bialek <jacek.bialek@uni.lodz.pl>

Repository CRAN

Date/Publication 2026-01-21 21:30:08 UTC

Contents

agmean	6
available	7
banajree	8
bennet	9
bialek	10
bmw	11

carli	12
ccdi	13
ccdi_fbew	14
ccdi_fbmw	15
ccdi_splice	16
chagmean	18
chbanajree	19
chbialek	20
chbmw	21
chcarli	22
chcswd	23
chdavies	24
chdikhanov	25
chdrobisch	26
chdutot	27
chfisher	28
chgeary_khamis	29
chgeohybrid	30
chgeolaspeyres	31
chgeolowe	32
chgeopaasche	33
chgeoyoung	34
chharmonic	35
chhybrid	36
chiQMp	37
chjevons	38
chlaspeyres	39
chlehr	40
chlloyd_moulton	41
chlowe	42
chmarshall_edgeworth	43
chpaasche	44
chpalgrave	45
chQMp	46
chQMq	47
chsato_vartia	48
chstuvel	49
chtornqvist	50
chvartia	51
chwalsh	52
chyoung	53
coffee	54
compare_distances	55
compare_indices_df	56
compare_indices_jk	56
compare_indices_list	59
compare_to_target	60
cswd	61

dataAGGR	62
dataCOICOP	63
dataMARS	63
dataMATCH	64
dataRSM	65
dataU	65
data_aggregating	66
data_check	67
data_DOWN_UP_SIZED	67
data_filtering	68
data_imputing	69
data_matching	71
data_norm	73
data_preparing	74
data_reducing	76
data_selecting	77
data_unit	78
davies	79
dikhanov	80
dissimilarity	81
dissimilarity_fig	82
drobisch	83
dutot	84
elasticity	85
elasticity_fig	86
expenditures	88
final_index	89
fisher	90
geary_khamis	91
geks	92
geksaqi	94
geksaqi_fbew	95
geksaqi_fbmw	96
geksaqi_splice	97
geksaqu	99
geksaqu_fbew	100
geksaqu_fbmw	101
geksaqu_splice	102
geksgaqi	104
geksgaqi_fbew	105
geksgaqi_fbmw	106
geksgaqi_splice	107
geksgl	109
geksgl_fbew	110
geksgl_fbmw	112
geksgl_splice	113
geksiqm	114
geksiqm_fbew	116

geksiqm_fbmw	117
geksiqm_splice	118
geksj	119
geksj_fbew	120
geksj_fbmw	122
geksj_splice	123
geksl	124
gekslm	126
gekslm_fbew	127
gekslm_fbmw	128
gekslm_splice	129
geksl_fbew	131
geksl_fbmw	132
geksl_splice	133
geksqm	135
geksqm_fbew	136
geksqm_fbmw	137
geksqm_splice	138
geksw	140
geksw_fbew	141
geksw_fbmw	142
geksw_splice	143
geks_fbew	145
geks_fbmw	146
geks_splice	147
generate	148
generate_CES	150
geohybrid	151
geolaspeyres	152
geolowe	153
geopaasche	154
geoyoung	155
gk	156
gk_fbew	157
gk_fbmw	158
gk_splice	159
harmonic	161
hybrid	162
IQMp	163
jevons	164
laspeyres	165
lehr	166
lloyd_moulton	167
lowe	168
MARS	169
marshall_edgeworth	170
matched	171
matched_fig	172

matched_index	173
mbennet	174
milk	176
mmontgomery	176
montgomery	178
m_decomposition	179
paasche	180
palgrave	181
pqcor	182
pqcor_fig	183
PriceIndices	184
prices	190
price_indices	191
products	193
products_fig	194
QM _p	195
QM _q	196
QU	197
quantities	198
retro_index	198
sales	200
sales_groups	201
sales_groups2	202
sato_vartia	203
shrinkflation	204
SPQ	206
stuvel	207
sugar	208
tindex	209
tornqvist	210
tpd	211
tpd_fbew	212
tpd_fbmw	213
tpd_splice	214
unit_value_index	215
utpd	216
utpd_fbew	217
utpd_fbmw	218
utpd_splice	219
value_index	221
vartia	222
walsh	223
wgeks	224
wgeksaqi	225
wgeksaqi_fbew	226
wgeksaqi_fbmw	227
wgeksaqi_splice	228
wgeksaqu	230

wgeksaqu_fbew	231
wgeksaqu_fbmw	232
wgeksaqu_splice	233
wgeksgaqi	235
wgeksgaqi_fbew	236
wgeksgaqi_fbmw	238
wgeksgaqi_splice	239
wgeksgl	240
wgeksgl_fbew	242
wgeksgl_fbmw	243
wgeksgl_splice	244
wgeksl	246
wgeksl_fbew	247
wgeksl_fbmw	248
wgeksl_splice	249
wgeks_fbew	251
wgeks_fbmw	252
wgeks_splice	253
young	255

Index**257**

agmean*Calculating the bilateral AG Mean price index*

Description

This function returns a value (or vector of values) of the bilateral AG Mean price index.

Usage

```
agmean(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric)
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral AG Mean price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Lent J., & Dorfman,A. H. (2009). *Using a Weighted Average of Base Period Price Indexes to Approximate a Superlative Index*. Journal of Official Statistics, 25(1), 139-149.

Examples

```
agmean(sugar, start="2019-01", end="2020-01", sigma=0.5)
agmean(milk, start="2018-12", end="2020-01", interval=TRUE)
```

available

Providing values from the indicated column that occur at least once in one of the compared periods or in a given time interval

Description

The function returns all values from the indicated column (defined by the `type` parameter) which occur at least once in one of the compared periods or in a given time interval.

Usage

```
available(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame. It must contain a column <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01') and also a column indicated by the <code>type</code> parameter.
<code>period1</code>	The first period (as character) limited to the year and month, e.g. "2019-03".
<code>period2</code>	The second period (as character) limited to the year and month, e.g. "2019-04".
<code>type</code>	This parameters defines the column which is used in the procedure. Possible values of the <code>type</code> parameter are: <code>retID</code> , <code>prodID</code> , <code>codeIN</code> , <code>codeOUT</code> or <code>description</code> .
<code>interval</code>	A logical parameter indicating whether the procedure is to work for the whole time period between <code>period1</code> and <code>period2</code> (then it is TRUE).

Value

The function returns all values from the indicated column (defined by the type parameter) which occur at least once in one of the compared periods or in a given time interval. Possible values of the type parameter are: `retID`, `prodID`, `codeIN`, `codeOUT` or `description`. If the `interval` parameter is set to `FALSE`, then the function compares only periods defined by `period1` and `period2`. Otherwise the whole time period between `period1` and `period2` is considered.

Examples

```
available(milk, period1="2018-12", period2="2019-12", interval=TRUE)
available(milk, period1="2018-12", period2="2019-12", type="description")
```

banajree

Calculating the bilateral Banajree price index

Description

This function returns a value (or vector of values) of the bilateral Banajree price index.

Usage

```
banajree(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to <code>FALSE</code>) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to <code>TRUE</code>).

Value

The function returns a value (or vector of values) of the bilateral Banajree price index depending on the `interval` parameter. If the `interval` parameter is set to `TRUE`, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function)..

References

Banajree, K. S. (1977). *On the factorial approach providing the true index of cost of living*. Göttingen : Vandenhoeck und Ruprecht.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
banajree(sugar, start="2018-12", end="2019-12")
banajree(milk, start="2018-12", end="2020-01", interval=TRUE)
```

bennet

Calculating the Bennet price and quantity indicators

Description

This function returns the Bennet price and quantity indicators and optionally also the price and quantity contributions of individual products.

Usage

```
bennet(
  data,
  start,
  end,
  interval = FALSE,
  matched = FALSE,
  contributions = FALSE,
  prec = 2
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical parameter indicating whether calculations are to be made for the whole time interval (TRUE) or no (FALSE).
matched	A logical parameter indicating whether the matched sample approach is to be used (if yes, the parameter has the value TRUE).

contributions	A logical parameter indicating whether contributions of individual products are to be displayed. If it is TRUE, then contributions are calculated for the the base period start and the current period end.
prec	A numeric vector indicating precision, i.e. the number of decimal places for presenting results.

Value

This function returns the Bennet price and quantity indicators and optionally also the price and quantity contributions of individual products.

References

Bennet, T. L. (1920). *The Theory of Measurement of Changes in Cost of Living*. Journal of the Royal Statistical Society, 83, 455-462.

Białek, J. (2024). *The use of the Bennet indicators and their transitive versions for scanner data analysis*. Statistics in Transition new series, 25(3), 155-173.

Examples

```
benett(milk, "2018-12", "2019-12", matched=TRUE, contributions=TRUE)
benett(coffee, start="2018-12", end="2019-03", interval=TRUE)
```

bialek

Calculating the bilateral Bialek price index

Description

This function returns a value (or vector of values) of the bilateral Bialek price index.

Usage

```
bialek(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Bialek price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Von der Lippe, P. (2012). *Some short notes on the price index of Jacek Bialek*. *Econometrics* (Ekonometria), 1(35), 76-83.

Bialek, J. (2013). *Some Remarks on the Original Price Index Inspired by the Notes of Peter von der Lippe*. *Econometrics* (Ekonometria), 3(41), 40-54.

Bialek, J. (2014). *Simulation Study of an Original Price Index Formula*. *Communications in Statistics - Simulation and Computation*, 43(2), 285-297

Examples

```
bialek(sugar, start="2018-12", end="2019-12")
bialek(milk, start="2018-12", end="2020-01", interval=TRUE)
```

bmw

Calculating the unweighted BMW price index

Description

This function returns a value (or vector of values) of the unweighted Balk-Mehrhoff-Walsh (BMW) price index.

Usage

```
bmw(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	User's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral BMW price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Mehrhoff, J.(2007). *A linear approximation to the Jevons index*. In: Von der Lippe (2007): Index Theory and Price Statistics, Peter Lang: Berlin, Germany.

(2018). *Harmonised Index of Consumer Prices (HICP). Methodological Manual*. Publication Office of the European union, Luxembourg.

Examples

```
bmw(sugar, start="2018-12", end="2019-12")
bmw(milk, start="2018-12", end="2020-01", interval=TRUE)
```

carli

Calculating the unweighted Carli price index

Description

This function returns a value (or vector of values) of the unweighted bilateral Carli price index.

Usage

```
carli(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day,e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start,end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral Carli price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Carli, G. (1804). *Del valore e della proporzione de'metalli monetati*. Scrittori Classici Italiani di Economia Politica, 13, 297-336.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
carli(sugar, start="2018-12", end="2019-12")
carli(milk, start="2018-12", end="2020-01", interval=TRUE)
```

ccdi

Calculating the multilateral GEKS price index based on the Tornqvist formula (typical notation: GEKS-T or CCDI)

Description

This function returns a value of the multilateral CCDI price index, i.e. the GEKS price index based on the superlative Tornqvist index formula.

Usage

```
ccdi(data, start, end, wstart = start, window = 13)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>wstart</code>	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
<code>window</code>	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral CCDI price index (to be more precise: the GEKS index based on the Tornqvist formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

Examples

```
ccdi(milk, start="2019-01", end="2019-08", window=10)
ccdi(milk, start="2018-12", end="2019-12")
```

ccdi_fbew

Extending the multilateral CCDI price index by using the FBEW method.

Description

This function returns a value of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
ccdi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral CCDI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
ccdi_fbew(milk, start="2018-12", end="2019-08")
```

ccdi_fbew

Extending the multilateral CCDI price index by using the FBMW method.

Description

This function returns a value of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
ccdi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral CCDI price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
ccdi_fbmw(milk, start="2019-12", end="2020-04")
```

ccdi_splice

Extending the multilateral CCDI price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
ccdi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral CCDI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
ccdi_splice(milk, start="2018-12", end="2020-02", splice="half")
```

chagmean

*Calculating the monthly chained AG Mean price index***Description**

This function returns a value (or vector of values) of the monthly chained AG Mean price index.

Usage

```
chagmean(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained AG Mean price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Lent J., & Dorfman, A. H. (2009). *Using a Weighted Average of Base Period Price Indexes to Approximate a Superlative Index*. Journal of Official Statistics, 25(1), 139-149.

Examples

```
chagmean(sugar, start="2019-01", end="2019-04", sigma=0.5)
chagmean(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chbanajree

Calculating the monthly chained Banajree price index

Description

This function returns a value (or vector of values) of the monthly chained Banajree price index.

Usage

```
chbanajree(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Banajree price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Banajree, K. S. (1977). *On the factorial approach providing the true index of cost of living*. Göttingen : Vandenhoeck und Ruprecht.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chbanajree(sugar, start="2018-12", end="2019-04")
chbanajree(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Description

This function returns a value (or vector of values) of the monthly chained Bialek price index.

Usage

```
chbialek(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Bialek price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2012). *Some short notes on the price index of Jacek Bialek*. *Econometrics* (Ekonometria), 1(35), 76-83.

Bialek, J. (2013). *Some Remarks on the Original Price Index Inspired by the Notes of Peter von der Lippe*. *Econometrics* (Ekonometria), 3(41), 40-54.

Bialek, J. (2014). *Simulation Study of an Original Price Index Formula*. *Communications in Statistics - Simulation and Computation*, 43(2), 285-297

Examples

```
chbialek(sugar, start="2018-12", end="2019-04")
chbialek(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Description

This function returns a value (or vector of values) of the monthly chained Balk-Mehrhoff-Walsh (BMW) price index.

Usage

```
chbmw(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained BMW price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Mehrhoff, J.(2007). *A linear approximation to the Jevons index*. In: Von der Lippe (2007): Index Theory and Price Statistics, Peter Lang: Berlin, Germany.

(2018). *Harmonised Index of Consumer Prices (HICP). Methodological Manual*. Publication Office of the European union, Luxembourg.

Examples

```
chbmw(sugar, start="2018-12", end="2019-04")
chbmw(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chcarli

*Calculating the monthly chained Carli price index***Description**

This function returns a value (or vector of values) of the monthly chained Carli price index.

Usage

```
chcarli(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Carli price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Carli, G. (1804). *Del valore e della proporzione de'metalli monetati*. Scrittori Classici Italiani di Economia Politica, 13, 297-336.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chcarli(sugar, start="2018-12", end="2019-04")
chcarli(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chcswd*Calculating the monthly chained CSWD price index*

Description

This function returns a value (or vector of values) of the monthly chained Carruthers-Sellwood-Ward-Dalen (CSWD) price index.

Usage

```
chcswd(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained CSWD price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Carruthers, A.G., Sellwood, D. J. Ward, P. W. (1980). *Recent developments in the retail price index*. Journal of the Royal Statistical Society. Series D (The Statistician), 29(1), 1-32.

Dalen, J. (1992). *Recent developments in the retail price index*. The Statistician, 29(1), 1-32.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chcswd(sugar, start="2018-12", end="2019-04")
chcswd(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdavies

Calculating the monthly chained Davies price index

Description

This function returns a value (or vector of values) of the monthly chained Davies price index.

Usage

```
chdavies(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Davies price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Davies, G. R. (1924). *The Problem of a Standard Index Number Formula*. Journal of the American Statistical Association, 19 (146), 180-188.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chdavies(sugar, start="2018-12", end="2019-04")
chdavies(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdikhanov

Calculating the monthly chained Dikhanov price index

Description

This function returns a value (or vector of values) of the monthly chained Dikhanov price index.

Usage

```
chdikhanov(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Dikhanov price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Dikhanov, Y., (2024). *A New Elementary Index Number*. Paper presented at the 18th Meeting of the Ottawa Group on Price Indices, Ottawa, Canada.

Examples

```
chdikhanov(sugar, start="2018-12", end="2019-04")
chdikhanov(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdrobisch

Calculating the monthly chained Drobisch price index

Description

This function returns a value (or vector of values) of the monthly chained Drobisch price index.

Usage

```
chdrobisch(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Drobisch price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Drobisch, M. W. (1871). *Ueber einige Einwurfe gegen die in diesen Jahrbuchern veröffentlichte neue Methode, die Veränderungen der Waarenpreise und des Geldwerths zu berechnen*. Jahrbücher für Nationalökonomie und Statistik, Vol. 16, s. 416-427.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chdrobisch(sugar, start="2018-12", end="2019-04")
chdrobisch(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdutot

*Calculating the monthly chained Dutot price index***Description**

This function returns a value (or vector of values) of the monthly chained Dutot price index.

Usage

```
chdutot(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start,end></code> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Dutot price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Dutot, C. F., (1738). *Reflexions Politiques sur les Finances et le Commerce*. The Hague: Les Freres Vaillant et Nicolas Prevost, Vol. 1.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chdutot(sugar, start="2018-12", end="2019-04")
chdutot(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chfisher

*Calculating the monthly chained Fisher price index***Description**

This function returns a value (or vector of values) of the monthly chained Fisher price index.

Usage

```
chfisher(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Fisher price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Fisher, I. (1922). *The Making of Index Numbers*. Boston: Houghton Mifflin.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chfisher(sugar, start="2018-12", end="2019-04")
chfisher(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeary_khamis

Calculating the monthly chained Geary-Khamis price index

Description

This function returns a value (or vector of values) of the monthly chained Geary-Khamis price index.

Usage

```
chgeary_khamis(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Geary-Khamis price index depending on the `interval` parameter (please use [gk](#) function to calculate the multilateral Geary-Khamis price index). If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (see the [final_index](#) function).

References

Geary, R. G. (1958). *A Note on Comparisons of Exchange Rates and Purchasing Power between Countries*. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number*. Sankhya Series B32, 81-98.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chgeary_khamis(sugar, start="2018-12", end="2019-04")
chgeary_khamis(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeohybrid

Calculating the monthly chained geohybrid price index

Description

This function returns a value (or vector of values) of the monthly chained geohybrid price index. The geohybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
chgeohybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geohybrid price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geohybrid price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
chgeohybrid(sugar, start="2019-12", end="2020-05", base="2018-12")
chgeohybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

chgeolaspeyres	<i>Calculating the monthly chained geo-logarithmic Laspeyres price index</i>
----------------	--

Description

This function returns a value (or vector of values) of the monthly chained geo-logarithmic Laspeyres price index.

Usage

```
chgeolaspeyres(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geo-logarithmic Laspeyres price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeolaspeyres(sugar, start="2018-12", end="2019-04")
chgeolaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeolowe

Calculating the monthly chained geometric Lowe price index

Description

This function returns a value (or vector of values) of the monthly chained geometric Lowe price index.

Usage

```
chgeolowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geometric Lowe price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geometric Lowe price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeolowe(sugar, start="2019-01", end="2019-04", base="2018-12")
chgeolowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeopaasche

Calculating the monthly chained geo-logarithmic Paasche price index

Description

This function returns a value (or vector of values) of the monthly chained geo-logarithmic Paasche price index.

Usage

```
chgeopaasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geo-logarithmic Paasche price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeopaasche(sugar, start="2018-12", end="2019-04")
chgeopaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeoyoung

Calculating the monthly chained geometric Young price index

Description

This function returns a value (or vector of values) of the monthly chained geometric Young price index.

Usage

```
chgeoyoung(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geometric Young price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geometric Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeoyoung(sugar, start="2019-01", end="2019-04", base="2018-12")
chgeoyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chharmonic

Calculating the monthly chained harmonic price index

Description

This function returns a value (or vector of values) of the monthly chained "unnamed" harmonic price index.

Usage

```
chharmonic(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained harmonic price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chharmonic(sugar, start="2018-12", end="2019-04")
chharmonic(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chhybrid

Calculating the the monthly chained hybrid price index

Description

This function returns a value (or vector of values) of the monthly chained hybrid price index. The hybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
chhybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the hybrid price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained hybrid price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
chhybrid(sugar, start="2019-12", end="2020-05", base="2018-12")
chhybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

chIQMp

Calculating the monthly chained implicit quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the monthly chained implicit quadratic mean of order r price index.

Usage

```
chIQMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained implicit quadratic mean of order r price index - see CPI Manual (2004), Section 17.37, formula 17.32 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chIQMp(sugar, start="2019-01", end="2020-01")
chIQMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

chjevons

*Calculating the monthly chained Jevons price index***Description**

This function returns a value (or vector of values) of the monthly chained Jevons price index

Usage

```
chjevons(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Jevons price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Jeffreys, W. S., (1865). *The variation of prices and the value of the currency since 1782*. J. Statist. Soc. Lond., 28, 294-320.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chjevons(sugar, start="2018-12", end="2019-04")
chjevons(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chlaspeyres

*Calculating the monthly chained Laspeyres price index***Description**

This function returns a value (or vector of values) of the monthly chained Laspeyres price index.

Usage

```
chlaspeyres(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Laspeyres, E. (1871). *Die Berechnung einer mittleren Waarenpreisseigerung*. Jahrbucher fur Nationalokonomie und Statistik 16, 296-314.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlaspeyres(sugar, start="2018-12", end="2019-04")
chlaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chlehr

Calculating the monthly chained Lehr price index

Description

This function returns a value (or vector of values) of the monthly chained Lehr price index.

Usage

```
chlehr(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Lehr price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Lehr, J. (1885). *Beitrage zur Statistik der Preise, insbesondere des Geldes und des Holzes*. J. D. Sauerlander, Frankfurt am Main.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlehr(sugar, start="2018-12", end="2019-04")
chlehr(milk, start="2018-12", end="2020-01", TRUE)
```

chlloyd_moulton*Calculating the monthly chained Lloyd-Moulton price index*

Description

This function returns a value (or vector of values) of the monthly chained Lloyd-Moulton price index.

Usage

```
chlloyd_moulton(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Lloyd-Moulton price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Lloyd, P. J. (1975). *Substitution Effects and Biases in Nontrue Price Indices*. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chlloyd_moulton(sugar, start="2018-12", end="2019-04", sigma=0.9)
chlloyd_moulton(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chl Lowe

Calculating the monthly chained Lowe price index

Description

This function returns a value (or vector of values) of the monthly chained Lowe price index.

Usage

```
chl Lowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Lowe price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlowe(sugar, start="2019-01", end="2019-04", base="2018-12")
chlowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chmarshall_edgeworth *Calculating the monthly chained Marshall-Edgeworth price index*

Description

This function returns a value (or vector of values) of the monthly chained Marshall-Edgeworth price index.

Usage

```
chmarshall_edgeworth(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Marshall-Edgeworth price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Marshall, A. (1887). *Remedies for Fluctuations of General Prices*. Contemporary Review, 51, 355-375.

Edgeworth, F. Y. (1887). *Measurement of Change in Value of Money I*. The first Memorandum presented to the British Association for the Advancement of Science; reprinted in Papers Relating to Political Economy, Vol. 1, New York, Burt Franklin, s. 1925.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chmarshall_edgeworth(sugar, start="2018-12", end="2019-04")
chmarshall_edgeworth(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chpaasche

Calculating the monthly chained Paasche price index

Description

This function returns a value (or vector of values) of the monthly chained Paasche price index.

Usage

```
chpaasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Paasche price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Paasche, H. (1874). *Über die Preisentwicklung der letzten Jahre nach den Hamburger Börsen-notirungen*. Jahrbücher für Nationalökonomie und Statistik, 12, 168-178.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chpaasche(sugar, start="2018-12", end="2019-04")
chpaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chpalgrave

Calculating the monthly chained Palgrave price index

Description

This function returns a value (or vector of values) of the monthly chained Palgrave price index.

Usage

```
chpalgrave(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Palgrave price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Palgrave, R. H. I. (1886). *Currency and Standard of Value in England, France and India and the Rates of Exchange Between these Countries*. Memorandum submitted to the Royal Commission on Depression of trade and Industry, Third Report, Appendix B, 312-390.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chpalgrave(sugar, start="2018-12", end="2019-04")
chpalgrave(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chQMp

Calculating the monthly chained quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the monthly chained quadratic mean of order r price index.

Usage

```
chQMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: **time** (as Date in format: year-month-day, e.g. '2020-12-01'), **prices** (as positive numeric), **quantities** (as positive numeric) and **prodID** (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

end The research period (as character) limited to the year and month, e.g. "2020-04".

r The real and non-zero parameter.

interval A logical value indicating whether the function is to compare the research period defined by **end** to the base period defined by **start** (then **interval** is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval **<start, end>** are considered and **start** defines the base period (**interval** is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained quadratic mean of order r price index - see CPI Manual (2004), Section 17.40, formula 17.35 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chQMq(sugar, start="2019-01", end="2020-01")
chQMq(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

chQMq

Calculating the monthly chained quadratic mean of order r quantity index

Description

This function returns a value (or vector of values) of the monthly chained quadratic mean of order r quantity index.

Usage

```
chQMq(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained quadratic mean of order r quantity index - see CPI Manual (2004), Section 17.35, formula 17.30 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chQMq(sugar, start="2019-01", end="2020-01")
chQMq(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

chsato_vartia

Calculating the monthly chained Vartia-II (Sato-Vartia) price index

Description

This function returns a value (or vector of values) of the monthly chained Vartia-II (Sato-Vartia) price index.

Usage

```
chsato_vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Vartia-II (Sato-Vartia) price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Sato, K. (1976). *The Ideal Log-Change Index Number*. The Review of Economics and Statistics, 58(2), 223-228.

Vartia, Y. O. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chsato_vartia(sugar, start="2018-12", end="2019-04")
chsato_vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chstuvvel

Calculating the monthly chained Stuvel price index

Description

This function returns a value (or vector of values) of the monthly chained Stuvel price index.

Usage

```
chstuvvel(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Stuvel price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Stuvel, G. (1957). *A New Index Number Formula*. *Econometrica*, 25, 123-131.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chstuvvel(sugar, start="2018-12", end="2019-04")
chstuvvel(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chtorqvist

Calculating the monthly chained Tornqvist price index

Description

This function returns a value (or vector of values) of the monthly chained Tornqvist price index.

Usage

```
chtorqvist(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Tornqvist price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Tornqvist, L. (1936). *The Bank of Finland's Consumption Price Index*. Bank of Finland Monthly Bulletin 10, 1-8.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chvartia(sugar, start="2018-12", end="2019-04")
chvartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chvartia

Calculating the monthly chained Vartia-I price index

Description

This function returns a value (or vector of values) of the monthly chained Vartia-I price index.

Usage

```
chvartia(data, start, end, interval = FALSE)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

end The research period (as character) limited to the year and month, e.g. "2020-04".

interval A logical value indicating whether the function is to compare the research period defined by `end` to the base period defined by `start` (then `interval` is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval `<start, end>` are considered and `start` defines the base period (`interval` is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Vartia-I price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Vartia, Y. O. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chvartia(sugar, start="2018-12", end="2019-04")
chvartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chwalsh

Calculating the monthly chained Walsh price index

Description

This function returns a value (or vector of values) of the monthly chained Walsh price index.

Usage

```
chwalsh(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Walsh price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chwalsh(sugar, start="2018-12", end="2019-04")
chwalsh(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chyoung

Calculating the monthly chained Young price index

Description

This function returns a value (or vector of values) of the monthly chained Young price index.

Usage

```
chyoung(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Young price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Young price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chyoung(sugar, start="2019-01", end="2019-04", base="2018-12")
chyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

coffee

A real data set on sold coffee

Description

A collection of scanner data on the sale of coffee in one of Polish supermarkets in the period from December 2017 to October 2020

Usage

coffee

Format

A data frame with 6 columns and 42561 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [kg]

prodID - Unique product codes (data set contains 79 different prodIDs)

retID - Unique codes identifying outlets/retailer sale points (data set contains 20 different retIDs)

description Descriptions of sold coffee products (data set contains 3 different product descriptions)

compare_distances *Calculating distances between price indices*

Description

The function calculates distances between price indices

Usage

```
compare_distances(  
  data = data.frame(),  
  measure = "MAD",  
  pp = TRUE,  
  first = FALSE,  
  prec = 3  
)
```

Arguments

data	A data frame containing values of indices which are to be compared
measure	A parameter specifying what measure should be used to compare the indexes. Possible parameter values are: "MAD" (Mean Absolute Distance) or "RMSD" (Root Mean Square Distance).
pp	Logical parameter indicating whether the results are to be presented in percentage points (then pp = TRUE).
first	A logical parameter that determines whether the first row of the data frame is to be taken into account when calculating the distance between the indices (then first = TRUE). Usually, the first row concerns the index values for the base period - all indexes are then set to one.
prec	Parameter that determines how many decimal places are to be used in the presentation of results.

Value

The function calculates average distances between price indices and it returns a data frame with these values for each pair of price indices.

Examples

```
#Creating a data frame with unweighted bilateral index values  
df<-price_indices(milk,  
formula=c("jevons","dutot","carli"),  
start="2018-12", end="2019-12",interval=TRUE)  
#Calculating average distances between indices (in p.p)  
compare_distances(df)
```

compare_indices_df *A function for graphical comparison of price indices*

Description

This function returns a figure with plots of selected price indices.

Usage

```
compare_indices_df(
  data,
  names = colnames(data)[2:length(colnames(data))],
  date_breaks = "1 month"
)
```

Arguments

data	The user's data frame with price index values. It must contain columns: <code>time</code> (as character in format: year-month, e.g. '2020-12') and columns with index values.
names	A vector of strings indicating names of indices which are to be used in the figure's legend.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

This function returns a figure with plots of previously calculated indices (together with dates on X-axis and a corresponding legend). Indices must be provided as a data frame, where the the first column must includes dates limited to the year and month (e.g.: "2020-04").

Examples

```
df<-price_indices(milk, start = "2018-12", end = "2019-12",
formula=c("laspeyres", "fisher"), interval = TRUE)
compare_indices_df(df)
```

compare_indices_jk *A general function to compare indices by using the jackknife method*

Description

This function presents a comparison of selected indices obtained by using the jackknife method.

Usage

```
compare_indices_jk(
  data,
  start,
  end,
  by = "prodID",
  formula = c(),
  window = c(),
  splice = c(),
  base = c(),
  sigma = c(),
  r = c(),
  names = c(),
  title_iterations = c(),
  title_pseudovalue = c()
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also essential even if the selected index is an unweighted formula (unit values are calculated).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
by	A character string which indicates a column name for creating product sub-groups (in the classical jackknife method by should indicate prodID). In each, successive repetition, the indicated price indexes are counted on the set of products reduced by the subset determined by the successive element of the column indicated by the by parameter.
formula	A vector of character strings indicating price index formulas that are to be calculated. To see available options please use the link: PriceIndices .
window	A vector of integers. Each element of the vector defines the length of the time window of the corresponding multilateral index.
splice	A vector of character strings. Each element of the vector indicates the splicing method to be used for the corresponding multilateral index. Available values of vector elements are: "movement", "window", "half", "mean" and their additional variants: "window_published", "half_published" and "mean_published".
base	The vector of prior periods used in the Young- or Lowe-type price indices or hybrid/geohybrid index. Each element of the vector (as character) must be limited to the year and month, e.g. "2020-01".
sigma	The vector of elasticity of substitution parameters used in the Lloyed-Moulton, AG Mean or GEKS-LM indices (as numeric).
r	The vector of non-zero parameters used in the quadratic mean of order r quantity / price index or in the GEKS-QM index (as numeric).

names	A vector of strings indicating names of indices which are to be used in the resulting data frame.
title_iterations	A character string indicating a title of the created box-plot for iteration index values.
title_pseudovalues	A character string indicating a title of the created box-plot for obtained (jackknife) index pseudovalues.

Value

This function presents a comparison of selected indices obtained by using the jackknife method. In particular, it returns a list with four elements: `iterations`, which is a data frame with basic characteristics of the calculated iteration index values (means, standard deviations, coefficients of variation and results for all sample), `pseudovalues`, which is a data frame with basic characteristics of the calculated index pseudovalues obtained in the jackknife procedure (i.e. the jackknife estimators and their standard deviations and coefficients of variation), `figure_iterations` which presents a box-plot for the calculated iteration index values, and `figure_pseudovalues` which presents a box-plot for the calculated index pseudovalues obtained in the jackknife procedure.

References

Quenouille, M.H. (1956). *Notes on bias in estimation*. Biometrika, 43 (3–4), 353–360
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
milk.<-dplyr::filter(milk, milk$prodID %in%
sample(unique(milk$prodID),4))
#creating a list with jackknife results
comparison<-compare_indices_jk(milk.,
formula=c("jevons","fisher"),
start="2018-12",
end="2019-12",
names=c("Jevons","Fisher"),
title_iterations="Box-plots for iteration values (milk products)",
title_pseudovalues="Box-plots for pseudovalues (milk products)")
#displaying results
comparison$iterations
comparison$pseudovalues
comparison$figure_iterations
comparison$figure_pseudovalues
```

compare_indices_list *A general function for graphical comparison of price indices*

Description

This function returns a figure with plots of previously calculated price indices.

Usage

```
compare_indices_list(data = list(), names = c(), date_breaks = "1 month")
```

Arguments

data	A list of data frames with previously calculated price indices. Each data frame must consist of two columns, i.e. the first column must include dates limited to the year and month (e.g.: "2020-04") and the second column must indicate price index values for corresponding dates. The above-mentioned single data frame may be created manually in the previous step or it may be a result of functions: <code>price_index</code> or <code>final_index</code> . All considered data frames must have an identical number of rows.
names	A vector of character strings describing names of presented indices.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

This function returns a figure with plots of previously calculated price indices. It allows for graphical comparison of price index values which were previously calculated and now are provided as a list of data frames (see `data` parameter).

Examples

```
## Calculating two indices by using two different package functions:
index1<-final_index(data=milk, start="2018-12",
end="2019-12", formula="walsh", interval=TRUE)
index2<-price_indices(milk,start="2018-12", end="2019-12",
formula="geks", window=13, interval=TRUE)
## Graphical comparison of these two indices
compare_indices_list(data=list(index1, index2),
names=c("Walsh index", "GEKS index"))
```

compare_to_target	<i>Calculating distances between considered price indices and the target price index</i>
-------------------	--

Description

The function calculates distances between considered price indices and the target price index

Usage

```
compare_to_target(
  data = data.frame(),
  target,
  measure = "MAD",
  pp = TRUE,
  first = FALSE,
  prec = 3
)
```

Arguments

data	A data frame containing values of indices which are to be compared to the target price index
target	A data frame or a vector containing values of the target price index
measure	A parameter specifying what measure should be used to compare indices. Possible parameter values are: "MAD" (Mean Absolute Distance) or "RMSD" (Root Mean Square Distance).
pp	Logical parameter indicating whether the results are to be presented in percentage points (then pp = TRUE).
first	A logical parameter that determines whether the first row of the data frame and the first row of the 'target' data frame (or its first element if it is a vector) are to be taken into account when calculating the distance between the indices (then first = TRUE). Usually, the first row concerns the index values for the base period - all indexes are then set to one.
prec	Parameter that determines how many decimal places are to be used in the presentation of results.

Value

The function calculates average distances between considered price indices and the target price index and it returns a data frame with: average distances on the basis of all values of compared indices ('distance' column), average semi-distances on the basis of values of compared indices which overestimate the target index values ('distance_upper' column) and average semi-distances on the basis of values of compared indices which underestimate the target index values ('distance_lower' column).

Examples

```
#Creating a data frame with example bilateral indices
df<-price_indices(milk,
formula=c("jevons","laspeyres","paasche","walsh"),
start="2018-12",end="2019-12",interval=TRUE)
#Calculating the target Fisher price index
target_index<-fisher(milk,start="2018-12",end="2019-12",interval=TRUE)
#Calculating average distances between considered indices and the Fisher index (in p.p)
compare_to_target(df,target=target_index)
```

cswd

Calculating the unweighted CSWD price index

Description

This function returns a value (or vector of values) of the unweighted Carruthers-Sellwood-Ward-Dalen (CSWD) price index.

Usage

```
cswd(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral CSWD price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Carruthers, A.G., Sellwood, D. J, Ward, P. W. (1980). *Recent developments in the retail price index*. Journal of the Royal Statistical Society. Series D (The Statisticain), 29(1), 1-32.

Dalen, J. (1992). *Recent developments in the retail price index*. The Statistician, 29(1), 1-32.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
cswd(sugar, start="2018-12", end="2019-12")
cswd(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dataAGGR

A small artificial scanner data set for a demonstration of data aggregation

Description

A collection of artificial scanner data on milk products sold in three different months

Usage

dataAGGR

Format

A data frame with 6 columns and 9 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day: 4 different dates)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [l]

prodID - Retailer product codes (3 prodIDs)

retID - Unique codes identifying outlets/retailer sale points (4 retIDs)

description Descriptions of sold products (two subgroups: goat milk, powdered milk)

`dataCOICOP`

A real scanner data set for the product classification

Description

A collection of real scanner data on the sale of milk products sold in a period: Dec, 2020 - Feb, 2022.

Usage

`dataCOICOP`

Format

A data frame with 10 columns and 139600 rows. The used variables are as follows:

- time - Dates of transactions (Year-Month-Day)
- prices - Prices of sold products [PLN]
- quantities - Quantities of sold products
- description - Descriptions of sold products (original: in Polish)
- codeIN - Retailer product codes
- retID - Unique codes identifying outlets/retailer sale points
- grammage - Product grammages
- unit - Sales units, e.g.: kg, ml, etc.
- category - Product categories (in English) corresponding to COICOP 6 levels
- coicop6 - Identifiers of local COICOP 6 groups (6 groups)

`dataMARS`

An artificial scanner data set for testing the MARS method

Description

An artificial scanner data set of shirt sales.

Usage

`dataMARS`

Format

A data frame with 9 columns and 44 rows. The used variables are as follows:

- time - Dates of transactions (Year-Month-Day)
- prices - Prices of sold products [PLN]
- quantities - Quantities of sold products [liters]
- prodID - Unique product identifiers (data set contains 28 different prodIDs)
- description - Descriptions (labels) of sold shirts (data set contains 12 different descriptions)
- brand - Brand of sold shirts (data set contains 2 different brands: X and Y)
- gender - Gender of the person for whom the shirt is dedicated (M or F)
- size - Size of shirts (M, L, and XL)
- fabric - Fabric of shirts (cotton, polyester, blend)

dataMATCH

An artificial scanner data set for product matching

Description

A collection of scanner data on the sale of sample artificial products.

Usage

dataMATCH

Format

A data frame with 7 columns and 30 rows. The used variables are as follows:

- time - Dates of transactions (Year-Month-Day)
- prices - Prices of sold products [PLN]
- quantities - Quantities of sold products [liters]
- codeIN - Unique internal (retailer) product codes (data set contains 5 different codeINs)
- codeOUT - Unique external product codes (data set contains 5 different codeOUTs)
- retID - Unique codes identifying outlets/retailer sale points (data set contains 2 different retIDs)
- description Descriptions of sold products (data set contains 3 different product descriptions)

`dataRSM`

A real data set on sold rice, sugar and milk products

Description

A collection of scanner data on the sale of rice, sugar and milk products in one of Polish supermarkets in the period from December 2024 to January 2026

Usage

`dataRSM`

Format

A data frame with 9 columns and 8090 rows. The used variables are as follows:

`time` - Dates of transactions (Year-Month-Day)
`prices` - Prices of sold products [PLN]
`quantities` - Quantities of sold products [items]
`retID` - Unique codes identifying outlets/retailer sale points (data set contains 4 different retIDs)
`description` - Descriptions (labels) of sold products (data set contains 152 different descriptions)
`retailer_code` - Retailer codes for product definition (134 retailer codes)
`EAN_code` - EAN codes (bar codes) for product definition (138 EAN codes)
`category` - Product categories at the 6-digit COICOP level (4 categories)
`subcategory` - Product subcategories from 7-digit COICOP level (11 subcategories)

`dataU`

An artificial, small scanner data set

Description

A collection of artificial scanner data on 6 products sold in Dec, 2018. Product descriptions contain the information about their grammage and unit.

Usage

`dataU`

Format

A data frame with 5 columns and 6 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [item]

prodID - Unique product codes

description Descriptions of sold products (data set contains 6 different product descriptions)

data_aggregating

Aggregating the user's data frame

Description

The function aggregates the user's data frame over time and optionally over outlets.

Usage

```
data_aggregating(data, join_outlets = TRUE, description = FALSE, class = FALSE)
```

Arguments

data	The user's data frame.
join_outlets	A logical value indicating whether the data aggregation over outlets should be also done.
description	A logical value indicating whether the aggregated (returned) data frame should contain product descriptions. Please note that product codes and their descriptions are not necessarily in a 1:1 relationship. When description=TRUE, the function returns the first description encountered within a given product code (prodID).
class	A logical value indicating whether the aggregated (returned) data frame should contain product class. When class=TRUE, the function returns the first class value encountered within a given product code (prodID).

Value

The function aggregates the user's data frame over time and/or over outlets. Consequently, we obtain monthly data, where the unit value is calculated instead of a price for each prodID observed in each month (the **time** column gets the Date format: "Year-Month-01"). If the parameter **join_outlets** is TRUE, then the function also performs aggregation over outlets (retIDs) and the **retID** column is removed from the data frame. The main advantage of using this function is the ability to reduce the size of the data frame and the time needed to calculate the price index. Please note, that unnecessary columns are removed (e.g. **description**).

Examples

```
#Example 1
data_aggregating(dataAGGR,join_outlets = FALSE)
data_aggregating(dataAGGR,join_outlets = TRUE)
#Example 2 (data frame reduction)
nrow(milk)
nrow(data_aggregating(milk))
```

data_check*Checking the user's data frame*

Description

The function checks if the argument `data` points to a data frame which is suitable for further price index calculation. In particular, the function checks whether the indicated data frame contains the required columns and whether they are of the appropriate type (if not, the function returns FALSE and an appropriate comment).

Usage

```
data_check(data)
```

Arguments

`data` Any R object but ultimately it is a data frame.

Value

The function returns TRUE if the data frame indicated by the `data` parameter is suitable for the calculation of price indices and returns FALSE otherwise.

Examples

```
data_check(milk)
data_check(iris)
```

data_DOWN_UP_SIZED*An artificial data set on sold coffee*

Description

A collection of scanner data on the sale of coffee in the period from January 2024 to February 2024

Usage

```
data_DOWN_UP_SIZED
```

Format

A data frame with 6 columns and 51 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)
 prices - Prices of sold products [PLN]
 quantities - Quantities of sold products [liters]
 codeIN - Unique internal product codes (retailer product codes)
 codeOUT - Unique external product codes (e.g. GTIN, EAN, SKU)
 description - Descriptions of sold coffee products

data_filtering	<i>Filtering a data set for further price index calculations</i>
----------------	--

Description

This function returns a filtered data set, i.e. a reduced user's data frame with the same columns and rows limited by a criterion defined by filters.

Usage

```
data_filtering(
  data,
  start,
  end,
  filters = c(),
  plimits = c(),
  pquantiles = c(),
  dplimits = c(),
  lambda = 1.25,
  interval = FALSE,
  outlets = FALSE
)
```

Arguments

data	The user's data frame with information about products to be filtered. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and quantities (as positive numeric).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
filters	A vector of filter names (options are: <code>extremeprices</code> , <code>dumpprices</code> and/or <code>lowsales</code>).
plimits	A two-dimensional vector of thresholds for minimum and maximum price change (it works if one of the chosen filters is <code>extremeprices</code> filter).

pquantiles	A two-dimensional vector of quantile levels for minimum and maximum price change (it works if one of the chosen filters is <code>extremeprices</code> filter).
dplimits	A two-dimensional vector of thresholds for maximum price drop and maximum drop in sales value (it works if one of the chosen filters is <code>dumpprices</code> filter).
lambda	The lambda parameter for <code>lowsales</code> filter (see References below).
interval	A logical value indicating whether the filtering process concerns only two periods defined by <code>start</code> and <code>end</code> parameters (then the <code>interval</code> is set to FALSE) or whether that function is to filter products sold during the whole time interval <code><start, end></code> , i.e. any subsequent months are compared.
outlets	A logical parameter indicating whether filtering should be done for each outlet (<code>retID</code>) separately. If it is set to FALSE, then there is no need to consider the <code>retID</code> column.

Value

This function returns a filtered data set (a reduced user's data frame). If the set of `filters` is empty, then the function returns the original data frame (defined by the `data` parameter) limited to considered months. On the other hand, if all filters are chosen, i.e. `filters=c(extremeprices,dumpprices,lowsales)`, then these filters work independently and a summary result is returned. Please note that both variants of `extremeprices` filter can be chosen at the same time, i.e. `plimits` and `pquantiles`, and they work also independently.

References

Van Loon, K., Roels, D. (2018) *Integrating big data in Belgian CPI*. Meeting of the Group of Experts on Consumer Price Indices, Geneva.

Examples

```
data_filtering(milk,start="2018-12",end="2019-03",
  filters=c("extremeprices"),pquantiles=c(0.01,0.99),interval=TRUE)
data_filtering(milk,start="2018-12",end="2019-03",
  filters=c("extremeprices","lowsales"), plimits=c(0.25,2))
```

Description

This function imputes missing prices and (optionally) zero prices by using one of the following methods: carry forward/backward, overall mean, class mean (targeted mean).

Usage

```
data_imputing(
  data,
  start,
  end,
  method = "carry forward",
  class = c(),
  formula = "jevons",
  zero_prices = TRUE,
  outlets = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as numeric), <code>quantities</code> (as numeric - for future calculations) and <code>prodID</code> (as numeric, factor or character). A column <code>retID</code> (as factor, character or numeric) is also needed if the User wants to impute prices over outlets.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
method	A character string indicating the imputation method. Available options are: <code>carry forward</code> , <code>overall mean</code> , <code>class mean</code> . For the <code>class mean</code> method, the <code>class</code> parameter must be specified.
class	A character string indicating the column which describes product classes (homogeneous subgroups).
formula	A character string indicating the index formula which will be used for the overall mean or <code>class mean</code> method. Available options are: <code>dutot</code> , <code>carli</code> , <code>jevons</code> , <code>fisher</code> , <code>tornqvist</code> , <code>walsh</code> .
zero_prices	A logical parameter indicating whether zero prices are to be imputed too (then it is set to <code>TRUE</code>).
outlets	A logical parameter indicating whether imputations are to be done for each outlet separately (then it is set to <code>TRUE</code>).

Value

This function imputes missing prices (unit values) and (optionally) zero prices by using one of the following methods: `carry forward/backward`, `overall mean`, `class mean` (`targeted mean`). The imputation can be done for each outlet separately or for aggregated data (see the `outlets` parameter). For the `carry forward/backward` method: if a missing product has a previous price then that previous price is carried forward until the next real observation. If there is no previous price then the next real observation is found and carried backward. For the `overall mean` method: the procedure is similar, except that the imputed price is based on the previously recorded price multiplied (or divided - in the case of the next recorded price) by the price index determined for the quoted and imputed period. The user can select the index formula via the `formula` parameter. For the `class mean` method (also known as `targeted mean` method): the procedure is analogous to the `overall mean` method, but

the price index is determined for the product class specified by the `class` parameter. The quantities for imputed prices are set to zero. The function returns a data frame (monthly aggregated) which is ready for price index calculations.

Examples

```
# Creating a small data set with zero prices:
time.<-c("2018-12-01","2019-01-01")
time<-as.Date(c(time., time., time.))
p1<-c(0,23,10)
p2<-c(40,0,20)
q1<-c(15,25,30)
q2<-c(44,79,30)
quantities<-c(q1,q2)
prices<-c(p1,p2)
prodID<-c(1,1,2,2,3,3)
my_data<-data.frame(time, prices, quantities, prodID)
# Price imputing:
data_imputing(my_data, start="2018-12", end="2019-01",
zero_prices=TRUE, outlets=FALSE)
data_imputing(my_data, start="2018-12", end="2019-01",
zero_prices=TRUE, outlets=FALSE, method="overall mean", formula="dutot")

# Preparing a data set with zero and missing prices:
dataMATCH$prodID<-dataMATCH$codeIN
data<-dplyr::select(dataMATCH, time, prices, quantities, prodID, retID)
set1<-data[1:5,]
set1$prices<-0
set2<-data[6:30,]
df<-rbind(set1, set2)
# Price imputing:
data_imputing(df, start="2018-12", end="2019-02",
zero_prices=TRUE, outlets=TRUE)
data_imputing(df, start="2018-12", end="2019-02",
method="overall mean", zero_prices=TRUE, formula="fisher")
```

data_matching

Matching products

Description

This function returns a data set defined in the first parameter (`data`) with an additional column (`prodID`). Two products are treated as being matched if they have the same `prodID` value.

Usage

```
data_matching(
  data,
  start,
  end,
```

```

interval = FALSE,
variables = c(),
codeIN = TRUE,
codeOUT = TRUE,
description = TRUE,
onlydescription = FALSE,
precision = 0.95
)

```

Arguments

data	The user's data frame with information about products to be matched. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01') and at least one of the following columns: <code>codeIN</code> (as numeric, factor or character), <code>codeOUT</code> (as numeric, factor or character) and <code>description</code> (as character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the matching process concerns only two periods defined by <code>start</code> and <code>end</code> parameters (then the <code>interval</code> is set to FALSE) or whether that function is to match products sold during the whole time interval <start, end>.
variables	The optional parameter describing the vector of additional column names. Values of these additional columns must be identical for matched products.
codeIN	A logical value, e.g. if there are retailer (internal) product codes (as numeric or character) written in <code>codeIN</code> column and there is a need to use that column while data matching, then that parameter should be set to TRUE. Otherwise it is set to FALSE.
codeOUT	A logical value, e.g. if there are external product codes, such as GTIN or SKU (as numeric or character) written in <code>codeOUT</code> column and there is a need to use that column while data preparing then, that parameter should be set to TRUE. Otherwise it is set to FALSE.
description	A logical value, e.g. if there are product labels (as character) written in <code>description</code> column and there is a need to use that column while data preparing, then that parameter should be set to TRUE. Otherwise it is set to FALSE.
onlydescription	A logical value indicating whether products with identical labels (described in the <code>description</code>) are to be matched.
precision	A threshold value for the Jaro-Winkler similarity measure when comparing labels (its value must belong to the interval [0,1]). Two labels are treated as similar enough if their Jaro-Winkler similarity exceeds the <code>precision</code> value.

Value

This function returns a data set defined in the first parameter (`data`) with an additional column (`prodID`). Two products are treated as being matched if they have the same `prodID` value. The procedure of generating the above-mentioned additional column depends on the set of chosen columns

for matching. In most extreme case, when the `onlydescription` parameter value is TRUE, two products are also matched if they have identical descriptions. Other cases are as follows: Case 1: Parameters `codeIN`, `codeOUT` and `description` are set to TRUE. Products with two identical codes or one of the codes identical and an identical description are automatically matched. Products are also matched if they have identical one of codes and the Jaro-Winkler similarity of their descriptions is bigger than the precision value. Case 2: Only one of the parameters: `codeIN` or `codeOUT` are set to TRUE and also the `description` parameter is set to TRUE. Products with an identical chosen code and an identical description are automatically matched. In the second stage, products are also matched if they have an identical chosen code and the Jaro-Winkler similarity of their descriptions is bigger than the precision value. Case 3: Parameters `codeIN` and `codeOUT` are set to TRUE and the parameter `description` is set to FALSE. In this case, products are matched if they have both codes identical. Case 4: Only the parameter `description` is set to TRUE. This case requires the `onlydescription` parameter to be TRUE and then the matching process is based only on product labels (two products are matched if they have identical descriptions). Case 5: Only one of the parameters: `codeIN` or `codeOUT` are set to TRUE and the `description` parameter is set to FALSE. In this case, the only reasonable option is to return the `prodID` column which is identical with the chosen code column. Please note that if the set of column names defined in the `variables` parameter is not empty, then the values of these additional columns must be identical while product matching.

Examples

```
data_matching(dataMATCH, start="2018-12", end="2019-02", onlydescription=TRUE, interval=TRUE)
data_matching(dataMATCH, start="2018-12", end="2019-02", precision=0.98, interval=TRUE)
```

data_norm

Normalization of grammage units and recalculation of prices and quantities with respect to these units

Description

The function normalizes grammage units of products and recalculates product prices and quantities with respect to these normalized grammage units.

Usage

```
data_norm(
  data = data.frame(),
  rules = list(c("ml", "l", 1000), c("g", "kg", 1000)),
  all = TRUE
)
```

Arguments

data	The user's data frame. The data frame must contain the following columns: <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric), <code>grammage</code> (as numeric or character) and <code>unit</code> (as character).
-------------	---

rules	User rules for transforming grammage, unit, prices and quantities of products. For instance, a rule ("ml", "l", 1000) changes the 'old' grammage unit: ml into the new one: l on the basis of the provided relation: 1000ml=1l. As a consequence, for each product which is sold in liters l, the unit price and quantity are calculated.
all	A logical value indicating whether the resulting data frame is to be limited to products with detected grammage. Its default value is TRUE which means that not transformed rows (products) are also returned.

Value

The function returns the user's data frame with two transformed columns: grammage and unit, and two rescaled columns: prices and quantities. The above-mentioned transformation and rescaling take into consideration the user rules. Recalculated prices and quantities concern grammage units defined as the second parameter in the given rule.

Examples

```
# Preparing a data set
data<-data_unit(dataU, units=c("g|ml|kg|l"), multiplication="x")
# Normalization of grammage units
data_norm(data, rules=list(c("ml", "l", 1000), c("g", "kg", 1000)))
```

data_preparing	<i>Preparing a data set for further data processing or price index calculations</i>
----------------	---

Description

This function returns a prepared data frame based on the user's data set. The resulting data frame is ready for further data processing (such as data selecting, matching or filtering) and it is also ready for price index calculations (if only it contains required columns).

Usage

```
data_preparing(
  data,
  time = NULL,
  prices = NULL,
  quantities = NULL,
  prodID = NULL,
  retID = NULL,
  description = NULL,
  codeIN = NULL,
  codeOUT = NULL,
  grammage = NULL,
  unit = NULL,
  additional = c(),
```

```

    zero_prices = FALSE,
    zero_quantities = TRUE
)

```

Arguments

data	The user's data frame to be prepared. The user must indicate columns: <code>time</code> (as Date or character type, allowed formats are, eg.: '2020-03' or '2020-12-28'), <code>prices</code> and <code>quantities</code> (as numeric). Optionally, the user may also indicate columns: <code>prodID</code> , <code>codeIN</code> , <code>codeOUT</code> , <code>retID</code> (as numeric, factor or character), <code>description</code> (as character), <code>grammage</code> (as numeric or character), <code>unit</code> (as character) and other columns specified by the <code>additional</code> parameter.
time	A character name of the column which provides transaction dates.
prices	A character name of the column which provides product prices.
quantities	A character name of the column which provides product quantities.
prodID	A character name of the column which provides product IDs. The <code>prodID</code> column should include unique product IDs used for product matching (as numeric or character). It is not obligatory to consider this column while data preparing but it is required while price index calculating (to obtain it, please see data_matching).
retID	A character name of the column which provides outlet IDs (retailer sale points). The <code>retID</code> column should include unique outlet IDs used for aggregating subindices over outlets. It is not obligatory to consider this column while data preparing but it is required while final price index calculating (to obtain it, please see the final_index function).
description	A character name of the column which provides product descriptions. It is not obligatory to consider this column while data preparing but it is required while product selecting (please see the data_selecting function).
codeIN	A character name of the column which provides internal product codes (from the retailer). It is not obligatory to consider this column while data preparing but it may be required while product matching (please see the data_matching function).
codeOUT	A character name of the column which provides external product codes (e.g. GTIN or SKU). It is not obligatory to consider this column while data preparing but it may be required while product matching (please see the data_matching function).
grammage	A character name of the numeric column which provides the grammage of products
unit	A character name of the column which provides the unit of the grammage of products
additional	A character vector of names of additional columns to be considered while data preparing (records with missing values are deleted).
zero_prices	A logical parameter indicating whether zero prices are to be acceptable.
zero_quantities	A logical parameter indicating whether zero quantities are to be acceptable.

Value

The resulting data frame is free from: missing values, negative prices (if zero_prices is set to TRUE), zero or negative prices (if zero_prices is set to FALSE), negative quantities (if zero_quantities is set to TRUE) and zero and negative quantities (if zero_prices is set to FALSE). As a result, column time is set to be Date type (in format: 'Year-Month-01'), columns prices and quantities are set to be numeric. If the column description is selected, then it is set to be character type. If columns: prodID, retID, codeIN or codeOUT are selected, then they are set to be character type.

Examples

```
data_preparing(milk, time="time",prices="prices",quantities="quantities")
data_preparing(dataCOICOP, time="time",
               prices="prices",quantities="quantities",additional="coicop6")
```

data_reducing

Reducing products

Description

The function returns a reduced data set, i.e. a data set containing sufficiently numerous matched products in the indicated groups. The input data set (data frame) must contain matched products over time, i.e. it must contain the prodID column (as numeric, factor or character), or product descriptions, i.e. it must contain the description column (as character).

Usage

```
data_reducing(
  data,
  start,
  end,
  type = "prodID",
  minN = 2,
  outlets = FALSE,
  by = c(),
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01') and, depending on next parameter values, columns: prodID or description, and retID.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

type	This parameter indicates whether group counts are determined by different matched prodIDs (in which case the parameter has the value 'prodID') or different matched descriptions (in which case the parameter has the value 'description').
minN	This parameter determines the minimum size of matched products in groups.
outlets	This parameter determines whether grouping is to be done for each outlet separately. If so (if it is TRUE), the data set must contain a column identifying the outlets (retID).
by	This parameter specifies the name of the grouping column (as character).
interval	A logical value indicating whether the reducing process concerns only two periods defined by start and end parameters (then the interval is set to FALSE) or whether that function is to reduce products sold during the whole time interval <start, end>.

Value

The function returns a reduced data set, i.e. a data set containing sufficiently numerous matched products in the indicated groups. For each product group created and for selected periods, the procedure checks that the count of identical prodIDs (or identical product descriptions, which does not necessarily mean the same thing) is at least equal to minN. If it is not, such products are eliminated from the data set. The function performs the check either only for the base and current period (in which case the interval parameter is FALSE) or also for all intermediate months (in which case the interval parameter is TRUE). If the user wants to perform this check for each outlet separately, then the outlets parameter should be set to TRUE.

Examples

```
data_reducing(sugar, start="2018-12", end="2019-12", by="description", minN=5)
```

data_selecting	<i>Selecting products from the user's data set for further price index calculations</i>
----------------	---

Description

The function returns a subset of the user's data set obtained by selection based on keywords and phrases.

Usage

```
data_selecting(
  data,
  include = c(),
  must = c(),
  exclude = c(),
  sensitivity = FALSE,
  coicop = NULL
)
```

Arguments

data	The user's data frame. It must contain a column description (as character).
include	A vector consisting of words and phrases. The function reduces the data set to one in which the description column contains any of these values.
must	A vector consisting of words and phrases. The function reduces the data set to one in which the description column contains each of these values.
exclude	A vector consisting of words and phrases. The function reduces the data set to one in which the description column does not contain any of these values.
sensitivity	A logical parameter indicating whether sensitivity to lowercase and uppercase letters is taken into consideration (if yes, its value is TRUE).
coicop	An optional parameter indicating a value for an additional column coicop which is added to the resulting data frame

Value

The function returns a subset of the user's data set obtained by selection based on keywords and phrases defined by parameters: `include`, `must` and `exclude` (an additional column `coicop` is optional). Providing values of these parameters, please remember that the procedure distinguishes between uppercase and lowercase letters only when `sensitivity` is set to TRUE.

Examples

```
data_selecting(milk, include=c("milk"), must=c("UHT"))
data_selecting(milk, must=c("milk"), exclude=c("past"))
```

data_unit

Providing information about the grammage and unit of products

Description

The function returns the grammage and unit of products as two additional columns.

Usage

```
data_unit(data = data.frame(), units = c("g|m1|kg|l"), multiplication = "x")
```

Arguments

data	The user's data frame. The data frame must contain the description column (as character).
units	Units of products which are to be detected (e.g. "mllg kg")
multiplication	A sign of the multiplication used in product descriptions (e.g. "x")

Value

The function returns the user's data frame with two additional columns: `grammage` and `unit`. The values of these columns are extracted from product descriptions on the basis of provided units. Please note, that the function takes into consideration a sign of the multiplication, e.g. if the product description contains: '2x50 g', we obtain: `grammage`: 100 and `unit`: g for that product (for multiplication set to 'x').

Examples

```
data_unit(dataU, units=c("g|ml|kg|l"), multiplication="x")
```

davies

Calculating the bilateral Davies price index

Description

This function returns a value (or vector of values) of the bilateral Davies price index.

Usage

```
davies(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start,end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Davies price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Davies, G. R. (1924). *The Problem of a Standard Index Number Formula*. Journal of the American Statistical Association, 19 (146), 180-188.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
davies(sugar, start="2018-12", end="2019-12")
davies(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dikhanov

Calculating the unweighted Dikhanov price index

Description

This function returns a value (or vector of values) of the unweighted bilateral Dikhanov price index.

Usage

```
dikhanov(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral Dikhanov price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Dikhanov, Y., (2024). *A New Elementary Index Number*. Paper presented at the 18th Meeting of the Ottawa Group on Price Indices, Ottawa, Canada.

Examples

```
dikhanov(sugar, start="2018-12", end="2019-12")
dikhanov(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dissimilarity	<i>Calculating the relative price and/or quantity dissimilarity measure between periods</i>
---------------	---

Description

This function returns a value of the relative price and/or quantity dissimilarity measure.

Usage

```
dissimilarity(data, period1, period2, type = "p")
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
period1	The first period (as character) limited to the year and month, e.g. '2019-03'.
period2	The second period (as character) limited to the year and month, e.g. '2019-04'.
type	The parameter indicates what type of dissimilarity measure is to be calculated. Possible values of the type parameter are: p (for the price dissimilarity measure calculation), q (for the quantity dissimilarity measure calculation) or pq (for the dSPQ measure calculation, i.e. the measure of relative price and quantity dissimilarity - see References).

Value

This function returns a value of the relative price (dSP) and/or quantity (dSQ) dissimilarity measure. In a special case, when the type parameter is set to pq, the function provides the value of dSPQ measure (the relative price and quantity dissimilarity measure calculated as min(dSP,dSQ)).

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

Examples

```
dissimilarity(milk, period1="2018-12",period2="2019-12",type="q")
dissimilarity(milk, period1="2018-12",period2="2019-12",type="pq")
```

dissimilarity_fig	<i>Presenting the relative price and/or quantity dissimilarity measure over time</i>
-------------------	--

Description

This function presents values of the relative price and/or quantity dissimilarity measure over time.

Usage

```
dissimilarity_fig(
  data,
  start,
  end,
  type = "p",
  benchmark = "end",
  figure = TRUE,
  date_breaks = "1 month"
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2019-03'.
end	The research period (as character) limited to the year and month, e.g. '2019-07'.
type	The parameter indicates what type of dissimilarity measure is to be calculated. Possible values of the type parameter are: p (for the price dissimilarity measure calculation), q (for the quantity dissimilarity measure calculation) or pq (for the dSPQ measure calculation, i.e. the measure of relative price and quantity dissimilarity - see References).
benchmark	The benchmark period (as character) limited to the year and month, e.g. '2019-07'.
figure	A logical parameter indicating the resulting object. If it is TRUE, the function presents the above-mentioned dissimilarities over time via a figure. Otherwise, the function returns a data frame.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

This function presents values of the relative price and/or quantity dissimilarity measure over time. The user can choose a benchmark period (defined by `benchmark`) and the type of dissimilarity measure is to be calculated (defined by `type`). The obtained results of dissimilarities over time can be presented in a dataframe form or via a figure (the default value of `figure` is TRUE, which results in a figure).

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

Examples

```
dissimilarity_fig(milk, start="2018-12", end="2019-12", type="q", figure=FALSE)
dissimilarity_fig(milk, start="2018-12", end="2019-12", type="pq", benchmark="start")
```

drobisch

Calculating the bilateral Drobisch price index

Description

This function returns a value (or vector of values) of the bilateral Drobisch price index.

Usage

```
drobisch(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Drobisch price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Drobisch, M. W. (1871). *Ueber einige Einwurfe gegen die in diesen Jahrbuchern veröffentlichte neue Methode, die Veränderungen der Waarenpreise und des Geldwerths zu berechnen*. Jahrbucher für Nationalökonomie und Statistik, Vol. 16, s. 416-427.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
drobisch(sugar, start="2018-12", end="2019-12")
drobisch(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dutot

Calculating the unweighted Dutot price index

Description

This function returns a value (or vector of values) of the unweighted bilateral Dutot price index.

Usage

```
dutot(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral Dutot price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Dutot, C. F., (1738). *Reflexions Politiques sur les Finances et le Commerce*. The Hague: Les Freres Vaillant et Nicolas Prevost, Vol. 1.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
dutot(sugar, start="2018-12", end="2019-12")
dutot(milk, start="2018-12", end="2020-01", interval=TRUE)
```

elasticity

Calculating the elasticity of substitution

Description

This function returns a value of the elasticity of substitution

Usage

```
elasticity(
  data,
  start,
  end,
  method = "lm",
  left = -10,
  right = 10,
  precision = 1e-06
)
```

Arguments

`data` The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

`start` The base period (as character) limited to the year and month, e.g. "2020-03".

end	The research period (as character) limited to the year and month, e.g. "2020-04".
method	The index formula for which the CES index will be equated to calculate the elasticity. Acceptable options are lm, f, t, w and sv.
left	The beginning of an interval for estimation of the elasticity of substitution (its default value is -10).
right	The end of an interval for estimation of the elasticity of substitution (its default value is 10).
precision	The precision of estimation (a 'stop' condition for the procedure). A default value of this parameter is 0.000001.

Value

This function returns a value of the elasticity of substitution. If the `method` parameter is set to `lm`, the procedure of estimation solves the equation: $LM(\sigma) - CW(\sigma) = 0$ numerically, where LM denotes the Lloyd-Moulton price index, the CW denotes a current weight counterpart of the Lloyd-Moulton price index, and σ is the elasticity of substitution parameter, which is estimated. If the `method` parameter is set to `f`, the Fisher price index formula is used instead of the CW price index. If the `method` parameter is set to `t`, the Tornqvist price index formula is used instead of the CW price index. If the `method` parameter is set to `w`, the Walsh price index formula is used instead of the CW price index. If the `method` parameter is set to `sv`, the Sato-Vartia price index formula is used instead of the CW price index. The procedure continues until the absolute value of this difference is greater than the value of the 'precision' parameter.

References

de Haan, J., Balk, B.M., Hansen, C.B. (2010). *Retrospective Approximations of Superlative Price Indexes for Years Where Expenditure Data Is Unavailable*. In: Biggeri, L., Ferrari, G. (eds) Price Indexes in Time and Space. Contributions to Statistics. Physica-Verlag HD.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
elasticity(coffee, start = "2018-12", end = "2019-01")
elasticity(coffee, start = "2018-12", end = "2019-01", method = "f")
elasticity(coffee, start = "2018-12", end = "2019-01", method = "sv")
```

Description

The function provides a data frame or a figure presenting elasticities of substitution calculated for time interval.

Usage

```
elasticity_fig(
  data,
  start,
  end,
  method = c("lm"),
  fixedbase = TRUE,
  figure = TRUE,
  date_breaks = "1 month",
  names = c(),
  left = -10,
  right = 10,
  precision = 1e-06
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
method	A vector indicating index formulas for which the CES index will be equated to calculate the elasticity. Acceptable options are lm, f, t, w and sv or their combinations.
fixedbase	A logical parameter indicating whether the procedure is to work for subsequent months from the considered time interval (fixedbase=FALSE). Otherwise the period defined by start plays a role of fixed base month (fixedbase=TRUE)
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with values of elasticity of substitution.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".
names	A character string indicating names of indices used for elasticity approximation (see the method parameter).
left	The beginning of an interval for estimation of each elasticity of substitution (its default value is -10)
right	The end of an interval for estimation of each elasticity of substitution (its default value is 10)
precision	The precision of estimation (a 'stop' condition for the procedure). A default value of this parameter is 0.000001.

Value

The function provides a data frame or a figure presenting elasticities of substitution calculated for time interval (see the figure parameter). The elasticities of substitution can be calculated for

subsequent months or for a fixed base month (see the `start` parameter) and rest of months from the given time interval (it depends on the `fixedbase` parameter). The above-mentioned parameters for compared months are calculated by using the `elasticity` function.

References

de Haan, J., Balk, B.M., Hansen, C.B. (2010). *Retrospective Approximations of Superlative Price Indexes for Years Where Expenditure Data Is Unavailable*. In: Biggeri, L., Ferrari, G. (eds) Price Indexes in Time and Space. Contributions to Statistics. Physica-Verlag HD.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
elasticity_fig (milk,start="2018-12",end="2019-04",figure=TRUE,
method=c("lm","f"),names=c("LM","Fisher"))
elasticity_fig (milk,start="2018-12",end="2019-06",figure=FALSE)
```

expenditures	<i>Providing expenditures of sold products</i>
--------------	--

Description

The function returns expenditures of sold products with given IDs.

Usage

```
expenditures(data, period, set = c(), ID = FALSE)
```

Arguments

`data` The user's data frame. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character) with unique product IDs.

`period` The time period (as character) limited to the year and month, e.g. "2019-03".

`set` The set of unique product IDs to be used for determining expenditures of sold products (see also [data_matching](#)). If the `set` is empty, the function returns quantities of all products being available in `period`.

`ID` A logical parameter indicating whether a data frame with `prodIDs` and `quantities` should be returned.

Value

The function analyzes the user's data frame and returns expenditures of products with given ID and being sold in the time period indicated by the `period` parameter. Please note that the function returns the expenditure values for sorted `prodIDs` and in the absence of a given `prodID` in the data set, the function returns nothing (it does not return zero). If the `ID` parameter is set to TRUE then the function returns a data frame with columns: `by` (IDs of products) and `expend` (expenditures of products).

Examples

```
expenditures(milk, period="2019-06")
expenditures(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

final_index

A general function to compute a final price index

Description

This function returns a value (or values) of the selected final price index for the selected type of aggregation of partial results.

Usage

```
final_index(
  data = data.frame(),
  start = c(),
  end = c(),
  formula = c(),
  window = c(),
  splice = c(),
  base = c(),
  sigma = c(),
  r = c(),
  outlets = FALSE,
  groups = FALSE,
  by = c(),
  aggr = "fisher",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column retID (as numeric, factor or character) is also essential if the aggregation over outlets is considered. A column with grouping variable (as numeric, factor or character - indicated by the by parameter) is essential if the aggregation over product subgroups is considered.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
formula	The character string indicating the price index formula is to be calculated. To see available options please use the link: PriceIndices .
window	The length of the time window if the multilateral index is selected (as positive integer: typically multilateral methods are based on the 13-month time window).

splice	A character string indicating the splicing method (if the multilateral splicing index is selected). Available options are: "movement", "window", "half", "mean" and their additional variants: "window_published", "half_published" and "mean_published".
base	The prior period used in the Young- or Lowe-type price indices (as character) limited to the year and month, e.g. "2020-01".
sigma	The elasticity of substitution parameter used in the Lloyed-Moulton, AG Mean or GEKS-LM indices (as numeric).
r	The non-zero parameter used in the quadratic mean of order r quantity / price index or in the GEKS-QM index (as numeric).
outlets	A logical parameter indicating whether the aggregation over outlets (defined by retID column) should be done.
groups	A logical parameter indicating whether the aggregation over product subgroups (indicated by 'by' parameter) should be done.
by	A character string which indicates a column name for creating product subgroups.
aggr	The formula used for aggregating partial index results (available values are: "arithmetic", "geometric", "laspeyres", "paasche", "fisher", "tornqvist").
interval	A logical value indicating whether the function is to provide price indices comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be presented (the fixed base month is defined by start).

Value

This general function returns a value or values of the selected final price index for the selected type of aggregation of partial results. If the interval parameter is set to TRUE, then it returns a data frame where its first column indicates dates and the remaining columns show corresponding values of all selected price indices.

Examples

```
final_index(coffee, start = "2018-12", end = "2019-12",
            formula = "fisher", groups = TRUE, outlets = FALSE,
            aggr = "tornqvist", by = "description")
final_index(milk, start = "2018-12", end = "2019-12",
            formula = "fisher", groups = TRUE, outlets = TRUE,
            aggr = "laspeyres", by = "description",
            interval = TRUE)
```

Description

This function returns a value (or vector of values) of the bilateral Fisher price index.

Usage

```
fisher(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Fisher price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating,please use the [final_index](#) function).

References

Fisher, I. (1922). *The Making of Index Numbers*. Boston: Houghton Mifflin.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
fisher(sugar, start="2018-12", end="2019-12")
fisher(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geary_khamis

Calculating the bilateral Geary-Khamis price index

Description

This function returns a value (or vector of values) of the bilateral Geary-Khamis price index.

Usage

```
geary_khamis(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Geary-Khamis price index depending on the `interval` parameter (please use `gk` function to calculate the multilateral Geary-Khamis price index). If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Geary, R. G. (1958). *A Note on Comparisons of Exchange Rates and Purchasing Power between Countries*. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number*. Sankhya Series B32, 81-98.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
geary_khamis(sugar, start="2018-12", end="2019-12")
geary_khamis(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Description

This function returns a value of the multilateral GEKS price index (to be more precise: the GEKS index based on the Fisher formula).

Usage

```
geks(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS price index (to be more precise: the GEKS index based on the Fisher formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
geks(milk, start="2019-01", end="2019-08", window=10)
geks(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the multilateral GEKS-AQI price index (to be more precise: the GEKS index based on the asynchronous quality adjusted price index formula).

Usage

```
geksaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-AQI price index (to be more precise: the GEKS index based on the asynchronous quality adjusted price index formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
geksaqi(milk, start="2019-01", end="2019-08", window=10)
geksaqi(milk, start="2018-12", end="2019-12")
```

geksaqi_fbew

Extending the multilateral GEKS-AQI price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-AQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksaqi_fbmw(milk, start="2018-12", end="2019-08")
```

geksaqi_fbmw

Extending the multilateral GEKS-AQI price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-AQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*. Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksaqi_fbmw(milk, start="2019-12", end="2020-04")
```

geksaqi_splice	<i>Extending the multilateral GEKS-AQI price index by using window splicing methods.</i>
----------------	--

Description

This function returns a value (or values) of the multilateral GEKS-AQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASp) and mean splice on published indices (see References).

Usage

```
geksaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*. Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksaqi_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geksa^{qu}

Calculating the multilateral GEKS-AQU price index

Description

This function returns a value of the multilateral GEKS-AQU price index (to be more precise: the GEKS index based on the asynchronous quality adjusted unit value formula).

Usage

```
geksaqu(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-AQU price index (to be more precise: the GEKS index based on the asynchronous quality adjusted unit value formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
geksaqua(milk, start="2019-01", end="2019-08", window=10)
geksaqua(milk, start="2018-12", end="2019-12")
```

geksaqua_fbew

Extending the multilateral GEKS-AQU price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-AQU price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksaqua_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December

of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
geksaqua_fbmw(milk, start="2018-12", end="2019-08")
```

geksaqua_fbmw

Extending the multilateral GEKS-AQU price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-AQU price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksaqua_fbmw(data, start, end)
```

Arguments

`data` The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

`start` The base period (as character) limited to the year and month, e.g. "2019-12".

`end` The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
geksaqua_fbmw(milk, start="2019-12", end="2020-04")
```

geksaqua_splice

Extending the multilateral GEKS-AQU price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-AQU price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksaqua_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
geksaqua_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geksgaqi

Calculating the multilateral GEKS-GAQI price index

Description

This function returns a value of the multilateral GEKS-GAQI price index (to be more precise: the GEKS index based on the geometric asynchronous quality adjusted price index formula).

Usage

```
geksgaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-GAQI price index (to be more precise: the GEKS index based on the geometric asynchronous quality adjusted price index formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statistica – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
geksgaqi(milk, start="2019-01", end="2019-08", window=10)
geksgaqi(milk, start="2018-12", end="2019-12")
```

geksgaqi_fbew

Extending the multilateral GEKS-GAQI price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-GAQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksgaqi_fbew(data, start, end)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2019-12".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statisztika – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
geksgaqi_fbmw(milk, start="2018-12", end="2019-08")
```

geksgaqi_fbmw

Extending the multilateral GEKS-GAQI price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-GAQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksgaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statistica – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
geksgaqi_fbmw(milk, start="2019-12", end="2020-04")
```

geksgaqi_splice	<i>Extending the multilateral GEKS-GAQI price index by using window splicing methods.</i>
-----------------	---

Description

This function returns a value (or values) of the multilateral GEKS-GAQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksgaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. *Statis-tika – Statistics and Economy Journal*, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
geksgaqi_splice(milk, start="2018-12", end="2020-01", window=10)
```

geksgl

Calculating the multilateral GEKS-GL price index

Description

This function returns a value of the multilateral GEKS-GL price index (to be more precise: the GEKS index based on the geometric Laspeyres formula).

Usage

```
geksgl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-GL price index (to be more precise: the GEKS index based on the geometric Laspeyres formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Etető, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksgl(milk, start="2019-01", end="2019-08", window=10)
geksgl(milk, start="2018-12", end="2019-12")
```

geksgl_fbew

Extending the multilateral GEKS-GL price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-GL price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksgl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksgl_fbew(milk, start="2018-12", end="2019-08")
```

geksgl_fbmw

Extending the multilateral GEKS-GL price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-GL price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksgl_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksgl_fbmw(milk, start="2019-12", end="2020-04")
```

geksgl_splice	<i>Extending the multilateral GEKS-GL price index by using window splicing methods.</i>
---------------	---

Description

This function returns a value (or values) of the multilateral GEKS-GL price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksgl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksgl_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geksiqm

Calculating the multilateral GEKS-IQM price index

Description

This function returns a value of the multilateral GEKS-IQM price index (to be more precise: the GEKS index based on the implicit quadratic mean of order r price index IQMp).

Usage

```
geksiqm(data, start, end, r = 2, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-IQM price index (to be more precise: the GEKS index based on the the implicit quadratic mean of order r price index IQMp) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geksiqm(milk, start="2019-01", end="2019-08", window=10)
geksiqm(milk, start="2018-12", end="2019-12", r=1.6)
```

geksiqm_fbew

Extending the multilateral GEKS-IQM price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksiqm_fbew(data, start, end, r)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
geksiqm_fbmw(milk, start="2018-12", end="2019-08", r=1.2)
```

geksiqm_fbmw

Extending the multilateral GEKS-IQM price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksiqm_fbmw(data, start, end, r)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksiqm_fbmw(milk, start="2019-12", end="2020-04", r=1.6)
```

geksiqm_splice

Extending the multilateral GEKS-IQM price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-IQM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksiqm_splice(  
  data,  
  start,  
  end,  
  r = 2,  
  window = 13,  
  splice = "movement",  
  interval = FALSE  
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-IQM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksiqm_splice(milk, start="2018-12", end="2020-02", r=0.8, splice="half")
```

geksj

Calculating the multilateral GEKS price index based on the Jevons formula (typical notation: GEKS-J)

Description

This function returns a value of the multilateral GEKS-J price index (to be more precise: the GEKS index based on the Jevons formula).

Usage

```
geksj(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-J price index (to be more precise: the GEKS index based on the Jevons formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
geksj(milk, start="2019-01", end="2019-08", window=10)
geksj(milk, start="2018-12", end="2019-12")
```

geksj_fbew

Extending the multilateral GEKS-J price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksj_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
geksj_fbew(milk, start="2018-12", end="2019-08")
```

geksj_fbmw

Extending the multilateral GEKS-J price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksj_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksj_fbmw(milk, start="2019-12", end="2020-04")
```

geksj_splice

Extending the multilateral GEKS-J price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-J price index (GEKS based on the Jevons formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksj_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS-J price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksj_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geksl

Calculating the multilateral GEKS-L price index

Description

This function returns a value of the multilateral GEKS-L price index (to be more precise: the GEKS index based on the Laspeyres formula).

Usage

```
geksl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-L price index (to be more precise: the GEKS index based on the Laspeyres formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksl(milk, start="2019-01", end="2019-08", window=10)
geksl(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the multilateral GEKS-LM price index (to be more precise: the GEKS index based on the Lloyd-Moulton price index).

Usage

```
gekslm(data, start, end, sigma = 0.7, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula).
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-LM price index (to be more precise: the GEKS index based on the Lloyd-Moulton price index) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lloyd, P. J. (1975). *Substitution Effects and Biases in Nontrue Price Indices*. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

Examples

```
gekslm(milk, start="2019-01", end="2019-08", window=10)
gekslm(milk, start="2018-12", end="2019-12", sigma=0.5)
```

gekslm_fbew

Extending the multilateral GEKS-LM price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-LM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
gekslm_fbew(data, start, end, sigma)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula)..

Value

This function returns a value of the multilateral GEKS-LM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
gekslm_fbew(milk, start="2018-12", end="2019-08", sigma=1.2)
```

gekslm_fbmw

Extending the multilateral GEKS-LM price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-LM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
gekslm_fbmw(data, start, end, sigma)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

end The research period (as character) limited to the year and month, e.g. "2020-04".

sigma The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula).

Value

This function returns a value of the multilateral GEKS-LM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Bialek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Bialek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksqm_fbmw(milk, start="2019-12", end="2020-04", r=1.6)
```

gekslm_splice

Extending the multilateral GEKS-LM price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-LM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
gekslm_splice(  
  data,  
  start,  
  end,
```

```

sigma = 0.7,
window = 13,
splice = "movement",
interval = FALSE
)

```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula).
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-LM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, *Quality & Quantity*, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, *Review of Income and Wealth*, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
gekslm_splice(milk, start="2018-12", end="2020-02", sigma=0.8, splice="half")
```

geksl_fbew

Extending the multilateral GEKS-L price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-L price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal

Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksl_fbew(milk, start="2018-12", end="2019-08")
```

geksl_fbmw

Extending the multilateral GEKS-L price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-L price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksl_fbmw(data, start, end)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: **time** (as Date in format: year-month-day, e.g. '2020-12-01'), **prices** (as positive numeric), **quantities** (as positive numeric) and **prodID** (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

end The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksl_fbmw(milk, start="2019-12", end="2020-04")
```

geksl_splice

Extending the multilateral GEKS-L price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-L price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
geksl_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geksqm

Calculating the multilateral GEKS-QM price index

Description

This function returns a value of the multilateral GEKS-QM price index (to be more precise: the GEKS index based on the quadratic mean of order r price index QMp).

Usage

```
geksqm(data, start, end, r = 2, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-QM price index (to be more precise: the GEKS index based on the quadratic mean of order r price index QMp) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geksqm(milk, start="2019-01", end="2019-08", window=10)
geksqm(milk, start="2018-12", end="2019-12", r=1.6)
```

geksqm_fbew

Extending the multilateral GEKS-QM price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-QM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksqm_fbew(data, start, end, r)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2019-12".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>r</code>	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-QM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
geksqm_fbew(milk, start="2018-12", end="2019-08", r=1.2)
```

geksqm_fbmw

Extending the multilateral GEKS-QM price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-QM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksqm_fbmw(data, start, end, r)
```

Arguments

`data` The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

`start` The base period (as character) limited to the year and month, e.g. "2019-12".

end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-QM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksqm_fbmw(milk, start="2019-12", end="2020-04", r=1.6)
```

geksqm_splice	<i>Extending the multilateral GEKS-QM price index by using window splicing methods.</i>
---------------	---

Description

This function returns a value (or values) of the multilateral GEKS-QM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksqm_splice(
  data,
  start,
  end,
```

```

r = 2,
window = 13,
splice = "movement",
interval = FALSE
)

```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-QM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksqm_splice(milk, start="2018-12", end="2020-02", r=0.8, splice="half")
```

geksw

Calculating the multilateral GEKS price index based on the Walsh formula (GEKS-W)

Description

This function returns a value of the multilateral GEKS-W price index, i.e. the GEKS price index based on the superlative Walsh index formula.

Usage

```
geksw(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-W price index (to be more precise: the GEKS index based on the Walsh formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
geksw(milk, start="2019-01", end="2019-08", window=10)
geksw(milk, start="2018-12", end="2019-12")
```

geksw_fbew

Extending the multilateral GEKS-W price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksw_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-W price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
geksw_fbew(milk, start="2018-12", end="2019-08")
```

geksw_fbmw

Extending the multilateral GEKS-W price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksw_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-W price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksw_fbmw(milk, start="2019-12", end="2020-04")
```

geksw_splice

Extending the multilateral GEKS-W price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksw_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day,e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS-W price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksw_splice(milk, start="2018-12", end="2020-02", splice="half")
```

geks_fbew

Extending the multilateral GEKS price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geks_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
geks_fbew(milk, start="2018-12", end="2019-08")
```

geks_fbmw

Extending the multilateral GEKS price index by using the FBMW method.

Description

This function returns a value of the multilateral GEKS price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geks_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geks_fbmw(milk, start="2019-12", end="2020-04")
```

geks_splice

Extending the multilateral GEKS price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geks_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geks_splice(milk, start="2018-12", end="2020-02", splice="half")
```

generate	<i>Generating an artificial scanner dataset</i>
----------	---

Description

This function provides artificial scanner datasets where prices and quantities are lognormally distributed.

Usage

```
generate(
  pmi = c(),
  psigma = c(),
  qmi = c(),
  qsigma = c(),
```

```

  prec = c(2, 0),
  n = 100,
  n0 = 1,
  r = 1,
  r0 = 1,
  start,
  days = FALSE
)

```

Arguments

pmi	A numeric vector indicating <code>mi</code> parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating <code>sigma</code> parameters for lognormally distributed prices from the subsequent months.
qmi	A numeric vector indicating <code>mi</code> parameters for lognormally distributed quantities from the subsequent months.
qsigma	A numeric vector indicating <code>sigma</code> parameters for lognormally distributed quantities from the subsequent months.
prec	A two-dimensional numeric vector indicating precision, i.e. the number of decimal places, for presenting prices and quantities.
n	An integer parameter indicating the number of products which are to be generated.
n0	An integer parameter indicating the first (the smallest) prodID.
r	An integer parameter indicating the number of outlets (retailer sale points) for which prices and quantities are to be generated.
r0	n0 An integer parameter indicating the first (the smallest) retID.
start	The first period in the generated data frame (as character) limited to the year and month, e.g. '2019-12'.
days	A logical parameter indicating whether the trading day in a given month is to be randomised. The default value of <code>days</code> is FALSE, which means that each transaction for a given month takes place on the first day of the month.

Value

This function returns an artificial scanner dataset where prices and quantities are lognormally distributed. The characteristics for these lognormal distributions are set by `pmi`, `psigma`, `qmi` and `qsigma` parameters. This function works for a fixed number of products and outlets (see `n` and `r` parameters). The generated dataset is ready for further price index calculations.

References

Sulewski, P., Białek, J. (2022). *Probability Distribution Modelling of Scanner Prices and Relative Prices*. Statistika – Statistics and Economy Journal, Vol. 3/2022, 282-298, Czech Statistical Office, Prague.

Examples

```
generate(pmi=c(1.02,1.03,1.04),psigma=c(0.05,0.09,0.02),qmi=c(3,4,4),
qsigma=c(0.1,0.1,0.15),start="2020-01",days=TRUE)
generate(pmi=c(1.02,1.03,1.04),psigma=c(0.05,0.09,0.02),qmi=c(6,6,7),
qsigma=c(0.1,0.1,0.15),start="2020-01",n=1000,n0=132578,r=10)
```

generate_CES

Generating an artificial scanner dataset in the CES model

Description

This function provides artificial scanner datasets where prices are lognormally distributed and quantities are obtained under a CES utility.

Usage

```
generate_CES(
  pmi = c(),
  psigma = c(),
  prec = 2,
  elasticity = 0.7,
  S = 1000,
  alfa = c(),
  n = 100,
  n0 = 1,
  r = 1,
  r0 = 1,
  start,
  days = FALSE
)
```

Arguments

pmi	A numeric vector indicating <code>mi</code> parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating <code>sigma</code> parameters for lognormally distributed prices from the subsequent months.
prec	A numeric value indicating precision, i.e. the number of decimal places, for generating prices.
elasticity	The elasticity of substitution. The default value is 0.7.
S	Sum of spending. The default value is 1000.
alfa	A numeric vector indicating positive weights that reflect the consumer preferences. By default, this vector is randomized based on a uniform distribution.
n	An integer parameter indicating the number of products which are to be generated.

n0	An integer parameter indicating the first (the smallest) prodID.
r	An integer parameter indicating the number of outlets (retailer sale points) for which prices and quantities are to be generated.
r0	n0 An integer parameter indicating the first (the smallest) retID.
start	The first period in the generated data frame (as character) limited to the year and month, e.g. '2019-12'.
days	A logical parameter indicating whether the trading day in a given month is to be randomised. The default value of days is FALSE, which means that each transaction for a given month takes place on the first day of the month.

Value

This function returns an artificial scanner dataset where prices are lognormally distributed, quantities are calculated under the assumption that consumers have CES (Constant Elasticity of Substitution) preferences and their spending on all products is S. The characteristics for the lognormal price distribution are set by pmi and psigma parameters. This function works for a fixed number of products and outlets (see n and r parameters). The generated dataset is ready for further price index calculations.

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
#Generating an artificial dataset (the elasticity of substitution is 1.25)
df<-generate_CES(pmi=c(1.02,1.03),psigma=c(0.04,0.03),
elasticity=1.25,start="2020-01",n=100,days=TRUE)
#Verifying the elasticity of substitution
elasticity(df, start="2020-01",end="2020-02")
```

Description

This function returns a value (or vector of values) of the bilateral geohybrid price index. The geohybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
geohybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geohybrid price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geohybrid price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
geohybrid(sugar, start="2019-12", end="2020-08", base="2018-12")
geohybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

geolaspeyres

Calculating the bilateral geo-logarithmic Laspeyres price index

Description

This function returns a value (or vector of values) of the bilateral geo-logarithmic Laspeyres price index.

Usage

```
geolaspeyres(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geo-logarithmic Laspeyres price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geolaspeyres(sugar, start="2018-12", end="2019-12")
geolaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geolowe

Calculating the bilateral geometric Lowe price index

Description

This function returns a value (or vector of values) of the bilateral geometric Lowe price index.

Usage

```
geolowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geometric Lowe price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geometric Lowe price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geolowe(sugar, start="2019-01", end="2020-01", base="2018-12")
geolowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geopaasche

Calculating the bilateral geo-logarithmic Paasche price index

Description

This function returns a value (or vector of values) of the bilateral geo-logarithmic Paasche price index.

Usage

```
geopaasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geo-logarithmic Paasche price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
 (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geopaasche(sugar, start="2018-12", end="2019-12")
geopaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geoyoung

Calculating the bilateral geometric Young price index

Description

This function returns a value (or vector of values) of the bilateral geometric Young price index.

Usage

```
geoyoung(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geometric Young price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geometric Young price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geoyoung(sugar, start="2019-01", end="2020-01", base="2018-12")
geoyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Description

This function returns a value of the multilateral Geary-Khamis price index.

Usage

```
gk(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral Geary-Khamis price index which considers the time window defined by `wstart` and `window` parameters. The Geary-Khamis price index is calculated by using a special iterative algorithm from Chessa (2016). It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Geary, R. G. (1958). *A Note on Comparisons of Exchange Rates and Purchasing Power between Countries*. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number*. Sankhya Series B32, 81-98.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
gk(milk, start="2019-01", end="2019-08", window=10)
gk(milk, start="2018-12", end="2019-12")
```

gk_fbew

Extending the multilateral Geary-Khamis price index by using the FBEW method.

Description

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
gk_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Geary, R. G. (1958). *A Note on Comparisons of Exchange Rates and Purchasing Power between Countries*. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number*. Sankhya Series B32, 81-98.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
gk_fbew(milk, start="2018-12", end="2019-08")
```

gk_fbew

Extending the multilateral Geary-Khamis price index by using the FBMW method.

Description

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
gk_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Geary, R. G. (1958). *A Note on Comparisons of Exchange Rates and Purchasing Power between Countries*. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number*. Sankhya Series B32, 81-98.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
gk_fbmw(milk, start="2019-12", end="2020-04")
```

gk_splice

Extending the multilateral Geary-Khamis price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral Geary-Khamis price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
gk_splice(data, start, end, window = 13, splice = "movement", interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral Geary-Khamis price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
gk_splice(milk, start="2018-12", end="2020-02", splice="half")
```

harmonic

Calculating the unweighted harmonic price index

Description

This function returns a value (or vector of values) of the unweighted "unnamed" harmonic price index.

Usage

```
harmonic(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral harmonic price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.
(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
harmonic(sugar, start="2018-12", end="2019-12")
harmonic(milk, start="2018-12", end="2020-01", interval=TRUE)
```

hybrid

Calculating the bilateral hybrid price index

Description

This function returns a value (or a vector of values) of the bilateral hybrid price index. The hybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
hybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2020-03'.
end	The research period (as character) limited to the year and month, e.g. '2020-04'.
base	The prior period used in the hybrid price index formula (as character) limited to the year and month, e.g. '2020-01'.
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or a vector of values) of the bilateral hybrid price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
hybrid(sugar, start="2019-12", end="2020-08", base="2018-12")
hybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

IQMp

Calculating the implicit quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the implicit quadratic mean of order r price index.

Usage

```
IQMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the implicit quadratic mean of order r price index - see CPI Manual (2004), Section 17.37, formula 17.32 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
IQMp(sugar, start="2019-01", end="2020-01")
IQMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

jevons

*Calculating the unweighted Jevons price index***Description**

This function returns a value (or vector of values) of the unweighted bilateral Jevons price index.

Usage

```
jevons(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start,end></code> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral Jevons price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Jeffreys, W. S., (1865). *The variation of prices and the value of the currency since 1782*. J. Statist. Soc. Lond., 28, 294-320.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
jevons(milk, start="2018-12", end="2020-01")
jevons(milk, start="2018-12", end="2020-01", interval=TRUE)
```

laspeyres*Calculating the bilateral Laspeyres price index*

Description

This function returns a value (or vector of values) of the bilateral Laspeyres price index.

Usage

```
laspeyres(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Laspeyres, E. (1871). *Die Berechnung einer mittleren Waarenpreisseigerung*. Jahrbucher fur Nationalokonomie und Statistik 16, 296-314.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
laspeyres(sugar, start="2018-12", end="2019-12")
laspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

lehr*Calculating the bilateral Lehr price index*

Description

This function returns a value (or vector of values) of the bilateral Lehr price index.

Usage

```
lehr(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Lehr price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Lehr, J. (1885). *Beiträge zur Statistik der Preise, insbesondere des Geldes und des Holzes*. J. D. Sauerländer, Frankfurt am Main.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
lehr(sugar, start="2018-12", end="2019-12")
lehr(milk, start="2018-12", end="2020-01", interval=TRUE)
```

lloyd_moulton

Calculating the bilateral Lloyd-Moulton price index

Description

This function returns a value (or vector of values) of the bilateral Lloyd-Moulton price index.

Usage

```
lloyd_moulton(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Lloyd-Moulton price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Lloyd, P. J. (1975). *Substitution Effects and Biases in Nontrue Price Indices*. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
lloyd_moulton(sugar, start="2018-12", end="2019-12", sigma=0.9)
lloyd_moulton(milk, start="2018-12", end="2020-01", interval=TRUE)
```

lowe

Calculating the bilateral Lowe price index

Description

This function returns a value (or vector of values) of the bilateral Lowe price index.

Usage

```
lowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Lowe price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
lowe(sugar, start="2019-01", end="2020-01", base="2018-12")
lowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

MARS

Data stratification via the MARS method

Description

This function groups prodIDs into strata ('products') by balancing two measures: an explained variance (R squared) measure for the 'homogeneity' of prodIDs within products, while the second expresses the degree to which products can be 'matched' over time with respect to a comparison period.

Usage

```
MARS(
  data = data.frame(),
  start,
  end,
  attributes = c(),
  n = 3,
  strategy = "two_months"
)
```

Arguments

data	The user's data frame with information about products. It must contain attributes: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric), prodID (as numeric or character) and the attributes indicated by the 'attributes' parameter.
start	The base period θ (as character) limited to the year and month, e.g. "2020-03".
end	The research period t (as character) limited to the year and month, e.g. "2020-04".
attributes	A character vector with column names specifying the product attributes.
n	Parameter needed only if last_months strategy is selected. This parameter specifies how many last months are to be taken into account for calculating the average MARS value.
strategy	A variable that determines how to calculate the degree of product match, the degree of homogeneity (the weighted R squared measure) and the final MARS score. Available options are: two_months (only base and current periods are considered, i.e. the MARS score is computed for periods θ and t), interval_base (MARS scores are calculated for each pair of periods: (0,1), (0,2), ... (0,t) and the geometric mean of these values is returned), interval_chain (MARS scores are calculated for each pair of periods: (0,1), (1,2), ... (t-1,t) and the geometric

mean of these values is returned), `interval_pairs` (MARS scores are calculated for each pair of periods: (a,b) from periods (0,1,2,...,t) and the geometric mean of these values is returned), `last_months` (MARS scores are calculated for each pair of periods: (t-n,t), (t-n+1,t), ... (t-1,t) and the geometric mean of these values is returned).

Value

This function groups prodIDs into strata ('products') by balancing two measures: an explained variance (R squared) measure for the 'homogeneity' of prodIDs within products, while the second expresses the degree to which products can be 'matched' over time with respect to a comparison period. The resulting product 'match adjusted R squared' (MARS) combines explained variance in product prices with product match over time, so that different stratification schemes can be ranked according to the combined measure. Any combination of attributes is taken into account when creating stratas. For example, for a set of attributes (A, B, C), the stratas created by the following attribute combinations are considered: A, B, C, A-B, A-C, B-C, A-B-C. The function returns a list with the following elements: `scores` (with scores for degrees of product match and product homogeneity, as well as for MARS measure), `best_partition` (with the name of the partition for which the highest indication of the MARS measure was obtained), and `data_MARS` (with a data frame obtained by replacing the original prodIDs with identifiers created based on the selected best partition).

References

Chessa, A.G. (2022). *A Product Match Adjusted R Squared Method for Defining Products with Transaction Data*. Journal of Official Statistics, 37(2), 411–432.

Examples

```
df<-MARS(data=dataMARS,
           start="2025-05", end="2025-09",
           attributes=c("brand", "size", "fabric"),
           strategy="two_months")
#Results:
df$scores
df$best_partition
df$data_MARS
```

marshall_edgeworth *Calculating the bilateral Marshall-Edgeworth price index*

Description

This function returns a value (or vector of values) of the bilateral Marshall-Edgeworth price index.

Usage

```
marshall_edgeworth(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Marshall-Edgeworth price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Marshall, A. (1887). *Remedies for Fluctuations of General Prices*. Contemporary Review, 51, 355-375.

Edgeworth, F. Y. (1887). *Measurement of Change in Value of Money I*. The first Memorandum presented to the British Association for the Advancement of Science; reprinted in Papers Relating to Political Economy, Vol. 1, New York, Burt Franklin, s. 1925.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
marshall_edgeworth(sugar, start="2018-12", end="2019-12")
marshall_edgeworth(milk, start="2018-12", end="2020-01", interval=TRUE)
```

matched

Providing values from the indicated column that occur simultaneously in the compared periods or in a given time interval.

Description

The function returns all values from the indicated column (defined by the `type` parameter) which occur simultaneously in the compared periods or in a given time interval.

Usage

```
matched(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

data	The user's data frame. It must contain a column <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01') and also a column indicated by the <code>type</code> parameter.
period1	The first period (as character) limited to the year and month, e.g. "2019-03".
period2	The second period (as character) limited to the year and month, e.g. "2019-04".
type	This parameters defines the column which is used in the procedure. Possible values of the <code>type</code> parameter are: <code>retID</code> , <code>prodID</code> , <code>codeIN</code> , <code>codeOUT</code> or <code>description</code> .
interval	A logical parameter indicating whether the procedure is to work for the whole time period between <code>period1</code> and <code>period2</code> (then it is TRUE).

Value

The function returns all values from the indicated column (defined by the `type` parameter) which occur simultaneously in the compared periods or in a given time interval. Possible values of the `type` parameter are: `retID`, `prodID`, `codeIN`, `codeOUT` or `description`. If the `interval` parameter is set to FALSE, then the function compares only periods defined by `period1` and `period2`. Otherwise the whole time period between `period1` and `period2` is considered.

Examples

```
matched(milk, period1="2018-12", period2="2019-12", interval=TRUE)
matched(milk, period1="2018-12", period2="2019-12", type="description")
```

matched_fig

Providing a time dependent matched_index() function

Description

The function provides a data frame or a figure presenting the `matched_index` function calculated for the column defined by the `type` parameter and for each month from the considered time interval

Usage

```
matched_fig(
  data,
  start,
  end,
  base = "start",
  type = "prodID",
  fixedbase = TRUE,
```

```

  figure = TRUE,
  date_breaks = "1 month"
)

```

Arguments

data	The user's data frame. It must contain a column <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01') and also a column indicated by the <code>type</code> parameter.
start	The beginning of a time interval (as character) limited to the year and month, e.g. "2019-03".
end	The end of a time interval (as character) limited to the year and month, e.g. "2019-04".
base	The base period (as character) for product comparisons. Its possible values are: "start" and "end".
type	This parameter defines the column which is used in the procedure. Possible values of the <code>type</code> parameter are: <code>retID</code> , <code>prodID</code> , <code>codeIN</code> , <code>codeOUT</code> or <code>description</code> .
fixedbase	A logical parameter indicating whether the procedure is to work for subsequent months from the considered time interval (<code>fixedbase=FALSE</code>). Otherwise the period defined by <code>base</code> plays a role of fixed base month (<code>fixedbase=TRUE</code>)
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with <code>matched_index</code> values.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

The function returns a data frame or a figure presenting the `matched_index` function calculated for the column defined by the `type` parameter and for each month from the considered time interval. The interval is set by `start` and `end` parameters. The returned object (data frame or figure) depends on the value of `figure` parameter. The returned values belong to [0,1].

Examples

```

matched_fig(milk, start="2018-12", end="2019-12")
matched_fig(milk, start="2018-12", end="2019-12", figure=FALSE)

```

`matched_index`

Providing the ratio of number of matched values from the indicated column to the number of all available values from this column

Description

The function returns a ratio of number of values from the indicated column that occur simultaneously in the compared periods or in a given time interval to the number of all available values from the above-mentioned column (defined by the `type` parameter) at the same time.

Usage

```
matched_index(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

data	The user's data frame. It must contain a column <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01') and also a column indicated by the <code>type</code> parameter.
period1	The first period (as character) limited to the year and month, e.g. "2019-03".
period2	The second period (as character) limited to the year and month, e.g. "2019-04".
type	This parameter defines the column which is used in the procedure. Possible values of the <code>type</code> parameter are: <code>retID</code> , <code>prodID</code> , <code>codeIN</code> , <code>codeOUT</code> or <code>description</code> .
interval	A logical parameter indicating whether the procedure is to work for the whole time period between <code>period1</code> and <code>period2</code> (then it is TRUE).

Value

The function returns a ratio of number of values from the indicated column that occur simultaneously in the compared periods or in a given time interval to the number of all available values from the above-mentioned column (defined by the `type` parameter) at the same time. Possible values of the `type` parameter are: `retID`, `prodID` or `description`. If the `interval` parameter is set to FALSE, then the function compares only periods defined by `period1` and `period2`. Otherwise the whole time period between `period1` and `period2` is considered. The returned value belongs to [0,1].

Examples

```
matched_index(milk, period1="2018-12", period2="2019-12", interval=TRUE)
matched_index(milk, period1="2018-12", period2="2019-12", type="retID")
```

mbennet

Calculating the multilateral Bennet price and quantity indicators

Description

This function returns the multilateral Bennet price and quantity indicators and optionally also the price and quantity contributions of individual products.

Usage

```
mbennet(
  data,
  start,
  end,
  wstart = start,
  matched = FALSE,
```

```

  window = 13,
  interval = FALSE,
  contributions = FALSE,
  prec = 2
)

```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The first period of the time window (as character) limited to the year and month, e.g. "2019-12".
matched	A logical parameter indicating whether the matched sample approach is to be used (if yes, the parameter has the value TRUE).
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
interval	A logical parameter indicating whether calculations are to be made for the whole time interval (TRUE) or no (FALSE).
contributions	A logical parameter indicating whether contributions of individual products are to be displayed. If it is TRUE, then contributions are calculated for the the base period start and the current period end.
prec	A numeric vector indicating precision, i.e. the number of decimal places for presenting results.

Value

This function returns the multilateral Bennet price and quantity indicators and optionally also the price and quantity contributions of individual products.

References

Bennet, T. L., (1920). *The Theory of Measurement of Changes in Cost of Living*. Journal of the Royal Statistical Society, 83, 455-462.

Fox, K.J., (2006). *A Method for Transitive and Additive Multilateral Comparisons: A Transitive Bennet Indicator*. Journal of Economics, 87(1), 73-87.

Białek, J. (2024). *The use of the Bennet indicators and their transitive versions for scanner data analysis*. Statistics in Transition new series, 25(3), 155-173.

Examples

```

mbennet(milk, "2018-12", "2019-12", matched=TRUE, contributions=TRUE)
mbennet(coffee, start="2018-12", end="2019-03", interval=TRUE)

```

milk	<i>A real data set on sold milk</i>
------	-------------------------------------

Description

A collection of scanner data on the sale of milk in one of Polish supermarkets in the period from December 2018 to August 2020

Usage

```
milk
```

Format

A data frame with 6 columns and 4386 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)
prices - Prices of sold products [PLN]
quantities - Quantities of sold products [liters]
prodID - Unique product codes (data set contains 68 different prodIDs)
retID - Unique codes identifying outlets/retailer sale points (data set contains 5 different retIDs)
description Descriptions of sold milk products (data set contains 6 different product descriptions)

mmontgomery	<i>Calculating the multilateral Montgomery price and quantity indicators</i>
-------------	--

Description

This function returns the multilateral Montgomery price and quantity indicators and optionally also the price and quantity contributions of individual products.

Usage

```
mmontgomery(
  data,
  start,
  end,
  wstart = start,
  matched = FALSE,
  window = 13,
  interval = FALSE,
  contributions = FALSE,
  prec = 2
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The first period of the time window (as character) limited to the year and month, e.g. "2019-12".
matched	A logical parameter indicating whether the matched sample approach is to be used (if yes, the parameter has the value <code>TRUE</code>).
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
interval	A logical parameter indicating whether calculations are to be made for the whole time interval (<code>TRUE</code>) or no (<code>FALSE</code>).
contributions	A logical parameter indicating whether contributions of individual products are to be displayed. If it is <code>TRUE</code> , then contributions are calculated for the the base period <code>start</code> and the current period <code>end</code> .
prec	A numeric vector indicating precision, i.e. the number of decimal places for presenting results.

Value

This function returns the multilateral Montgomery price and quantity indicators and optionally also the price and quantity contributions of individual products.

References

Montgomery, J. K., (1929). *Is There a Theoretically Correct Price Index of a Group of Commodities?* Rome, International Institute of Agriculture

Fox, K.J., (2006). *A Method for Transitive and Additive Multilateral Comparisons: A Transitive Bennet Indicator.* Journal of Economics, 87(1), 73-87.

Białek, J., Pawelec, N. (2024). *The use of transitive Montgomery Indicators for scanner data analysis.* Argumenta Oeconomica, 2(53).

Examples

```
mmontgomery(milk, "2018-12", "2019-12", matched=TRUE, contributions=TRUE)
mmontgomery(coffee, start="2018-12", end="2019-03", interval=TRUE)
```

montgomery

*Calculating the Montgomery price and quantity indicators***Description**

This function returns the Montgomery price and quantity indicators and optionally also the price and quantity contributions of individual products.

Usage

```
montgomery(
  data,
  start,
  end,
  interval = FALSE,
  matched = FALSE,
  contributions = FALSE,
  prec = 2
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical parameter indicating whether calculations are to be made for the whole time interval (TRUE) or no (FALSE).
matched	A logical parameter indicating whether the matched sample approach is to be used (if yes, the parameter has the value TRUE).
contributions	A logical parameter indicating whether contributions of individual products are to be displayed. If it is TRUE, then contributions are calculated for the the base period <code>start</code> and the current period <code>end</code> .
prec	A numeric vector indicating precision, i.e. the number of decimal places for presenting results.

Value

This function returns the Montgomery price and quantity indicators and optionally also the price and quantity contributions of individual products.

References

Montgomery, J. K., (1929). *Is There a Theoretically Correct Price Index of a Group of Commodities?* Rome, International Institute of Agriculture

Examples

```
montgomery(milk, "2018-12", "2019-12", matched=TRUE, contributions=TRUE)
montgomery(coffee, start="2018-12", end="2019-03", interval=TRUE)
```

m_decomposition	<i>Multiplicative decomposing the GEKS-type indices</i>
-----------------	---

Description

This function returns multiplicative decompositions of the selected GEKS-type indices.

Usage

```
m_decomposition(
  data,
  start,
  end,
  wstart = start,
  formula = c(),
  window = 13,
  sigma = 0.7,
  index.value = TRUE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
formula	A parameter indicating which multilateral formulas are to be decomposed. In the current version of the package, the multiplicative decomposition includes the following GEKS-type indices: GEKS, CCDI, GEKS-W, GEKS-L, GEKS-GL, GEKS-LM, GEKS-AQI, and GEKS-GAQI. Thus, this parameter can take values like: "geks", "ccdi", "geksw", "geksl", "geksgl", "gekslm", "geksaqi", "geksqaqi".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula). The default value is 0.7.
index.value	The parameter indicating whether price index values are to be displayed (at the end of the returned multiplicative data frame).

Value

This function returns a list with three elements: `multiplicative` - a data frame containing multiplicative decompositions of the indicated GEKS-type indices, `normalized` - normalized multiplicative decompositions of the indicated indices (their product is always 1), `impact` - relative impacts of commodities on the price index value (in p.p.).

References

Webster, M., Tarnow-Mordi, R. C. (2019). *Decomposing Multilateral Price Indexes into the Contributions of Individual Commodities*, Journal of Official Statistics, 35(2), 461-486.

Bialek, J. (2025). *Multiplicative Decompositions of GEKS-type Indices into the Contribution of Individual Commodities*. Journal of Official Statistics (in press)

Examples

```
m_decomposition(milk, start="2018-12", end="2019-12", formula=c("geks", "ccdi"))$multiplicative
```

paasche

Calculating the bilateral Paasche price index

Description

This function returns a value (or vector of values) of the bilateral Paasche price index.

Usage

```
paasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Paasche price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Paasche, H. (1874). *Über die Preisentwicklung der letzten Jahre nach den Hamburger Börsennotirungen*. Jahrbücher für Nationalökonomie und Statistik, 12, 168-178.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
paasche(sugar, start="2018-12", end="2019-12")
paasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

palgrave

Calculating the bilateral Palgrave price index

Description

This function returns a value (or vector of values) of the bilateral Palgrave price index.

Usage

```
palgrave(data, start, end, interval = FALSE)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2020-03".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>interval</code>	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Palgrave price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Palgrave, R. H. I. (1886). *Currency and Standard of Value in England, France and India and the Rates of Exchange Between these Countries*. Memorandum submitted to the Royal Commission on Depression of trade and Industry, Third Report, Appendix B, 312-390.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
palgrave(sugar, start="2018-12", end="2019-12")
palgrave(milk, start="2018-12", end="2020-01", interval=TRUE)
```

pqcor	<i>Providing a correlation coefficient for price and quantity of sold products</i>
-------	--

Description

The function returns correlation between price and quantity of sold products with given IDs.

Usage

```
pqcor(data, period, set = c(), figure = FALSE)
```

Arguments

<code>data</code>	The user's data frame. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character) with unique product IDs.
<code>period</code>	The time period (as character) limited to the year and month, e.g. "2019-03".
<code>set</code>	The set of unique product IDs to be used for determining correlation between price and quantity of sold products (see also data_matching). If the <code>set</code> is empty, the function works for all products being available in <code>period</code> .
<code>figure</code>	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with correlations between price and quantity of sold products.

Value

The function returns Pearson's correlation coefficient between price and quantity of products with given IDs and sold in period.

Examples

```
pqcor(milk, period="2019-03")
pqcor(milk, period="2019-03", figure=TRUE)
```

pqcor_fig

Providing correlations between price and quantity of sold products

Description

The function returns Pearson's correlation coefficients between price and quantity of sold products with given IDs.

Usage

```
pqcor_fig(data, start, end, figure = TRUE, date_breaks = "1 month", set = c())
```

Arguments

data	The user's data frame. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character) with unique product IDs.
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. "2020-03".
end	The end of the considered time interval (as character) limited to the year and month, e.g. "2020-04".
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with price-quantity correlations.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".
set	The set of unique product IDs to be used for determining correlation between prices and quantities of sold products (see also data_matching). If the <code>set</code> is empty, the function works for all products being available in period.

Value

The function returns Pearson's correlation coefficients between price and quantity of products with given IDs and sold in the time interval: `<start, end>`. Correlation coefficients are calculated for each month separately. Results are presented in tabular or graphical form depending on the `figure` parameter.

Examples

```
pqcor_fig(milk, start="2018-12", end="2019-12", figure=FALSE)
pqcor_fig(milk, start="2018-12", end="2019-12", figure=TRUE)
```

PriceIndices

The list of package functions and their demonstration

Description

The **PriceIndices** package is a tool for Bilateral and Multilateral Price Index Calculations. A demonstration of package functions is here: [README](#). The package documentation can be found [HERE](#). The list of package functions is as follows:

Details

_PACKAGE

Data sets in the package and generating artificial scanner data sets

dataAGGR
 dataMATCH
 dataCOICOP
 milk
 sugar
 coffee
 dataU
 dataMARS
 dataRSM
 generate
 generate_CES
 tindex

Functions for data processing

data_check
 data_preparing
 data_imputing
 data_aggregating
 data_unit
 data_norm
 data_selecting
 data_filtering
 data_reducing

Functions providing dataset characteristics

```
available
matched
matched_index
matched_fig
products
products_fig
prices
quantities
sales
sales_groups
sales_groups2
expenditures
pqlcor
pqlcor_fig
dissimilarity_fig
elasticity
elasticity_fig
```

Functions for bilateral unweighted price index calculation

```
bmw
carli
cswd
dutot
jevons
harmonic
```

Functions for bilateral weighted index calculation

```
agmean
banajree
bialek
davies
drobisch
fisher
geary_khamis
geolaspeyres
geolowe
```

geopaasche
geoyoung
geohybrid
hybrid
laspeyres
lehr
lloyd_moulton
lowe
marshall_edgeworth
paasche
palgrave
sato_vartia
stuvel
tornqvist
vartia
walsh
young
QM_p
IQM_p
QM_q
value_index
unit_value_index
retro_index

Functions for chain index calculation

chbmw
chcarli
chcswd
chdutot
chjevons
chharmonic
chagmean
chbanajree
chbialek
davies
chdrobisch
chfisher

chgeary_khamis
chgeolaspeyres
chgeolowe
chgeopaasche
chgeoyoung
chgeohybrid
chhybrid
chlaspeyres
chlehr
chlloyd_moulton
chlowe
chmarshall_edgeworth
chpaasche
chpalgrave
chsato_vartia
chstuvvel
chtornqvist
chvartia
chwalsh
chyoung
chQMp
chIQMp
chQMq

Functions for multilateral price index calculation

ccdi
geks
wgeks
geks1
wgeks1
geksg1
wgeksg1
geksaqua
wgeksaqua
geksaqi
wgeksaqi
geksgaqi

wgeksgaqi
geksj
geksw
geksqm
geksiqm
gekslm
gk
QU
tpd
SPQ
m_decomposition

Functions for extending multilateral price indices by using splicing methods

ccdi_splice
geks_splice
wgeks_splice
geksj_splice
geksw_splice
gekslm_splice
wgekslm_splice
geksgl_splice
wgeksgl_splice
geksaqu_splice
wgeksaqu_splice
geksaqi_splice
wgeksaqi_splice
geksgaqi_splice
wgeksgaqi_splice
geksqm_splice
geksiqm_splice
gekslm_splice
gk_splice
tpd_splice

Functions for extending multilateral price indices by using the FBEW method

ccdi_fbew
geks_fbew
wgeks_fbew
geksj_fbew
geksw_fbew
geksl_fbew
wgeksl_fbew
geksgl_fbew
wgeksgl_fbew
geksaqu_fbew
wgeksaqu_fbew
geksaqi_fbew
wgeksaqi_fbew
geksgaqi_fbew
wgeksgaqi_fbew
geksqm_fbew
geksiqm_fbew
gekslm_fbew
gk_fbew
tpd_fbew

Functions for extending multilateral price indices by using the FBMW method

ccdi_fbmw
geks_fbmw
wgeks_fbmw
geksj_fbmw
geksw_fbmw
geksl_fbmw
wgeksl_fbmw
geksgl_fbmw
wgeksgl_fbmw
geksaqu_fbmw
wgeksaqu_fbmw
geksaqi_fbmw
wgeksaqi_fbmw
geksgaqi_fbmw

```
wgeksgaqi_fbmw
geksqm_fbmw
geksiqm_fbmw
gekslm_fbmw
gk_fbmw
tpd_fbmw
```

Functions for bilateral indicator calculations

```
bennet
montgomery
```

Functions for multilateral indicator calculations

```
mbennet
mmontgomery
```

General functions for price index calculations

```
price_indices
final_index
```

Functions for comparisons of price indices

```
compare_indices_df
compare_indices_list
compare_indices_jk
compare_distances
compare_to_target
```

prices

Providing prices (unit values) of sold products

Description

The function returns prices (unit values) of sold products with given IDs.

Usage

```
prices(data, period, set = c(), ID = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining prices of sold products (see also data_matching). If the set is empty, the function returns prices of all products being available in <code>period</code> .
ID	A logical parameter indicating whether a data frame with <code>prodIDs</code> and <code>prices</code> (unit values) should be returned.

Value

The function analyzes the user's data frame and returns prices (unit value) of products with given ID and being sold in the time period indicated by the `period` parameter. Please note, that the function returns the price values for sorted `prodIDs` and in the absence of a given `prodID` in the data set, the function returns nothing (it does not return zero). If the `ID` parameter is set to `TRUE` then the function returns a data frame with columns: `by` (IDs of products) and `uv` (unit values of products).

Examples

```
prices(milk, period="2019-06")
prices(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

price_indices

A general function to compute one or more price indices

Description

This function returns a value or values of the selected price indices.

Usage

```
price_indices(
  data,
  start,
  end,
  formula = c(),
  window = c(),
  splice = c(),
  base = c(),
  sigma = c(),
  r = c(),
  interval = FALSE,
  names = c()
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also essential even if the selected index is an unweighted formula (unit values are calculated).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
formula	A vector of character strings indicating price index formulas that are to be calculated. To see available options please use the link: PriceIndices .
window	A vector of integers. Each element of the vector defines the length of the time window of the corresponding multilateral index.
splice	A vector of character strings. Each element of the vector indicates the splicing method is to be used for the corresponding multilateral index. Available values of vector elements are: "movement", "window", "half", "mean" and their additional variants: "window_published", "half_published" and "mean_published".
base	The vector of prior periods used in the Young- or Lowe-type price indices or hybrid/geohybrid index. Each element of the vector (as character) must be limited to the year and month, e.g. "2020-01".
sigma	The vector of elasticity of substitution parameters used in the Lloyd-Moulton, AG Mean or GEKS-LM indices (as numeric).
r	The vector of non-zero parameters used in the quadratic mean of order <code>r</code> quantity / price index or in the GEKS-QM index (as numeric).
interval	A logical value indicating whether the function is to provide price indices comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be presented (the fixed base month is defined by <code>start</code>).
names	A vector of strings indicating names of indices which are to be used in the resulting data frame.

Value

This general function returns a value or values of the selected price indices. If the `interval` parameter is set to TRUE, then it returns a data frame where its first column indicates dates and the remaining columns show corresponding values of all selected price indices. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

Examples

```
price_indices(milk,
              start="2018-12", end="2019-12",
              formula=c("geks", "ccdi", "hybrid", "fisher",
              "QMp", "young", "geks1_fbew"),
              window=c(13,13),
              base=c("2019-03", "2019-03"),
```

```

r=c(3),interval=TRUE)
price_indices(milk,
  start="2018-12",end="2019-12",
  formula=c("geks","ccdi","hybrid","fisher",
  "QMp","young","geks_lfbew"),
  window=c(13,13),
  base=c("2019-03","2019-03"),
  r=c(3),interval=FALSE)

```

products	<i>Detecting and summarising available, matched, new and disappearing products.</i>
----------	---

Description

This function detects and summarises available, matched, new as well as disappearing products on the basis of their prodIDs.

Usage

```
products(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01') and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function detects and summarises available, matched, new and disappearing products on the basis of their prodIDs. It compares products from the base period (start) with products from the current period (end). It returns a list containing the following objects: **details** with prodIDs of available, matched, new and disappearing products, **statistics** with basic statistics for them and **figure** with a pie chart describing a contribution of matched, new and disappearing products in a set of available products.

Examples

```

list<-products(milk, "2018-12","2019-12")
list$details
list$statistics
list$figure

```

products_fig	<i>Function for graphical comparison of available, matched, new as well as disappearing products.</i>
--------------	---

Description

This function returns a figure with plots of volume (or contributions) of available, matched, new as well as disappearing products.

Usage

```
products_fig(
  data,
  start,
  end,
  show = c("available", "matched", "new", "disappearing"),
  fixed_base = TRUE,
  contributions = TRUE,
  date_breaks = "1 month"
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01') and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
show	A character vector indicating which groups of products are to be taken into consideration. Available options are available, matched, new and disappearing.
fixed_base	A logical parameter indicating whether each month is to be compared to the base period (TRUE) or to the previous month (then it is set to FALSE).
contributions	A logical parameter indicating whether contributions or volumes counted for available, matched, new and disappearing products are to be displayed.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

This function returns a figure with plots of volume (or contributions) of available, matched, new as well as disappearing products. The User may control which groups of products are to be taken into consideration (see the show parameter). Available options are available, matched, new and disappearing.

Examples

```
products_fig(milk, "2018-12","2019-04",
fixed_base=TRUE, contributions=FALSE,
show=c("new","disappearing","matched","available"))
```

QM_p

Calculating the quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the quadratic mean of order r price index.

Usage

```
QMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the quadratic mean of order r price index - see CPI Manual (2004), Section 17.40, formula 17.35 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
QMp(sugar, start="2019-01", end="2020-01")
QMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

Description

This function returns a value (or vector of values) of the quadratic mean of order r quantity index.

Usage

```
QMq(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the quadratic mean of order r quantity index - see CPI Manual (2004), Section 17.35, formula 17.30 (page 321).

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
QMq(sugar, start="2019-01", end="2020-01")
QMq(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

QU

*Calculating the quality adjusted unit value index (QU index)***Description**

This function returns a value of the quality adjusted unit value index (QU index) for a given set of adjustment factors.

Usage

```
QU(data, start, end, v)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
v	The data frame with adjustment factors for at least all matched prodIDs. It must contain two columns: prodID (as numeric or character) with unique product IDs and values (as positive numeric) with corresponding adjustment factors.

Value

This function returns a value of the quality adjusted unit value index (QU index) for a given set of adjustment factors (adjusted factors must be available for all matched prodIDs).

References

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
## Creating a data frame with artificial adjustment factors
## (random numbers from uniform distribution U[1,2])
prodID<-unique(milk$prodID)
values<-stats::runif(length(prodID),1,2)
v<-data.frame(prodID,values)
## Calculating the QU index for the created data frame 'v'
QU(milk, start="2018-12", end="2019-12", v)
```

quantities	<i>Providing quantities of sold products</i>
------------	--

Description

The function returns quantities of sold products with given IDs.

Usage

```
quantities(data, period, set = c(), ID = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining quantities of sold products (see also data_matching). If the set is empty, the function returns quantities of all products being available in period.
ID	A logical parameter indicating whether a data frame with prodIDs and quantities should be returned.

Value

The function analyzes the user's data frame and returns quantities of products with given ID and being sold in the time period indicated by the `period` parameter. Please note that the function returns the quantity values for sorted prodIDs and in the absence of a given prodID in the data set, the function returns nothing (it does not return zero). If the `ID` parameter is set to TRUE then the function returns a data frame with columns: `by` (IDs of products) and `q` (quantities of products).

Examples

```
quantities(milk, period="2019-06")
quantities(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

retro_index	<i>Calculating the retrospective price index</i>
-------------	--

Description

This function returns values of the selected retrospective price index.

Usage

```
retro_index(
  data,
  start,
  end,
  formula = "fisher",
  approach = "correction",
  method_index = "additive",
  method_weights = "additive",
  lambda = "linear",
  sigma = 0.7,
  df = FALSE,
  name = "RETRO_index"
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character). A column <code>quantities</code> (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period, being the first expenditure reference period (as character), limited to the year and month, e.g. "2020-03". We assume that the quantity (and thus expenditure) information is available for this period.
end	The second expenditure reference period (as character) limited to the year and month, e.g. "2020-04". We assume that the quantity (and thus expenditure) information is available for this period.
formula	A parameter indicating which index formula to use within the correction or imputation approach, with the values 'fisher' and 'tornqvist' available. If the parameter value is set to 'dhkh', then the retrospective Diewert-Huwiler-Kohli-Hansen index (DHKH) will be computed instead of the correction or imputation method.
approach	A parameter indicating which approach to use to obtain retrospectively computed price indices. Available options are: 'correction', 'imputation', 'correction-imputation', or 'CES-imputation'.
method_index	A parameter indicating how to apply the correction approach. Available options are: 'additive' and 'multiplicative'.
method_weights	A parameter indicating how to apply the imputation approach for calculating weights for all periods within the time interval. Available options are: 'additive' and 'multiplicative'.
lambda	A parameter indicating the relevance of the second expenditure reference period relative to the relevance of the first (base) expenditure reference period. Available options are: 'linear' and 'sinusoidal'.
sigma	A parameter indicating elasticity of substitution.

df	A parameter indicating whether the function should return a data frame with dates and retrospective index values (TRUE) or just a vector of its values for subsequent months (FALSE).
name	A parameter indicating the index (or method) name returned in a resulting data frame.

Value

The function returns values of the selected retrospective price index for all period between `start` and `end` (`start` is always the fixed base period). Depending on the `formula` parameter it can provide values of the Diewert-Huwiler-Kohli-Hansen index (DHKH) or run correction and imputation approach, as well as the mixture of them, to obtain a vector (or a data frame) of retrospective price indices. Note that the 'CES-imputation' approach requires elasticity of substitution. The user may control the relevance of the second expenditure reference period (`end`) relative to the relevance of the first (base) expenditure reference period (`start`) by using the `lambda` parameter.

References

Diewert, E. W., Huwiler, M., Kohli, U. (2009). *Retrospective approximations of superlative price indexes for years where expenditure data is unavailable*. In: Biggeri, L., Ferrari, G. (eds), *Price indexes in time and space. Contributions to statistics.*, Physica-Verlag, Heidelberg, 25-42.

von Auer, L., (2024). *Retrospective computations of price index numbers: theory and application*. Review of Income and Wealth, 70(1), 60-79.

Examples

```
retro_index(milk, start="2018-12", end="2019-04", formula="dhkh", df=TRUE)
retro_index(milk, start="2018-12", end="2019-04", approach="correction",
method_index = "multiplicative", lambda="sinusoidal")
```

sales	<i>Providing values of product sales</i>
-------	--

Description

The function returns values of sales of products with given IDs.

Usage

```
sales(data, period, set = c(), shares = FALSE, hist = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character) with unique product IDs.
------	---

period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining product sales values (see also data_matching). If the set is empty, then the function returns sale values of all products being available in period.
shares	A logical parameter indicating whether the function is to return shares of product sales.
hist	A logical parameter indicating whether the function is to return histogram of product sales.

Value

The function analyzes the user's data frame and returns values of sales of products with given IDs and being sold in time period indicated by the period parameter (see also [expenditures](#) function which returns the expenditure values for sorted prodIDs).

Examples

```
sales(milk, period="2019-06", shares=TRUE, hist=TRUE)
sales(milk, period="2019-12", set=unique(milk$prodID)[1])
```

<code>sales_groups</code>	<i>Providing information about sales of products from one or more datasets</i>
---------------------------	--

Description

The function returns values of sales of products from one or more datasets or the corresponding barplot for these sales.

Usage

```
sales_groups(
  datasets = list(),
  start,
  end,
  shares = FALSE,
  barplot = FALSE,
  names = c()
)
```

Arguments

datasets	A list of user's data frames. Each data frame must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric) and <code>quantities</code> (as positive numeric).
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. "2020-03".

end	The end of the considered time interval (as character) limited to the year and month, e.g. "2020-04".
shares	A logical parameter indicating whether the function is to calculate shares of product sales
barplot	A logical parameter indicating whether the function is to return barplot for product sales.
names	A vector of characters describing product groups defined by datasets.

Value

The function returns values of sales of products from one or more datasets or the corresponding barplot for these sales (if `barplot` is TRUE). Alternatively, it calculates the sale shares (if `shares` is TRUE).

Examples

```
## Creating 3 subgroups of milk:
ctg<-unique(milk$description)
categories<-c(ctg[1],ctg[2],ctg[3])
milk1<-dplyr::filter(milk, milk$description==categories[1])
milk2<-dplyr::filter(milk, milk$description==categories[2])
milk3<-dplyr::filter(milk, milk$description==categories[3])
## Sample use of this function:
sales_groups(datasets=list(milk1,milk2,milk3),start="2019-04",end="2019-04",shares=TRUE)
sales_groups(datasets=list(milk1,milk2,milk3),start="2019-04",end="2019-07",
barplot=TRUE, names=categories)
```

sales_groups2 *Providing information about sales of products*

Description

The function returns values of sales of products or the corresponding barplot for these sales.

Usage

```
sales_groups2(
  data = data.frame(),
  by,
  start,
  end,
  shares = FALSE,
  barplot = FALSE,
  names = c()
)
```

Arguments

data	The user's data frame with subgroups of sold products (see by parameter). The data frame must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and quantities (as positive numeric). An additional column indicated via by parameter is also needed.
by	The column name indicating grouping variable, i.e. this column is used for creating subgroups of products.
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. "2020-03".
end	The end of the considered time interval (as character) limited to the year and month, e.g. "2020-04".
shares	A logical parameter indicating whether the function is to calculate shares of product sales
barplot	A logical parameter indicating whether the function is to return barplot for product sales.
names	A vector of characters describing product groups defined by datasets.

Value

The function returns values of sales of products or the corresponding barplot for these sales (if barplot is TRUE). Alternatively, it calculates the sale shares (if shares is TRUE).

Examples

```
outlets<-as.character(unique(milk$retID))
sales_groups2(milk,by="retID",start="2019-04",end="2019-04",
shares=TRUE,barplot=TRUE,names=outlets)
```

sato_vartia

Calculating the bilateral Vartia-II (Sato-Vartia) price index

Description

This function returns a value (or vector of values) of the bilateral Vartia-II (Sato-Vartia) price index.

Usage

```
sato_vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
------	--

start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Vartia-II (Sato-Vartia) price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Sato, K. (1976). *The Ideal Log-Change Index Number*. The Review of Economics and Statistics, 58(2), 223-228.

Vartia, Y. O. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
sato_vartia(sugar, start="2018-12", end="2019-12")
sato_vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

shrinkflation	<i>Detecting and summarising downsized and upsized products.</i>
---------------	--

Description

This function detects and summarises downsized and upsized products.

Usage

```
shrinkflation(
  data,
  start,
  end,
  type = "shrinkflation",
```

```

  min_p_change = 0,
  max_p_change = Inf,
  min_s_change = 0,
  max_s_change = Inf,
  prec = 3,
  interval = FALSE
)

```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01') and prodID (as numeric, factor or character), prices (with standardised prices!) and quantities (as numeric), grammage (as numeric), unit (as character) and description (as character). Important: prices must be standardized beforehand, that is, they must refer to the sales unit (the <code>data_norm</code> function can be used for this).
start	The base period (as character) limited to the year and month, e.g. "2024-01".
end	The research period (as character) limited to the year and month, e.g. "2024-02".
type	A parameter specifying what phenomenon is to be included in the resulting elements of the returned list (i.e. in returned <code>products_detected</code> , <code>df_detected</code> and <code>df_reduced</code>). The available values are: <code>shrinkflation</code> , <code>shrinkdeflation</code> , <code>sharkflation</code> , <code>unshrinkdeflation</code> , <code>unshrinkflation</code> and <code>sharkdeflation</code> (default value is: <code>shrinkflation</code>).
min_p_change	Lower limit for unit price change, i.e.: a product is considered if the percentage change in its unit price is greater than the value of this parameter. The default value is zero, possibly positive values can be considered (in percentage).
max_p_change	Upper limit for unit price change, i.e.: a product is considered if the percentage change in its unit price is less than the value of this parameter. The default value is Inf, possibly positive values can be considered (in percentage).
min_s_change	Lower limit for size change, i.e.: a product is considered if the percentage change in its size is greater than the value of this parameter. The default value is zero, possibly positive values can be considered (in percentage).
max_s_change	Upper limit for size change, i.e.: a product is considered if the percentage change in its size is less than the value of this parameter. The default value is Inf, possibly positive values can be considered (in percentage).
prec	Number of decimal places for the presented summary results.
interval	A parameter that specifies whether the search for downsized products should consider the entire time interval, or only the compared months specified by the <code>start</code> and <code>end</code> parameters.

Value

This function detects and summarises downsized and upsized products. The function detects phenomena such as: `shrinkflation`, `shrinkdeflation`, `sharkflation`, `unshrinkdeflation`, `unshrinkflation`, `sharkdeflation` (see the `type` parameter). It returns a list containing the following objects:

df_changes - data frame with detailed information on downsized and upsized products with the whole history of size changes, df_type - data frame with recognized type of products, df_overview - a table with basic summary of all detected products grouped by the type parameter, products_detected with prodIDs of products indicated by the 'type' parameter, df_detected being a subset of the data frame with only detected products, df_reduced which is the difference of the input data frame and the data frame containing the detected products, and df_summary which provides basic statistics for all detected downsized and upsized products (including their share in the total number of products and mean price and size changes).

References

Białek, J., Bobel, A., Oprych-Franków D. (2024). *Immeasurability of shrinkflation in the CPI? Automatic downsizing detection using scanner data*. 18th Meeting of the Ottawa Group, Ottawa.

Białek, J., Bobel, A., Oprych-Franków D. (2025). *Automatic downsizing and upsizing detection using scanner data and their impact on price indices*. Statistical Journal of the IAOS, 41(3):858-872.

Examples

```
#Data matching over time
df<-data_matching(data=data_DOWN_UP_SIZED, start="2024-01", end="2024-02",
codeIN=TRUE,codeOUT=TRUE,description=TRUE,
onlydescription=FALSE,precision=0.9,interval=FALSE)
# Extraction of information about grammage (if needed)
df<-data_unit(df,units=c("g|ml|kg|l"),multiplication="x")
# Price standardization
df<-data_norm(df, rules=list(c("ml","l",1000),c("g","kg",1000)))
# Downsized and upsized products detection
result<-shrinkflation(data=df, start="2024-01", "2024-02",
prec=3, interval=FALSE, type="shrinkflation")
result$df_changes
result$df_type
result$df_overview
result$products_detected
result$df_detected
result$df_reduced
result$df_summary
```

Description

This function returns a value of the multilateral SPQ price index which is based on the relative price and quantity dissimilarity measure.

Usage

```
SPQ(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2019-03'.
end	The research period (as character) limited to the year and month, e.g. '2019-07'.
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

This function returns a value of the multilateral SPQ price index which is based on the relative price and quantity dissimilarity measure (see References). If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

Examples

```
SPQ(sugar, start="2018-12",end="2019-02")
SPQ(milk, start="2018-12",end="2019-12",interval=TRUE)
```

Description

This function returns a value (or vector of values) of the bilateral Stuvel price index.

Usage

```
stuvel(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Stuvel price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Stuvel, G. (1957). *A New Index Number Formula*. *Econometrica*, 25, 123-131.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
stuvel(sugar, start="2018-12", end="2019-12")
stuvel(milk, start="2018-12", end="2020-01", interval=TRUE)
```

sugar	A real data set on sold sugar
-------	-------------------------------

Description

A collection of scanner data on the sale of sugar in one of Polish supermarkets in the period from December 2017 to October 2020

Usage

sugar

Format

A data frame with 6 columns and 7666 rows. The used variables are as follows:

- time - Dates of transactions (Year-Month-Day)
- prices - Prices of sold products [PLN]
- quantities - Quantities of sold products [kg]
- prodID - Unique product codes (data set contains 11 different prodIDs)
- retID - Unique codes identifying outlets/retailer sale points (data set contains 20 different retIDs)
- description Descriptions of sold sugar products (data set contains 3 different product descriptions)

tindex	<i>Calculating theoretical (expected) values of the unweighted price index</i>
--------	--

Description

This function calculates the theoretical value of the unweighted price index for lognormally distributed prices.

Usage

```
tindex(pmi = c(), psigma = c(), start, ratio = TRUE)
```

Arguments

pmi	A numeric vector indicating <code>mi</code> parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating <code>sigma</code> parameters for lognormally distributed prices from the subsequent months.
start	The first period in the generated data frame (as character) limited to the year and month, e.g. '2019-12'.
ratio	A logical parameter indicating how we define the theoretical unweighted price index. If it is set to TRUE, then the resulting value is a ratio of expected price values from compared months; otherwise the resulting value is the expected value of the ratio of prices from compared months.

Value

This function calculates the theoretical value of the unweighted price index for lognormally distributed prices (the month defined by `start` parameter plays a role of the fixed base period). The characteristics for these lognormal distributions are set by `pmi` and `sigma` parameters. The `ratio` parameter allows to control the definition of resulting theoretical price index values. The function provides a data frame consisting of dates and corresponding expected values of the theoretical unweighted price index. The generated dataset is ready for further price index calculations.

Examples

```
tindex(pmi=c(1,1.2,1.3),psigma=c(0.1,0.2,0.15),start="2020-01")
tindex(pmi=c(1,1.2,1.3),psigma=c(0.1,0.2,0.15),start="2020-01",ratio=FALSE)
```

tornqvist

Calculating the bilateral Tornqvist price index

Description

This function returns a value (or vector of values) of the bilateral Tornqvist price index.

Usage

```
tornqvist(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Tornqvist price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Tornqvist, L. (1936). *The Bank of Finland's Consumption Price Index*. Bank of Finland Monthly Bulletin 10, 1-8.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
tornqvist(sugar, start="2018-12", end="2019-12")
tornqvist(milk, start="2018-12", end="2020-01", interval=TRUE)
```

tpd

Calculating the multilateral TPD price index

Description

This function returns a value of the multilateral TPD (Time Product Dummy) price index.

Usage

```
tpd(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral TPD price index which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). Please note that a Weighted Least Squares (WLS) regression is run with the expenditure shares in each period serving as weights. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Examples

```
tpd(milk, start="2019-01", end="2019-08", window=10)
tpd(milk, start="2018-12", end="2019-12")
```

tpd_fbew

Extending the multilateral TPD price index by using the FBEW method.

Description

This function returns a value of the multilateral TPD price index (Time Product Dummy index) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
tpd_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral TPD price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
tpd_fbew(milk, start="2018-12", end="2019-08")
```

tpd_fbmw

Extending the multilateral TPD price index by using the FBMW method.

Description

This function returns a value of the multilateral TPD price index (Time Product Dummy index) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
tpd_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral TPD price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
tpd_fbmw(milk, start="2019-12", end="2020-04")
```

tpd_splice	<i>Extending the multilateral TPD price index by using window splicing methods.</i>
------------	---

Description

This function returns a value (or values) of the multilateral TPD price index (Time Product Dummy index) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
tpd_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on **interval** parameter) of the multilateral TPD price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published

indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
tpd_splice(milk, start="2018-12", end="2020-02", splice="half")
```

unit_value_index	<i>Calculating the unit value index</i>
------------------	---

Description

This function returns a value (or vector of values) of the unit value index

Usage

```
unit_value_index(data, start, end, interval = FALSE)
```

Arguments

`data` The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unit value index. The value index is calculated as the unit value at time start divided by the unit value at time start.

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
unit_value_index(sugar, start="2019-01", end="2020-01")
unit_value_index(sugar, start="2019-01", end="2020-01", interval=TRUE)
```

utpd

Calculating the unweighted multilateral TPD price index

Description

This function returns a value of the unweighted multilateral TPD (Time Product Dummy) price index.

Usage

```
utpd(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the unweighted multilateral TPD price index which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). Please note, that the estimation procedure runs the Ordinary Least Squares (OLS) method instead of the Weighted Least Squares (WLS) method like in the case of the TPD index. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Examples

```
utpd(milk, start="2019-01", end="2019-08", window=10)
utpd(milk, start="2018-12", end="2019-12")
```

utpd_fbew

Extending the unweighted multilateral TPD price index by using the FBEW method.

Description

This function returns a value of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
utpd_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the unweighted multilateral TPD price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
utpd_fbew(milk, start="2018-12", end="2019-08")
```

utpd_fbew

Extending the unweighted multilateral TPD price index by using the FBMW method.

Description

This function returns a value of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
utpd_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the unweighted multilateral TPD price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
utpd_fbmw(milk, start="2019-12", end="2020-04")
```

utpd_splice

Extending the multilateral unweighted TPD price index by using window splicing methods.

Description

This function returns a value (or values) of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
utpd_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the unweighted multilateral TPD price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
utpd_splice(milk, start="2018-12", end="2020-02", splice="half")
```

value_index

Calculating the value index

Description

This function returns a value (or vector of values) of the value index

Usage

```
value_index(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the value index. The value index is calculated as sum of expenditures from period `end` divided by sum of expenditures from period `start`.

References

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
value_index(sugar, start="2019-01", end="2020-01")
value_index(sugar, start="2019-01", end="2020-01", interval=TRUE)
```

vartia

Calculating the bilateral Vartia-I price index

Description

This function returns a value (or vector of values) of the bilateral Vartia-I price index.

Usage

```
vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Vartia-I price index depending on the **interval** parameter. If the **interval** parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Vartia, Y. O. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
vartia(sugar, start="2018-12", end="2019-12")
vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

walsh

Calculating the bilateral Walsh price index

Description

This function returns a value (or vector of values) of the bilateral Walsh price index.

Usage

```
walsh(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <code><start, end></code> are considered and <code>start</code> defines the base period (<code>interval</code> is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Walsh price index depending on the `interval` parameter. If the `interval` parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
walsh(sugar, start="2018-12", end="2019-12")
walsh(milk, start="2018-12", end="2020-01", interval=TRUE)
```

wgeks

*Calculating the multilateral weighted WGEKS price index***Description**

This function returns a value of the multilateral weighted WGEKS price index (to be more precise: the weighted GEKS index based on the Fisher formula).

Usage

```
wgeks(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS price index (to be more precise: the weighted GEKS index based on the Fisher formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
wgeks(milk, start="2019-01", end="2019-08", window=10)
wgeks(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the multilateral weighted WGEKS-AQI price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted price index formula).

Usage

```
wgeksaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-AQI price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted price index formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
wgeksaqi(milk, start="2019-01", end="2019-08", window=10)
wgeksaqi(milk, start="2018-12", end="2019-12")
```

wgeksaqi_fbew

Extending the multilateral weighted GEKS-AQI price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-AQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQI price index (the weighted GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods **end** and **start**. The month of the **start** parameter must be December. If the distance between **end** and **start** exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*. Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksaqi_fbmw(milk, start="2018-12", end="2019-08")
```

wgeksaqi_fbmw

Extending the multilateral weighted GEKS-AQI price index by using the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-AQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksaqi_fbmw(data, start, end)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: **time** (as Date in format: year-month-day, e.g. '2020-12-01'), **prices** (as positive numeric), **quantities** (as positive numeric) and **prodID** (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

end The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksaqi_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksaqi_splice

Extending the multilateral weighted GEKS-AQI price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-AQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-AQI price index (the weighted GEKS index based on the asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*. Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksaqi_splice(milk, start="2018-12", end="2020-02", splice="half")
```

wgeksaqua

Calculating the multilateral weighted WGEKS-AQU price index

Description

This function returns a value of the multilateral weighted WGEKS-AQU price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted unit value formula).

Usage

```
wgeksaqua(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-AQU price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted unit value formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
wgeksaqua(milk, start="2019-01", end="2019-08", window=10)
wgeksaqua(milk, start="2018-12", end="2019-12")
```

wgeksaqua_fbew

Extending the multilateral weighted GEKS-AQU price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-AQU price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksaqua_fbew(data, start, end)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
-------------------	--

start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQU price index (the weighted GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
wgeksaqua_fbmw(milk, start="2018-12", end="2019-08")
```

wgeksaqua_fbmw	<i>Extending the multilateral weighted GEKS-AQU price index by using the FBMW method.</i>
----------------	---

Description

This function returns a value of the multilateral weighted GEKS-AQU price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksaqua_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
wgeksaqu_fbmw(milk, start="2019-12", end="2020-04")
```

Description

This function returns a value (or values) of the multilateral weighted GEKS-AQU price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksaqu_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

<code>data</code>	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
<code>start</code>	The base period (as character) limited to the year and month, e.g. "2019-12".
<code>end</code>	The research period (as character) limited to the year and month, e.g. "2020-04".
<code>window</code>	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
<code>splice</code>	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
<code>interval</code>	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral weighted GEKS-AQU price index (the weighted GEKS index based on the asynchronous quality adjusted unit value formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2023). *Quality adjusted GEKS-type indices for price comparisons based on scanner data*. Statistics in Transition – new series, 24(3), 151-169.

Examples

```
wgeksgaqi_splice(milk, start="2018-12", end="2020-02", splice="half")
```

wgeksgaqi

Calculating the multilateral weighted WGEKS-GAQI price index

Description

This function returns a value of the multilateral weighted WGEKS-GAQI price index (to be more precise: the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula).

Usage

```
wgeksgaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: **time** (as Date in format: year-month-day, e.g. '2020-12-01'), **prices** (as positive numeric), **quantities** (as positive numeric) and **prodID** (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

end The research period (as character) limited to the year and month, e.g. "2020-04".

wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-GAQI price index (to be more precise: the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statistica – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
wgeksgaqi(milk, start="2019-01", end="2019-08", window=10)
wgeksgaqi(milk, start="2018-12", end="2019-12")
```

wgeksgaqi_fbew	<i>Extending the multilateral weighted GEKS-GAQI price index by using the FBEW method.</i>
----------------	--

Description

This function returns a value of the multilateral weighted GEKS-GAQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksgaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GAQI price index (the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statistica – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
wgeksgaqi_fbew(milk, start="2018-12", end="2019-08")
```

wgeksgaqi_fbmw

Extending the multilateral weighted GEKS-GAQI price index by using the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-GAQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksgaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product sub-groups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. *Statistica – Statistics and Economy Journal*, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
wgeksgaqi_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksgaqi_splice	<i>Extending the multilateral weighted GEKS-GAQI price index by using window splicing methods.</i>
------------------	--

Description

This function returns a value (or values) of the multilateral weighted GEKS-GAQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksgaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral weighted GEKS-GAQI price index (the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J., Pawelec, N. (2025). *Proposition of the Quality Adjusted Geks-Type Price Index*. Statistica – Statistics and Economy Journal, 105(3), 291-305. <https://doi.org/10.54694/stat.2024.71>.

Examples

```
wgeksgaqi_splice(milk, start="2018-12", end="2020-02", splice="half")
```

wgeksgl

Calculating the multilateral weighted WGEKS-GL price index

Description

This function returns a value of the multilateral weighted WGEKS-GL price index (to be more precise: the weighted GEKS index based on the geometric Laspeyres formula).

Usage

```
wgeksgl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-GL price index (to be more precise: the weighted GEKS index based on the geometric Laspeyres formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, . Review of Income and Wealth, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksgl(milk, start="2019-01", end="2019-08", window=10)
wgeksgl(milk, start="2018-12", end="2019-12")
```

wgeksgl_fbew

Extending the multilateral weighted GEKS-GL price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-GL price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksgl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GL price index (the weighted GEKS index based on the geometric Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksgl_fbmw(milk, start="2018-12", end="2019-08")
```

wgeksgl_fbmw

Extending the multilateral weighted GEKS-GL price index by using the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-GL price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksgl_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C. (2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksgl_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksgl_splice

Extending the multilateral weighted GEKS-GL price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-GL price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksgl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
------	--

start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-GL price index (the weighted GEKS index based on the geometric Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksgl_splice(milk, start="2018-12", end="2020-02", splice="half")
```

wgeks1

*Calculating the multilateral weighted WGEKS-L price index***Description**

This function returns a value of the multilateral weighted WGEKS-L price index (to be more precise: the weighted GEKS index based on the Laspeyres formula).

Usage

```
wgeks1(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-L price index (to be more precise: the weighted GEKS index based on the Laspeyres formula) which considers the time window defined by `wstart` and `window` parameters. It measures the price dynamics by comparing period `end` to period `start` (both `start` and `end` must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, *Quality & Quantity*, 57, 2893–2921. <https://doi.org/10.1007/s11135-022-01506-6>.

Białek, J. (2025). *General Classes of GEKS-Type Price Indices With Application to Scanner Data*, *Review of Income and Wealth*, 71(1): e12726, 1-21. <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksl(milk, start="2019-01", end="2019-08", window=10)
wgeksl(milk, start="2018-12", end="2019-12")
```

wgeksl_fbew

Extending the multilateral weighted GEKS-L price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-L price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-L price index (the weighted GEKS index based on the Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksl_fbew(milk, start="2018-12", end="2019-08")
```

wgeksl_fbmw

Extending the multilateral weighted GEKS-L price index by using the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-L price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksl_fbmw(data, start, end)
```

Arguments

data The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

end The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeksl_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksl_splice

Extending the multilateral weighted GEKS-L price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-L price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral weighted GEKS-L price index (the weighted GEKS index based on the Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Bialek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Bialek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, <https://doi.org/10.1007/s11135-022-01506-6>.

Examples

```
wgeks1_splice(milk, start="2018-12", end="2020-02", splice="half")
```

wgeks_fbew

Extending the multilateral weighted GEKS price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeks_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year.

The function measures the price dynamics between periods `end` and `start`. The month of the `start` parameter must be December. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). *A New Methodology for Processing Scanner Data in the Dutch CPI*. Eurona 1/2016, 49-69.

Examples

```
wgeks_fbew(milk, start="2018-12", end="2019-08")
```

wgeks_fbmw

Extending the multilateral weighted GEKS price index by using the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeks_fbmw(data, start, end)
```

Arguments

`data` The user's data frame with information about sold products. It must contain columns: `time` (as Date in format: year-month-day, e.g. '2020-12-01'), `prices` (as positive numeric), `quantities` (as positive numeric) and `prodID` (as numeric, factor or character).

`start` The base period (as character) limited to the year and month, e.g. "2019-12".

`end` The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods `end` and `start` and it uses a 13-month time window with a fixed base month taken as `year(end)-1`. If the distance between `end` and `start` exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the `start` parameter must be December. To get information about both price index values and corresponding dates, please see functions: `price_indices` or `final_index`. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the `final_index` function).

References

Gini, C. (1931). *On the Circular Test of Index Numbers*. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
wgeks_fbmw(milk, start="2019-12", end="2020-04")
```

wgeks_splice

Extending the multilateral weighted GEKS price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeks_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: <code>time</code> (as Date in format: year-month-day, e.g. '2020-12-01'), <code>prices</code> (as positive numeric), <code>quantities</code> (as positive numeric) and <code>prodID</code> (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by <code>end</code> to the base period defined by <code>start</code> (then <code>interval</code> is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by <code>start</code>).

Value

This function returns a value or values (depending on `interval` parameter) of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in `start` and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Chessa, A. G. (2019). *A Comparison of Index Extension Methods for Multilateral Methods*. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information*. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J. (2015). *A Framework for Large Scale Use of Scanner Data in the Dutch CPI*. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). *Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data*. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
wgeks_splice(milk, start="2018-12", end="2020-02", splice="half")
```

young

Calculating the bilateral Young price index

Description

This function returns a value (or vector of values) of the bilateral Young price index.

Usage

```
young(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Young price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: [price_indices](#) or [final_index](#). The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the [final_index](#) function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
young(sugar, start="2019-01", end="2020-01", base="2018-12")
young(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Index

- * **datasets**
 - coffee, 54
 - data_DOWN_UP_SIZED, 67
 - dataAGGR, 62
 - dataCOICOP, 63
 - dataMARS, 63
 - dataMATCH, 64
 - dataRSM, 65
 - dataU, 65
 - milk, 176
 - sugar, 208
- agmean, 6, 185
- available, 7, 185
- banajree, 8, 185
- bennet, 9, 190
- bialek, 10, 185
- bmw, 11, 185
- carli, 12, 185
- ccdi, 13, 187
- ccdi_fbew, 14, 189
- ccdi_fbmw, 15, 189
- ccdi_splice, 16, 188
- chagmean, 18, 186
- chbanajree, 19, 186
- chbialek, 20, 186
- chbmw, 21, 186
- chcarli, 22, 186
- chcswd, 23, 186
- chdavies, 24
- chdikhanov, 25
- chdrobisch, 26, 186
- chdutot, 27, 186
- chfisher, 28, 186
- chgeary_khamis, 29, 187
- chgeohybrid, 30, 187
- chgeolaspeyres, 31, 187
- chgeolowe, 32, 187
- chgeopaasche, 33, 187
- chgeoyoung, 34, 187
- chharmonic, 35, 186
- chhybrid, 36, 187
- chIQMp, 37, 187
- chjevons, 38, 186
- chlaspeyres, 39, 187
- chlehr, 40, 187
- chlloyd_moulton, 41, 187
- chlowe, 42, 187
- chmarshall_edgeworth, 43, 187
- chpaasche, 44, 187
- chpalgrave, 45, 187
- chQMp, 46, 187
- chQMq, 47, 187
- chsato_vartia, 48, 187
- chstuvvel, 49, 187
- chtorqvist, 50, 187
- chvartia, 51, 187
- chwalsh, 52, 187
- chyoung, 53, 187
- coffee, 54, 184
- compare_distances, 55, 190
- compare_indices_df, 56, 190
- compare_indices_jk, 56, 190
- compare_indices_list, 59, 190
- compare_to_target, 60, 190
- cswd, 61, 185
- data_aggregating, 66, 184
- data_check, 67, 184
- data_DOWN_UP_SIZED, 67
- data_filtering, 68, 184
- data_imputing, 69, 184
- data_matching, 71, 75, 88, 182, 183, 191, 198, 201
- data_norm, 73, 184
- data_preparing, 74, 184
- data_reducing, 76, 184
- data_selecting, 75, 77, 184

data_unit, 78, 184

dataAGGR, 62, 184

dataCOICOP, 63, 184

dataMARS, 63, 184

dataMATCH, 64, 184

dataRSM, 65, 184

dataU, 65, 184

davies, 79, 185, 186

dikhanov, 80

dissimilarity, 81

dissimilarity_fig, 82, 185

drobisch, 83, 185

dutot, 84, 185

elasticity, 85, 185

elasticity_fig, 86, 185

expenditures, 88, 185

final_index, 7, 8, 11–36, 38–45, 48–53, 61, 75, 79, 80, 84, 85, 89, 91–96, 98, 99, 101–103, 105–108, 110–112, 114–117, 119–122, 124–127, 129, 130, 132–134, 136–142, 144–146, 148, 152–162, 164–168, 171, 181, 182, 190, 192, 204, 207, 208, 210–213, 215, 217–220, 222–226, 228, 229, 231–234, 236–238, 240–243, 245–247, 249, 250, 252–255

fisher, 90, 185

geary_khamis, 91, 185

geks, 92, 187

geks_fbew, 145, 189

geks_fbmw, 146, 189

geks_splice, 147, 188

geksaqi, 94, 187

geksaqi_fbew, 95, 189

geksaqi_fbmw, 96, 189

geksaqi_splice, 97, 188

geksaqu, 99, 187

geksaqu_fbew, 100, 189

geksaqu_fbmw, 101, 189

geksaqu_splice, 102, 188

geksgaqi, 104, 187

geksgaqi_fbew, 105, 189

geksgaqi_fbmw, 106, 189

geksgaqi_splice, 107, 188

geksgl, 109, 187

geksgl_fbew, 110, 189

geksgl_fbmw, 112, 189

geksgl_splice, 113, 188

geksiqm, 114, 188

geksiqm_fbew, 116, 189

geksiqm_fbmw, 117, 190

geksiqm_splice, 118, 188

geksj, 119, 188

geksj_fbew, 120, 189

geksj_fbmw, 122, 189

geksj_splice, 123, 188

geksl, 124, 187

geksl_fbew, 131, 189

geksl_fbmw, 132, 189

geksl_splice, 133, 188

gekslm, 126, 188

gekslm_fbew, 127, 189

gekslm_fbmw, 128, 190

gekslm_splice, 129, 188

geksqm, 135, 188

geksqm_fbew, 136, 189

geksqm_fbmw, 137, 190

geksqm_splice, 138, 188

geksw, 140, 188

geksw_fbew, 141, 189

geksw_fbmw, 142, 189

geksw_splice, 143, 188

generate, 148, 184

generate_CES, 150, 184

geohybrid, 151, 186

geolaspeyres, 152, 185

geolowe, 153, 185

geopaasche, 154, 186

geoyoung, 155, 186

gk, 29, 92, 156, 188

gk_fbew, 157, 189

gk_fbmw, 158, 190

gk_splice, 159, 188

harmonic, 161, 185

hybrid, 162, 186

IQMp, 163, 186

jevons, 164, 185

laspeyres, 165, 186

lehr, 166, 186

lloyd_moulton, 167, 186

lowe, 168, 186
m_decomposition, 179, 188
MARS, 169
marshall_edgeworth, 170, 186
matched, 171, 185
matched_fig, 172, 185
matched_index, 172, 173, 173, 185
mbennet, 174, 190
milk, 176, 184
mmontgomery, 176, 190
montgomery, 178, 190
paasche, 180, 186
palgrave, 181, 186
pqc, 182, 185
pqc_fig, 183, 185
price_indices, 7, 8, 11–36, 38–45, 48–53, 61, 79, 80, 84, 85, 91–96, 98, 99, 101–103, 105–108, 110–112, 114–117, 119–122, 124–127, 129, 130, 132–134, 136–142, 144–146, 148, 152–162, 164–168, 171, 181, 182, 190, 191, 204, 207, 208, 210–213, 215, 217–220, 222–226, 228, 229, 231–234, 236–238, 240–243, 245–247, 249, 250, 252–255
PriceIndices, 57, 89, 184, 192
prices, 185, 190
products, 185, 193
products_fig, 185, 194
QM_p, 186, 195
QM_q, 186, 196
QU, 188, 197
quantities, 185, 198
retro_index, 186, 198
sales, 185, 200
sales_groups, 185, 201
sales_groups2, 185, 202
sato_vartia, 186, 203
shrinkflation, 204
SPQ, 188, 206
stuvel, 186, 207
sugar, 184, 208
tindex, 184, 209
tornqvist, 186, 210
tpd, 188, 211
tpd_fbew, 189, 212
tpd_fbmw, 190, 213
tpd_splice, 188, 214
unit_value_index, 186, 215
utpd, 216
utpd_fbew, 217
utpd_fbmw, 218
utpd_splice, 219
value_index, 186, 221
vartia, 186, 222
walsh, 186, 223
wgeks, 187, 224
wgeks_fbew, 189, 251
wgeks_fbmw, 189, 252
wgeks_splice, 188, 253
wgeksaqi, 187, 225
wgeksaqi_fbew, 189, 226
wgeksaqi_fbmw, 189, 227
wgeksaqi_splice, 188, 228
wgeksaqu, 187, 230
wgeksaqu_fbew, 189, 231
wgeksaqu_fbmw, 189, 232
wgeksaqu_splice, 188, 233
wgeksaqi, 188, 235
wgeksaqi_fbew, 189, 236
wgeksaqi_fbmw, 190, 238
wgeksaqi_splice, 188, 239
wgeksql, 187, 240
wgeksql_fbew, 189, 242
wgeksql_fbmw, 189, 243
wgeksql_splice, 188, 244
wgeksl, 187, 246
wgeksl_fbew, 189, 247
wgeksl_fbmw, 189, 248
wgeksl_splice, 188, 249
young, 186, 255