Package ‘MazamaCoreUtils’

January 12, 2026
Type Package
Version 0.6.0
Title Utility Functions for Production R Code
Maintainer Jonathan Callahan <jonathan.s.callahan@gmail.com>

Description A suite of utility functions providing functionality commonly
needed for production level projects such as logging, error handling,
cache management and date-time parsing. Functions for date-time parsing and
formatting require that time zones be specified explicitly, avoiding a common
source of error when working with environmental time series.

License GPL-3
URL https://github.com/MazamaScience/MazamaCoreUtils

BugReports https://github.com/MazamaScience/MazamaCoreUtils/issues
Depends R (>=4.0.0)

Imports devtools, digest, dplyr, geohashTools, logger, lubridate,
magrittr, purrr, rlang (>= 1.1.0), rvest, stringr, tibble, xml2

Suggests knitr, markdown, testthat (>= 3.1.7), rmarkdown, roxygen2
Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.3.1

NeedsCompilation no

Author Jonathan Callahan [aut, cre],
Eli Grosman [ctb],
Spencer Pease [ctb],
Thomas Bergamaschi [ctb]

Repository CRAN
Date/Publication 2026-01-12 17:40:08 UTC

https://github.com/MazamaScience/MazamaCoreUtils
https://github.com/MazamaScience/MazamaCoreUtils/issues

2 APIKeys

Contents
APIKeys o e e e 2
createLocationID L 3
createLocationMask 5
dateRange 6
dateSequence e e e e e 8
getAPIKey e e 10
html_getlinks 10
html_getTables 11
initializeLogging L 12
LntFunctionArgs L e 13
loadDataFile e 14
loggerdebug e 15
loggererror L. e e e e 16
loggerfatal 17
loggerinfo 17
logger.islnitialized 18
logger.setLevel L 19
loggersetup L 20
loggertrace e e 21
logger.warn e e 22
loglevels e e e 23
manageCache e 23
packageCheck 24
parseDatetime L. 26
setAPIKey e 28
setlfNull o o 28
showAPIKeys e e 30
stopIfNull o e 30
stopOnError 31
timeRange L 33
timeStamp e e 35
timezoneLintRules L 36
validateLonLat 37
validateLonsLats 38

Index 39

APIKeys API keys for data services.
Description

This package maintains an internal set of API keys which users can set using setAPIKey (). These
keys will be remembered for the duration of an R session. This functionality provides an abstraction
layer in dependent packages so that data access functions can test for and access specific API keys
with generic code.

createLocationID

Format

List of character strings.

See Also

getAPIKey
setAPIKey

showAPIKeys

createlocationID Create one or more unique locationIDs

Description

A locationID is created for each incoming longitude and latitude. Each locationID is unique to
within a certain spatial scale. With algorithm = "geohash”, the precision argument determines
the size of a geohash grid cell. At the equator, the following grid cell sizes apply for different
precision levels:

precision

S W 0 N O Ul

1

(maximum grid cell X axis, in m)
2400

610

76

9
4
.6

+ + 1+ 1+ + I+
o N =

Invalid locations will be assigned a locationID specified by the user with the invalidID argument,

typically NA.

Usage
createlLocationID(
longitude = NULL,
latitude = NULL,
algorithm = c("geohash”, "digest"”),
precision = 10,
invalidID = as.character(NA)
)
Arguments
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
algorithm Algorithm to use — either "geohash” or "digest".
precision precision argument used when encoding with "geohash”.
invalidID Identifier to use for invalid locations. This can be a character string or NA.

4 createLocationID

Details

When the "geohash” algorithm is specified, the following code is used to generate each locationID:

locationID <-
geohashTools: :gh_encode(latitude, longitude, precision)

When the "digest” algorithm is specified, the following code is used:

Retain accuracy up to ~.Tm
locationString <- paste@(
sprintf("%.7f", longitude),

non
-

sprintf("%.7f", latitude)
)

Avoid collisions until billions of records
locationID <- digest::digest(locationString, algo = "xxhash64")

See the references for details on either algorithm.

Value

Vector of character locationIDs.

Note

The "geohash" algorithm is preferred but the "digest"” algorithm is retained because several ex-
isting databases use the "digest"” algorithm as a unique identifier.

References
https://en.wikipedia.org/wiki/Decimal_degrees
https://www. johndcook.com/blog/2017/01/10/probability-of-secure-hash-collisions/
https://michaelchirico.github.io/geohashTools/index.html

Examples

library(MazamaCoreUtils)

longitude <- c(-122.5, @, NA, -122.5, -122.5)
latitude <- c(47.5, @, 47.5, NA, 47.5)

createlLocationID(longitude, latitude)
createlLocationID(longitude, latitude, precision = 7)
createlLocationID(longitude, latitude, invalidID = "bad")
createlLocationID(longitude, latitude, algorithm = "digest")

https://en.wikipedia.org/wiki/Decimal_degrees
https://www.johndcook.com/blog/2017/01/10/probability-of-secure-hash-collisions/
https://michaelchirico.github.io/geohashTools/index.html

createLocationMask 5

createlLocationMask Create a mask of valid locations

Description

A logical vector is created with either TRUE or FALSE for each incoming longitude, latitude pair
with TRUE indicating a valid location. This can be used to filter dataframes to retain only records
with valid locations.

lonRange and latRange can be used to create a valid-mask for locations within a rectangular area.

removeZeroZero will invalidate the location 0.0, @.@ which is sometimes seen in poorly QC’ed
datasets.

NA values found in longitude or latitude will result in a mask value of FALSE.

Usage
createlLocationMask(
longitude = NULL,
latitude = NULL,

lonRange = c(-180, 180),
latRange = c(-90, 90),
removeZeroZero = TRUE

)

Arguments
longitude Vector of longitudes in decimal degrees E.
latitude Vector of latitudes in decimal degrees N.
lonRange Range of valid longitudes.
latRange Range of valid latitudes.

removeZeroZero Logical indicating whether locations at .0, @.0 should be marked as invalid.

Value

Vector of logical values.

Examples

library(MazamaCoreUtils)

createlLocationMask(
longitude = c(-120, NA, -120, -220, -120, @),
latitude = c(45, 45, NA, 45, 100, 0)

)

createlLocationMask(
longitude = c(-120:-90),

6 dateRange

latitude = c(20:50),

lonRange = c(-110, -100),
latRange = c(30, 40)
)
dateRange Create a POSIXct date range
Description

Uses incoming parameters to return a pair of POSIXct times in the proper order. The first returned
time will be midnight of the desired starting date. The second returned time will represent the "end
of the day" of the requested or calculated enddate boundary.

Note that the returned end date will be one unit prior to the start of the requested enddate unless
ceilingEnd = TRUE in which case the entire enddate will be included up to the last unit.

The ceilingEnd argument addresses the ambiguity of a phrase like: "August 1-8". With ceilingEnd
= FALSE (default) this pharse means "through the beginning of Aug 8". With ceilingEnd = TRUE it
means "through the end of Aug 8".

So, to get 24 hours of data staring on Jan 01, 2019 you would specify:

> MazamaCoreUtils: :dateRange (20190101, 20190102, timezone = "UTC")
[1] "2019-01-01 00:00:00 UTC" "2019-01-01 23:59:59 UTC"

or

> MazamaCoreUtils: :dateRange (20190101, 20190101,
timezone = "UTC", ceilingEnd = TRUE)
[1] "2019-01-01 00:00:00 UTC" "2019-01-01 23:59:59 UTC"

The required timezone parameter must be one of those found in 01sonNames.

Dates can be anything that is understood by lubrdiate: :parse_date_time() using the Ymd[HMS]
orders. This includes:

* "YYYYmmdd"
* "YYYYmmddHHMMSS"
* "YYYY-mm-dd"

e "YYYY-mm-dd H"
e "YYYY-mm-dd H:M"
e "YYYY-mm-dd H:M:S"

dateRange 7

Usage

dateRange(
startdate = NULL,
enddate = NULL,
timezone = NULL,
unit = "sec”,
ceilingStart = FALSE,
ceilingEnd = FALSE,

days = 7
)
Arguments
startdate Desired start datetime (ISO 8601).
enddate Desired end datetime (ISO 8601).
timezone Olson timezone used to interpret dates (required).
unit Units used to determine time at end-of-day.

ceilingStart Logical instruction to apply ceiling_date to the startdate rather than floor_date

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date
days Number of days of data to include.
Value

A vector of two POSIXcts.

Default Arguments

In the case when either startdate or enddate is missing, it is created from the non-missing values
plus/minus days. If both startdate and enddate are misssing, enddate is set to now (with the
given timezone), and then startdate is calculated using enddate - days.

End-of-Day Units

The second of the returned POSIXcts will end one unit before the specified enddate. Acceptable
units are "day"”, "hour”, "min", "

n

sec .

The aim is to quickly calculate full-day date ranges for time series whose values are binned at
different units. Thus, if unit = "min", the returned value associated with enddate will always be
at 23:59:00 in the requested time zone.

POSIXct inputs

When startdate or enddate are already POSIXct values, they are converted to the timezone spec-
ified by timezone without altering the physical instant in time the input represents. This is different
from the behavior of parse_date_time (which powers this function), which will force POSIXct
inputs into a new timezone, altering the physical moment of time the input represents.

dateSequence

Parameter precedence

It is possible to supply input paramters that are in conflict. For example:
dateRange("”2019-01-01", "2019-01-08", days = 3, timezone = "UTC")

The startdate and enddate parameters would imply a 7-day range which is in conflict with days
= 3. The following rules resolve conflicts of this nature:

1. When startdate and enddate are both specified, the days parameter is ignored.
2. When startdate is missing, ceilingStart is ignored and the first returned time will depend
on the combination of enddate, days and ceilingEnd.

3. When enddate is missing, ceilingEnd is ignored and the second returned time depends on
ceilingStart and days.

Examples

library(MazamaCoreUtils)

dateRange("2019-01-08", timezone = "UTC")
dateRange(”2019-01-08", unit = "min", timezone = "UTC")
dateRange("”2019-01-08", unit = "hour”, timezone = "UTC")
dateRange("2019-01-08", unit = "day", timezone = "UTC")
dateRange("”2019-01-08", "2019-01-11", timezone = "UTC")
dateRange(enddate = 20190112, days = 3,

unit = "day”, timezone = "America/Los_Angeles")

dateSequence Create a POSIXct date sequence

Description

Uses incoming parameters to return a seqeunce of POSIXct times at local midnight in the specified
timezone. The first returned time will be midnight of the requested startdate. The final returned
time will be midnight (at the beginning) of the requested enddate.

The ceilingEnd argument addresses the ambiguity of a phrase like: "August 1-8". With ceilingEnd
= FALSE (default) this pharse means "through the beginning of Aug 8". With ceilingEnd = TRUE it
means "through the end of Aug 8".

The required timezone parameter must be one of those found in 01sonNames.

Dates can be anything that is understood by lubrdiate: :parse_date_time() using the Ymd[HMS]
orders. This includes:

* "YYYYmmdd"
* "YYYYmmddHHMMSS"
* "YYYY-mm-dd"

e "YYYY-mm-dd H"
e "YYYY-mm-dd H:M"
e "YYYY-mm-dd H:M:S"

All hour-minute-second information is removed after parsing.

dateSequence 9

Usage

dateSequence(
startdate = NULL,
enddate = NULL,
timezone = NULL,
ceilingEnd = FALSE

)
Arguments

startdate Desired start datetime (ISO 8601).

enddate Desired end datetime (ISO 8601).

timezone Olson timezone used to interpret dates (required).

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date
Value

A vector of POSIXcts at midnight local time.

POSIXct inputs

When startdate or enddate are already POSIXct values, they are converted to the timezone spec-
ified by timezone without altering the physical instant in time the input represents. Only after
conversion are they floored to midnight local time

Note

The main utility of this function is that it respects "clock time" and returns times associated with
midnight regardless of daylight savings. This is in contrast to ‘seq.Date(from, to, by = "day")*
which creates a sequence of datetimes always separated by 24 hours.

Examples

library(MazamaCoreUtils)

dateSequence(”2019-11-01", "2019-11-08", timezone = "America/Los_Angeles")
dateSequence(”2019-11-01", "2019-11-07", timezone = "America/Los_Angeles”,
ceilingEnd = TRUE)

Observe the handling of daylight savings
datetime <- dateSequence("”2019-11-01", "2019-11-08",
timezone = "America/Los_Angeles")

datetime
lubridate: :with_tz(datetime, "UTC")

Passing in POSIXct values preserves the instant in time before flooring --
midnight Tokyo time is the day before in UTC

jst <- dateSequence(20190307, 20190315, timezone = "Asia/Tokyo")

jst

10 html_getLinks

dateSequence(jst[1], jst[7], timezone = "UTC")

getAPIKey Get API key

Description
Returns the API key associated with a web service. If provider == NULL a list is returned containing
all recognized API keys.

Usage

getAPIKey(provider = NULL)

Arguments

provider Web service provider.

Value

API key string or a list of provider:key pairs.

See Also

APIKeys
setAPIKey
showAPIKeys

html_getlLinks Find all links in an html page

Description

Parses an html page to extract all ... links and return them in a dataframe
where linkName is the human readable name and 1linkUrl is the href portion. By default this
function will return relative URLs.

This is especially useful for extracting data from an index page that shows the contents of a web
accessible directory.

Wrapper functions html_getLinkNames() and html_getLinkUrls() return the appropriate columns
as vectors.

html_getTables 11
Usage

html_getLinks(url = NULL, relative = TRUE)

html_getLinkNames(url = NULL)

html_getLinkUrls(url = NULL, relative = TRUE)

Arguments
url URL or file path of an html page.
relative Logical instruction to return relative URLSs.
Value

A dataframe with 1inkName and/or 1inkUrl columns.

Examples

library(MazamaCoreUtils)

Fail gracefully if the resource is not available
try({

US Census 2019 shapefiles
url <- "https://www2.census.gov/geo/tiger/GENZ2019/shp/"

Extract links
datalLinks <- html_getLinks(url)

datalinks <- datalLinks %>%
dplyr::filter(stringr::str_detect(linkName, "us_county"))
head(datalLinks, 10)

}, silent = FALSE)

html_getTables Find all tables in an html page

Description

Parses an html page to extract all <table> elements and return them in a list of dataframes repre-
senting each table. The columns and rows of these dataframes are that of the table it represents. A
single table can be extracted as a dataframe by passing the index of the table in addition to the url
to html_getTable().

12 initializeLogging

Usage

html_getTables(url = NULL, header = NA)

html_getTable(url = NULL, header = NA, index = 1)

Arguments
url URL or file path of an html page.
header Use first row as header? If NA, will use first row if it consists of <th> tags.
index Index identifying which table to to return.

Value

A list of dataframes representing each table on a html page.

Examples

library(MazamaCoreUtils)

Fail gracefully if the resource is not available
try({

Wikipedia's list of timezones
url <- "http://en.wikipedia.org/wiki/List_of_tz_database_time_zones"

Extract tables
tables <- html_getTables(url)

Extract the first table
NOTE: Analogous to firstTable <- html_getTable(url, index = 1)
firstTable <- tables[[1]]

head(firstTable)
nrow(firstTable)

}, silent = FALSE)

initializelogging Initialize standard log files

Description

Convenience function that wraps common logging initialization steps.

Usage

initializelogging(logDir = NULL, filePrefix = "", createDir = TRUE)

lintFunctionArgs 13

Arguments
logDir Directory in which to write log files.
filePrefix Character string prepended to log files.
createDir Logical specifying whether to create a missing logDir or issue an error mes-
sage.
lintFunctionArgs Lint a source file’s function arguments
Description

This function parses an R Script file, grouping function calls and the named arguments passed to
those functions. Then, based on a set of rules, it is determined if functions of interest have specific
named arguments specified.

Usage
lintFunctionArgs_file(filePath = NULL, rules = NULL, fullPath = FALSE)

lintFunctionArgs_dir(dirPath = "./R", rules = NULL, fullPath = FALSE)
Arguments
filePath Path to a file, given as a length one character vector.
rules A named list where the name of each element is a function name, and the value

is a character vector of the named argument to check for. All arguments must be
specified for a function to "pass".

fullPath Logical specifying whether to display absolute paths.
dirPath Path to a directory, given as a length one character vector.
Value

A tibble detailing the results of the lint.

Linting Output
The output of the function argument linter is a tibble with the following columns:

file_path path to the source file

line_number Line of the source file the function is on
column_number Column of the source file the function starts at
function_name The name of the function

named_args A vector of the named arguments passed to the function

includes_required True iff the function specifies all of the named arguments required by the given
rules

14 loadDataFile

Limitations

This function is only able to test for named arguments passed to a function. For example, it would
report that foo(x = bar, "baz") has specified the named argument x, but not that bar was the value
of the argument, or that "baz" had been passed as an unnamed argument.

Examples

Not run:
library(MazamaCoreUtils)

Example rule list for checking
exRules <- list(

"fn_one"” = "x",

"fn_two" = c("foo”, "bar")

)

Example of using included timezone argument linter

lintFunctionArgs_file(
"local_test/timezone_lint_test_script.R",
MazamaCoreUtils::timezoneLintRules

)

End(Not run)

loadDataFile Load R data from URL or local file

Description

Loads pre-generated R binary (".rda") files from a URL or a local directory. This function is in-
tended to be called by other ~_load() functions and can remove internet latencies when local
versions of data are available.

If both dataUrl and dataDir are provided, an attempt will be made to load data from the source
specified by priority with the other source used as a backup.

Usage

loadDataFile(

filename = NULL,

dataUrl = NULL,

dataDir = NULL,

priority = c("dataDir”, "dataUrl")
)

logger.debug 15

Arguments
filename Name of the R data file to be loaded.
dataUrl Remote URL directory for data files.
dataDir Local disk directory containing data files.
priority First data source to attempt if both are supplied.
Value

A data object.

Examples

Not run:
library(MazamaCoreUtils)

filename = "USCensusStates_02.rda"
dir = "~/Data/Spatial”
url = "http://data.mazamascience.com/MazamaSpatialUtils/Spatial_0.8"

Load local file
USCensusStates = loadDataFile(filename, dataDir = dir)

Load remote file
USCensusStates = loadDataFile(filename, dataUrl

url)

Load local file with remote file as backup
USCensusStates =
loadDataFile(filename, dataDir = dir, dataUrl = url, priority = "dataDir")

Load remote file with local file as backup

USCensusStates =
loadDataFile(filename, dataDir = dir, dataUrl = url, priority = "dataUrl")

End(Not run)

logger.debug Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(...), this function will generate
DEBUG level log statements.

Usage
logger.debug(msg, ...)

16 logger.error

Arguments
msg Message with format strings applied to additional arguments.
Additional arguments to be formatted.
Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logger.error Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(. . .), this function will generate
ERROR level log statements.

Usage
logger.error(msg, ...)
Arguments
msg Message with format strings applied to additional arguments.
Additional arguments to be formatted.
Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logger.fatal 17

logger.fatal Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(...), this function will generate
FATAL level log statements.

Usage
logger.fatal(msg, ...)
Arguments
msg Message with format strings applied to additional arguments.
Additional arguments to be formatted.
Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logger.info Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(...), this function will generate
INFO level log statements.

Usage
logger.info(msg, ...)
Arguments
msg Message with format strings applied to additional arguments.

Additional arguments to be formatted.

18 logger.isInitialized

Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logger.isInitialized Check for initialization of loggers

Description
Returns TRUE if logging has been initialized. This allows packages to emit logging statements only
if logging has already been set up.

Usage

logger.isInitialized()

Value

TRUE if logging has already been initialized.

See Also

logger.setup

initializelogging

Examples

Not run:
logger.isInitialized()
logger.setup()
logger.isInitialized()

End(Not run)

logger.setLevel

19

logger.setlLevel Set console log level

Description

By default, the console logger threshold is set to FATAL so that the console will typically receive
no log messages. By setting the level to one of the other log levels: TRACE, DEBUG, INFO, WARN,

ERROR users can see logging messages while running commands at the command line.

Usage

logger.setLevel(level)

Arguments

level Threshold level.

Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

Examples

Not run:

Set up console logging only
logger.setup()
logger.setlLevel (DEBUG)

End(Not run)

20 logger.setup

logger.setup Set up python-style logging

Description

Good logging allows package developers and users to create log files at different levels to track and
debug lengthy or complex calculations. "Python-style" logging is intended to suggest that users
should set up multiple log files for different log severities so that the errorLog will contain only
log messages at or above the ERROR level while a debuglLog will contain log messages at the DEBUG
level as well as all higher levels.

Python-style log files are set up with logger.setup(). Logs can be set up for any combination of
log levels. Accepting the default NULL setting for any log file simply means that log file will not be
created.

Python-style logging requires the use of logger.debug() style logging statements as seen in the
example below.

Usage

logger.setup(
traceLog = NULL,
debuglLog = NULL,
infolLog = NULL,
warnLog = NULL,
errorLog = NULL,
fatalLog = NULL

)
Arguments
tracelLog File name or full path where logger. trace() messages will be sent.
debuglog File name or full path where logger.debug() messages will be sent.
infolog File name or full path where logger.info() messages will be sent.
warnLog File name or full path where logger.warn() messages will be sent.
errorLog File name or full path where logger.error() messages will be sent.
fatallog File name or full path where logger.fatal () messages will be sent.
Value

No return value.

Note

All functionality is built on top of the excellent logger package.

logger.trace 21

See Also

logger.trace logger.debug logger.info logger.warn logger.error logger.fatal

Examples

Not run:
library(MazamaCoreUtils)

Only save three log files
logger.setup(
debuglog = "debug.log",
infoLog = "info.log",
errorLog = "error.log"

)

But allow log statements at all levels within the code
logger.trace("trace statement #%d", 1)

logger.debug("debug statement”)

logger.info("info statement %s %s”, "with", "arguments")
logger.warn("warn statement %s", "about to try something dumb")
result <- try(1/"a", silent=TRUE)

logger.error("error message: %s", geterrmessage())
logger.fatal("fatal statement %s", "THE END")

End(Not run)

logger.trace Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(...), this function will generate
TRACE level log statements.

Usage
logger.trace(msg, ...)
Arguments
msg Message with format strings applied to additional arguments.
Additional arguments to be formatted.
Value

No return value.

22 logger.warn

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logger.warn Python-style logging statements

Description

After initializing the level-specific log files with logger.setup(. . .), this function will generate
WARN level log statements.

Usage
logger.warn(msg, ...)
Arguments
msg Message with format strings applied to additional arguments.
Additional arguments to be formatted.
Value

No return value.

Note

All functionality is built on top of the excellent logger package.

See Also

logger.setup

logLevels 23

loglLevels Log levels

Description

Log levels matching those historically found in futile.logger. Available levels include:
FATAL ERROR WARN INFO DEBUG TRACE

Usage
FATAL

Format

An object of class integer of length 1.

manageCache Manage the size of a cache

Description

If cacheDir takes up more than maxCacheSize megabytes on disk, files will be removed in or-
der of access time by default. Only files matching extensions are eligible for removal. Files
can also be removed in order of change time with sortBy="'ctime' or modification time with
sortBy="mtime".

The maxFileAge parameter can also be used to remove files that haven’t been modified in a certain
number of days. Fractional days are allowed. This removal happens without regard to the size of
the cache and is useful for removing out-of-date data.

It is important to understand precisely what these timestamps represent:

* atime — File access time: updated whenever a file is opened.

* ctime — File change time: updated whenever a file’s metadata changes e.g. name, permission,
ownership.

* mtime — file modification time: updated whenever a file’s contents change.

Usage

manageCache(
cacheDir = NULL,
extensions = c("html”, "json", "pdf”, "png"),
maxCacheSize = 100,
sortBy = "atime"”,
maxFileAge = NULL

24 packageCheck

Arguments
cacheDir Location of cache directory.
extensions Vector of file extensions eligible for removal.
maxCacheSize Maximum cache size in megabytes.
sortBy Timestamp to sort by when sorting files eligible for removal. One of atime|ctime |mtime.
maxFileAge Maximum age in days of files allowed in the cache.
Value

Invisibly returns the number of files removed.

Examples

library(MazamaCoreUtils)

Create a cache directory and fill it with 1.6 MB of data

CACHE_DIR <- tempdir()

write.csv(matrix(1,400,500), file=file.path(CACHE_DIR, 'm1.csv'))

write.csv(matrix(2,400,500), file=file.path(CACHE_DIR, 'm2.csv'))

write.csv(matrix(3,400,500), file=file.path(CACHE_DIR, 'm3.csv'))

write.csv(matrix(4,400,500), file=file.path(CACHE_DIR, 'm4.csv'))

for (file in list.files(CACHE_DIR, full.names=TRUE)) {
print(file.info(file)[,c(1,6)])

3

Remove files based on access time until we get under 1 MB

manageCache (CACHE_DIR, extensions='csv', maxCacheSize=1, sortBy='atime')

for (file in list.files(CACHE_DIR, full.names=TRUE)) {
print(file.info(file)[,c(1,6)])

3

Or remove files based on modification time

manageCache (CACHE_DIR, extensions='csv', maxCacheSize=1, sortBy='mtime')

for (file in list.files(CACHE_DIR, full.names=TRUE)) {
print(file.info(file)[,c(1,6)])

3

packageCheck Run package checks

Description

When multiple developers are working on a package, it is crucially important that they check their
code changes often. After merging changes from multiple developers it is equally important to
check the package thoroughly.

The problem is that frequent checks should be quick or developers won’t do them while thorough
checks are, by nature, slow.

Our solution is to provide shorthand functions that wrap devtools: : check() and pass it a variety
of different arguments.

packageCheck

Usage

check(pkg = ".")

check_fast(pkg = ".")

check_faster(pkg =

n’ u)

check_fastest(pkg = ".")

check_slow(pkg = ".")

check_slower(pkg =

n' u)

check_slowest(pkg = ".")

Arguments

pkg Package location passed to devtools: : check().

Details

The table below describes the args passed to devtools: : check():

check_slowest()
check_slower()
check_slow()
check()

check_fast()

check_faster ()

check_fastest()

Value

No return.

See Also

check

| manual = TRUE, run_dont_test = TRUE

| args = c("-run-dontrun”, "-use-gct")
| manual = TRUE, run_dont_test = TRUE

| args = c("-run-dontrun”)

| manual = TRUE, run_dont_test = TRUE

largs=c()
| manual = FALSE, run_dont_test = FALSE
largs =c()

I manual = FALSE, run_dont_test = FALSE

| build_args = c("-no-build-vignettes")

| args = c("-ignhore-vignettes")

| manual = FALSE, run_dont_test = FALSE

I build_args = c("-no-build-vignettes")

| args = c("-ignore-vignettes"”, "-no-examples")

I manual = FALSE, run_dont_test = FALSE

| build_args = c("-no-build-vignettes")

| args = c("-ignore-vignettes”, "-no-examples”, "-no-tests")

25

26 parseDatetime

parseDatetime Parse datetime strings

Description

Transforms numeric and string representations of Ymd[HMS] datetimes to POSIXct format.

Y, Ym, Ymd, YmdH, YmdHM, and YmdHMS formats are understood, where:

Y four digit year

m month number (1-12, 01-12) or english name month (October, oct.)
d day number of the month (0-31 or 01-31)

H hour number (0-24 or 00-24)

M minute number (0-59 or 00-59)

S second number (0-61 or 00-61)

This allows for mixed inputs. For example, 20181012130900, "2018-10-12-13-09-00", and "2018
Oct. 12 13:09:00" will all be converted to the same POSIXct datetime. The incoming datetime vec-
tor does not need to have a homogeneous format either — "20181012" and "2018-10-12 13:09" can
exist in the same vector without issue. All incoming datetimes will be interpreted in the specified
timezone.

If datetime is a POSIXct it will be returned unmodified, and formats not recognized will be returned
as NA.

Usage

parseDatetime(
datetime = NULL,
timezone = NULL,
expectAll = FALSE,
isJulian = FALSE,

quiet = TRUE
)
Arguments

datetime Vector of character or integer datetimes in Ymd[HMS] format (or POSIXct).

timezone Olson timezone used to interpret dates (required).

expectAll Logical value determining if the function should fail if any elements fail to parse
(default FALSE).

isJulian Logical value determining whether datetime should be interpreted as a Julian
date with day of year as a decimal number.

quiet Logical value passed on to lubridate: :parse_date_time to optionally sup-

press warning messages.

parseDatetime 27

Value

A vector of POSIXct datetimes.

Mazama Science Conventions

Within Mazama Science packages, datetimes not in POSIXct format are often represented as deci-
mal values with no separation (ex: 20181012, 20181012130900), either as numerics or strings.

Implementation

parseDatetime is essentially a wrapper around parse_date_time, handling which formats we
want to account for.

Note

If datetime is a character string containing signed offset information, e.g. "-07:00", this informa-
tion is used to generate an equivalent UTC time which is then assigned to the timezone specified by
the timezone argument.

See Also

parse_date_time for implementation details.

Examples

library(MazamaCoreUtils)

All y[md-hms] formats are accepted

parseDatetime (2018, timezone = "America/Los_Angeles")

parseDatetime (201808, timezone = "America/Los_Angeles")

parseDatetime (20180807, timezone = "America/Los_Angeles”)

parseDatetime (2018080718, timezone = "America/Los_Angeles"”)

parseDatetime (201808071812, timezone = "America/Los_Angeles")
parseDatetime(20180807181215, timezone = "America/Los_Angeles”)
parseDatetime("2018-08-07 18:12:15", timezone = "America/Los_Angeles")
parseDatetime("”2018-08-07 18:12:15-07:00", timezone = "America/Los_Angeles")
parseDatetime("”2018-08-07 18:12:15-07:00", timezone = "UTC")

Julian days are accepeted
parseDatetime (2018219181215, timezone = "America/Los_Angeles”,
isJulian = TRUE)

Vector dates are accepted and daylight savings is respected
parseDatetime(
c("2018-10-24 12:00", "2018-10-31 12:00",
"2018-11-07 12:00", "2018-11-08 12:00"),
timezone = "America/New_York"

)

badInput <- c("20181013", NA, "20181015", "181016", "10172018")

28 setIfNull

Return a vector with \code{NA} for dates that could not be parsed
parseDatetime(badInput, timezone = "UTC", expectAll = FALSE)

Not run:
Fail if any dates cannot be parsed

parseDatetime(badInput, timezone = "UTC", expectAll = TRUE)

End(Not run)

setAPIKey Set APIKey

Description

Sets the API key associated with a web service.

Usage
setAPIKey(provider = NULL, key = NULL)

Arguments
provider Web service provider.
key API key.

Value

Silently returns previous value of the API key.

See Also

getAPIKey
showAPIKeys

setIfNull Set a variable to a default value if it is NULL

Description

This function attempts to set a default value for a given target object. If the object is NULL, a default
value is returned.

When the target object is not NULL, this function will try and coerce it to match the type of the
default (given by typeof). This is useful in situations where we are looking to parse the input as
well, such at looking at elements of an API call string and wanting to set the character numbers as
actual numeric types.

Not all coercions are possible, however, and if the function encounters one of these (ex: setIfNull("foo",
5)) the function will fail.

setIfNull 29

Usage
setIfNull(target, default)

Arguments

target Object to test if NULL (must be length 1).

default Object to return if target is NULL (must be length one).
Value

If target is not NULL, then target is coerced to the type of default. Otherwise, default is
returned.

Possible Coercions

This function checks the type of the target and default as given by typeof. Specifically, it accounts
for the types:

* character
e integer

e double

e complex

e logical

e list

R tries to intelligently coerce types, but some coercions from one type to another won’t always be
possible. Everything can be turned into a character, but only some character objects can become
numeric ("7" can, while "hello" cannot). Some other coercions work, but you will lose information
in the process. For example, the double 5.7 can be coerced into an integer, but the decimal portion
will be dropped with no rounding. It is important to realize that while it is possible to move between
most types, the results are not always meaningful.

Examples

library(MazamaCoreUtils)

setIfNull(NULL, "foo")
setIfNull(10, @)
setIfNull(”15", @)

This function can be useful for adding elements to a list
testList <- list("a” =1, "b"” = "baz", "c" = "4")

testList$a <- setIfNull(testList$a, 0)
testList$b <- setIfNull(testList$c, @)
testList$d <- setIfNull(testList$d, 6)

30 stoplfNull

Be careful about unintended results
setIfNull("T"”, FALSE) # This returns “TRUE"
setIfNull(12.8, 5L) # This returns the integer 12

Not run:

Not all coercions are possible
setIfNull("bar”, 5)
setIfNull(”t”, FALSE)

End(Not run)

showAPIKeys Show API keys

Description

Returns a list of all currently set API keys.

Usage

showAPIKeys ()

Value

List of provider:key pairs.

See Also

getAPIKey
setAPIKey

stopIfNull Stop if an object is NULL

Description
This is a convenience function for testing if an object is NULL, and providing a custom error message
if it is.

Usage

stopIfNull(target, msg = NULL)

stopOnError 31

Arguments

target Object to test if NULL.

msg Optional custom message to display when target is NULL.
Value

If target is not NULL, target is returned invisibly.

Examples

library(MazamaCoreUtils)

Return input invisibly if not NULL
x <- stopIfNull(5, msg = "Custom message")
print(x)

This can be useful when building pipelines
y <= 1:10
y_mean <-

y %>%

stopIfNull() %>%

mean()

Not run:

testVar <- NULL

stopIfNull(testVar)

stopIfNull(testVar, msg = "This is NULL")

Make a failing pipeline

z <- NULL

z_mean <-
z %%
stopIfNull(”"This has failed.”) %>%
mean()

End(Not run)

stopOnError Error message generator

Description

When writing R code for use in production systems, it is important to enclose chunks of code inside
of try() blocks. This is especially important when processing user input or data obtained from
web services which may fail for a variety of reasons. If any problems arise within a try() block, it
is important to generate informative and consistent error messages.

Over the years, we have developed our own standard protocol for error handling that is easy to
understand, easy to implement, and allows for consistent generation of error messages. To goal is

32 stopOnError

to make it easy for developers to test sections of code that might fail and to create more uniform,
more informative error messages than those that might come from deep within the R execution
stack.

In addition to the generation of custom error messages, use of prefix allows for the creation of
classes of errors that can be detected and handled appropriately as errors propagate to other func-
tions.

Usage

stopOnError(
result,
err_msg =
prefix = "",
maxLength = 500,
truncatedlLength = 120,

nn

call. = FALSE
)
Arguments
result Return from a try() block.
err_msg Custom error message.
prefix Text string to add in front of the error message.
maxLength Maximum length of an error message. Error messages beyond this limit will be
truncated.
truncatedLength
Length of the output error message.
call. Logical indicating whether the call should become part of the error message.
Value

Issues a stop() with an appropriate error message.

Note

If logging has been initialized, the customized/modified error message will be logged with logger.error(err_msg)
before issuing stop(err_msg).

The following examples show how to use this function:

library(MazamaCoreUtils)
Arbitrarily deep in the stack we might have:
myFunc <- function(x) {

a <- log(x)
}

timeRange 33

Simple usage

userInput <- 10

result <- try({
myFunc(x = userInput)

}, silent = TRUE)

stopOnError(result)

userInput <- "ten”
result <- try({
myFunc(x = userInput)
}, silent = TRUE)
stopOnError(result)

More concise code with the '%>%' operator

try({
myFunc(x = userInput)
}, silent = TRUE) %>%
stopOnError(err_msg = "Unable to process user input”)

try({

myFunc(x = userlInput)
}, silent = TRUE) %>%
stopOnError(prefix = "USER_INPUT_ERROR")

Truncating error message length

try({
myFunc(x = userInput)
}, silent = TRUE) %>%
stopOnError(
prefix = "USER_INPUT_ERROR",
maxLength = 40,
truncatedlLength = 32
)

timeRange Create a POSIXct time range

Description

Uses incoming parameters to return a pair of POSIXct times in the proper order. Both start and end
times will have lubridate: : floor_date() applied to get the nearest unit. This can be modified

34 timeRange

by specifying ceilingStart = TRUE or ceilingEnd = TRUE in which case lubridate: :ceiling_date()
will be applied.

The required timezone parameter must be one of those found in 01sonNames.

Dates can be anything that is understood by lubrdiate: :parse_date_time() including either of
the following recommended formats:

* "YYYYmmddHH[MMSS]"
* "YYYY-mm-dd HH:MM:SS"

Usage

timeRange(
starttime = NULL,
endtime = NULL,
timezone = NULL,
unit = "sec”,
ceilingStart = FALSE,
ceilingEnd = FALSE

)
Arguments
starttime Desired start datetime (ISO 8601).
endtime Desired end datetime (ISO 8601).
timezone Olson timezone used to interpret dates (required).
unit Units used to determine time at end-of-day.

ceilingStart Logical instruction to apply ceiling_date to the startdate rather than floor_date

ceilingEnd Logical instruction to apply ceiling_date to the enddate rather than floor_date

Value

A vector of two POSIXcts.

POSIXct inputs

When startdate or enddate are already POSIXct values, they are converted to the timezone spec-
ified by timezone without altering the physical instant in time the input represents. This is different
from the behavior of parse_date_time (which powers this function), which will force POSIXct
inputs into a new timezone, altering the physical moment of time the input represents.

Examples

library(MazamaCoreUtils)

timeRange(”2019-01-08 10:12:15", 20190109102030, timezone = "UTC")

timeStamp 35

timeStamp Character representation of a POSIXct

Description

Converts a vector of incoming date times (as POSIXct or character strings), into equivalent character
representations in one of several formats appropriate for use in naming files or labeling plots.

When datetime is not provided, defaults to lubridate: :now().
The required timezone parameter must be one of those found in 01sonNames.

Formatting output is are affected by both style:

e "ymdhms"
e "ymdThms"
e "julian”
e "clock”

and unit which determines the temporal precision of the generated representation:

e "year”

* "month”
e "day”

e "hour”

e "min”

e "sec”

* "msec”

If style == "julian” && unit = "month", the timestamp will contain the Julian day associated

with the beginning of the month.

Usage

timeStamp(datetime = NULL, timezone = NULL, unit = "sec", style = "ymdhms")

Arguments
datetime Vector of character or integer datetimes in Ymd[HMS] format (or POSIXct).
timezone Olson timezone used to interpret incoming dates (required).
unit Units used to determine precision of generated time stamps.
style Style of representation, Default = "ymdhms".
Value

A vector of time stamps.

36 timezoneLintRules

POSIXct inputs

When startdate or enddate are already POSIXct values, they are converted to the timezone spec-
ified by timezone without altering the physical instant in time the input represents. This is different
from the behavior of parse_date_time (which powers this function), which will force POSIXct
inputs into a new timezone, altering the physical moment of time the input represents.

Examples

library(MazamaCoreUtils)
datetime <- parseDatetime(”2019-01-08 12:30:15", timezone = "UTC")

timeStamp()

timeStamp(datetime, "UTC", unit = "year")
timeStamp(datetime, "UTC"”, unit = "month")
timeStamp(datetime, "UTC"”, unit = "month”, style = "julian")
timeStamp(datetime, "UTC", unit = "day")

timeStamp(datetime, "UTC"”, unit = "day"”, style = "julian")
timeStamp(datetime, "UTC", unit = "hour")
timeStamp(datetime, "UTC"”, unit = "min”

timeStamp(datetime, "UTC"”, unit = "sec")

timeStamp(datetime, "UTC", unit = "sec"”, style = "ymdThms")
timeStamp(datetime, "UTC", unit = "sec”, style = "julian")
timeStamp(datetime, "UTC"”, unit = "sec”, style = "clock”)
timeStamp(datetime, "UTC", unit = "sec”, style = "clock”) %>%

stringr::str_replace("T7", " ")
timeStamp(datetime, "America/Los_Angeles”, unit = "sec”, style = "clock")
timeStamp(datetime, "America/Los_Angeles”, unit = "msec”, style = "clock"”)
timezonelLintRules Rules for timezone linting.
Description

This set of rules is for use with the 1intFunctionArgs_~(). functions. It includes all time-related
functions from the base and lubridate packages that are involved with parsing or formatting date-
times and helps check whether the appropriate timezone arguments are being explicitly used.

timezoneLintRules <- list(
base functions

"as.Date"” = "tz",
"as.POSIXct" = "tz",
"as.POSIX1t" = "tz",
"ISOdate” = "tz",
"ISOdatetime” = "tz",
"strftime” = "tz",

"strptime” = "tz",

validateLonLat 37

"Sys.Date" "DEPRECATED", # Please don't use this function!
"Sys.time" "DEPRECATED", # Please don't use this function!
lubridate functions
"as_datetime” = "tz",
"date_decimal” = "tz",
"fast_strptime” = "tz",
"force_tz" = "tzone",
"force_tzs" = "tzone_out”,
"interval” = "tzone",
"local_time" = "tz",
"make_datetime" = "tz",
"now” = "tzone",
"parse_date_time"” = "tz",
"parse_date_time2" = "tz",
"today" = "tzone",

"with_tz" = "tzone”,

"ymd" = "tz",

"ymd_h" = "tz",

"ymd_hm" = "tz",

"ymd_hms" = "tz",

MazamaCoreUtils functions
"dateRange” = "timezone",
"timeRange"” = "timezone",
"parseDatetime” = "timezone”

Usage

timezoneLintRules

Format

A list of function = argument pairs.

validatelLonLat Validate longitude and latitude values

Description

Longitude and latitude are validated to be parseable as numeric and within the bounds -180:180 and
-90:90. If validation fails, an error is generated.

Usage

validateLonLat(longitude = NULL, latitude = NULL)

38 validateLonsLats

Arguments
longitude Single longitude in decimal degrees E.
latitude Single latitude in decimal degrees N.
Value

Invisibly returns TRUE if no error message has been generated.

validatelonslLats Validate longitude and latitude vectors

Description
Longitude and latitude vectors validated to be parseable as numeric and within the bounds -180:180
and -90:90. If validation fails, an error is generated.

Usage
validatelLonsLats(longitude = NULL, latitude = NULL, na.rm = FALSE)

Arguments

longitude Vector of longitudes in decimal degrees E.

latitude Vector of latitudes in decimal degrees N.

na.rm Logical specifying whether to remove NA values before validation.
Value

Invisibly returns TRUE if no error message has been generated.

Index

+ datasets
loglLevels, 23
timezoneLintRules, 36
* environment
APIKeys, 2
getAPIKey, 10
setAPIKey, 28
showAPIKeys, 30

APIKeys, 2, 10

ceiling_date, 7, 9, 34

check, 25

check (packageCheck), 24
check_fast (packageCheck), 24
check_faster (packageCheck), 24
check_fastest (packageCheck), 24
check_slow (packageCheck), 24
check_slower (packageCheck), 24
check_slowest (packageCheck), 24
createlLocationID, 3
createlocationMask, 5

dateRange, 6
dateSequence, 8
DEBUG (logLevels), 23

ERROR (loglLevels), 23

FATAL (logLevels), 23
floor_date, 7, 9, 34

getAPIKey, 3, 10, 28, 30

html_getLinkNames (html_getLinks), 10
html_getLinks, 10

html_getLinkUrls (html_getLinks), 10
html_getTable (html_getTables), 11
html_getTables, 11

INFO (logLevels), 23

39

initializelogging, 12, I8

lintFunctionArgs, 13
lintFunctionArgs_dir

(lintFunctionArgs), 13
lintFunctionArgs_file

(lintFunctionArgs), 13
loadDataFile, 14
logger.debug, 15, 21
logger.error, 16, 21
logger.fatal, 17, 21
logger.info, 17, 21
logger.isInitialized, 18
logger.setlLevel, 19
logger.setup, 16-19, 20, 22
logger.trace, 21, 21
logger.warn, 21,22
loglevels, 23

manageCache, 23
now, 7
OlsonNames, 6, 8, 34, 35

packageCheck, 24
parse_date_time, 7, 27, 34, 36
parseDatetime, 26

setAPIKey, 3, 10, 28, 30
setIfNull, 28
showAPIKeys, 3, 10, 28, 30
stopIfNull, 30
stopOnError, 31

tibble, 13
timeRange, 33
timeStamp, 35
timezoneLintRules, 36
TRACE (logLevels), 23
typeof, 28, 29

40 INDEX

validatelonLat, 37
validatelLonsLats, 38

WARN (loglLevels), 23

	APIKeys
	createLocationID
	createLocationMask
	dateRange
	dateSequence
	getAPIKey
	html_getLinks
	html_getTables
	initializeLogging
	lintFunctionArgs
	loadDataFile
	logger.debug
	logger.error
	logger.fatal
	logger.info
	logger.isInitialized
	logger.setLevel
	logger.setup
	logger.trace
	logger.warn
	logLevels
	manageCache
	packageCheck
	parseDatetime
	setAPIKey
	setIfNull
	showAPIKeys
	stopIfNull
	stopOnError
	timeRange
	timeStamp
	timezoneLintRules
	validateLonLat
	validateLonsLats
	Index

