
Package ‘MRG’
January 7, 2026

Type Package

Title Create Non-Confidential Multi-Resolution Grids

Version 0.3.23

Maintainer Jon Olav Skoien <jon.skoien@gmail.com>

Imports magrittr, parallel, terra, sf, stars, dplyr, rlang, sjmisc,
vardpoor, purrr, tidyr, tidyselect, methods, ggplot2, viridis,
grDevices, utils, units

Suggests patchwork, knitr, rmarkdown, giscoR, bookdown, ggforce,
kableExtra

Description The need for anonymization of individual survey responses often leads to many sup-
pressed grid cells in a regular grid. Here we provide functionality for creating multi-
resolution gridded data, respecting the confidentiality rules, such as a minimum num-
ber of units and dominance by one or more units for each grid cell. The functions also in-
clude the possibility for contextual suppression of data. For more de-
tails see Skoien et al. (2025) <doi:10.48550/arXiv.2410.17601>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Depends R (>= 3.5.0)

LazyData true

Author Jon Olav Skoien [aut, cre],
Nicolas Lampach [aut]

Repository CRAN

Date/Publication 2026-01-07 20:40:07 UTC

Contents
createMRGobject . 2

1

https://doi.org/10.48550/arXiv.2410.17601

2 createMRGobject

fssgeo . 6
gridData . 7
ifs_dk . 10
inspireID . 11
locAdjFun . 13
MRGcluster . 14
MRGfromDF . 15
MRGmerge . 16
MRGoverlap . 20
MRGplot . 23
MRGpostProcess . 25
multiResGrid . 26
remSmall . 35

Index 41

createMRGobject Create a single object containing all necessary objects for multiRes-
Grid functions

Description

Create a single object containing all necessary objects for multiResGrid functions

Prints MRG-objects

Usage

createMRGobject(
ifg,
ress = c(1, 5, 10, 20, 40) * 1000,
geovar = c("GEO_LCT", "geometry"),
srvNames = NULL,
vars = NULL,
weights = NULL,
dummy = "RECORDS",
mincount = 10,
countFeatureOrTotal = "feature",
nlarge = 2,
plim = 0.85,
verbose = FALSE,
nclus = 1,
clusType = NULL,
domEstat = TRUE,
consistencyCheck = FALSE,
outfile = NULL,
splitlim = 5e+07,
checkDominance = TRUE,
checkReliability = FALSE,

createMRGobject 3

userfun = NULL,
strat = NULL,
confrules = "individual",
suppresslim = 0,
sumsmall = FALSE,
suppresslimSum = 0,
reliabilitySplit = TRUE,
pseudoreg = NULL,
plotIntermediate = FALSE,
addIntermediate = FALSE,
locAdj = "LL",
postProcess = TRUE,
rounding = -1,
remCols = TRUE,
...

)

S3 method for class 'MRG'
print(x, ...)

Arguments

ifg Either a data.frame or tibble or sf-object with the locations and the data of the
survey or census data, or a list of such objects.

ress A vector with the different resolutions

geovar Name of geodata variable in the objects. Must me the same for all of the sur-
veys/censuses, if the data sets are not submitted as sf-objects

srvNames Names for the different surveys or censuses if ifg is a list. Typically it could be
survey years. Not necessary if ifg is a named list

vars Variable(s) of interest that should be aggregated (necessary when ifg is used for
individual farm specific anonymization rules)

weights Extrapolation factor(s) (weights) wi of unit i in the sample of units nc falling
into a specific cell c. Weights are used for disclosure control measures. A weight
of 1 will be used if missing. If only one weight is given, it will be used for all
variables. If the length is more than one, the length has to be equal to the number
of variables. If the same weight is used for several variables, it must be repeated
in the weights-vector

dummy The name of a dummy variable for the number of records if a list is provided.
Defaults to "RECORDS", but can be replaced by something more specific for
particular usage, such as "HOLDING" for agricultural data

mincount The minimum number of farms for a grid cell (threshold rule)
countFeatureOrTotal

Should the frequency limit be applied on records with a positive value for a
certain feature, or on all records, independent of value of feature

nlarge Parameter to be used if the nlarge(st) farms should count for maximum plim
percent of the total value for the variable in the grid cell (see details of gridData)

4 createMRGobject

plim See nlarge

verbose Indicates if some extra output should be printed. Usually TRUE/FALSE, but can
also have a value of 2 for multiResGrid for even more output.

nclus Number of clusters to use for parallel processing. No parallelization is used for
nclus = 1.

clusType The type of cluster; see makeCluster for more details. The default of makeClus-
ter is used if type is missing or NA

domEstat Should the dominance rule be applied as in the IFS handbook (TRUE), where
the weights are rounded before finding the first nlarge contributors, or should
it be the first nlarge contributors*weight, where also fractions are considered
(FALSE)?

consistencyCheck

logical; whether consistency between the gridded values and the similar values
from ifg should be checked. The gridded value is derived from rasterize and the
second one from st_join. The two methods can in some cases treat border cases
between grid cells differently.

outfile File to direct the output in case of parallel processing, see makeCluster for
more details.

splitlim For large dataset - split the data set in batches of more or less splitlim size

checkDominance Logical - should the dominance rule be applied?

checkReliability

Logical - should the prediction variance be checked, and used for the aggrega-
tion? This considerably increases computation time

userfun This gives the possibility to add a user defined function with additional confi-
dentiality rules which the grid cell has to pass, based on the individual records

strat Column name defining the strata for stratified sampling, used if checkReliability
is TRUE

confrules Should the frequency rule (number of holdings) refer to the number of holdings
with a value of the individual vars above zero ("individual") or the total number
of holdings in the data set ("total")?

suppresslim Parameter that can be used to avoid that almost empty grid cells are merged with
cells with considerably higher number of observations. The value is a minimum
share of the total potential new cell for a grid cell to be aggregated. See below
for more details.

sumsmall Logical; should the suppresslimSum value be applied on the sum of small grid
cells within the lower resolution grid cell? Note that different combinations
of suppreslim and suppreslimSum values might not give completely intuitive
results.For instance, if both are equal, then a higher value can lead to more grid
cells being left unaggregated for smaller grid sizes, leading to aggregation for a
large grid cell

suppresslimSum Parameter similar to suppreslim, but affecting the total of grid cells to be sup-
pressed

createMRGobject 5

reliabilitySplit

Logical or number - parameter to be used in calculation of the reliability (if
checkReliability = TRUE). It can either give the number of groups, or if TRUE,
it will create groups of approdcimately 50,000 records per group. If FALSE, the
data set will not be split, independent on the size.

pseudoreg A column with regions to be used to define pseudostrata if checkReliability is
TRUE. This is used for the cases when one or more strata only has a single
record (and the weight is different from one). This makes variance calculation
impossible, so such strata are merged into a pseudostrata. If pseudoreg is given
(for example a column with the country name, or NUTS2 region), the pseudos-
trata will be created separately for each pseudoreg region.

plotIntermediate

Logical or number - make a simple plot showing which grid cells have already
passed the frequency rule. plotintermediate = TRUE, the function will wait 5
seconds after plotting before continuing, otherwise it will wait plotintermediate
seconds.

addIntermediate

Logical; will add a list of all intermediate himgs and lohs (overlay of himg and
the lower resolution grid) as an attribute to the object to be returned

locAdj parameter to adjust the coordinates if they are exactly on the borders between
grid cells. The values can either be FALSE, or "jitter" (adding a small random
value to the coordinates, essentially spreading them randomly around the real
location), "UR", "UL", "LR" or "LL", to describe which corner of the grid cell
the location belong (upper right, upper left, lower right or lower left).

postProcess Logical; should the postprocessing be done as part of creation of the multires-
olution grid (TRUE), or be done in a separate step afterwards (FALSE). The
second option is useful when wanting to check the confidential grid cells of the
final map

rounding either logical (FALSE) or an integer indicating the number of decimal places to
be used. Negative values are allowed (such as the default value rounding to the
closest 10). See also the details for digits in round.

remCols Logical; Should intermediate columns be removed? Can be set to FALSE for
further analyses. Temporary columns will not be removed if their names partly
match the variable names of vars

... Other parameters to underlying print functions

x MRG-object, created by call to createMRGobject

Details

The function creates a single object, containing both the mapped data and the parameters for for
further processing. This assures that all processing is done with the same variables.

Value

A list containing the necessary elements for further processing with the MRG-package, referred to as
being of class MRG.

6 fssgeo

Examples

library(sf)
library(dplyr)

These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

ress = 1000*2^(1:7)
MRGobject = createMRGobject(ifg = ifg, ress = ress, var = "UAA")
Run the adaptive grid function only with farm number as con, then plot results
himg1 = multiResGrid(MRGobject)

himg1 = multiResGrid(MRGobject)
Parameters can be updated in the object or in the call to multiResGrid
MRGobject$suppresslim = 0.02
himg2 = multiResGrid(MRGobject)
himg3 = multiResGrid(MRGobject, suppresslim = 0.05)

This examplifies how a list can be passed to the function, representing different
survey years, which will then be used to create consistent grid cells for
the different survey years. The differences in this example are just some random
changes to farms and areas
ifg2020 = ifg
nd = dim(ifg2020)[1]
rmult = function(x) {x*runif(length(x), 0.95, 1.05)}
ifg2010 = ifg2020 %>% slice(sample(1:nd, floor(nd*0.9))) %>%

mutate_at(c("UAA", "UAAXK0000_ORG"), rmult)
ifg2015 = ifg2020 %>% slice(sample(1:nd, floor(nd*0.95))) %>%

mutate_at(c("UAA", "UAAXK0000_ORG"), rmult)
srvNames are not necessary when the list is named as here,
but could be passed as srvNames = c(2010, 2015, 2020)
MRGobject2 = createMRGobject(ifg = list("2010" = ifg2010, "2015" = ifg2015, "2020" = ifg2020),

dummy = "HOLDING", vars = c("UAA", "UAAXK0000_ORG"), ress = ress)
himg4 = multiResGrid(MRGobject2)

fssgeo Function that creates an sf-object from IFS data

Description

Function that creates an sf-object from IFS data

Usage

fssgeo(ifs, crsOut = NA, geocol = "GEO_LCT", locAdj = FALSE)

gridData 7

Arguments

ifs A data.frame or tibble with the locations and the data of the survey or census
data

crsOut The coordinate reference system (crs) to be used

geocol Name(s) of geocolumns in the data set

locAdj parameter to adjust the coordinates if they are exactly on the borders between
grid cells. The values can either be FALSE, or "jitter" (adding a small random
value to the coordinates, essentially spreading them randomly around the real
location), "UR", "UL", "LR" or "LL", to describe which corner of the grid cell
the location belong (upper right, upper left, lower right or lower left).

Details

The geo-location in the FSS file has a particular format. For 2020, it includes country, coordi-
nate reference system (CRS), resolution (precision of coordinates) and coordinates in one attribute
("GEO_LCT"). For past years, the FSS data structure differs and it includes three separate columns,
like latitudes, longitudes and coordinate reference system. This function splits the attribute in its
individual parts, and creates an sf-object with the correct coordinates and CRS.

Value

An sf-object with the locations of the survey or census data

Examples

data(ifs_dk)
ifg = fssgeo(ifs_dk)

gridData Function that converts point data to gridded data (polygon values) or
a list of gridded data

Description

Function that converts point data to gridded data (polygon values) or a list of gridded data

Usage

gridData(
ifg,
res = 1000,
vars = NULL,
weights = NULL,
nclus = 1,

8 gridData

confrules = "individual",
crsOut = NA,
verbose = FALSE,
locAdj = FALSE,
centre = FALSE

)

Arguments

ifg Either a data.frame or tibble or sf-object with the locations and the data of the
survey or census data, or a list of such objects.

res A resolution or a vector with the different resolutions
vars Variable(s) of interest that should be aggregated (necessary when ifg is used for

individual farm specific anonymization rules)
weights Extrapolation factor(s) (weights) wi of unit i in the sample of units nc falling

into a specific cell c. Weights are used for disclosure control measures. A weight
of 1 will be used if missing. If only one weight is given, it will be used for all
variables. If the length is more than one, the length has to be equal to the number
of variables. If the same weight is used for several variables, it must be repeated
in the weights-vector

nclus Number of clusters to use for parallel processing. No parallelization is used for
nclus = 1.

confrules Should the frequency rule (number of holdings) refer to the number of holdings
with a value of the individual vars above zero ("individual") or the total number
of holdings in the data set ("total")?

crsOut The coordinate reference system (crs) to be used
verbose Indicates if some extra output should be printed. Usually TRUE/FALSE, but can

also have a value of 2 for multiResGrid for even more output.
locAdj parameter to adjust the coordinates if they are exactly on the borders between

grid cells. The values can either be FALSE, or "jitter" (adding a small random
value to the coordinates, essentially spreading them randomly around the real
location), "UR", "UL", "LR" or "LL", to describe which corner of the grid cell
the location belong (upper right, upper left, lower right or lower left). Please use
with care in this function. It will make it possible to produce the grid,but notice
that the coordinates of ifg will be left untouched, which can cause problems if
it is used in other functions.

centre logical; if the coordinate should represent the centre of the grid cell. This should
never be TRUE if res is a vector of different resolutions, as the grids will not have
identical starting points

Details

This will create hierarchical grids of the selected variable(s), at the requested resolution(s), and
using the requested function. In reality, the function will usually be sum, mean or max3, where the
last one gives the average of the three highest numbers in the grid cell.

Additionally, the function will always return the extrapolated number of farms per grid unit. The
result will either be a set of sf-polygons (default) or a stars object.

gridData 9

Value

A hierarchical list of gridded data, in the different resolutions requested. Each grid also includes
the count of records used for the gridding, and the sum of the weights.

Examples

library(sf)
if (!require(ggplot2)) print("Plotting of results will not work without installation of ggplot2")
if (!require(viridis)) print("Some of the plots will not work without installation of ggplot2")
if (require(giscoR)) {

useBorder = TRUE
} else {

useBorder = FALSE
print("You need to install giscoR for plotting borders and clipping the gridded maps")

}

These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data
Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

if (useBorder) {
Read country borders, only used for plotting

borders = gisco_get_nuts(nuts_level = 0)
dkb = borders[borders$CNTR_CODE == "DK",] %>% st_transform(crs = 3035)

}

ress = c(1,5,10,20,40,80)*1000
ifl = gridData(ifg, vars = c("UAA", "UAAXK0000_ORG"), weights = "EXT_CORE",

res = ress)
ifl2 = gridData(ifg, vars = c("UAA", "UAAXK0000_ORG"), weights = "EXT_CORE",

res = ress, nclus = 2)
all.equal(ifl, ifl2)
if (require(ggplot2)) {
ifall = do.call("rbind", ifl)
g1 = ggplot() + geom_sf(data = ifall, aes(fill = count, color = count)) +
scale_fill_viridis(name = "number of \n holdings", trans = "log10") +
scale_color_viridis(name = "number of \n holdings", trans = "log10") +
coord_sf(crs = 3035) +
theme_bw() +
ggtitle("Number of holdings for different resolutions") +
facet_wrap(vars(res))
if (useBorder) g1 = g1 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
g1

}
#'

MRGcluster(action = "stop")

10 ifs_dk

ifs_dk Test data sets for the MRG package

Description

Synthetic data set of Danish farming data, similar to the structure of the real Farm Structure Survey
(FSS) data. It contains more than 37,000 synthetic records - generated in a way that should replicate
the structure and the distribution of real data, but where the individual data are different from the
real data.

Usage

data(ifs_dk)

Format

A data frame with 37,088 rows and 14 variables

• COUNTRY The name of the country

• YEAR The year of the survey data

• ID_SYNTH Unique ID of the record

• FARMTYPE Farm typology. Farms are classified into different types according to their dom-
inant activity and standard output value (proxy for farm income). For further information see
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Farm_typology

• HLD_FEF Not used. Farm is included in frame extension (HLD_FEF=1) or main frame
(HLD_FEF=0)

• REGIONS NUTS2 region

• GEO_LCT The geolocation in typical FSS-format, including both country, CRS and xy coor-
dinates

• EXT_CORE The extrapolation weights for core data (1 in this data set)

• STRA_ID_CORE Which stratum the record belongs to - only used for the reliability checking

• UAA The utilized agricultural area of the farm

• UAAXK0000_ORG The organic utilized agricultural area, excluding kitchen gardens of the
farm. UAAXK0000_ORG includes fully certified area and area under conversion

• Sample Whether the record should be included as a weighted subsample

• EXT_MODULE The extrapolation weights for the sample data

A data frame with 37088 rows and 14 variables

inspireID 11

Details

The variables are as follows:

For practical purposes, we have derived a synthetic data set from the original 2020 agricultural
census micro data. Although synthetic data sets are a feasible way to provide public access to the
data by mitigating any confidentiality concerns, there have only been a few attempts made to create
synthetic public files of micro data collected by official statistical institutes.

The attached data set has been produced by application of a hot-deck procedure - originally de-
veloped to impute missing information - to substitute a data entry from the original data (i.e., the
recipient) by using a value from a similar record (i.e., the donor) within the same classification
group (Andridge and Little, 2010; Ford, 1983; Joenssen and Bankhofer, 2012).

A single hot deck imputed data set is computed for each country individually. First, records are par-
titioned into homogeneous groups so that the donors follow the same distribution as the recipients.
Data points from the recipients are substituted sequentially based on a value from a varying pool of
donors. Furthermore, the nearest neighbour matching technique using distance metrics is applied
to select the most appropriate donor from the pool of donors. For a few of the discrete variables,
such as $FARMTYPE$, SO_EUR, HLD_FEF and $NUTS2$, a donor was chosen randomly
by preserving the original empirical distribution or they were simply randomly decoded (i.e., re-
named). The variable containing information about the geographical location (GEO_LCT) of the
agricultural holding was imputed by restricting the donor to the same country. To assess the quality
rating system (i.e., the reliability), we created an artificial sample ($SAMPLE$) with the respec-
tive extrapolation factors (EXT_MODULE) based on stratification. The sample size consists of
approximately one third of the synthetic 2020 census for Denmark.

The empirical distribution of the two main variables of interest of the synthetic data, UAA and
$UAAXK0000_ORG$ are widely preserved within the different economic size classes.

References

Andridge RR, Little RJ (2010). A review of hot deck imputation for survey non-response. Interna-
tional statistical review, 78(1), 40–64.

Ford BL (1983). An overview of hot-deck procedures.” Incomplete data in sample surveys, 2(Part
IV), 185–207.

Joenssen DW, Bankhofer U (2012). Hot deck methods for imputing missing data. In P Perner (ed.),
Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, pp.
63–75. Springer, Berlin, Heidelberg. ISBN 978-3-642-31537-4. doi:10.1007/978-3-642-31537-
4_6

inspireID Function to add inspireIDs to a multi-resolution grid, particular for
European data sets

Description

Function to add inspireIDs to a multi-resolution grid, particular for European data sets

12 inspireID

Usage

inspireID(himg, borders, cntrCol)

Arguments

himg A multi-resolution grid, typically resulting from a call to multiResGrid

borders A polygon object with borders and country codes for creation of INSPIRE coor-
dinate IDs. This will typically be a NUTS-object that can be downloaded from
GISCO: giscoR::gisco_get_nuts(nuts_level = 0, epsg = 3035).

cntrCol The column with country information, if this is already present in the data

Details

The function will attempt to add an ID column following the principles of INSPIRE (Infrastructure
for Spatial Information in Europe) if the multi-resolution grid has the inspire coordinate reference
system (CRS=3035). See also https://epsg.io/3035 and https://inspire.ec.europa.eu/crs/3035.

The function will fail if the grid has any other CRS.

The function assumes that the grid is a correct multi-resolution grid without overlapping grid cells.
If the column res is missing, the function will create this as the square root of the area of each grid
cell. This will not work if the grid has already been clipped with coastal/country/region borders.
The function tests if the number of different grid cell sizes is reasonable (maximum 10) and will
issue a warning if it is higher.

The two first letters in the ID is usually the country code. This can be added in two different ways.
Either by specifying the column with country code (argument: cntrCol) or by passing a polygon
with country code information (argument: borders). It is assumed that this polygon has a column
CNTR_CODE with the country codes, as typical in country-objects downloaded from GISCO.

However, it should be noted that grid cells on the borders will be associated to one of the countries -
which in some cases could be unwanted. The method uses the st_nearest_feature functionality
for associating a grid cell with a country. The example shows how this information can be added
later, for users who want more control over the country association.

If neither borders nor country column is submitted, the function will use NA instead of country
code in the ID.

Examples

library(sf)
library(dplyr)
These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

ress = c(1,5,10,20,40, 80, 160)*1000
Gridding Utilized agricultural area (UAA)
ifl = gridData(ifg, "UAA",res = ress)

locAdjFun 13

Create a multi-resolution grid only with farm number as confidentiality rule, then plot results
himg = multiResGrid(ifl, checkReliability = FALSE, suppresslim = 0)

himg = inspireID(himg)

It is easy to modify the country information afterwards
if (require(giscoR)) {

borders = gisco_get_nuts(nuts_level = 0, epsg = 3035)
himg1 = inspireID(himg, borders)
himg2 = st_join(himg, borders %>% select(CNTR_CODE), join = st_nearest_feature)
himg2 = inspireID(himg2, cntrCol = "CNTR_CODE")

The border issues cause some grid cell to be classified as German, although
all data is from Denmark

table(substr(himg1$ID, 1, 2))
}

locAdjFun Function that modifies the observation locations, to reduce the risk
that they are on grid cell boundaries

Description

Function that modifies the observation locations, to reduce the risk that they are on grid cell bound-
aries

Usage

locAdjFun(ifg, locAdj, ress)

Arguments

ifg Either a data.frame or tibble or sf-object with the locations and the data of the
survey or census data, or a list of such objects.

locAdj parameter to adjust the coordinates if they are exactly on the borders between
grid cells. The values can either be FALSE, or "jitter" (adding a small random
value to the coordinates, essentially spreading them randomly around the real
location), "UR", "UL", "LR" or "LL", to describe which corner of the grid cell
the location belong (upper right, upper left, lower right or lower left).

ress A vector with the different resolutions

Details

This can be used as a pre-processing step before creating a multi-resolution grid. The gridding
procedure will have problems if the points are located exactly on grid cell boundaries. The locations
should therefore be slightly modified, to better control to which grid cells they are associated. This
can either be a systematic modification, or a random modification.

In the case of FSS data, the coordinates have been reported as the lower left corner of a 1 km grid.

14 MRGcluster

Value

An sf-object with slightly modified locations for the survey or census data, according to the locAdj-
parameter

Examples

data(ifs_dk)

ifg = fssgeo(ifs_dk, locAdj = FALSE)
ifg = locAdjFun(ifg, "LL")

MRGcluster Function that allows to apply parallel processing

Description

Function that allows to apply parallel processing

Usage

MRGcluster(nclus, ..., action = "start", clusType, outfile = NULL)

Arguments

nclus Number of clusters to use for parallel processing. No parallelization is used for
nclus = 1.

... arguments that should be evaluated in the cluster (can also be called later)

action Defines the action of the function. There are three options:

"start" Starts a new cluster if necessary, reuses an existing if it has already
been started

"restart" Stops the cluster and starts it again. To be used in case there are
difficulties with the cluster, or if the user wants to change the type of the
cluster

clusType The type of cluster; see makeCluster for more details. The default of makeClus-
ter is used if type is missing or NA.

outfile File to direct the output, makeCluster for more details.

Value

The function will either return a cluster for parallel computation, or stop a cluster (returning NULL)

MRGfromDF 15

MRGfromDF Function to create a gridded (usually multi-resolution grid) from a
data.frame or csv file with information about the corners and resolu-
tion, as typically can be downloaded from Eurostat. The function can
also save the grid as a geo-object.

Description

Function to create a gridded (usually multi-resolution grid) from a data.frame or csv file with in-
formation about the corners and resolution, as typically can be downloaded from Eurostat. The
function can also save the grid as a geo-object.

Usage

MRGfromDF(
df,
coords = c("x", "y"),
coordscale,
crs = NA,
res = "res",
Estat = TRUE,
cignore = FALSE,
dsn,
layer,
...

)

Arguments

df A data.frame or name of a csv file with multi-resolution data, only specifying
the lower left corner of the grid cells

coords Names of the numeric columns holding coordinates

coordscale Multiplication scaling factor for coordinates

crs The coordinate reference system (CRS) into which all data should be projected
before plotting. If not specified, will use the CRS defined in the first sf layer of
the plot.

res A resolution or a vector with the different resolutions

Estat Indicate if Eurostat is the source of the data set. This is currently the default,
but this might be changed in the future if other providers will follow the same
conventions

cignore Logical; Should the function ignore if parameters appear to be neither lat-lon or
projected

dsn Source name to be used by st_write. Interpretation varies by driver: can be a
filename, a folder, a database name, or a Database Connection.

16 MRGmerge

layer Layer name to be used by st_write. Varies by driver, may be a file name
without extension; for database connection, it is the name of the table. If layer
is missing, the basename of dsn is taken.

... Additional parameters to read.csv if csv is a file name

Details

This function is mainly for handling csv files downloaded from Eurostat, but can also be used for
data from other sources, which adapt the same csv-convention as Eurostat.

The Eurostat-files have x- and y-coordinates that have been projected in the epsg:3035 projection.
However, the coordinates show kilometers, not meters, so they have to be multiplied with 1000.
Similar data sets might also be offered by other providers. The multiplication can be done with
coordscale, or with Estat = TRUE (which also sets crs = 3035)

The function will also check the coordinates, if the range of both x- and y-coordinates are between
360 and 20000, it would often indicate that the coordinates should be multiplied. The function
will suggest to correct this. If the coordinates are actually correct, the check can be overrun with
cignore = TRUE

If writing to file, it is necessary to add the dsn and potentially layer to the input.

Value

The function produces a multiresolution grid, which is a sf-object with polygons.

Examples

library(MRG)
library(dplyr)
library(tidyr)
C19.csv is an example file from Eurostat, including Utilized Agricultural Area
(UAAXK0000) and organic UAA (UAAXK0000_ORG)
csvFile = system.file("ex/C19.csv", package="MRG")
C19 = MRGfromDF(csvFile, crs = 3035) %>% mutate(orgShare = UAAXK0000_ORG/UAAXK0000)
MRGplot(C19, var = orgShare, xlim = c(2600000, 5800000), ylim = c(1500000, 5200000))

MRGmerge Merge two or more multi-resolution grids to a common resolution

Description

Merge two or more multi-resolution grids to a common resolution

MRGmerge 17

Usage

MRGmerge(
himg1,
himg2,
vars1,
vars2,
na.rm = TRUE,
postProcess = FALSE,
aggr = "merge",
...

)

Arguments

himg1 Either a multi-resolution grid (typically resulting from a call to multiResGrid),
or a list of such grids

himg2 A multi-resolution grid, typically resulting from a call to multiResGrid

vars1 Variable(s) of interest that should be merged from the first grid, or a list of
variables, one for each grid in the list himg1

vars2 Variable(s) of interest that should be merged from the second grid

na.rm Should NA values be removed when summing values (essentially treating them
equal to zero)

postProcess Logical; should the postprocessing be done as part of creation of the multires-
olution grid (TRUE), or be done in a separate step afterwards (FALSE). The
second option is useful when wanting to check the confidential grid cells of the
final map

aggr Should data be aggregated to the largest grid cell (aggr = "merge"), or should
data from larger grid cells be disaggregated to smaller grid cells (aggr = "disaggr")

... Additional grids (himg3, himg4, ...) and variables (vars3, vars4, ...) to be
merged. Additional grids and variables must be named.

Details

This function can merge different multi-resolution grids to a common resolution, i.e., it will select
the grid cells with the lowest resolution, as these are the ones defining the restrictions.

The function will merge the variable names in vars1, vars2, ... if they exist. If they are missing,
the function will look for variable names in the attributes of the grids (attr(himg, "vars")). These
are added by multiResGrid, but will often disappear if the grid has been manipulated, or has been
exported to another format for transmission.

If the variables are not given as vars or attributes, the function will try to guess them from the
column names. Typical column names used by MRG (mostly temporary variables such as small,
confidential etc) will be ignored. If variable names partly coincide with any of these names, or
with count, res, geometry, it is necessary to specify vars.

The multi-resolution grids must be passed as named parameters if more than two are given.

Common variable names in different grids should be avoided.

18 MRGmerge

The default of the function is to treat NA-values as zeroes when merging (through na.rm in sums). It
will therefore not be possible to separate restricted grid cells from grid cells with zero observations
after merging, except for the ones that have been left as they were. The alternative would be a much
higher number of NA-values in the merged grids.

The resulting grid will most likely not have exactly the same values as a multi-resolution grid
produced directly from the microdata. If the input-grids have been post-processed (the normal
situation when not having access to the microdata), the grid cell values have usually been rounded,
and some might have been suppressed. As these rounded and potentially suppressed values are
summed, their values are likely to deviate from those that are computed directly from the microdata
through a joint gridding process.

The argument aggr will decide on the direction of aggregation. If aggr == "merge", The values in
high resolution grid cells will be aggregated to match those of lower resolution grid cells in the sec-
ond grid. If aggr == "disaggr", the values of the lower resolution grid cells will be redistributed
equally among higher resolution grid cells, according to their area. Note that this will most likely
result in grid cell values that are apparently confidential (for example having less than 10 individ-
uals). These are still not confidential values, but are average values from a larger area. This will
in most cases be fine if the data is used for analyses, but publication of such values should be done
with care.

Also note that if more than 2 MRG-grids are merged at the same time, then the redistribution will
occur more than once. If the resolution of some grid cells becomes higher for each redistribution,
with some of the high resolution grid cells missing, then the average values might differ for different
high resolution grid cells coming from the same low value grid cell. See the plotted examples of h2
and h22.

Value

The function produces a new multiresolution grid, which is a sf-object with polygons.

Examples

library(sf)
library(dplyr)
library(ggplot2)
library(viridis)

These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data
ifs_weight = ifs_dk %>% dplyr::filter(Sample == 1) # Extract weighted subsample

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")
fsg = fssgeo(ifs_weight, locAdj = "LL")

We use the numeric part of the farmtype to create a third variable. This
is done for the an example, the value does not have any meaning when treated
like this
ifg$ft = as.numeric(substr(ifg$FARMTYPE, 3, 4))^2

ress = c(1,5,10,20,40, 80, 160)*1000
Create regular grid of the variables

MRGmerge 19

ifl = gridData(ifg, vars = c("UAA", "UAAXK0000_ORG", "ft"), res = ress)

Create the different multi-resolution grids
himg1 = multiResGrid(ifl, vars = "UAA", ifg = ifg, postProcess = FALSE)
himg2 = multiResGrid(ifl, vars = "UAAXK0000_ORG", ifg = ifg, postProcess = FALSE)
himg3 = multiResGrid(ifl, vars = "ft", ifg = ifg, postProcess = FALSE)

The grids have different number of polygons
dim(himg1)
dim(himg2)
dim(himg3)

hh1 = MRGmerge(himg1, himg2, himg3 = himg3)
dim(hh1)
Postprocessing can also be done on the merged object
hh11 = MRGmerge(himg1, himg2, himg3 = himg3, postProcess = TRUE, rounding = -1)
dim(hh11)
summary(hh1$UAA-hh11$UAA)

Here the merging will instead redistribute average values to
the higher resolution grid cells, and also seeing the effect
of merging a third layer
hh2 = MRGmerge(himg1, himg2, aggr = "disaggr")
hh22 = MRGmerge(himg1, himg2, himg3 = himg3, aggr = "disaggr")
himg2$orgShare = himg2$UAAXK0000_ORG/himg2$res^2 * 10000
hh2$orgShare = hh2$UAAXK0000_ORG/hh2$res^2 * 10000
hh22$orgShare = hh22$UAAXK0000_ORG/hh22$res^2 * 10000
Plot the organic share (organic area relative to grid cell area) for
the original MRG grid for organic area, and after merging with the higher
resolution maps.
p1 = ggplot(himg2) + geom_sf(aes(fill = orgShare)) + ggtitle("original") +

scale_fill_viridis()
p2 = ggplot(hh2) + geom_sf(aes(fill = orgShare)) + ggtitle("merged two")+

scale_fill_viridis()
p3 = ggplot(hh22) + geom_sf(aes(fill = orgShare)) + ggtitle("merged three")+

scale_fill_viridis()
if (require(patchwork)) p1 + p2 + p3 + plot_spacer() + plot_layout(guides = 'collect')

If two data sets share the same variable, one of them has to be renamed.
(A comparison of the two can act as a indication of possible errors
introduced through the post-processing)

himg21 = multiResGrid(ifl, vars = c("UAA", "UAAXK0000_ORG"), ifg = ifg, postProcess = FALSE)
hh3 = try(MRGmerge(himg1, himg21, himg3 = himg3))
himg21 = himg21 %>% rename(UAA2 = UAA, weight_UAA2 = weight_UAA)
hh3 = MRGmerge(himg1, himg21, himg3 = himg3)

summary(hh3[, c("UAA", "UAA2")])

himg4 = multiResGrid(ifl, vars = c("UAA", "ft", "UAAXK0000_ORG"), ifg = ifg, postProcess = FALSE)
summary(hh1[, c("UAA", "UAAXK0000_ORG", "ft")])
summary(himg4[, c("UAA", "UAAXK0000_ORG", "ft")])

20 MRGoverlap

MRGoverlap Function that finds and merges overlapping grid cells in a multi-
resolution grid The need for this function comes from an error in the
gridding process or how different grids have been stitched together,
and it can be seen as symptom solving rather than solving the issue.
This function will either just show the problematic grid cells or remove
the overlaps.

Description

Function that finds and merges overlapping grid cells in a multi-resolution grid The need for this
function comes from an error in the gridding process or how different grids have been stitched
together, and it can be seen as symptom solving rather than solving the issue. This function will
either just show the problematic grid cells or remove the overlaps.

Usage

MRGoverlap(himg, vars, himg2, action = "sum")

Arguments

himg A multi-resolution grid, typically resulting from a call to multiResGrid

vars Variable(s) of interest that should be aggregated (necessary when ifg is used for
individual farm specific anonymization rules)

himg2 A multi-resolution grid, typically resulting from a call to multiResGrid

action How to treat the values of overlapping grid cells. Possible values are:

none return an sf data.frame just with the overlapping grid cells

sum sum the values of the overlapping grid cells - NAs are ignored unless both
cells are NA or one is NA and one is 0

sumna sum the values of the overlapping grid cells - sum is NA if any of them
is NA

avg avg of the grid cells - NAs are ignored unless both cells are NA or one is
NA and one is 0

avgna avg of the grid cells - avg is NA if any of them is NA

replace replace the problematic grid cells with grid cells from himg2

MRGoverlap 21

Details

A multi-resoluion grids should not have overlapping grid cells, by definition. However, this could
happen through stitching different grids together. Although this should rather have been taken care
of during the gridding process, this is not always possible to redo for an end-user.

This function can first of all be used to identify and show the overlapping grid cells. It can also be
used to create a valid multi-resolution grid for these cases, as long as the grd cells all have the same
base grid (i.e. no overlapping grid cells are partly overlapping, whether the grid cells have the same
size or not). However, there will be some additional errors introduced in this process.

Except for action = "none" and action = "replace", the function will try to create a valid grid
based on the values in the grid. This means that it has to find a sensible value for the merged grid
cells. Frequently one of the grid cells will have an NA value, meaning that it has been suppressed.
This means that there are observations in the grid cell, but relatively few. If the overlapping grid
cell has a value, this is most likely larger, it is non-confidential. The default action is therefore to
sum values, but ignore NA-values unless both are NA or one is NA and the other is 0. The last case
means that one of the grid cells have a confidential number of records, whereas the other one has
zero records. The total is then a confidential number of records.

if action = "restart", there must be a second grid which includes the updated values of the over-
lapping grid cells. This could typically happen if the data set is too large to be processed as a single
batch. There could then be overlapping grid cells on the border between different batches. Instead
of reprocessing the entire grid, it is possible to reprocess the border regions (in one more more
batches, as long as they are not overlapping). The grid cells from the border regions have to be
passed as himg2.

The function uses st_join to check for overlaps. If the grid has a very high number of grid cells
(a few tens of thousands), this process can be rather slow. In that case, it might be better to check
parts of the grid separately.

Value

The function will return different objects, depending on "action". The returned object will for
different values of "action" be:

none An sf data.frame with the overlapping grid cells

sum A multi-resolution grid containing the sum the values of the overlapping grid cells. NAs are
ignored unless both cells are NA or one is NA and one is 0

sumna A multi-resolution grid containing the sum the values of the overlapping grid cells. The
sum will be NA if any of them is NA

avg A multi-resolution grid containing the average of the grid cells. NAs are ignored unless both
cells are NA or one is NA and one is 0

avgna A multi-resolution grid containing the average of the grid cells. The average will be NA if
any of them is NA

replace A multi-resolution grid containing, where the problematic grid cells area replaced with
grid cells from himg2

Examples

library(sf)

22 MRGoverlap

library(dplyr)

These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

ress = c(1,5,10,20,40, 80, 160)*1000
Create regular grid of the variables, for three regions
ifl = gridData(ifg[ifg$REGIONS %in% c("DK03", "DK04", "DK05"),], vars = c("UAA"), res = ress)
ifl3 = gridData(ifg[ifg$REGIONS == "DK03",], vars = c("UAA"), res = ress)
ifl4 = gridData(ifg[ifg$REGIONS == "DK04",], vars = c("UAA"), res = ress)
ifl5 = gridData(ifg[ifg$REGIONS == "DK05",], vars = c("UAA"), res = ress)

Create the different multi-resolution grids for different nuts regions
himg3 = multiResGrid(ifl3, vars = "UAA", ifg = ifg[ifg$REGIONS == "DK03",], suppresslim = 0.02)
himg4 = multiResGrid(ifl4, vars = "UAA", ifg = ifg[ifg$REGIONS == "DK04",], suppresslim = 0.02)
himg5 = multiResGrid(ifl5, vars = "UAA", ifg = ifg[ifg$REGIONS == "DK05",], suppresslim = 0.02)

Bind them together and create new consecutive IDs for the grid cells
himg = rbind(himg3, himg4, himg5)
himg$ID = 1:dim(himg)[1]

Find the overlapping grid cells, and show some examples.
himgd = MRGoverlap(himg, action = "none")
dim(himgd)
himgd[himgd$ID.y %in% 932:940,]

Remove overlapping grid cells
himgnew = MRGoverlap(himg, action = "sum")

Check that there are no more overlaping grid cells
himgd2 = MRGoverlap(himgnew, action = "none")
himgd2

Create a new multi-resolution grid which has the correct grid cells
at the border. In this example, the region of interest is so small that
it is difficult to reprocess just the border grid cells, so
we make a new complete grid

himg1 = multiResGrid(ifl, vars = "UAA", ifg = ifg[ifg$REGIONS %in% c("DK03", "DK04", "DK05"),],
suppresslim = 0.02)

himgnew2 = MRGoverlap(himg, himg2 = himg1, action = "replace")
himgd12 = MRGoverlap(himgnew2, action = "none")
himgd12

MRGplot 23

MRGplot Convenience function based on ggplot2 to plot multi-resolution grids
with some default suggestions For full flexibility it is better to use gg-
plot2 directly.The function can also be used for ordinary grids

Description

Convenience function based on ggplot2 to plot multi-resolution grids with some default suggestions
For full flexibility it is better to use ggplot2 directly.The function can also be used for ordinary grids

Usage

MRGplot(
himg,
var,
linecolor,
option = "D",
lwd = 0,
lwdb = 1,
borders,
name = waiver(),
title = NULL,
xlim,
ylim,
crs,
clip = TRUE,
limits = NULL,
transform = "identity",
show.legend = TRUE

)

Arguments

himg A multi-resolution grid, typically resulting from a call to multiResGrid

var Which variable to plot

linecolor Which column or color to use for lines between grid cells. The default is not to
plot lines

option The color map option to use, see scale_color_viridis for more details

lwd Line width for the grid cells. Default is zero, to remove or minimize (for pdf)
the line width

lwdb The line width for the border

borders A polygon object with borders than can be drawn on top of the multi-resolution
grid. The object will also be used to clip the grid if clip = TRUE.

name Name to be used for color scale. The default is to use the name of the fill/color
column. name = NULL will give no name.

24 MRGplot

title The title of the plot

xlim The limits for the x-axis. The default is to use the bounding box of the grid.

ylim The limits for the y-axis. The default is to use the bounding box of the grid.

crs The coordinate reference system (CRS) into which all data should be projected
before plotting. If not specified, will use the CRS defined in the first sf layer of
the plot.

clip Logical; should the grid be clipped to the borders object (if exsisting)?

limits Either NULL to use the default scale range or a numeric vector of length two pro-
viding limits of the scale. Use NA to refer to the existing minimum or maximum.
See continuous_scale for more details

transform Possible transformation of the color scale, typical values can be "log", "log10"
or "sqrt", based on available transformations in the scales package. See for
example transform_log and other transformations for more details.

show.legend Logical; should the legend be shown or not.

Details

The function is a wrapper around ggplot, possibly calling geom_sf twice, for the grid itself and for
the borders. The function uses the scale_color_viridis color scale.

Value

The function will plot the object, and also return a valid ggplot-object that can be further cus-
tomized.

Examples

library(sf)
library(ggplot2)
library(dplyr)

if (require(giscoR)) {
useBorder = TRUE

} else {
useBorder = FALSE
print("You need to install giscoR for plotting borders and clipping the gridded maps")

}
These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

if (useBorder) {
Read country borders, only used for plotting, remove oversea regions

borders = gisco_get_nuts(nuts_level = 0)
}

MRGpostProcess 25

ress = c(1,5,10,20,40, 80, 160)*1000
Gridding Utilized agricultural area (UAA)
ifl = gridData(ifg, "UAA",res = ress)

Create a multi-resolution grid of UAA
himg1 = multiResGrid(ifl, vars = "UAA", ifg = ifg)

if (useBorder) {
p1 = MRGplot(himg1, UAA, transform = "log10", borders = borders, clip = TRUE)

} else {
p1 = MRGplot(himg1, UAA, transform = "log10")

}
p1

Plot can be customized further (reverting to ggplot default color scale in this case)
p1 + scale_color_continuous() + scale_fill_continuous()

MRGpostProcess Make some final adjustments to the multiresolution grids

Description

Make some final adjustments to the multiresolution grids

Usage

MRGpostProcess(himg, vars, remCols = TRUE, rounding = "varying")

Arguments

himg A multi-resolution grid, typically resulting from a call to multiResGrid
vars Variable(s) of interest that should be aggregated (necessary when ifg is used for

individual farm specific anonymization rules)
remCols Logical; Should intermediate columns be removed? Can be set to FALSE for

further analyses. Temporary columns will not be removed if their names partly
match the variable names of vars

rounding either logical (FALSE) or an integer indicating the number of decimal places to
be used. Negative values are allowed (such as the default value rounding to the
closest 10). See also the details for digits in round.

Details

The postprocessing function is normally called directly from multiResGrid. However, it might be
useful to check the values of the grid cells that will be suppressed, and the values before rounding.
In that case multiResGrid can be called with the argument postProcess = FALSE, and the post
processing be done separately.

26 multiResGrid

Value

The function will return a post-processed multi-resolution grid with non-confidential gridded data.
See multiResGrid for more information.

Examples

library(sf)

These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data
Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

Set the base resolutions, and create a hierarchical list with gridded data
ress = 1000*2^(1:7)
ifl = gridData(ifg, "UAA", res = ress)
himg = multiResGrid(ifl, ifg = ifg, var = "UAA", weight = "EXT_CORE", postProcess = FALSE)
himgp = MRGpostProcess(himg, var = "UAA")

Confidential grid cells, being suppressed in postProcessing
himg[himg$confidential,]

multiResGrid Create multi-resolution grids based on confidentiality or reliability re-
strictions

Description

Function that creates a multi-resolution grid with larger grid cells in regions with lower resolution
of data, or where data needs to be anonymized for disclosure control reasons. The function can also
be used to create a grid of new variables, using an existing multi-resolution grid as template. The
possible restrictions that will lead to aggregation of a grid cell are:

1. Frequency rule (Aggregate to reach a minimum number of counts)

2. Dominance rule (Aggregate because of dominance by one or more units)

3. p-percent rule (Aggregate because the second largest producer could identify the production
of the largest producer with less than p percent uncertainty.)

4. Reliability rule (Aggregate because the uncertainty is too high)

5. User defined rule (Aggregate because a grid cell does not respect a user defined criteria)

Usage

multiResGrid(MRGinp, ...)

S3 method for class 'MRG'
multiResGrid(MRGinp, ...)

multiResGrid 27

S3 method for class 'sf'
multiResGrid(MRGinp, ..., ifg, vars)

S3 method for class 'list'
multiResGrid(
MRGinp,
ifg,
vars,
weights,
countFeatureOrTotal = "feature",
mincount = 10,
nlarge = 2,
plim = 0.85,
verbose = FALSE,
domEstat = TRUE,
outfile = NULL,
checkDominance = TRUE,
checkPpercent = FALSE,
pPercent = 20,
checkReliability = FALSE,
userfun,
strat = NULL,
confrules = "individual",
suppresslim = 0,
sumsmall = FALSE,
suppresslimSum = NULL,
reliabilitySplit = TRUE,
pseudoreg = NULL,
plotIntermediate = FALSE,
addIntermediate = FALSE,
postProcess = TRUE,
rounding = "varying",
remCols = TRUE,
...

)

Arguments

MRGinp Either an MRGobject (from a call to createMRGobject) or a list of gridded
data with different resolutions (from a call to gridData or a gridded sf-object
(typically from an earlier call to multiResGrid)

... Possible arguments to underlying functions

ifg Either a data.frame or tibble or sf-object with the locations and the data of the
survey or census data, or a list of such objects.

vars Variable(s) of interest that should be aggregated (necessary when ifg is used for
individual farm specific anonymization rules)

28 multiResGrid

weights Extrapolation factor(s) (weights) wi of unit i in the sample of units nc falling
into a specific cell c. Weights are used for disclosure control measures. A weight
of 1 will be used if missing. If only one weight is given, it will be used for all
variables. If the length is more than one, the length has to be equal to the number
of variables. If the same weight is used for several variables, it must be repeated
in the weights-vector

countFeatureOrTotal

Should the frequency limit be applied on records with a positive value for a
certain feature, or on all records, independent of value of feature

mincount The minimum number of farms for a grid cell (threshold rule)

nlarge Parameter to be used if the nlarge(st) farms should count for maximum plim
percent of the total value for the variable in the grid cell (see details of gridData)

plim See nlarge

verbose Indicates if some extra output should be printed. Usually TRUE/FALSE, but can
also have a value of 2 for multiResGrid for even more output.

domEstat Should the dominance rule be applied as in the IFS handbook (TRUE), where
the weights are rounded before finding the first nlarge contributors, or should
it be the first nlarge contributors*weight, where also fractions are considered
(FALSE)?

outfile File to direct the output in case of parallel processing, see makeCluster for
more details.

checkDominance Logical - should the dominance rule be applied?

checkPpercent Logical - should the p-percent rule be applied?

pPercent Which limit to use for the p-Percent rule?
checkReliability

Logical - should the prediction variance be checked, and used for the aggrega-
tion? This considerably increases computation time

userfun This gives the possibility to add a user defined function with additional confi-
dentiality rules which the grid cell has to pass, based on the individual records

strat Column name defining the strata for stratified sampling, used if checkReliability
is TRUE

confrules Should the frequency rule (number of holdings) refer to the number of holdings
with a value of the individual vars above zero ("individual") or the total number
of holdings in the data set ("total")?

suppresslim Parameter that can be used to avoid that almost empty grid cells are merged with
cells with considerably higher number of observations. The value is a minimum
share of the total potential new cell for a grid cell to be aggregated. See below
for more details.

sumsmall Logical; should the suppresslimSum value be applied on the sum of small grid
cells within the lower resolution grid cell? Note that different combinations
of suppreslim and suppreslimSum values might not give completely intuitive
results.For instance, if both are equal, then a higher value can lead to more grid
cells being left unaggregated for smaller grid sizes, leading to aggregation for a
large grid cell

multiResGrid 29

suppresslimSum Parameter similar to suppreslim, but affecting the total of grid cells to be sup-
pressed

reliabilitySplit

Logical or number - parameter to be used in calculation of the reliability (if
checkReliability = TRUE). It can either give the number of groups, or if TRUE,
it will create groups of approdcimately 50,000 records per group. If FALSE, the
data set will not be split, independent on the size.

pseudoreg A column with regions to be used to define pseudostrata if checkReliability is
TRUE. This is used for the cases when one or more strata only has a single
record (and the weight is different from one). This makes variance calculation
impossible, so such strata are merged into a pseudostrata. If pseudoreg is given
(for example a column with the country name, or NUTS2 region), the pseudos-
trata will be created separately for each pseudoreg region.

plotIntermediate

Logical or number - make a simple plot showing which grid cells have already
passed the frequency rule. plotintermediate = TRUE, the function will wait 5
seconds after plotting before continuing, otherwise it will wait plotintermediate
seconds.

addIntermediate

Logical; will add a list of all intermediate himgs and lohs (overlay of himg and
the lower resolution grid) as an attribute to the object to be returned

postProcess Logical; should the postprocessing be done as part of creation of the multires-
olution grid (TRUE), or be done in a separate step afterwards (FALSE). The
second option is useful when wanting to check the confidential grid cells of the
final map

rounding either logical (FALSE) or an integer indicating the number of decimal places to
be used. Negative values are allowed (such as the default value rounding to the
closest 10). See also the details for digits in round.

remCols Logical; Should intermediate columns be removed? Can be set to FALSE for
further analyses. Temporary columns will not be removed if their names partly
match the variable names of vars

Details

This function will find the highest resolution data set that fulfills the confidentiality rules and poten-
tial reliability rules for variable(s) of interest. Starting with the second highest resolution (5 km in
the default settings), the function will check if any of the 1 km sub pixels will have values not ful-
filling any of the confidentiality rules (number of farms, values of the 2 largest compared to values
of the entire grid cell). If all values are above the confidentiality limits, the grid cells will be kept at
a 1 km resolution, otherwise only the 5 km grid cell will be kept. This will again be tested against
the confidentiality rules in the next iteration, when grid cells will possibly be merged to 10 km grid
cells.

The function can also be called if it is necessary to create a grid of a new variable for the same grid
as an already existing variable. The confidentiality rules will then be applied to the new variables
for the existing grid cells, and mask the ones that do not respect the rules. The function will not do
any further merging of grid cells, for this it is necessary to grid the variables together. This feature
is useful when the new data set has a similar resolution as the original data set. It will give a high

30 multiResGrid

number of missing values if the resolution of the new data is more sparse than the original. In the
examples below, this means that it is possible to copy the grid of organic organic agricultural area
to a grid of all agricultural area, whereas the opposite will not work well.

The standard threshold rule for spatial data is at least 10 units (mincount).

The parameters nlarge and plim are used for determining the dominance treatment for the variable
of interest, with default values of nlarge = 2 and plim = 0.85. If more than plim of the values
of the grid cell (e.g. UAA, arable land, number of livestock) is explained by 1-nlarge weighted
holdings, the grid cell will not pass the confidentiality rule.

It is also possible to apply the p-percent rule. This rule defines a minimum percentage for how
close the second largest producer could be of estimating the production of the largest producer by
subtracting its own production from the total value of the cell.

(Ycell − Y2 − Y1)/Y1 < pPercent

where Ycell, Y2, Y1 represent the total production value of the cell, the value of the second largest
production, and the value of the largest production, respectively.

The concept of reliability is explained in details in section 4.6 in the integrated farm survey hand-
book for 2023: https://wikis.ec.europa.eu/display/IFS/Integrated+Farm+Statistics+Manual+ In short,
it is an estimate of the coefficient of variation for an estimate (a grid cell in this case), based on the
number in the sample relative to the number in the population, and taking into account possible
stratified sampling approaches. The number is zero if all holdings in the population in a grid cell
has been sampled, and the default requirement is that the CV is less than 35

The computation can be time and memory intensive, particularly for the first iteration. The method
involves creation (and inversion) of a matrix of size nr*ng, where nr is the number of records and
ng is the number of grid cells. it is therefore sometimes necessary to split the data set into smaller
parts, to reduce the computational challenges. The parameter reliabilitySplit is used for this.
It will split the area of interest into several subsets. This will have some impact on the reliability
calculations. The reliabilitySplit value might be set temporarily higher for the first iterations,
as it will also depend on the number of grid cells.

Reliability cannot be calculated for records belonging to strata with only one record. The function
will therefore attempt to merge these into pseudostrata, if there is more than one of these strata. The
pseudoreg-parameter can be used to define the regions within which the pseudostrata are created
(for example NUTS2-region). If there are still strata with only one record, these will cause a printed
warning.

There are some cases where aggregation might not be desired. In the situation where a relatively
large single grid cell does not respect the confidentiality rules, it is fine to aggregate it if the neigh-
bouring grid cells are also relatively large. However, it can be seen as unfortunate if the single cell
was aggregated with many smaller grid cells that could otherwise be disseminated at a high resolu-
tion. The added value of being able to present a value for a region with very few farms is perhaps
lower than what is lost by having to aggregate to a lower resolution. The parameter suppresslim
indicates the minimum value in a grid cell relative to the possible lower resolution grid cell before
it is necessary to aggregate. If the limit is 0.05, a grid cell would only cause an aggregation to lower
resolution if the value in the grid cell is more than 5% of the value in the lower resolution grid cell.
Instead, it would be left as it is, and will be suppressed in the post-processing step.

There are cases when the built-in confidentiality checks are not what the user needs. That is why it
is possible to submit a user defined function. This function needs to follow certain rules.

multiResGrid 31

1. The first argument must be a data.frame with name df. This is a data.frame with the individual
records for a particular grid cell. It has three columns:

(a) himgid - the ID of the current grid cell. This is the grouping variable and is constant for
the data.frame

(b) gridvar - a new common name for the current variable to be gridded
(c) weight - the weight of the variable to be gridded

2. The function can include additional parameters for calculation of confidentiality (or reliabil-
ity, or suitability, if the meaning of the function refers to something else). This can be new
parameters to this particular function (through the ellipsis argument (...) of multiResGrid),
existing parameters to multiResGrid, or potentially internal variables of multiResGrid.)

3. The result of the function must be a logical, either the rule was passed for the records of this
grid cell, or not (TRUE/FALSE)

4. The function can potentially use all internal variables in the internal function confid. Only
the most useful will be mentioned here, meaning of the rest will have to be understood from
the code.

A simple example of a userfun is given in the example section below (the one producing himg6)

Value

The function will return a multi-resolution grid with observations gridded to different grid cell sizes
according to the confidentiality rules to be applied. It can also include some additional columns that
indicates which of the different confidentiality rules that have been applied.

Note that the function might (if postProcess = FALSE) return values also for the confidential grid-
cells. This is for the case where the owner of the data wants to examine data that will be suppressed
during post-processing.

Examples

library(sf)
if (!require(ggplot2)) print("Plotting of results will not work

without installation of ggplot2")
if (!require(viridis)) print("Some of the plots will not work

without installation of viridis package")
if (!require(patchwork)) print("Some of the plots will not work

without installation of patchwork")

if (require(giscoR)) {
useBorder = TRUE

} else {
useBorder = FALSE
print("You need to install giscoR for plotting borders and clipping the gridded maps")

}
These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data
ifs_weight = ifs_dk %>% dplyr::filter(Sample == 1) # Extract weighted subsample

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")

32 multiResGrid

fsg = fssgeo(ifs_weight, locAdj = "LL")

if (useBorder) {
Read country borders, only used for plotting

borders = gisco_get_nuts(nuts_level = 0)
dkb = borders[borders$CNTR_CODE == "DK",] %>% st_transform(crs = 3035)

}

ress = c(1,5,10,20,40, 80, 160)*1000
Gridding Utilized agricultural area (UAA)
ifl = gridData(ifg, "UAA",res = ress)
Gridding organic utilized agricultural area
ifl2 = gridData(ifg, vars = "UAAXK0000_ORG", res = ress)

Gridding UAA and organic UAA together
ifl3 = gridData(ifg, vars = c("UAA", "UAAXK0000_ORG"), res = ress)

Gridding the UAA from the survey - the survey weights are in the column EXT_MODULE
fsl = gridData(fsg, vars = c("UAA"), weights = "EXT_MODULE", res = ress)

Create a multi-resolution grid only with farm number as confidentiality rule, then plot results
himg0 = multiResGrid(ifl, checkReliability = FALSE, suppresslim = 0)
ggplot(himg0) + geom_sf(aes(fill = count))

Create a multi-resolution grid of UAA, also based on the dominance rule (default)
himg1 = multiResGrid(ifl, vars = "UAA", ifg = ifg)

p1 = ggplot(himg1) + geom_sf(aes(fill = UAA))
p1

Create a multi-resolution grid of UAA, also based on the p-percent rule
himg101 = multiResGrid(ifl, vars = "UAA", ifg = ifg, checkPpercent = TRUE)

p11 = ggplot(himg101) + geom_sf(aes(fill = UAA))
p11

Create multi-resolution grid of organic UAA
himg2 = multiResGrid(ifl2, vars = "UAAXK0000_ORG", ifg = ifg)
himg21 = multiResGrid(ifl2, vars = "UAAXK0000_ORG", ifg = ifg, postProcess = FALSE)

ggplot(himg2) + geom_sf(aes(fill = UAAXK0000_ORG))

Create joint multi-resolution grid of organic UAA and total UAA
himg3 = multiResGrid(ifl3, vars = c("UAA", "UAAXK0000_ORG"), ifg = ifg,

checkReliability = FALSE, suppresslim = 0)
Create multi-resolution grid of organic UAA, based on the UAA grid
The large number of missing values indicates that this feature should
mainly be used for data that have similar or higher resolution as the
original data set.
himg33 = multiResGrid(himg1, vars = c("UAAXK0000_ORG"), ifg = ifg,

checkReliability = FALSE, suppresslim = 0)
p31 = ggplot(himg3) + geom_sf(aes(fill = UAA))
p32 = ggplot(himg3) + geom_sf(aes(fill = UAAXK0000_ORG))
p33 = ggplot(himg33) + geom_sf(aes(fill = UAAXK0000_ORG))
if (require(patchwork)) p31 + p32 + p33

multiResGrid 33

Create multi-resolution grid of UAA, based on survey data,
with and without applying reliability check
This is a relatively slow functionality
rounding is set to FALSE, to be better able to visualize the few records
(Not recommended for data to be published)
himg4 = multiResGrid(fsl, vars = c("UAA"), weights = "EXT_MODULE", ifg = fsg,

strat = "STRA_ID_CORE", checkReliability = FALSE, rounding = FALSE)
The parameter reliabilitySplit = 15 will divide the data set in 15 groups for the
reliabilityCheck.
A lower value would be recommended, but a high value speeds up the computation for this example
himg5 = multiResGrid(fsl, vars = c("UAA"), weights = "EXT_MODULE", ifg = fsg,

strat = "STRA_ID_CORE", checkReliability = TRUE,
reliabilitySplit = TRUE, rounding = FALSE, pseudoreg = "REGIONS")

Apply suppreslim to suppress insignificant grid cells
Show intermediate maps of confidential cells (wait 5 seconds)
pint = ifelse(interactive(), 5, FALSE)
#himg11 = multiResGrid(ifl, vars = "UAA", ifg = ifg,
suppresslim = 0, plotIntermediate = pint)
himg11 = himg1
himg12 = multiResGrid(ifl, vars = "UAA", ifg = ifg,

suppresslim = 0.02, plotIntermediate = pint)
himg13 = multiResGrid(ifl, vars = "UAA", ifg = ifg,

suppresslim = 0.05, plotIntermediate = pint)
himg14 = multiResGrid(ifl, vars = "UAA", ifg = ifg,

suppresslim = 0.1, plotIntermediate = pint)

This is an example of a userfun that can be used for alternative restrictions
for a grid cell. This particular toy example assures that there are at least
\code{nabove} records with a value (UAA in this case) above a certain "limit".
ufun = function(df, nabove, limit) {

sum(df$gridvar > limit) < nabove
}

himg6 = multiResGrid(ifl, vars = "UAA", ifg = ifg,
suppresslim = 0.2, plotIntermediate = pint, userfun = ufun, nabove = 5, limit = 10)

if (useBorder) himg00 = st_intersection(dkb, himg0) else himg00 = himg0
p00 = ggplot() + geom_sf(data = himg00, aes(fill = count, color = count)) +

scale_fill_viridis(name = "number of farms", trans = "log10") +
scale_color_viridis(name = "number of farms", trans = "log10") +
coord_sf(crs = 3035) +
ggtitle("Number of farms for variable grid cell size, only frequency confidentiality") +
theme_bw()

if (useBorder) p00 = p00 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p00

if (useBorder) himg01 = st_intersection(dkb, himg1) else himg01 = himg1
p01 = ggplot() + geom_sf(data = himg01, aes(fill = count, color = count)) +

34 multiResGrid

scale_fill_viridis(name = "number of farms", trans = "log10") +
scale_color_viridis(name = "number of farms", trans = "log10") +
coord_sf(crs = 3035) +
ggtitle("Number of farms for variable grid cell size, frequency and dominance confidentiality") +
theme_bw()

if (useBorder) p01 = p01 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p01

Plot the density of organic agriculture, as hectares per square km
if (useBorder)himg02 = st_intersection(dkb, himg2) else himg02 = himg2
himg02$orgarea = himg02$UAAXK0000_ORG/units::set_units(st_area(himg02), "km^2")
units(himg02$orgarea) = NULL
p02 = ggplot() + geom_sf(data = himg02, aes(fill = orgarea), lwd = 0) +

scale_fill_viridis(name = "ha / km2") +
coord_sf(crs = 3035) +
ggtitle("Organic UAA density") +
theme_bw()

if (useBorder) p02 = p02 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p02

Plot the relative abundance of organic UAA relative to total UAA
if (useBorder) himg03 = st_intersection(dkb, himg3) else himg03 = himg3
himg03$ouaashare = himg03$UAAXK0000_ORG/himg03$UAA*100
p03 = ggplot() + geom_sf(data = himg03, aes(fill = ouaashare), lwd = 0) +

scale_fill_viridis(name = "% Organic") +
coord_sf(crs = 3035) +
ggtitle("Organic share") +
theme_bw()

if (useBorder) p03 = p03 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p03

Plot maps from survey data before and after adding the reliability constraint
The percentage of UAA can be above 100% due to farm area being registered at the location
of the administration building, but the map without reliability check has too high values
for too many cells

if (useBorder) himg04 = st_intersection(dkb, himg4) else himg04 = himg4
himg04$area = st_area(himg04)/1e6
units(himg04$area) = NULL
himg04$uaashare = himg04$UAA/himg04$area
himg04$uaashare[himg04$uaashare > 1000] = 1000
p04 = ggplot() + geom_sf(data = himg04, aes(fill = uaashare), lwd = 0) +

scale_fill_viridis(name = "% UAA", trans = "log10", limits = c(1,1000)) +
coord_sf(crs = 3035) +
ggtitle("UAA share (sample without reliability check)") +
theme_bw()

if (useBorder) p04 = p04 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p04

if (useBorder) himg05 = st_intersection(dkb, himg5) else himg05 = himg5
himg05$area = st_area(himg05)/1e6
units(himg05$area) = NULL

remSmall 35

himg05$uaashare = himg05$UAA/himg05$area
himg05$uaashare[himg05$uaashare > 1000] = 1000
p05 = ggplot() + geom_sf(data = himg05, aes(fill = uaashare), lwd = 0) +

scale_fill_viridis(name = "% UAA", trans = "log10", limits = c(1,1000)) +
coord_sf(crs = 3035) +
ggtitle("UAA share (sample with reliability check)") +
theme_bw()

if (useBorder) p05 = p05 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

if (require(patchwork)) p04 + p05 + plot_layout(guides = "collect")

if (useBorder) himg06 = st_intersection(dkb, himg6) else himg06 = himg6
p06 = ggplot() + geom_sf(data = himg06, aes(fill = UAA), lwd = 0) +

scale_fill_viridis(name = "ha") +
coord_sf(crs = 3035) +
ggtitle("UAA, with additional user defined function") +
theme_bw()

if (useBorder) p06 = p06 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)
p06

Plot the different maps from using different suppreslim values
himgs = list(himg11, himg12, himg13, himg14)
slims = c(0, 0.02, 0.05, 0.1, 0.2)
plots = list()
uaas = c(himg11$UAA, himg12$UAA, himg13$UAA, himg14$UAA)
lims = range(uaas[uaas > 0], na.rm = TRUE)
for (ii in 1:4) {

if (useBorder) himg = st_intersection(dkb, himgs[[ii]]) else himg = himgs[[ii]]
plots[[ii]] =
ggplot() + geom_sf(data = himg, aes(fill = UAA), lwd = 0) +
scale_fill_viridis(name = "UAA (ha)", trans = "log10", limits = lims, na.value="red") +
ggtitle(paste("Suppresslim = ", slims[[ii]])) +
xlab("") + ylab("") +
theme_bw()
if (useBorder) plots[[ii]] = plots[[ii]] +

geom_sf(data = dkb, fill = NA, colour='black', lwd = 0.5)
}

if (require(patchwork)) plots[[1]] + plots[[2]] + plots[[3]] + plots[[4]] +
plot_layout(guides = "collect")

#' @rdname multiResGrid

remSmall Function that will move values from grid cells with small values to the
ones with larger values for disclosure control reasons

36 remSmall

Description

Two main confidentiality rules are considered: - Threshold rule (suppression due to a minimum
number of counts) - Dominance rule (suppression due to dominance by one or more units)

Usage

remSmall(
gdl,
ress,
ires0,
mincount = 10,
ifg,
var,
weight,
nlarge = 2,
plim = 0.85,
sampleRandom = TRUE,
domEstat = TRUE,
verbose = FALSE,
nclus = 1,
clusType,
outfile = NULL,
checkDominance = TRUE,
checkReliability = TRUE

)

Arguments

gdl A list of gridded data with different resolutions (from a call to gridData

ress A vector with the different resolutions

ires0 Which resolution level to use as base for the downscaling

mincount The minimum number of farms for a grid cell (threshold rule)

ifg Either a data.frame or tibble or sf-object with the locations and the data of the
survey or census data, or a list of such objects.

var Variable of interest that should be aggregated (necessary when ifg is used for
individual farm specific confidence rules)

weight Extrapolation factor (weight) wi of unit i in the sample of units nc falling into a
specific cell c. Weights are used for disclosure control measures.

nlarge Parameter to be used if the nlarge(st) farms should count for maximum plim
percent of the total value for the variable in the grid cell (see details of gridData)

plim See nlarge

sampleRandom Logical; if the value is TRUE, values from grid cells with values under the limit
will be moved to a random neighbour if there are more neighbours above the
limit. False will always pick the largest (and the first one in the list if they are
equal)

remSmall 37

domEstat Should the dominance rule be applied as in the IFS handbook (TRUE), where
the weights are rounded before finding the first nlarge contributors, or should
it be the first nlarge contributors*weight, where also fractions are considered
(FALSE)?

verbose Indicates if some extra output should be printed. Usually TRUE/FALSE, but can
also have a value of 2 for multiResGrid for even more output.

nclus Number of clusters to use for parallel processing. No parallelization is used for
nclus = 1.

clusType The type of cluster; see makeCluster for more details. The default of makeClus-
ter is used if type is missing or NA

outfile File to direct the output in case of parallel processing, see makeCluster for
more details.

checkDominance Logical - should the dominance rule be applied?
checkReliability

Logical - should the prediction variance be checked, and used for the aggrega-
tion? This considerably increases computation time

Details

This function uses the hierarchy of gridded data to associate values from grid cells that need to be
anonymized to the grid cell with the highest values, within increasingly larger sub-grids.

The parameters nlarge and plim are used for setting value dependent confidentiality rules. If the
rule is that the largest two holdings in a grid cell should not count for more than 85 of the total value
(UAA, number of livestock, ...), then nlarge = 2 and plim = 0.85

The function will create set the value to NA for the grid cells where the content has been moved to
a neighbouring grid cells.

Value

A gridded data set, where each grid cell respects the confidentiality rules.

Examples

library(sf)
library(sf)
if (!require(ggplot2)) print("Plotting of results will not work without installation of ggplot2")
if (!require(viridis)) print("Some of the plots will not work without installation of ggplot2")
if (!require(patchwork)) print("Some of the plots will not work without installation of patchwork")

if (require(giscoR)) {
useBorder = TRUE

} else {
useBorder = FALSE
print("You need to install giscoR for plotting borders and clipping the gridded maps")

}
These are SYNTHETIC agricultural FSS data
data(ifs_dk) # Census data
ifs_weight = ifs_dk %>% dplyr::filter(Sample == 1) # Extract weighted subsample

38 remSmall

Create spatial data
ifg = fssgeo(ifs_dk, locAdj = "LL")
fsg = fssgeo(ifs_weight, locAdj = "LL")

if (useBorder) {
Read country borders, only used for plotting

borders = gisco_get_nuts(nuts_level = 0)
dkb = borders[borders$CNTR_CODE == "DK",] %>% st_transform(crs = 3035)

}

Set the base resolutions, and create a hierarchical list with gridded data
ress = c(1,5,10,20,40,80, 160, 320, 640, 1280, 2560)*1000
Create the grid with UAA as variable and EXT_CORE as weight
These can be dropped if only the number of farms are of interest in the analyses
ifl = gridData(ifg, "UAA", weight = "EXT_CORE", res = ress)

Run the procedure for the third resolution level (10 km), only using number of holdings
as confidentiality rule
himg1 and himg2 should give the same result, but only when sampleRandom = FALSE
himg1 <- remSmall(ifl, ress, 3, sampleRandom = FALSE)
plot(himg1[, "count"])
himg12 <- remSmall(ifl, ress, 3, sampleRandom = FALSE, nclus = 2)
Run the procedure for UAA, using the defaults for variable
confidentiality rule (nlarge = 2 and plim = 0.85)

himg2 <- remSmall(ifl, ress, weight = "EXT_CORE", ires0 = 3, var = "UAA", ifg = ifg)
plot(himg2[, "count"])
plot(himg2[, "UAA"])

Run the procedure for organic UAA, but still requiring 10 holdings of any kind per grid cell
Using resolution level 5 (40 km)
iflOuaaAll = gridData(ifg, "UAAXK0000_ORG", res = ress)

himg3 = remSmall(iflOuaaAll, ress, 5, ifg = ifg, var = "UAAXK0000_ORG")
plot(himg3[, "count"])
plot(himg3[, "UAAXK0000_ORG"])

Run the procedure for organic UAA, but require at least 10 organic holdings per grid cell
Using resolution level 5 (40 km)
ifgOuaa = ifg[ifg$UAAXK0000_ORG > 0,]
iflOuaa = list()
iflOuaa = gridData(ifgOuaa, "UAAXK0000_ORG", res = ress)
himg4 = remSmall(iflOuaa, ress, 5, ifg = ifg, var = "UAAXK0000_ORG")
plot(himg4[, "count"])
plot(himg4[, "UAAXK0000_ORG"])

himg4l = list()
Run the proceduure for organic UAA for different resolution levels
for (ipl in 1:6) himg4l[[ipl]] = remSmall(iflOuaa, ress, ipl, ifg = ifg, var = "UAAXK0000_ORG")

Create proper plots
breaks = c(1,3,10,30,100)

remSmall 39

labels = breaks
p1 = ggplot() + geom_sf(data = himg1, aes(fill = count, color = count)) +

scale_fill_viridis(name = "number of \nholdings", trans = "log10",
breaks = breaks, labels = labels, limits = c(1,100)) +

scale_color_viridis(name = "number of \nholdings", trans = "log10",
breaks = breaks, labels = labels, limits = c(1,100)) +

coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("Number of holdings after swapping") +
theme_bw()

if (useBorder) p1 = p1 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

For comparison the number of organic farms and organic UAA, without taking any
confidentiality into account
gcompOfarms = ggplot() + geom_sf(data = ifl[[3]], aes(fill = count, color = count)) +

scale_fill_viridis(name = "number of \nholdings", trans = "log10",
breaks = breaks, labels = labels, limits = c(1,100)) +

scale_color_viridis(name = "number of \nholdings", trans = "log10",
breaks = breaks, labels = labels, limits = c(1,100)) +

coord_sf(crs = 3035) +
ggtitle("Number of holdings - ordinary gridded data") +
theme_bw()

if (useBorder) p1 = p1 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

if (require(patchwork)) gcompOfarms + p1 + plot_layout(guides = "collect")

p2 = ggplot() + geom_sf(data = himg2, aes(fill = count, color = count)) +
scale_fill_viridis(name = "number of \nholdings", trans = "log10") +
scale_color_viridis(name = "number of \nholdings", trans = "log10") +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("Number of farms - corrected for farm size") +
theme_bw()

if (useBorder) p2 = p2 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

p3 = ggplot() + geom_sf(data = himg2, aes(fill = UAA, color = UAA)) +
scale_fill_viridis(name = "UAA", trans = "log10") +
scale_color_viridis(name = "UAA", trans = "log10") +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("UAA - corrected for farm size") +
theme_bw()

if (useBorder) p3 = p3 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

p4 = ggplot() + geom_sf(data = himg3, aes(fill = count, color = count)) +
scale_fill_viridis(name = "number of \nholdings", trans = "log10") +
scale_color_viridis(name = "number of \nholdings", trans = "log10") +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("Number of farms - based on number of organic farms and organic farm size") +
theme_bw()

if (useBorder) p4 = p4 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

p5 = ggplot() + geom_sf(data = himg3, aes(fill = UAAXK0000_ORG, color = UAAXK0000_ORG)) +
scale_fill_viridis(name = "UAA organic", trans = "log10") +
scale_color_viridis(name = "UAA organic", trans = "log10") +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +

40 remSmall

ggtitle("UAA organic - based on organic farm numbers and size") +
theme_bw()

if (useBorder) p5 = p5 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

p6 = ggplot() + geom_sf(data = himg4, aes(fill = count, color = count)) +
scale_fill_viridis(name = "number of \nholdings", trans = "log10") +
scale_color_viridis(name = "number of \nholdings", trans = "log10") +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("Number of organic farms - based on organic farm numbers and size") +
theme_bw()

if (useBorder) p6 = p6 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

uaalims = c(min(c(himg4$UAAXK0000_ORG, iflOuaa[[5]]$UAAXK0000_ORG), na.rm = TRUE),
max(c(himg4$UAAXK0000_ORG, iflOuaa[[5]]$UAAXK0000_ORG), na.rm = TRUE))

p7 = ggplot() + geom_sf(data = himg4, aes(fill = UAAXK0000_ORG, color = UAAXK0000_ORG)) +
scale_fill_viridis(name = "UAA organic", trans = "log10", limits = uaalims) +
scale_color_viridis(name = "UAA organic", trans = "log10", limits = uaalims) +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +
ggtitle("UAA organic after swapping ") +
theme_bw()

if (useBorder) p7 = p7 + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

For comparison the number of organic farms and organic UAA, without taking any
confidentiality into account

gcompOUAA = ggplot() + geom_sf(data = iflOuaa[[5]],
aes(fill = UAAXK0000_ORG, color = UAAXK0000_ORG)) +

scale_fill_viridis(name = "UAA organic", trans = "log10", limits = uaalims) +
scale_color_viridis(name = "UAA organic", trans = "log10", limits = uaalims) +
coord_sf(crs = 3035) +
ggtitle("Organic UAA - ordinary gridded data") +
theme_bw()

if (useBorder) gcompOUAA = gcompOUAA + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

if (require(patchwork)) print(gcompOUAA) + p7 + plot_layout(guides = "collect")

ppl = list()
counts = do.call("rbind", himg4l[1:5])$count
clim = c(min(counts, na.rm = TRUE), max(counts, na.rm = TRUE))
for (ipl in 1:length(himg4l)) {
ppl[[ipl]] = ggplot() + geom_sf(data = himg4l[[ipl]], aes(fill = count, color = count)) +

scale_fill_viridis(name = "number of \nholdings", trans = "log10", limits = clim) +
scale_color_viridis(name = "number of \nholdings", trans = "log10", limits = clim) +
coord_sf(crs = 3035) +#, xlim = c(2377294, 6400000), ylim = c(1313597, 5628510)) +

ggtitle(paste("Base resolution", ress[ipl]/1000, "km")) +
theme_bw()

if (useBorder) ppl[[ipl]] = ppl[[ipl]] + geom_sf(data = dkb, fill = NA, colour='black', lwd = 1)

}
if (require(patchwork)) ppl[[1]] + ppl[[2]] + ppl[[3]] + ppl[[4]] + plot_layout(guides = "collect")

MRGcluster(action = "stop")

Index

∗ datasets
ifs_dk, 10

continuous_scale, 24
createMRGobject, 2, 5, 27

fssgeo, 6

ggplot, 24
gridData, 3, 7, 27, 28, 36

ifs_dk, 10
inspireID, 11

locAdjFun, 13

makeCluster, 4, 14, 28, 37
MRGcluster, 14
MRGfromDF, 15
MRGmerge, 16
MRGoverlap, 20
MRGplot, 23
MRGpostProcess, 25
multiResGrid, 4, 8, 17, 25, 26, 26, 28, 37

print.MRG (createMRGobject), 2

remSmall, 35
round, 5, 25, 29

scale_color_viridis, 23, 24
sf, 7, 14, 16, 18, 21
st_join, 21
st_nearest_feature, 12
st_write, 15, 16

transform_log, 24

41

	createMRGobject
	fssgeo
	gridData
	ifs_dk
	inspireID
	locAdjFun
	MRGcluster
	MRGfromDF
	MRGmerge
	MRGoverlap
	MRGplot
	MRGpostProcess
	multiResGrid
	remSmall
	Index

