
Package ‘Hmisc’
January 9, 2026

Version 5.2-5

Date 2026-01-08

Title Harrell Miscellaneous

Depends R (>= 4.2.0)

Imports methods, ggplot2, cluster, rpart, nnet, foreign, gtable, grid,
gridExtra, data.table, htmlTable (>= 1.11.0), viridisLite,
htmltools, base64enc, colorspace, rmarkdown, knitr, Formula

Suggests survival, qreport, acepack, chron, rms, mice, rstudioapi,
tables, plotly (>= 4.5.6), rlang, VGAM, leaps, pcaPP, digest,
parallel, polspline, abind, kableExtra, rio, lattice,
latticeExtra, gt, sparkline, jsonlite, htmlwidgets, qs,
getPass, keyring, safer, htm2txt, boot

Description Contains many functions useful for data
analysis, high-level graphics, utility operations, functions for
computing sample size and power, simulation, importing and annotating datasets,
imputing missing values, advanced table making, variable clustering,
character string manipulation, conversion of R objects to LaTeX and html code,
recoding variables, caching, simplified parallel computing, encrypting and decrypting data us-
ing a safe workflow, general moving window statistical estimation, and assistance in interpret-
ing principal component analysis.

License GPL (>= 2)

LazyLoad Yes

URL https://hbiostat.org/R/Hmisc/

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Frank E Harrell Jr [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8271-5493>),

Cole Beck [ctb],
Charles Dupont [ctb]

Maintainer Frank E Harrell Jr <fh@fharrell.com>

1

https://hbiostat.org/R/Hmisc/
https://orcid.org/0000-0002-8271-5493

2 Contents

Repository CRAN

Date/Publication 2026-01-09 09:30:57 UTC

Contents
abs.error.pred . 6
addggLayers . 7
addMarginal . 9
all.is.numeric . 10
approxExtrap . 11
areg . 12
aregImpute . 16
binconf . 26
biVar . 27
bootkm . 30
bpower . 32
bpplot . 34
bystats . 36
capitalize . 38
ciapower . 39
cnvrt.coords . 40
colorFacet . 43
combine.levels . 44
combplotp . 45
completer . 47
consolidate . 49
contents . 50
cpower . 52
Cs . 55
csv.get . 56
curveRep . 58
cut2 . 63
data.frame.create.modify.check . 65
dataRep . 74
deff . 77
describe . 78
discrete . 85
dotchart2 . 87
dotchart3 . 89
dotchartpl . 93
dualSD . 97
ebpcomp . 99
Ecdf . 99
ecdfSteps . 104
equalBins . 105
errbar . 106
escapeRegex . 107

Contents 3

estSeqMarkovOrd . 108
estSeqSim . 112
event.chart . 114
event.convert . 124
event.history . 125
extractlabs . 131
Fdebug . 132
fImport . 133
find.matches . 134
first.word . 138
format.df . 139
format.pval . 142
gbayes . 143
gbayesSeqSim . 150
geom_stepconfint . 152
getabd . 154
getHdata . 154
getRs . 156
getZip . 157
ggfreqScatter . 158
ggplotlyr . 160
GiniMd . 161
hashCheck . 162
hdquantile . 163
hidingTOC . 165
hist.data.frame . 166
histbackback . 167
histboxp . 168
hlab . 170
hlabs . 171
HmiscOverview . 172
hoeffd . 178
html . 180
htmltabv . 183
impute . 184
intMarkovOrd . 185
knitrSet . 187
labcurve . 189
label . 199
Lag . 204
latestFile . 205
latex . 206
latexCheckOptions . 215
latexDotchart . 216
latexTabular . 218
latexTherm . 219
legendfunctions . 221
list.tree . 221

4 Contents

makeNstr . 223
mApply . 223
mChoice . 225
mdb.get . 229
meltData . 230
Merge . 232
mgp.axis . 233
mhgr . 234
minor.tick . 236
Misc . 238
movStats . 244
mtitle . 247
multLines . 248
na.delete . 249
na.detail.response . 250
na.keep . 252
nCoincident . 253
nobsY . 253
nstr . 254
num.intercepts . 255
ordGroupBoot . 256
pairUpDiff . 257
panel.bpplot . 259
partition . 264
pc1 . 265
plot.princmp . 266
plotCorrM . 267
plotCorrPrecision . 269
plotlyM . 270
plsmo . 273
pMedian . 277
popower . 278
princmp . 282
print.char.list . 284
print.char.matrix . 285
print.princmp . 287
printL . 287
prnz . 288
prselect . 289
pstamp . 290
qcrypt . 291
qrxcenter . 293
r2describe . 294
R2Measures . 295
rcorr . 297
rcorr.cens . 298
rcorrp.cens . 301
rcspline.eval . 304

Contents 5

rcspline.plot . 305
rcspline.restate . 307
redun . 309
reShape . 312
rlegend . 315
rm.boot . 316
rmClose . 324
rMultinom . 325
runifChanged . 325
runParallel . 327
samplesize.bin . 328
sas.get . 329
sasxport.get . 336
Save . 339
scat1d . 340
score.binary . 348
sedit . 350
seqFreq . 353
show.pch . 353
showPsfrag . 354
simMarkovOrd . 355
simplifyDims . 357
simRegOrd . 358
smean.sd . 360
solvet . 362
somers2 . 362
soprobMarkovOrd . 364
soprobMarkovOrdm . 365
spikecomp . 366
spower . 368
spss.get . 374
src . 376
stata.get . 377
stat_plsmo . 378
string.bounding.box . 380
string.break.line . 380
stringDims . 381
subplot . 382
summarize . 384
summary.formula . 388
summaryM . 403
summaryP . 411
summaryRc . 416
summaryS . 418
symbol.freq . 424
sys . 425
t.test.cluster . 426
tabulr . 427

6 abs.error.pred

testCharDateTime . 430
tex . 431
transace . 432
transcan . 441
translate . 458
trunc.POSIXt . 459
units . 460
upData . 461
upFirst . 466
valueTags . 466
varclus . 468
vlab . 473
wtd.stats . 474
xtfrm.labelled . 477
xy.group . 478
xYplot . 479
yearDays . 487
ynbind . 488
%nin% . 489

Index 491

abs.error.pred Indexes of Absolute Prediction Error for Linear Models

Description

Computes the mean and median of various absolute errors related to ordinary multiple regression
models. The mean and median absolute errors correspond to the mean square due to regression,
error, and total. The absolute errors computed are derived from Ŷ − median(Ŷ), Ŷ − Y , and
Y − median(Y). The function also computes ratios that correspond to R2 and 1 − R2 (but these
ratios do not add to 1.0); the R2 measure is the ratio of mean or median absolute Ŷ − median(Ŷ)
to the mean or median absolute Y − median(Y). The 1 − R2 or SSE/SST measure is the mean or
median absolute Ŷ − Y divided by the mean or median absolute Ŷ − median(Y).

Usage

abs.error.pred(fit, lp=NULL, y=NULL)

S3 method for class 'abs.error.pred'
print(x, ...)

Arguments

fit a fit object typically from lm or ols that contains a y vector (i.e., you should
have specified y=TRUE to the fitting function) unless the y argument is given
to abs.error.pred. If you do not specify the lp argument, fit must contain
fitted.values or linear.predictors. You must specify fit or both of lp
and y.

addggLayers 7

lp a vector of predicted values (Y hat above) if fit is not given

y a vector of response variable values if fit (with y=TRUE in effect) is not given

x an object created by abs.error.pred

... unused

Value

a list of class abs.error.pred (used by print.abs.error.pred) containing two matrices: differences
and ratios.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Schemper M (2003): Stat in Med 22:2299-2308.

Tian L, Cai T, Goetghebeur E, Wei LJ (2007): Biometrika 94:297-311.

See Also

lm, ols, cor, validate.ols

Examples

set.seed(1) # so can regenerate results
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- exp(x1+x2+rnorm(100))
f <- lm(log(y) ~ x1 + poly(x2,3), y=TRUE)
abs.error.pred(lp=exp(fitted(f)), y=y)
rm(x1,x2,y,f)

addggLayers addggLayers

Description

Add Spike Histograms and Extended Box Plots to ggplot

8 addggLayers

Usage

addggLayers(
g,
data,
type = c("ebp", "spike"),
ylim = layer_scales(g)yget_limits(),
by = "variable",
value = "value",
frac = 0.065,
mult = 1,
facet = NULL,
pos = c("bottom", "top"),
showN = TRUE

)

Arguments

g a ggplot object
data data frame/table containing raw data
type specifies either extended box plot or spike histogram. Both are horizontal so are

showing the distribution of the x-axis variable.
ylim y-axis limits to use for scaling the height of the added plots, if you don’t want

to use the limits that ggplot has stored
by the name of a variable in data used to stratify raw data
value name of x-variable
frac fraction of y-axis range to devote to vertical aspect of the added plot
mult fudge factor for scaling y aspect
facet optional faceting variable
pos position for added plot
showN sete to FALSE to not show sample sizes

Details

For an example see this. Note that it was not possible to just create the layers needed to be added,
as creating these particular layers in isolation resulted in a ggplot error.

Value

the original ggplot object with more layers added

Author(s)

Frank Harrell

See Also

spikecomp()

https://hbiostat.org/rflow/analysis.html#fig-table1

addMarginal 9

addMarginal Add Marginal Observations

Description

Given a data frame and the names of variable, doubles the data frame for each variable with a new
category "All" by default, or by the value of label. A new variable .marginal. is added to the
resulting data frame, with value "" if the observation is an original one, and with value equal to
the names of the variable being marginalized (separated by commas) otherwise. If there is another
stratification variable besides the one in . . . , and that variable is nested inside the variable in . . . ,
specify nested=variable name to have the value of that variable set fo label whenever marginal
observations are created for See the state-city example below.

Usage

addMarginal(data, ..., label = "All", margloc=c('last', 'first'), nested)

Arguments

data a data frame

... a list of names of variables to marginalize

label category name for added marginal observations

margloc location for marginal category within factor variable specifying categories. Set
to "first" to override the default - to put a category with value label as the
first category.

nested a single unquoted variable name if used

Examples

d <- expand.grid(sex=c('female', 'male'), country=c('US', 'Romania'),
reps=1:2)

addMarginal(d, sex, country)

Example of nested variables
d <- data.frame(state=c('AL', 'AL', 'GA', 'GA', 'GA'),

city=c('Mobile', 'Montgomery', 'Valdosto',
'Augusta', 'Atlanta'),

x=1:5, stringsAsFactors=TRUE)
addMarginal(d, state, nested=city) # cite set to 'All' when state is

10 all.is.numeric

all.is.numeric Check if All Elements in Character Vector are Numeric

Description

Tests, without issuing warnings, whether all elements of a character vector are legal numeric values,
or optionally converts the vector to a numeric vector. Leading and trailing blanks in x are ignored.

Usage

all.is.numeric(x, what = c("test", "vector", "nonnum"), extras=c('.','NA'))

Arguments

x a character vector

what specify what="vector" to return a numeric vector if it passes the test, or the
original character vector otherwise, the default "test" to return FALSE if there
are no non-missing non-extra values of x or there is at least one non-numeric
value of x, or "nonnum" to return the vector of non-extra, non-NA, non-numeric
values of x.

extras a vector of character strings to count as numeric values, other than "".

Value

a logical value if what="test" or a vector otherwise

Author(s)

Frank Harrell

See Also

as.numeric

Examples

all.is.numeric(c('1','1.2','3'))
all.is.numeric(c('1','1.2','3a'))
all.is.numeric(c('1','1.2','3'),'vector')
all.is.numeric(c('1','1.2','3a'),'vector')
all.is.numeric(c('1','',' .'),'vector')
all.is.numeric(c('1', '1.2', '3a'), 'nonnum')

approxExtrap 11

approxExtrap Linear Extrapolation

Description

Works in conjunction with the approx function to do linear extrapolation. approx in R does not
support extrapolation at all, and it is buggy in S-Plus 6.

Usage

approxExtrap(x, y, xout, method = "linear", n = 50, rule = 2, f = 0,
ties = "ordered", na.rm = FALSE)

Arguments

x, y, xout, method, n, rule, f
see approx

ties applies only to R. See approx

na.rm set to TRUE to remove NAs in x and y before proceeding

Details

Duplicates in x (and corresponding y elements) are removed before using approx.

Value

a vector the same length as xout

Author(s)

Frank Harrell

See Also

approx

Examples

approxExtrap(1:3,1:3,xout=c(0,4))

12 areg

areg Additive Regression with Optimal Transformations on Both Sides us-
ing Canonical Variates

Description

Expands continuous variables into restricted cubic spline bases and categorical variables into dummy
variables and fits a multivariate equation using canonical variates. This finds optimum transforma-
tions that maximize R2. Optionally, the bootstrap is used to estimate the covariance matrix of both
left- and right-hand-side transformation parameters, and to estimate the bias in the R2 due to over-
fitting and compute the bootstrap optimism-corrected R2. Cross-validation can also be used to get
an unbiased estimate of R2 but this is not as precise as the bootstrap estimate. The bootstrap and
cross-validation may also used to get estimates of mean and median absolute error in predicted val-
ues on the original y scale. These two estimates are perhaps the best ones for gauging the accuracy
of a flexible model, because it is difficult to compare R2 under different y-transformations, and
because R2 allows for an out-of-sample recalibration (i.e., it only measures relative errors).

Note that uncertainty about the proper transformation of y causes an enormous amount of model
uncertainty. When the transformation for y is estimated from the data a high variance in predicted
values on the original y scale may result, especially if the true transformation is linear. Comparing
bootstrap or cross-validated mean absolute errors with and without restricted the y transform to be
linear (ytype='l') may help the analyst choose the proper model complexity.

Usage

areg(x, y, xtype = NULL, ytype = NULL, nk = 4,
B = 0, na.rm = TRUE, tolerance = NULL, crossval = NULL)

S3 method for class 'areg'
print(x, digits=4, ...)

S3 method for class 'areg'
plot(x, whichx = 1:ncol(x$x), ...)

S3 method for class 'areg'
predict(object, x, type=c('lp','fitted','x'),

what=c('all','sample'), ...)

Arguments

x A single predictor or a matrix of predictors. Categorical predictors are required
to be coded as integers (as factor does internally). For predict, x is a data
matrix with the same integer codes that were originally used for categorical
variables.

y a factor, categorical, character, or numeric response variable

xtype a vector of one-letter character codes specifying how each predictor is to be
modeled, in order of columns of x. The codes are "s" for smooth function

areg 13

(using restricted cubic splines), "l" for no transformation (linear), or "c" for
categorical (to cause expansion into dummy variables). Default is "s" if nk > 0
and "l" if nk=0.

ytype same coding as for xtype. Default is "s" for a numeric variable with more
than two unique values, "l" for a binary numeric variable, and "c" for a factor,
categorical, or character variable.

nk number of knots, 0 for linear, or 3 or more. Default is 4 which will fit 3 param-
eters to continuous variables (one linear term and two nonlinear terms)

B number of bootstrap resamples used to estimate covariance matrices of transfor-
mation parameters. Default is no bootstrapping.

na.rm set to FALSE if you are sure that observations with NAs have already been re-
moved

tolerance singularity tolerance. List source code for lm.fit.qr.bare for details.

crossval set to a positive integer k to compute k-fold cross-validated R-squared (square
of first canonical correlation) and mean and median absolute error of predictions
on the original scale

digits number of digits to use in formatting for printing

object an object created by areg

whichx integer or character vector specifying which predictors are to have their trans-
formations plotted (default is all). The y transformation is always plotted.

type tells predict whether to obtain predicted untransformed y (type='lp', the de-
fault) or predicted y on the original scale (type='fitted'), or the design matrix
for the right-hand side (type='x').

what When the y-transform is non-monotonic you may specify what='sample' to
predict to obtain a random sample of y values on the original scale instead of
a matrix of all y-inverses. See inverseFunction.

... arguments passed to the plot function.

Details

areg is a competitor of ace in the acepack package. Transformations from ace are seldom smooth
enough and are often overfitted. With areg the complexity can be controlled with the nk parameter,
and predicted values are easy to obtain because parametric functions are fitted.

If one side of the equation has a categorical variable with more than two categories and the other
side has a continuous variable not assumed to act linearly, larger sample sizes are needed to reliably
estimate transformations, as it is difficult to optimally score categorical variables to maximize R2

against a simultaneously optimally transformed continuous variable.

Value

a list of class "areg" containing many objects

14 areg

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Breiman and Friedman, Journal of the American Statistical Association (September, 1985).

See Also

cancor,ace, transcan

Examples

set.seed(1)

ns <- c(30,300,3000)
for(n in ns) {

y <- sample(1:5, n, TRUE)
x <- abs(y-3) + runif(n)
par(mfrow=c(3,4))
for(k in c(0,3:5)) {
z <- areg(x, y, ytype='c', nk=k)
plot(x, z$tx)

title(paste('R2=',format(z$rsquared)))
tapply(z$ty, y, range)
a <- tapply(x,y,mean)
b <- tapply(z$ty,y,mean)
plot(a,b)

abline(lsfit(a,b))
Should get same result to within linear transformation if reverse x and y
w <- areg(y, x, xtype='c', nk=k)
plot(zty, wtx)
title(paste('R2=',format(w$rsquared)))
abline(lsfit(zty, wtx))

}
}

par(mfrow=c(2,2))
Example where one category in y differs from others but only in variance of x
n <- 50
y <- sample(1:5,n,TRUE)
x <- rnorm(n)
x[y==1] <- rnorm(sum(y==1), 0, 5)
z <- areg(x,y,xtype='l',ytype='c')
z
plot(z)
z <- areg(x,y,ytype='c')
z
plot(z)

areg 15

Not run:
Examine overfitting when true transformations are linear
par(mfrow=c(4,3))
for(n in c(200,2000)) {

x <- rnorm(n); y <- rnorm(n) + x
for(nk in c(0,3,5)) {
z <- areg(x, y, nk=nk, crossval=10, B=100)
print(z)
plot(z)
title(paste('n=',n))

}
}
par(mfrow=c(1,1))

Underfitting when true transformation is quadratic but overfitting
when y is allowed to be transformed
set.seed(49)
n <- 200
x <- rnorm(n); y <- rnorm(n) + .5*x^2
#areg(x, y, nk=0, crossval=10, B=100)
#areg(x, y, nk=4, ytype='l', crossval=10, B=100)
z <- areg(x, y, nk=4) #, crossval=10, B=100)
z
Plot x vs. predicted value on original scale. Since y-transform is
not monotonic, there are multiple y-inverses
xx <- seq(-3.5,3.5,length=1000)
yhat <- predict(z, xx, type='fitted')
plot(x, y, xlim=c(-3.5,3.5))
for(j in 1:ncol(yhat)) lines(xx, yhat[,j], col=j)
Plot a random sample of possible y inverses
yhats <- predict(z, xx, type='fitted', what='sample')
points(xx, yhats, pch=2)

End(Not run)

True transformation of x1 is quadratic, y is linear
n <- 200
x1 <- rnorm(n); x2 <- rnorm(n); y <- rnorm(n) + x1^2
z <- areg(cbind(x1,x2),y,xtype=c('s','l'),nk=3)
par(mfrow=c(2,2))
plot(z)

y transformation is inverse quadratic but areg gets the same answer by
making x1 quadratic
n <- 5000
x1 <- rnorm(n); x2 <- rnorm(n); y <- (x1 + rnorm(n))^2
z <- areg(cbind(x1,x2),y,nk=5)
par(mfrow=c(2,2))
plot(z)

Overfit 20 predictors when no true relationships exist
n <- 1000

16 aregImpute

x <- matrix(runif(n*20),n,20)
y <- rnorm(n)
z <- areg(x, y, nk=5) # add crossval=4 to expose the problem

Test predict function
n <- 50
x <- rnorm(n)
y <- rnorm(n) + x
g <- sample(1:3, n, TRUE)
z <- areg(cbind(x,g),y,xtype=c('s','c'))
range(predict(z, cbind(x,g)) - z$linear.predictors)

aregImpute Multiple Imputation using Additive Regression, Bootstrapping, and
Predictive Mean Matching

Description

The transcan function creates flexible additive imputation models but provides only an approxima-
tion to true multiple imputation as the imputation models are fixed before all multiple imputations
are drawn. This ignores variability caused by having to fit the imputation models. aregImpute
takes all aspects of uncertainty in the imputations into account by using the bootstrap to approxi-
mate the process of drawing predicted values from a full Bayesian predictive distribution. Different
bootstrap resamples are used for each of the multiple imputations, i.e., for the ith imputation of a
sometimes missing variable, i=1,2,... n.impute, a flexible additive model is fitted on a sample
with replacement from the original data and this model is used to predict all of the original missing
and non-missing values for the target variable.

areg is used to fit the imputation models. By default, linearity is assumed for target variables
(variables being imputed) and nk=3 knots are assumed for continuous predictors transformed using
restricted cubic splines. If nk is three or greater and tlinear is set to FALSE, areg simultaneously
finds transformations of the target variable and of all of the predictors, to get a good fit assuming
additivity, maximizing R2, using the same canonical correlation method as transcan. Flexible
transformations may be overridden for specific variables by specifying the identity transformation
for them. When a categorical variable is being predicted, the flexible transformation is Fisher’s op-
timum scoring method. Nonlinear transformations for continuous variables may be nonmonotonic.
If nk is a vector, areg’s bootstrap and crossval=10 options will be used to help find the optimum
validating value of nk over values of that vector, at the last imputation iteration. For the imputations,
the minimum value of nk is used.

Instead of defaulting to taking random draws from fitted imputation models using random residu-
als as is done by transcan, aregImpute by default uses predictive mean matching with optional
weighted probability sampling of donors rather than using only the closest match. Predictive mean
matching works for binary, categorical, and continuous variables without the need for iterative
maximum likelihood fitting for binary and categorical variables, and without the need for comput-
ing residuals or for curtailing imputed values to be in the range of actual data. Predictive mean
matching is especially attractive when the variable being imputed is also being transformed auto-
matically. Constraints may be placed on variables being imputed with predictive mean matching,
e.g., a missing hospital discharge date may be required to be imputed from a donor observation

aregImpute 17

whose discharge date is before the recipient subject’s first post-discharge visit date. See Details
below for more information about the algorithm. A "regression" method is also available that
is similar to that used in transcan. This option should be used when mechanistic missingness
requires the use of extrapolation during imputation.

A print method summarizes the results, and a plot method plots distributions of imputed values.
Typically, fit.mult.impute will be called after aregImpute.

If a target variable is transformed nonlinearly (i.e., if nk is greater than zero and tlinear is set to
FALSE) and the estimated target variable transformation is non-monotonic, imputed values are not
unique. When type='regression', a random choice of possible inverse values is made.

The reformM function provides two ways of recreating a formula to give to aregImpute by reorder-
ing the variables in the formula. This is a modified version of a function written by Yong Hao Pua.
One can specify nperm to obtain a list of nperm randomly permuted variables. The list is converted
to a single ordinary formula if nperm=1. If nperm is omitted, variables are sorted in descending
order of the number of NAs. reformM also prints a recommended number of multiple imputations to
use, which is a minimum of 5 and the percent of incomplete observations.

Usage

aregImpute(formula, data, subset, n.impute=5, group=NULL,
nk=3, tlinear=TRUE, type=c('pmm','regression','normpmm'),
pmmtype=1, match=c('weighted','closest','kclosest'),
kclosest=3, fweighted=0.2,
curtail=TRUE, constraint=NULL,
boot.method=c('simple', 'approximate bayesian'),
burnin=3, x=FALSE, pr=TRUE, plotTrans=FALSE, tolerance=NULL, B=75)

S3 method for class 'aregImpute'
print(x, digits=3, ...)
S3 method for class 'aregImpute'
plot(x, nclass=NULL, type=c('ecdf','hist'),

datadensity=c("hist", "none", "rug", "density"),
diagnostics=FALSE, maxn=10, ...)

reformM(formula, data, nperm)

Arguments

formula an S model formula. You can specify restrictions for transformations of vari-
ables. The function automatically determines which variables are categorical
(i.e., factor, category, or character vectors). Binary variables are automati-
cally restricted to be linear. Force linear transformations of continuous variables
by enclosing variables by the identify function (I()). It is recommended that
factor() or as.factor() do not appear in the formula but instead variables
be converted to factors as needed and stored in the data frame. That way im-
putations for factor variables (done using impute.transcan for example) will
be correct. Currently reformM does not handle variables that are enclosed in
functions such as I().

x an object created by aregImpute. For aregImpute, set x to TRUE to save the
data matrix containing the final (number n.impute) imputations in the result.

18 aregImpute

This is needed if you want to later do out-of-sample imputation. Categorical
variables are coded as integers in this matrix.

data input raw data

subset These may be also be specified. You may not specify na.action as na.retain
is always used.

n.impute number of multiple imputations. n.impute=5 is frequently recommended but
10 or more doesn’t hurt.

group a character or factor variable the same length as the number of observations in
data and containing no NAs. When group is present, causes a bootstrap sample
of the observations corresponding to non-NAs of a target variable to have the
same frequency distribution of group as the that in the non-NAs of the original
sample. This can handle k-sample problems as well as lower the chance that a
bootstrap sample will have a missing cell when the original cell frequency was
low.

nk number of knots to use for continuous variables. When both the target variable
and the predictors are having optimum transformations estimated, there is more
instability than with normal regression so the complexity of the model should
decrease more sharply as the sample size decreases. Hence set nk to 0 (to force
linearity for non-categorical variables) or 3 (minimum number of knots possi-
ble with a linear tail-restricted cubic spline) for small sample sizes. Simulated
problems as in the examples section can assist in choosing nk. Set nk to a vector
to get bootstrap-validated and 10-fold cross-validated R2 and mean and median
absolute prediction errors for imputing each sometimes-missing variable, with
nk ranging over the given vector. The errors are on the original untransformed
scale. The mean absolute error is the recommended basis for choosing the num-
ber of knots (or linearity).

tlinear set to FALSE to allow a target variable (variable being imputed) to have a nonlin-
ear left-hand-side transformation when nk is 3 or greater

type The default is "pmm" for predictive mean matching, which is a more nonpara-
metric approach that will work for categorical as well as continuous predictors.
Alternatively, use "regression" when all variables that are sometimes missing
are continuous and the missingness mechanism is such that entire intervals of
population values are unobserved. See the Details section for more information.
Another method, type="normpmm", only works when variables containing NAs
are continuous and tlinear is TRUE (the default), meaning that the variable be-
ing imputed is not transformed when it is on the left hand model side. normpmm
assumes that the imputation regression parameter estimates are multivariately
normally distributed and that the residual variance has a scaled chi-squared dis-
tribution. For each imputation a random draw of the estimates is taken and a
random draw from sigma is combined with those to get a random draw from the
posterior predicted value distribution. Predictive mean matching is then done
matching these predicted values from incomplete observations with predicted
values from complete potential donor observations, where the latter predictions
are based on the imputation model least squares parameter estimates and not on
random draws from the posterior. For the plot method, specify type="hist"
to draw histograms of imputed values with rug plots at the top, or type="ecdf"
(the default) to draw empirical CDFs with spike histograms at the bottom.

aregImpute 19

pmmtype type of matching to be used for predictive mean matching when type="pmm".
pmmtype=2 means that predicted values for both target incomplete and com-
plete observations come from a fit from the same bootstrap sample. pmmtype=1,
the default, means that predicted values for complete observations are based
on additive regression fits on original complete observations (using last impu-
tations for non-target variables as with the other methds), and using fits on a
bootstrap sample to get predicted values for missing target variables. See van
Buuren (2012) section 3.4.2 where pmmtype=1 is said to work much better when
the number of variables is small. pmmtype=3 means that complete observation
predicted values come from a bootstrap sample fit whereas target incomplete
observation predicted values come from a sample with replacement from the
bootstrap fit (approximate Bayesian bootstrap).

match Defaults to match="weighted" to do weighted multinomial probability sam-
pling using the tricube function (similar to lowess) as the weights. The argu-
ment of the tricube function is the absolute difference in transformed predicted
values of all the donors and of the target predicted value, divided by a scaling
factor. The scaling factor in the tricube function is fweighted times the mean
absolute difference between the target predicted value and all the possible donor
predicted values. Set match="closest" to find as the donor the observation
having the closest predicted transformed value, even if that same donor is found
repeatedly. Set match="kclosest" to use a slower implementation that finds,
after jittering the complete case predicted values, the kclosest complete cases
on the target variable being imputed, then takes a random sample of one of these
kclosest cases.

kclosest see match

fweighted Smoothing parameter (multiple of mean absolute difference) used when match="weighted",
with a default value of 0.2. Set fweighted to a number between 0.02 and 0.2 to
force the donor to have a predicted value closer to the target, and set fweighted
to larger values (but seldom larger than 1.0) to allow donor values to be less
tightly matched. See the examples below to learn how to study the relationship
between fweighted and the standard deviation of multiple imputations within
individuals.

curtail applies if type='regression', causing imputed values to be curtailed at the
observed range of the target variable. Set to FALSE to allow extrapolation outside
the data range.

constraint for predictive mean matching constraint is a named list specifying R expression()s
encoding constaints on which donor observations are allowed to be used, based
on variables that are not missing, i.e., based on donor observations and/or recip-
ient observations as long as the target variable being imputed is not used for the
recipients. The expressions must evaluate to a logical vector with no NAs and
whose length is the number of rows in the donor observations. The expressions
refer to donor observations by prefixing variable names by d$, and to a single
recipient observation by prefixing variables names by r$.

boot.method By default, simple boostrapping is used in which the target variable is predicted
using a sample with replacement from the observations with non-missing target
variable. Specify boot.method='approximate bayesian' to build the imputa-
tion models from a sample with replacement from a sample with replacement of

20 aregImpute

the observations with non-missing targets. Preliminary simulations have shown
this results in good confidence coverage of the final model parameters when
type='regression' is used. Not implemented when group is used.

burnin aregImpute does burnin + n.impute iterations of the entire modeling process.
The first burnin imputations are discarded. More burn-in iteractions may be
requied when multiple variables are missing on the same observations. When
only one variable is missing, no burn-ins are needed and burnin is set to zero if
unspecified.

pr set to FALSE to suppress printing of iteration messages

plotTrans set to TRUE to plot ace or avas transformations for each variable for each of the
multiple imputations. This is useful for determining whether transformations are
reasonable. If transformations are too noisy or have long flat sections (resulting
in "lumps" in the distribution of imputed values), it may be advisable to place
restrictions on the transformations (monotonicity or linearity).

tolerance singularity criterion; list the source code in the lm.fit.qr.bare function for
details

B number of bootstrap resamples to use if nk is a vector

digits number of digits for printing

nclass number of bins to use in drawing histogram

datadensity see Ecdf

diagnostics Specify diagnostics=TRUE to draw plots of imputed values against sequential
imputation numbers, separately for each missing observations and variable.

maxn Maximum number of observations shown for diagnostics. Default is maxn=10,
which limits the number of observations plotted to at most the first 10.

nperm number of random formula permutations for reformM; omit to sort variables by
descending missing count.

... other arguments that are ignored

Details

The sequence of steps used by the aregImpute algorithm is the following.
(1) For each variable containing m NAs where m > 0, initialize the NAs to values from a random
sample (without replacement if a sufficient number of non-missing values exist) of size m from the
non-missing values.
(2) For burnin+n.impute iterations do the following steps. The first burnin iterations provide a
burn-in, and imputations are saved only from the last n.impute iterations.
(3) For each variable containing any NAs, draw a sample with replacement from the observations
in the entire dataset in which the current variable being imputed is non-missing. Fit a flexible
additive model to predict this target variable while finding the optimum transformation of it (unless
the identity transformation is forced). Use this fitted flexible model to predict the target variable in
all of the original observations. Impute each missing value of the target variable with the observed
value whose predicted transformed value is closest to the predicted transformed value of the missing
value (if match="closest" and type="pmm"), or use a draw from a multinomial distribution with
probabilities derived from distance weights, if match="weighted" (the default).

aregImpute 21

(4) After these imputations are computed, use these random draw imputations the next time the
curent target variable is used as a predictor of other sometimes-missing variables.

When match="closest", predictive mean matching does not work well when fewer than 3 vari-
ables are used to predict the target variable, because many of the multiple imputations for an obser-
vation will be identical. In the extreme case of one right-hand-side variable and assuming that only
monotonic transformations of left and right-side variables are allowed, every bootstrap resample
will give predicted values of the target variable that are monotonically related to predicted values
from every other bootstrap resample. The same is true for Bayesian predicted values. This causes
predictive mean matching to always match on the same donor observation.

When the missingness mechanism for a variable is so systematic that the distribution of observed
values is truncated, predictive mean matching does not work. It will only yield imputed values that
are near observed values, so intervals in which no values are observed will not be populated by
imputed values. For this case, the only hope is to make regression assumptions and use extrapola-
tion. With type="regression", aregImpute will use linear extrapolation to obtain a (hopefully)
reasonable distribution of imputed values. The "regression" option causes aregImpute to impute
missing values by adding a random sample of residuals (with replacement if there are more NAs than
measured values) on the transformed scale of the target variable. After random residuals are added,
predicted random draws are obtained on the original untransformed scale using reverse linear inter-
polation on the table of original and transformed target values (linear extrapolation when a random
residual is large enough to put the random draw prediction outside the range of observed values).
The bootstrap is used as with type="pmm" to factor in the uncertainty of the imputation model.

As model uncertainty is high when the transformation of a target variable is unknown, tlinear
defaults to TRUE to limit the variance in predicted values when nk is positive.

Value

a list of class "aregImpute" containing the following elements:

call the function call expression

formula the formula specified to aregImpute

match the match argument

fweighted the fweighted argument

n total number of observations in input dataset

p number of variables

na list of subscripts of observations for which values were originally missing

nna named vector containing the numbers of missing values in the data

type vector of types of transformations used for each variable ("s","l","c" for
smooth spline, linear, or categorical with dummy variables)

tlinear value of tlinear parameter

nk number of knots used for smooth transformations

cat.levels list containing character vectors specifying the levels of categorical variables

df degrees of freedom (number of parameters estimated) for each variable

n.impute number of multiple imputations per missing value

22 aregImpute

imputed a list containing matrices of imputed values in the same format as those cre-
ated by transcan. Categorical variables are coded using their integer codes.
Variables having no missing values will have NULL matrices in the list.

x if x is TRUE, the original data matrix with integer codes for categorical variables

rsq for the last round of imputations, a vector containing the R-squares with which
each sometimes-missing variable could be predicted from the others by ace or
avas.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

van Buuren, Stef. Flexible Imputation of Missing Data. Chapman & Hall/CRC, Boca Raton FL,
2012.

Little R, An H. Robust likelihood-based analysis of multivariate data with missing values. Statistica
Sinica 14:949-968, 2004.

van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB. Fully conditional specifications
in multivariate imputation. J Stat Comp Sim 72:1049-1064, 2006.

de Groot JAH, Janssen KJM, Zwinderman AH, Moons KGM, Reitsma JB. Multiple imputation to
correct for partial verification bias revisited. Stat Med 27:5880-5889, 2008.

Siddique J. Multiple imputation using an iterative hot-deck with distance-based donor selection.
Stat Med 27:83-102, 2008.

White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance
for practice. Stat Med 30:377-399, 2011.

Curnow E, Carpenter JR, Heron JE, et al: Multiple imputation of missing data under missing at
random: compatible imputation models are not sufficient to avoid bias if they are mis-specified. J
Clin Epi June 9, 2023. DOI:10.1016/j.jclinepi.2023.06.011.

See Also

fit.mult.impute, transcan, areg, naclus, naplot, mice, dotchart3, Ecdf, completer

Examples

Check that aregImpute can almost exactly estimate missing values when
there is a perfect nonlinear relationship between two variables
Fit restricted cubic splines with 4 knots for x1 and x2, linear for x3
set.seed(3)
x1 <- rnorm(200)
x2 <- x1^2
x3 <- runif(200)
m <- 30
x2[1:m] <- NA

aregImpute 23

a <- aregImpute(~x1+x2+I(x3), n.impute=5, nk=4, match='closest')
a
matplot(x1[1:m]^2, a$imputed$x2)
abline(a=0, b=1, lty=2)

x1[1:m]^2
a$imputed$x2

Multiple imputation and estimation of variances and covariances of
regression coefficient estimates accounting for imputation
Example 1: large sample size, much missing data, no overlap in
NAs across variables
x1 <- factor(sample(c('a','b','c'),1000,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(1000,0,2)
x3 <- rnorm(1000)
y <- x2 + 1*(x1=='c') + .2*x3 + rnorm(1000,0,2)
orig.x1 <- x1[1:250]
orig.x2 <- x2[251:350]
x1[1:250] <- NA
x2[251:350] <- NA
d <- data.frame(x1,x2,x3,y, stringsAsFactors=TRUE)
Find value of nk that yields best validating imputation models
tlinear=FALSE means to not force the target variable to be linear
f <- aregImpute(~y + x1 + x2 + x3, nk=c(0,3:5), tlinear=FALSE,

data=d, B=10) # normally B=75
f
Try forcing target variable (x1, then x2) to be linear while allowing
predictors to be nonlinear (could also say tlinear=TRUE)
f <- aregImpute(~y + x1 + x2 + x3, nk=c(0,3:5), data=d, B=10)
f

Not run:
Use 100 imputations to better check against individual true values
f <- aregImpute(~y + x1 + x2 + x3, n.impute=100, data=d)
f
par(mfrow=c(2,1))
plot(f)
modecat <- function(u) {
tab <- table(u)
as.numeric(names(tab)[tab==max(tab)][1])

}
table(orig.x1,apply(f$imputed$x1, 1, modecat))
par(mfrow=c(1,1))
plot(orig.x2, apply(f$imputed$x2, 1, mean))
fmi <- fit.mult.impute(y ~ x1 + x2 + x3, lm, f,

data=d)
sqrt(diag(vcov(fmi)))
fcc <- lm(y ~ x1 + x2 + x3)
summary(fcc) # SEs are larger than from mult. imputation

End(Not run)
Not run:

24 aregImpute

Example 2: Very discriminating imputation models,
x1 and x2 have some NAs on the same rows, smaller n
set.seed(5)
x1 <- factor(sample(c('a','b','c'),100,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(100,0,.4)
x3 <- rnorm(100)
y <- x2 + 1*(x1=='c') + .2*x3 + rnorm(100,0,.4)
orig.x1 <- x1[1:20]
orig.x2 <- x2[18:23]
x1[1:20] <- NA
x2[18:23] <- NA
#x2[21:25] <- NA
d <- data.frame(x1,x2,x3,y, stringsAsFactors=TRUE)
n <- naclus(d)
plot(n); naplot(n) # Show patterns of NAs
100 imputations to study them; normally use 5 or 10
f <- aregImpute(~y + x1 + x2 + x3, n.impute=100, nk=0, data=d)
par(mfrow=c(2,3))
plot(f, diagnostics=TRUE, maxn=2)
Note: diagnostics=TRUE makes graphs similar to those made by:
r <- range(f$imputed$x2, orig.x2)
for(i in 1:6) { # use 1:2 to mimic maxn=2
plot(1:100, f$imputed$x2[i,], ylim=r,
ylab=paste("Imputations for Obs.",i))
abline(h=orig.x2[i],lty=2)
}

table(orig.x1,apply(f$imputed$x1, 1, modecat))
par(mfrow=c(1,1))
plot(orig.x2, apply(f$imputed$x2, 1, mean))

fmi <- fit.mult.impute(y ~ x1 + x2, lm, f,
data=d)

sqrt(diag(vcov(fmi)))
fcc <- lm(y ~ x1 + x2)
summary(fcc) # SEs are larger than from mult. imputation

End(Not run)

Not run:
Study relationship between smoothing parameter for weighting function
(multiplier of mean absolute distance of transformed predicted
values, used in tricube weighting function) and standard deviation
of multiple imputations. SDs are computed from average variances
across subjects. match="closest" same as match="weighted" with
small value of fweighted.
This example also shows problems with predicted mean
matching almost always giving the same imputed values when there is
only one predictor (regression coefficients change over multiple
imputations but predicted values are virtually 1-1 functions of each
other)

aregImpute 25

set.seed(23)
x <- runif(200)
y <- x + runif(200, -.05, .05)
r <- resid(lsfit(x,y))
rmse <- sqrt(sum(r^2)/(200-2)) # sqrt of residual MSE

y[1:20] <- NA
d <- data.frame(x,y)
f <- aregImpute(~ x + y, n.impute=10, match='closest', data=d)
As an aside here is how to create a completed dataset for imputation
number 3 as fit.mult.impute would do automatically. In this degenerate
case changing 3 to 1-2,4-10 will not alter the results.
imputed <- impute.transcan(f, imputation=3, data=d, list.out=TRUE,

pr=FALSE, check=FALSE)
sd <- sqrt(mean(apply(f$imputed$y, 1, var)))

ss <- c(0, .01, .02, seq(.05, 1, length=20))
sds <- ss; sds[1] <- sd

for(i in 2:length(ss)) {
f <- aregImpute(~ x + y, n.impute=10, fweighted=ss[i])
sds[i] <- sqrt(mean(apply(f$imputed$y, 1, var)))

}

plot(ss, sds, xlab='Smoothing Parameter', ylab='SD of Imputed Values',
type='b')

abline(v=.2, lty=2) # default value of fweighted
abline(h=rmse, lty=2) # root MSE of residuals from linear regression

End(Not run)

Not run:
Do a similar experiment for the Titanic dataset
getHdata(titanic3)
h <- lm(age ~ sex + pclass + survived, data=titanic3)
rmse <- summary(h)$sigma
set.seed(21)
f <- aregImpute(~ age + sex + pclass + survived, n.impute=10,

data=titanic3, match='closest')
sd <- sqrt(mean(apply(f$imputed$age, 1, var)))

ss <- c(0, .01, .02, seq(.05, 1, length=20))
sds <- ss; sds[1] <- sd

for(i in 2:length(ss)) {
f <- aregImpute(~ age + sex + pclass + survived, data=titanic3,

n.impute=10, fweighted=ss[i])
sds[i] <- sqrt(mean(apply(f$imputed$age, 1, var)))

}

plot(ss, sds, xlab='Smoothing Parameter', ylab='SD of Imputed Values',
type='b')

abline(v=.2, lty=2) # default value of fweighted

26 binconf

abline(h=rmse, lty=2) # root MSE of residuals from linear regression

End(Not run)

set.seed(2)
d <- data.frame(x1=runif(50), x2=c(rep(NA, 10), runif(40)),

x3=c(runif(4), rep(NA, 11), runif(35)))
reformM(~ x1 + x2 + x3, data=d)
reformM(~ x1 + x2 + x3, data=d, nperm=2)
Give result or one of the results as the first argument to aregImpute

Constrain imputed values for two variables
Require imputed values for x2 to be above 0.2
Assume x1 is never missing and require imputed values for
x3 to be less than the recipient's value of x1
a <- aregImpute(~ x1 + x2 + x3, data=d,

constraint=list(x2 = expression(d$x2 > 0.2),
x3 = expression(d$x3 < r$x1)))

a

binconf Confidence Intervals for Binomial Probabilities

Description

Produces 1-alpha confidence intervals for binomial probabilities.

Usage

binconf(x, n, alpha=0.05,
method=c("wilson","exact","asymptotic","all"),
include.x=FALSE, include.n=FALSE, return.df=FALSE)

Arguments

x vector containing the number of "successes" for binomial variates

n vector containing the numbers of corresponding observations

alpha probability of a type I error, so confidence coefficient = 1-alpha

method character string specifing which method to use. The "all" method only works
when x and n are length 1. The "exact" method uses the F distribution to com-
pute exact (based on the binomial cdf) intervals; the "wilson" interval is score-
test-based; and the "asymptotic" is the text-book, asymptotic normal interval.
Following Agresti and Coull, the Wilson interval is to be preferred and so is the
default.

include.x logical flag to indicate whether x should be included in the returned matrix or
data frame

biVar 27

include.n logical flag to indicate whether n should be included in the returned matrix or
data frame

return.df logical flag to indicate that a data frame rather than a matrix be returned

Value

a matrix or data.frame containing the computed intervals and, optionally, x and n.

Author(s)

Rollin Brant, Modified by Frank Harrell and
Brad Biggerstaff
Centers for Disease Control and Prevention
National Center for Infectious Diseases
Division of Vector-Borne Infectious Diseases
P.O. Box 2087, Fort Collins, CO, 80522-2087, USA
<bkb5@cdc.gov>

References

A. Agresti and B.A. Coull, Approximate is better than "exact" for interval estimation of binomial
proportions, American Statistician, 52:119–126, 1998.

R.G. Newcombe, Logit confidence intervals and the inverse sinh transformation, American Statisti-
cian, 55:200–202, 2001.

L.D. Brown, T.T. Cai and A. DasGupta, Interval estimation for a binomial proportion (with discus-
sion), Statistical Science, 16:101–133, 2001.

Examples

binconf(0:10,10,include.x=TRUE,include.n=TRUE)
binconf(46,50,method="all")

biVar Bivariate Summaries Computed Separately by a Series of Predictors

Description

biVar is a generic function that accepts a formula and usual data, subset, and na.action pa-
rameters plus a list statinfo that specifies a function of two variables to compute along with
information about labeling results for printing and plotting. The function is called separately with
each right hand side variable and the same left hand variable. The result is a matrix of bivariate
statistics and the statinfo list that drives printing and plotting. The plot method draws a dot plot
with x-axis values by default sorted in order of one of the statistics computed by the function.

spearman2 computes the square of Spearman’s rho rank correlation and a generalization of it in
which x can relate non-monotonically to y. This is done by computing the Spearman multiple rho-
squared between (rank(x), rank(x)^2) and y. When x is categorical, a different kind of Spear-
man correlation used in the Kruskal-Wallis test is computed (and spearman2 can do the Kruskal-
Wallis test). This is done by computing the ordinary multiple R^2 between k-1 dummy variables

28 biVar

and rank(y), where x has k categories. x can also be a formula, in which case each predictor is
correlated separately with y, using non-missing observations for that predictor. biVar is used to do
the looping and bookkeeping. By default the plot shows the adjusted rho^2, using the same formula
used for the ordinary adjusted R^2. The F test uses the unadjusted R2.

spearman computes Spearman’s rho on non-missing values of two variables. spearman.test is a
simple version of spearman2.default.

chiSquare is set up like spearman2 except it is intended for a categorical response variable. Sep-
arate Pearson chi-square tests are done for each predictor, with optional collapsing of infrequent
categories. Numeric predictors having more than g levels are categorized into g quantile groups.
chiSquare uses biVar.

Usage

biVar(formula, statinfo, data=NULL, subset=NULL,
na.action=na.retain, exclude.imputed=TRUE, ...)

S3 method for class 'biVar'
print(x, ...)

S3 method for class 'biVar'
plot(x, what=info$defaultwhat,

sort.=TRUE, main, xlab,
vnames=c('names','labels'), ...)

spearman2(x, ...)

Default S3 method:
spearman2(x, y, p=1, minlev=0, na.rm=TRUE, exclude.imputed=na.rm, ...)

S3 method for class 'formula'
spearman2(formula, data=NULL,

subset, na.action=na.retain, exclude.imputed=TRUE, ...)

spearman(x, y)

spearman.test(x, y, p=1)

chiSquare(formula, data=NULL, subset=NULL, na.action=na.retain,
exclude.imputed=TRUE, ...)

Arguments

formula a formula with a single left side variable

statinfo see spearman2.formula or chiSquare code
data, subset, na.action

the usual options for models. Default for na.action is to retain all values, NA
or not, so that NAs can be deleted in only a pairwise fashion.

biVar 29

exclude.imputed

set to FALSE to include imputed values (created by impute) in the calculations.

... other arguments that are passed to the function used to compute the bivariate
statistics or to dotchart3 for plot.

na.rm logical; delete NA values?

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent). For
spearman2, the first argument may be a vector of any type, including character
or factor. The first argument may also be a formula, in which case all predic-
tors are correlated individually with the response variable. x may be a formula
for spearman2 in which case spearman2.formula is invoked. Each predictor in
the right hand side of the formula is separately correlated with the response vari-
able. For print or plot, x is an object produced by biVar. For spearman and
spearman.test x is a numeric vector, as is y. For chiSquare, x is a formula.

y a numeric vector

p for numeric variables, specifies the order of the Spearman rho^2 to use. The
default is p=1 to compute the ordinary rho^2. Use p=2 to compute the quadratic
rank generalization to allow non-monotonicity. p is ignored for categorical pre-
dictors.

minlev minimum relative frequency that a level of a categorical predictor should have
before it is pooled with other categories (see combine.levels) in spearman2
and chiSquare (in which case it also applies to the response). The default,
minlev=0 causes no pooling.

what specifies which statistic to plot. Possibilities include the column names that
appear with the print method is used.

sort. set sort.=FALSE to suppress sorting variables by the statistic being plotted

main main title for plot. Default title shows the name of the response variable.

xlab x-axis label. Default constructed from what.

vnames set to "labels" to use variable labels in place of names for plotting. If a variable
does not have a label the name is always used.

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values for Spearman,
Wilcoxon, or Kruskal-Wallis tests are approximated by using the t or F distributions.

Value

spearman2.default (the function that is called for a single x, i.e., when there is no formula) returns
a vector of statistics for the variable. biVar, spearman2.formula, and chiSquare return a matrix
with rows corresponding to predictors.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

30 bootkm

References

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods. New York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

See Also

combine.levels, varclus, dotchart3, impute, chisq.test, cut2.

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
v <- c(1, 2, 3, 4, 5)

spearman2(x, y)
plot(spearman2(z ~ x + y + v, p=2))

f <- chiSquare(z ~ x + y + v)
f

bootkm Bootstrap Kaplan-Meier Estimates

Description

Bootstraps Kaplan-Meier estimate of the probability of survival to at least a fixed time (times
variable) or the estimate of the q quantile of the survival distribution (e.g., median survival time, the
default).

Usage

bootkm(S, q=0.5, B=500, times, pr=TRUE)

Arguments

S a Surv object for possibly right-censored survival time

q quantile of survival time, default is 0.5 for median

B number of bootstrap repetitions (default=500)

times time vector (currently only a scalar is allowed) at which to compute survival
estimates. You may specify only one of q and times, and if times is specified
q is ignored.

pr set to FALSE to suppress printing the iteration number every 10 iterations

bootkm 31

Details

bootkm uses Therneau’s survfitKM function to efficiently compute Kaplan-Meier estimates.

Value

a vector containing B bootstrap estimates

Side Effects

updates .Random.seed, and, if pr=TRUE, prints progress of simulations

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Akritas MG (1986): Bootstrapping the Kaplan-Meier estimator. JASA 81:1032–1038.

See Also

survfit, Surv, Survival.cph, Quantile.cph

Examples

Compute 0.95 nonparametric confidence interval for the difference in
median survival time between females and males (two-sample problem)
set.seed(1)
library(survival)
S <- Surv(runif(200)) # no censoring
sex <- c(rep('female',100),rep('male',100))
med.female <- bootkm(S[sex=='female',], B=100) # normally B=500
med.male <- bootkm(S[sex=='male',], B=100)
describe(med.female-med.male)
quantile(med.female-med.male, c(.025,.975), na.rm=TRUE)
na.rm needed because some bootstrap estimates of median survival
time may be missing when a bootstrap sample did not include the
longer survival times

32 bpower

bpower Power and Sample Size for Two-Sample Binomial Test

Description

Uses method of Fleiss, Tytun, and Ury (but without the continuity correction) to estimate the power
(or the sample size to achieve a given power) of a two-sided test for the difference in two propor-
tions. The two sample sizes are allowed to be unequal, but for bsamsize you must specify the
fraction of observations in group 1. For power calculations, one probability (p1) must be given,
and either the other probability (p2), an odds.ratio, or a percent.reduction must be given. For
bpower or bsamsize, any or all of the arguments may be vectors, in which case they return a vector
of powers or sample sizes. All vector arguments must have the same length.

Given p1, p2, ballocation uses the method of Brittain and Schlesselman to compute the optimal
fraction of observations to be placed in group 1 that either (1) minimize the variance of the differ-
ence in two proportions, (2) minimize the variance of the ratio of the two proportions, (3) minimize
the variance of the log odds ratio, or (4) maximize the power of the 2-tailed test for differences. For
(4) the total sample size must be given, or the fraction optimizing the power is not returned. The
fraction for (3) is one minus the fraction for (1).

bpower.sim estimates power by simulations, in minimal time. By using bpower.sim you can
see that the formulas without any continuity correction are quite accurate, and that the power of
a continuity-corrected test is significantly lower. That’s why no continuity corrections are imple-
mented here.

Usage

bpower(p1, p2, odds.ratio, percent.reduction,
n, n1, n2, alpha=0.05)

bsamsize(p1, p2, fraction=.5, alpha=.05, power=.8)

ballocation(p1, p2, n, alpha=.05)

bpower.sim(p1, p2, odds.ratio, percent.reduction,
n, n1, n2,
alpha=0.05, nsim=10000)

Arguments

p1 population probability in the group 1

p2 probability for group 2

odds.ratio odds ratio to detect
percent.reduction

percent reduction in risk to detect

bpower 33

n total sample size over the two groups. If you omit this for ballocation, the
fraction which optimizes power will not be returned.

n1 sample size in group 1

n2 sample size in group 2. bpower, if n is given, n1 and n2 are set to n/2.

alpha type I assertion probability

fraction fraction of observations in group 1

power the desired probability of detecting a difference

nsim number of simulations of binomial responses

Details

For bpower.sim, all arguments must be of length one.

Value

for bpower, the power estimate; for bsamsize, a vector containing the sample sizes in the two
groups; for ballocation, a vector with 4 fractions of observations allocated to group 1, optimiz-
ing the four criteria mentioned above. For bpower.sim, a vector with three elements is returned,
corresponding to the simulated power and its lower and upper 0.95 confidence limits.

AUTHOR

Frank Harrell

Department of Biostatistics

Vanderbilt University

<fh@fharrell.com>

References

Fleiss JL, Tytun A, Ury HK (1980): A simple approximation for calculating sample sizes for com-
paring independent proportions. Biometrics 36:343–6.

Brittain E, Schlesselman JJ (1982): Optimal allocation for the comparison of proportions. Biomet-
rics 38:1003–9.

Gordon I, Watson R (1996): The myth of continuity-corrected sample size formulae. Biometrics
52:71–6.

See Also

samplesize.bin, chisq.test, binconf

Examples

bpower(.1, odds.ratio=.9, n=1000, alpha=c(.01,.05))
bpower.sim(.1, odds.ratio=.9, n=1000)
bsamsize(.1, .05, power=.95)
ballocation(.1, .5, n=100)

34 bpplot

Plot power vs. n for various odds ratios (base prob.=.1)
n <- seq(10, 1000, by=10)
OR <- seq(.2,.9,by=.1)
plot(0, 0, xlim=range(n), ylim=c(0,1), xlab="n", ylab="Power", type="n")
for(or in OR) {

lines(n, bpower(.1, odds.ratio=or, n=n))
text(350, bpower(.1, odds.ratio=or, n=350)-.02, format(or))

}

Another way to plot the same curves, but letting labcurve do the
work, including labeling each curve at points of maximum separation
pow <- lapply(OR, function(or,n)list(x=n,y=bpower(p1=.1,odds.ratio=or,n=n)),

n=n)
names(pow) <- format(OR)
labcurve(pow, pl=TRUE, xlab='n', ylab='Power')

Contour graph for various probabilities of outcome in the control
group, fixing the odds ratio at .8 ([p2/(1-p2) / p1/(1-p1)] = .8)
n is varied also
p1 <- seq(.01,.99,by=.01)
n <- seq(100,5000,by=250)
pow <- outer(p1, n, function(p1,n) bpower(p1, n=n, odds.ratio=.8))
This forms a length(p1)*length(n) matrix of power estimates
contour(p1, n, pow)

bpplot Box-percentile plots

Description

Producess side-by-side box-percentile plots from several vectors or a list of vectors.

Usage

bpplot(..., name=TRUE, main="Box-Percentile Plot",
xlab="", ylab="", srtx=0, plotopts=NULL)

Arguments

... vectors or lists containing numeric components (e.g., the output of split).

name character vector of names for the groups. Default is TRUE to put names on the
x-axis. Such names are taken from the data vectors or the names attribute of the
first argument if it is a list. Set name to FALSE to suppress names. If a character
vector is supplied the names in the vector are used to label the groups.

main main title for the plot.

xlab x axis label.

bpplot 35

ylab y axis label.

srtx rotation angle for x-axis labels. Default is zero.

plotopts a list of other parameters to send to plot

Value

There are no returned values

Side Effects

A plot is created on the current graphics device.

BACKGROUND

Box-percentile plots are similiar to boxplots, except box-percentile plots supply more information
about the univariate distributions. At any height the width of the irregular "box" is proportional to
the percentile of that height, up to the 50th percentile, and above the 50th percentile the width is
proportional to 100 minus the percentile. Thus, the width at any given height is proportional to the
percent of observations that are more extreme in that direction. As in boxplots, the median, 25th
and 75th percentiles are marked with line segments across the box.

Author(s)

Jeffrey Banfield
<umsfjban@bill.oscs.montana.edu>
Modified by F. Harrell 30Jun97

References

Esty WW, Banfield J: The box-percentile plot. J Statistical Software 8 No. 17, 2003.

See Also

panel.bpplot, boxplot, Ecdf, bwplot

Examples

set.seed(1)
x1 <- rnorm(500)
x2 <- runif(500, -2, 2)
x3 <- abs(rnorm(500))-2
bpplot(x1, x2, x3)
g <- sample(1:2, 500, replace=TRUE)
bpplot(split(x2, g), name=c('Group 1','Group 2'))
rm(x1,x2,x3,g)

36 bystats

bystats Statistics by Categories

Description

For any number of cross-classification variables, bystats returns a matrix with the sample size,
number missing y, and fun(non-missing y), with the cross-classifications designated by rows.
Uses Harrell’s modification of the interaction function to produce cross-classifications. The
default fun is mean, and if y is binary, the mean is labeled as Fraction. There is a print method
as well as a latex method for objects created by bystats. bystats2 handles the special case in
which there are 2 classifcation variables, and places the first one in rows and the second in columns.
The print method for bystats2 uses the print.char.matrix function to organize statistics for
cells into boxes.

Usage

bystats(y, ..., fun, nmiss, subset)
S3 method for class 'bystats'
print(x, ...)
S3 method for class 'bystats'
latex(object, title, caption, rowlabel, ...)
bystats2(y, v, h, fun, nmiss, subset)
S3 method for class 'bystats2'
print(x, abbreviate.dimnames=FALSE,

prefix.width=max(nchar(dimnames(x)[[1]])), ...)
S3 method for class 'bystats2'
latex(object, title, caption, rowlabel, ...)

Arguments

y a binary, logical, or continuous variable or a matrix or data frame of such vari-
ables. If y is a data frame it is converted to a matrix. If y is a data frame or
matrix, computations are done on subsets of the rows of y, and you should spec-
ify fun so as to be able to operate on the matrix. For matrix y, any column with
a missing value causes the entire row to be considered missing, and the row is
not passed to fun.

... For bystats, one or more classifcation variables separated by commas. For
print.bystats, options passed to print.default such as digits. For latex.bystats,
and latex.bystats2, options passed to latex.default such as digits. If you
pass cdec to latex.default, keep in mind that the first one or two positions
(depending on nmiss) should have zeros since these correspond with frequency
counts.

v vertical variable for bystats2. Will be converted to factor.

h horizontal variable for bystats2. Will be converted to factor.

bystats 37

fun a function to compute on the non-missing y for a given subset. You must specify
fun= in front of the function name or definition. fun may return a single number
or a vector or matrix of any length. Matrix results are rolled out into a vector,
with names preserved. When y is a matrix, a common fun is function(y)
apply(y, 2, ff) where ff is the name of a function which operates on one
column of y.

nmiss A column containing a count of missing values is included if nmiss=TRUE or if
there is at least one missing value.

subset a vector of subscripts or logical values indicating the subset of data to analyze

abbreviate.dimnames

set to TRUE to abbreviate dimnames in output

prefix.width see print.char.matrix

title title to pass to latex.default. Default is the first word of the character string
version of the first calling argument.

caption caption to pass to latex.default. Default is the heading attribute from the
object produced by bystats.

rowlabel rowlabel to pass to latex.default. Default is the byvarnames attribute from
the object produced by bystats. For bystats2 the default is "".

x an object created by bystats or bystats2

object an object created by bystats or bystats2

Value

for bystats, a matrix with row names equal to the classification labels and column names N,
Missing, funlab, where funlab is determined from fun. A row is added to the end with the
summary statistics computed on all observations combined. The class of this matrix is bystats.
For bystats, returns a 3-dimensional array with the last dimension corresponding to statistics being
computed. The class of the array is bystats2.

Side Effects

latex produces a .tex file.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

interaction, cut, cut2, latex, print.char.matrix, translate

38 capitalize

Examples

Not run:
bystats(sex==2, county, city)
bystats(death, race)
bystats(death, cut2(age,g=5), race)
bystats(cholesterol, cut2(age,g=4), sex, fun=median)
bystats(cholesterol, sex, fun=quantile)
bystats(cholesterol, sex, fun=function(x)c(Mean=mean(x),Median=median(x)))
latex(bystats(death,race,nmiss=FALSE,subset=sex=="female"), digits=2)
f <- function(y) c(Hazard=sum(y[,2])/sum(y[,1]))
f() gets the hazard estimate for right-censored data from exponential dist.
bystats(cbind(d.time, death), race, sex, fun=f)
bystats(cbind(pressure, cholesterol), age.decile,

fun=function(y) c(Median.pressure =median(y[,1]),
Median.cholesterol=median(y[,2])))

y <- cbind(pressure, cholesterol)
bystats(y, age.decile,

fun=function(y) apply(y, 2, median)) # same result as last one
bystats(y, age.decile, fun=function(y) apply(y, 2, quantile, c(.25,.75)))
The last one computes separately the 0.25 and 0.75 quantiles of 2 vars.
latex(bystats2(death, race, sex, fun=table))

End(Not run)

capitalize capitalize the first letter of a string

Description

Capitalizes the first letter of each element of the string vector.

Usage

capitalize(string)

Arguments

string String to be capitalized

Value

Returns a vector of charaters with the first letter capitalized

Author(s)

Charles Dupont

Examples

capitalize(c("Hello", "bob", "daN"))

ciapower 39

ciapower Power of Interaction Test for Exponential Survival

Description

Uses the method of Peterson and George to compute the power of an interaction test in a 2 x 2 setup
in which all 4 distributions are exponential. This will be the same as the power of the Cox model
test if assumptions hold. The test is 2-tailed. The duration of accrual is specified (constant accrual
is assumed), as is the minimum follow-up time. The maximum follow-up time is then accrual +
tmin. Treatment allocation is assumed to be 1:1.

Usage

ciapower(tref, n1, n2, m1c, m2c, r1, r2, accrual, tmin,
alpha=0.05, pr=TRUE)

Arguments

tref time at which mortalities estimated

n1 total sample size, stratum 1

n2 total sample size, stratum 2

m1c tref-year mortality, stratum 1 control

m2c tref-year mortality, stratum 2 control

r1 % reduction in m1c by intervention, stratum 1

r2 % reduction in m2c by intervention, stratum 2

accrual duration of accrual period

tmin minimum follow-up time

alpha type I error probability

pr set to FALSE to suppress printing of details

Value

power

Side Effects

prints

AUTHOR

Frank Harrell

Department of Biostatistics

Vanderbilt University

<fh@fharrell.com>

40 cnvrt.coords

References

Peterson B, George SL: Controlled Clinical Trials 14:511–522; 1993.

See Also

cpower, spower

Examples

Find the power of a race x treatment test. 25% of patients will
be non-white and the total sample size is 14000.
Accrual is for 1.5 years and minimum follow-up is 5y.
Reduction in 5-year mortality is 15% for whites, 0% or -5% for
non-whites. 5-year mortality for control subjects if assumed to
be 0.18 for whites, 0.23 for non-whites.
n <- 14000
for(nonwhite.reduction in c(0,-5)) {

cat("\n\n\n% Reduction in 5-year mortality for non-whites:",
nonwhite.reduction, "\n\n")

pow <- ciapower(5, .75*n, .25*n, .18, .23, 15, nonwhite.reduction,
1.5, 5)

cat("\n\nPower:",format(pow),"\n")
}

cnvrt.coords Convert between the 5 different coordinate sytems on a graphical de-
vice

Description

Takes a set of coordinates in any of the 5 coordinate systems (usr, plt, fig, dev, or tdev) and returns
the same points in all 5 coordinate systems.

Usage

cnvrt.coords(x, y = NULL, input = c("usr", "plt", "fig", "dev","tdev"))

Arguments

x Vector, Matrix, or list of x coordinates (or x and y coordinates), NA’s allowed.

y y coordinates (if x is a vector), NA’s allowed.

input Character scalar indicating the coordinate system of the input points.

cnvrt.coords 41

Details

Every plot has 5 coordinate systems:

usr (User): the coordinate system of the data, this is shown by the tick marks and axis labels.

plt (Plot): Plot area, coordinates range from 0 to 1 with 0 corresponding to the x and y axes and 1
corresponding to the top and right of the plot area. Margins of the plot correspond to plot coordinates
less than 0 or greater than 1.

fig (Figure): Figure area, coordinates range from 0 to 1 with 0 corresponding to the bottom and left
edges of the figure (including margins, label areas) and 1 corresponds to the top and right edges. fig
and dev coordinates will be identical if there is only 1 figure area on the device (layout, mfrow, or
mfcol has not been used).

dev (Device): Device area, coordinates range from 0 to 1 with 0 corresponding to the bottom and
left of the device region within the outer margins and 1 is the top and right of the region withing the
outer margins. If the outer margins are all set to 0 then tdev and dev should be identical.

tdev (Total Device): Total Device area, coordinates range from 0 to 1 with 0 corresponding to the
bottom and left edges of the device (piece of paper, window on screen) and 1 corresponds to the top
and right edges.

Value

A list with 5 components, each component is a list with vectors named x and y. The 5 sublists are:

usr The coordinates of the input points in usr (User) coordinates.

plt The coordinates of the input points in plt (Plot) coordinates.

fig The coordinates of the input points in fig (Figure) coordinates.

dev The coordinates of the input points in dev (Device) coordinates.

tdev The coordinates of the input points in tdev (Total Device) coordinates.

Note

You must provide both x and y, but one of them may be NA.

This function is becoming depricated with the new functions grconvertX and grconvertY in R
version 2.7.0 and beyond. These new functions use the correct coordinate system names and have
more coordinate systems available, you should start using them instead.

Author(s)

Greg Snow <greg.snow@imail.org>

See Also

par specifically ’usr’,’plt’, and ’fig’. Also ’xpd’ for plotting outside of the plotting region and
’mfrow’ and ’mfcol’ for multi figure plotting. subplot, grconvertX and grconvertY in R2.7.0
and later

42 cnvrt.coords

Examples

old.par <- par(no.readonly=TRUE)

par(mfrow=c(2,2),xpd=NA)

generate some sample data
tmp.x <- rnorm(25, 10, 2)
tmp.y <- rnorm(25, 50, 10)
tmp.z <- rnorm(25, 0, 1)

plot(tmp.x, tmp.y)

draw a diagonal line across the plot area
tmp1 <- cnvrt.coords(c(0,1), c(0,1), input='plt')
lines(tmp1$usr, col='blue')

draw a diagonal line accross figure region
tmp2 <- cnvrt.coords(c(0,1), c(1,0), input='fig')
lines(tmp2$usr, col='red')

save coordinate of point 1 and y value near top of plot for future plots
tmp.point1 <- cnvrt.coords(tmp.x[1], tmp.y[1])
tmp.range1 <- cnvrt.coords(NA, 0.98, input='plt')

make a second plot and draw a line linking point 1 in each plot
plot(tmp.y, tmp.z)

tmp.point2 <- cnvrt.coords(tmp.point1$dev, input='dev')
arrows(tmp.y[1], tmp.z[1], tmp.point2usrx, tmp.point2usry,
col='green')

draw another plot and add rectangle showing same range in 2 plots

plot(tmp.x, tmp.z)
tmp.range2 <- cnvrt.coords(NA, 0.02, input='plt')
tmp.range3 <- cnvrt.coords(NA, tmp.range1devy, input='dev')
rect(9, tmp.range2usry, 11, tmp.range3usry, border='yellow')

put a label just to the right of the plot and
near the top of the figure region.
text(cnvrt.coords(1.05, NA, input='plt')usrx,
cnvrt.coords(NA, 0.75, input='fig')usry,
"Label", adj=0)

par(mfrow=c(1,1))

create a subplot within another plot (see also subplot)

plot(1:10, 1:10)

tmp <- cnvrt.coords(c(1, 4, 6, 9), c(6, 9, 1, 4))

colorFacet 43

par(plt = c(tmpdevx[1:2], tmpdevy[1:2]), new=TRUE)
hist(rnorm(100))

par(fig = c(tmpdevx[3:4], tmpdevy[3:4]), new=TRUE)
hist(rnorm(100))

par(old.par)

colorFacet Miscellaneous ggplot2 and grid Helper Functions

Description

These functions are used on ggplot2 objects or as layers when building a ggplot2 object, and to
facilitate use of gridExtra. colorFacet colors the thin rectangles used to separate panels cre-
ated by facet_grid (and probably by facet_wrap). A better approach may be found at https://
stackoverflow.com/questions/28652284/. arrGrob is a front-end to gridExtra::arrangeGrob
that allows for proper printing. See https://stackoverflow.com/questions/29062766/store-output-from-gridextragrid-arrange-into-an-object/.
The arrGrob print method calls grid::grid.draw.

Usage

colorFacet(g, col = adjustcolor("blue", alpha.f = 0.3))

arrGrob(...)

S3 method for class 'arrGrob'
print(x, ...)

Arguments

g a ggplot2 object that used faceting

col color for facet separator rectanges

... passed to arrangeGrob

x an object created by arrGrob

Author(s)

Sandy Muspratt

Examples

Not run:
require(ggplot2)
s <- summaryP(age + sex ~ region + treatment)
colorFacet(ggplot(s)) # prints directly
arrGrob is called by rms::ggplot.Predict and others

https://stackoverflow.com/questions/28652284/
https://stackoverflow.com/questions/28652284/
https://stackoverflow.com/questions/29062766/store-output-from-gridextragrid-arrange-into-an-object/

44 combine.levels

End(Not run)

combine.levels combine.levels

Description

Combine Infrequent Levels of a Categorical Variable

Usage

combine.levels(
x,
minlev = 0.05,
m,
ord = is.ordered(x),
plevels = FALSE,
sep = ","

)

Arguments

x a factor, ‘ordered‘ factor, or numeric or character variable that will be turned
into a ‘factor‘

minlev the minimum proportion of observations in a cell before that cell is combined
with one or more cells. If more than one cell has fewer than minlev*n observa-
tions, all such cells are combined into a new cell labeled ‘"OTHER"‘. Otherwise,
the lowest frequency cell is combined with the next lowest frequency cell, and
the level name is the combination of the two old level levels. When ‘ord=TRUE‘
combinations happen only for consecutive levels.

m alternative to ‘minlev‘, is the minimum number of observations in a cell before
it will be combined with others

ord set to ‘TRUE‘ to treat ‘x‘ as if it were an ordered factor, which allows only
consecutive levels to be combined

plevels by default ‘combine.levels‘ pools low-frequency levels into a category named
‘OTHER‘ when ‘x‘ is not ordered and ‘ord=FALSE‘. To instead name this cate-
gory the concatenation of all the pooled level names, separated by a comma, set
‘plevels=TRUE‘.

sep the separator for concatenating levels when ‘plevels=TRUE‘

combplotp 45

Details

After turning ‘x‘ into a ‘factor‘ if it is not one already, combines levels of ‘x‘ whose frequency
falls below a specified relative frequency ‘minlev‘ or absolute count ‘m‘. When ‘x‘ is not treated as
ordered, all of the small frequency levels are combined into ‘"OTHER"‘, unless ‘plevels=TRUE‘.
When ‘ord=TRUE‘ or ‘x‘ is an ordered factor, only consecutive levels are combined. New levels are
constructed by concatenating the levels with ‘sep‘ as a separator. This is useful when comparing
ordinal regression with polytomous (multinomial) regression and there are too many categories
for polytomous regression. ‘combine.levels‘ is also useful when assumptions of ordinal models
are being checked empirically by computing exceedance probabilities for various cutoffs of the
dependent variable.

Value

a factor variable, or if ‘ord=TRUE‘ an ordered factor variable

Author(s)

Frank Harrell

Examples

x <- c(rep('A', 1), rep('B', 3), rep('C', 4), rep('D',1), rep('E',1))
combine.levels(x, m=3)
combine.levels(x, m=3, plevels=TRUE)
combine.levels(x, ord=TRUE, m=3)
x <- c(rep('A', 1), rep('B', 3), rep('C', 4), rep('D',1), rep('E',1),

rep('F',1))
combine.levels(x, ord=TRUE, m=3)

combplotp Combination Plot

Description

Generates a plotly attribute plot given a series of possibly overlapping binary variables

Usage

combplotp(
formula,
data = NULL,
subset,
na.action = na.retain,
vnames = c("labels", "names"),
includenone = FALSE,
showno = FALSE,
maxcomb = NULL,
minfreq = NULL,

46 combplotp

N = NULL,
pos = function(x) 1 * (tolower(x) %in% c("true", "yes", "y", "positive", "+",
"present", "1")),

obsname = "subjects",
ptsize = 35,
width = NULL,
height = NULL,
...

)

Arguments

formula a formula containing all the variables to be cross-tabulated, on the formula’s
right hand side. There is no left hand side variable. If formula is omitted, then
all variables from data are analyzed.

data input data frame. If none is specified the data are assumed to come from the
parent frame.

subset an optional subsetting expression applied to data

na.action see lm etc.

vnames set to "names" to use variable names to label axes instead of variable labels.
When using the default labels, any variable not having a label will have its
name used instead.

includenone set to TRUE to include the combination where all conditions are absent

showno set to TRUE to show a light dot for conditions that are not part of the currently
tabulated combination

maxcomb maximum number of combinations to display

minfreq if specified, any combination having a frequency less than this will be omitted
from the display

N set to an integer to override the global denominator, instead of using the number
of rows in the data

pos a function of vector returning a logical vector with TRUE values indicating posi-
tive

obsname character string noun describing observations, default is "subjects"

ptsize point size, defaults to 35

width width of plotly plot

height height of plotly plot

... optional arguments to pass to table

Details

Similar to the UpSetR package, draws a special dot chart sometimes called an attribute plot that de-
picts all possible combination of the binary variables. By default a positive value, indicating that a
certain condition pertains for a subject, is any of logical TRUE, numeric 1, "yes", "y", "positive",
"+" or "present" value, and all others are considered negative. The user can override this determi-
nation by specifying her own pos function. Case is ignored in the variable values.

completer 47

The plot uses solid dots arranged in a vertical line to indicate which combination of conditions is
being considered. Frequencies of all possible combinations are shown above the dot chart. Marginal
frequencies of positive values for the input variables are shown to the left of the dot chart. More
information for all three of these component symbols is provided in hover text.

Variables are sorted in descending order of marginal frqeuencies and likewise for combinations of
variables.

Value

plotly object

Author(s)

Frank Harrell

Examples

if (requireNamespace("plotly")) {
g <- function() sample(0:1, n, prob=c(1 - p, p), replace=TRUE)
set.seed(2); n <- 100; p <- 0.5
x1 <- g(); label(x1) <- 'A long label for x1 that describes it'
x2 <- g()
x3 <- g(); label(x3) <- 'This is
a label for x3'
x4 <- g()
combplotp(~ x1 + x2 + x3 + x4, showno=TRUE, includenone=TRUE)

n <- 1500; p <- 0.05
pain <- g()
anxiety <- g()
depression <- g()
soreness <- g()
numbness <- g()
tiredness <- g()
sleepiness <- g()
combplotp(~ pain + anxiety + depression + soreness + numbness +

tiredness + sleepiness, showno=TRUE)
}

completer completer

Description

Create imputed dataset(s) using transcan and aregImpute objects

Usage

completer(a, nimpute, oneimpute = FALSE, mydata)

48 completer

Arguments

a An object of class transcan or aregImpute

nimpute A numeric vector between 1 and a$n.impute. For transcan object, this is set
to 1. For aregImpute object, returns a list of nimpute datasets when oneimpute
is set to FALSE (default).

oneimpute A logical vector. When set to TRUE, returns a single completed dataset for the
imputation number specified by nimpute

mydata A data frame in which its missing values will be imputed.

Details

Similar in function to mice::complete, this function uses transcan and aregImpute objects to
impute missing data and returns the completed dataset(s) as a dataframe or a list. It assumes that
transcan is used for single regression imputation.

Value

A single or a list of completed dataset(s).

Author(s)

Yong-Hao Pua, Singapore General Hospital

Examples

Not run:
mtcars$hp[1:5] <- NA
mtcars$wt[1:10] <- NA
myrform <- ~ wt + hp + I(carb)
mytranscan <- transcan(myrform, data = mtcars, imputed = TRUE,

pl = FALSE, pr = FALSE, trantab = TRUE, long = TRUE)
myareg <- aregImpute(myrform, data = mtcars, x=TRUE, n.impute = 5)
completer(mytranscan) # single completed dataset
completer(myareg, 3, oneimpute = TRUE)
single completed dataset based on the `n.impute`th set of multiple imputation
completer(myareg, 3)
list of completed datasets based on first `nimpute` sets of multiple imputation
completer(myareg)
list of completed datasets based on all available sets of multiple imputation
To get a stacked data frame of all completed datasets use
do.call(rbind, completer(myareg, data=mydata))
or use rbindlist in data.table

End(Not run)

consolidate 49

consolidate Element Merging

Description

Merges an object by the names of its elements. Inserting elements in value into x that do not exists
in x and replacing elements in x that exists in value with value elements if protect is false.

Usage

consolidate(x, value, protect, ...)
Default S3 method:
consolidate(x, value, protect=FALSE, ...)

consolidate(x, protect, ...) <- value

Arguments

x named list or vector

value named list or vector

protect logical; should elements in x be kept instead of elements in value?

... currently does nothing; included if ever want to make generic.

Author(s)

Charles Dupont

See Also

names

Examples

x <- 1:5
names(x) <- LETTERS[x]

y <- 6:10
names(y) <- LETTERS[y-2]

x # c(A=1,B=2,C=3,D=4,E=5)
y # c(D=6,E=7,F=8,G=9,H=10)

consolidate(x, y) # c(A=1,B=2,C=3,D=6,E=7,F=8,G=9,H=10)
consolidate(x, y, protect=TRUE) # c(A=1,B=2,C=3,D=4,E=5,F=8,G=9,H=10)

50 contents

contents Metadata for a Data Frame

Description

contents is a generic method for which contents.data.frame is currently the only method.
contents.data.frame creates an object containing the following attributes of the variables from
a data frame: names, labels (if any), units (if any), number of factor levels (if any), factor levels,
class, storage mode, and number of NAs. print.contents.data.frame will print the results, with
options for sorting the variables. html.contents.data.frame creates HTML code for displaying
the results. This code has hyperlinks so that if the user clicks on the number of levels the browser
jumps to the correct part of a table of factor levels for all the factor variables. If long labels are
present ("longlabel" attributes on variables), these are printed at the bottom and the html method
links to them through the regular labels. Variables having the same levels in the same order have
the levels factored out for brevity.

contents.list prints a directory of datasets when sasxport.get imported more than one SAS
dataset.

If options(prType='html') is in effect, calling print on an object that is the contents of a data
frame will result in rendering the HTML version. If run from the console a browser window will
open.

Usage

contents(object, ...)
S3 method for class 'data.frame'
contents(object, sortlevels=FALSE, id=NULL,
range=NULL, values=NULL, ...)

S3 method for class 'contents.data.frame'
print(x,

sort=c('none','names','labels','NAs'), prlevels=TRUE, maxlevels=Inf,
number=FALSE, ...)

S3 method for class 'contents.data.frame'
html(object,

sort=c('none','names','labels','NAs'), prlevels=TRUE, maxlevels=Inf,
levelType=c('list','table'),
number=FALSE, nshow=TRUE, ...)

S3 method for class 'list'
contents(object, dslabels, ...)
S3 method for class 'contents.list'
print(x,

sort=c('none','names','labels','NAs','vars'), ...)

Arguments

object a data frame. For html is an object created by contents. For contents.list
is a list of data frames.

contents 51

sortlevels set to TRUE to sort levels of all factor variables into alphabetic order. This is
especially useful when two variables use the same levels but in different orders.
They will still be recognized by the html method as having identical levels if
sorted.

id an optional subject ID variable name that if present in object will cause the
number of unique IDs to be printed in the contents header

range an optional variable name that if present in object will cause its range to be
printed in the contents header

values an optional variable name that if present in object will cause its unique values
to be printed in the contents header

x an object created by contents

sort Default is to print the variables in their original order in the data frame. Specify
one of "names", "labels", or "NAs" to sort the variables by, respectively, alpha-
betically by names, alphabetically by labels, or by increaseing order of number
of missing values. For contents.list, sort may also be the value "vars" to
cause sorting by the number of variables in the dataset.

prlevels set to FALSE to not print all levels of factor variables

maxlevels maximum number of levels to print for a factor variable

number set to TRUE to have the print and latex methods number the variables by their
order in the data frame

nshow set to FALSE to suppress outputting number of observations and number of NAs;
useful when these counts would unblind information to blinded reviewers

levelType By default, bullet lists of category levels are constructed in html. Set levelType='table'
to put levels in html table format.

... arguments passed from html to format.df, unused otherwise

dslabels named vector of SAS dataset labels, created for example by sasdsLabels

Value

an object of class "contents.data.frame" or "contents.list". For the html method is an html
character vector object.

Author(s)

Frank Harrell
Vanderbilt University
<fh@fharrell.com>

See Also

describe, html, upData, extractlabs, hlab

52 cpower

Examples

set.seed(1)
dfr <- data.frame(x=rnorm(400),y=sample(c('male','female'),400,TRUE),

stringsAsFactors=TRUE)
contents(dfr)
dfr <- upData(dfr, labels=c(x='Label for x', y='Label for y'))
attr(dfr$x, 'longlabel') <-
'A very long label for x that can continue onto multiple long lines of text'

k <- contents(dfr)
print(k, sort='names', prlevels=FALSE)
Not run:
html(k)
html(contents(dfr)) # same result
latex(k$contents) # latex.default just the main information

End(Not run)

cpower Power of Cox/log-rank Two-Sample Test

Description

Assumes exponential distributions for both treatment groups. Uses the George-Desu method along
with formulas of Schoenfeld that allow estimation of the expected number of events in the two
groups. To allow for drop-ins (noncompliance to control therapy, crossover to intervention) and
noncompliance of the intervention, the method of Lachin and Foulkes is used.

Usage

cpower(tref, n, mc, r, accrual, tmin, noncomp.c=0, noncomp.i=0,
alpha=0.05, nc, ni, pr=TRUE)

Arguments

tref time at which mortalities estimated

n total sample size (both groups combined). If allocation is unequal so that there
are not n/2 observations in each group, you may specify the sample sizes in nc
and ni.

mc tref-year mortality, control

r % reduction in mc by intervention

accrual duration of accrual period

tmin minimum follow-up time

noncomp.c % non-compliant in control group (drop-ins)

noncomp.i % non-compliant in intervention group (non-adherers)

cpower 53

alpha type I error probability. A 2-tailed test is assumed.

nc number of subjects in control group

ni number of subjects in intervention group. nc and ni are specified exclusive of
n.

pr set to FALSE to suppress printing of details

Details

For handling noncompliance, uses a modification of formula (5.4) of Lachin and Foulkes. Their
method is based on a test for the difference in two hazard rates, whereas cpower is based on testing
the difference in two log hazards. It is assumed here that the same correction factor can be approx-
imately applied to the log hazard ratio as Lachin and Foulkes applied to the hazard difference.

Note that Schoenfeld approximates the variance of the log hazard ratio by 4/m, where m is the total
number of events, whereas the George-Desu method uses the slightly better 1/m1 + 1/m2. Power
from this function will thus differ slightly from that obtained with the SAS samsizc program.

Value

power

Side Effects

prints

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Peterson B, George SL: Controlled Clinical Trials 14:511–522; 1993.

Lachin JM, Foulkes MA: Biometrics 42:507–519; 1986.

Schoenfeld D: Biometrics 39:499–503; 1983.

See Also

spower, ciapower, bpower

Examples

#In this example, 4 plots are drawn on one page, one plot for each
#combination of noncompliance percentage. Within a plot, the
#5-year mortality % in the control group is on the x-axis, and
#separate curves are drawn for several % reductions in mortality
#with the intervention. The accrual period is 1.5y, with all
#patients followed at least 5y and some 6.5y.

54 cpower

par(mfrow=c(2,2),oma=c(3,0,3,0))

morts <- seq(10,25,length=50)
red <- c(10,15,20,25)

for(noncomp in c(0,10,15,-1)) {
if(noncomp>=0) nc.i <- nc.c <- noncomp else {nc.i <- 25; nc.c <- 15}
z <- paste("Drop-in ",nc.c,"%, Non-adherence ",nc.i,"%",sep="")
plot(0,0,xlim=range(morts),ylim=c(0,1),

xlab="5-year Mortality in Control Patients (%)",
ylab="Power",type="n")

title(z)
cat(z,"\n")
lty <- 0
for(r in red) {

lty <- lty+1
power <- morts
i <- 0
for(m in morts) {

i <- i+1
power[i] <- cpower(5, 14000, m/100, r, 1.5, 5, nc.c, nc.i, pr=FALSE)

}
lines(morts, power, lty=lty)

}
if(noncomp==0)legend(18,.55,rev(paste(red,"% reduction",sep="")),

lty=4:1,bty="n")
}
mtitle("Power vs Non-Adherence for Main Comparison",

ll="alpha=.05, 2-tailed, Total N=14000",cex.l=.8)
#
Point sample size requirement vs. mortality reduction
Root finder (uniroot()) assumes needed sample size is between
1000 and 40000
#
nc.i <- 25; nc.c <- 15; mort <- .18
red <- seq(10,25,by=.25)
samsiz <- red

i <- 0
for(r in red) {

i <- i+1
samsiz[i] <- uniroot(function(x) cpower(5, x, mort, r, 1.5, 5,

nc.c, nc.i, pr=FALSE) - .8,
c(1000,40000))$root

}

samsiz <- samsiz/1000

Cs 55

par(mfrow=c(1,1))
plot(red, samsiz, xlab='% Reduction in 5-Year Mortality',
ylab='Total Sample Size (Thousands)', type='n')

lines(red, samsiz, lwd=2)
title('Sample Size for Power=0.80\nDrop-in 15%, Non-adherence 25%')
title(sub='alpha=0.05, 2-tailed', adj=0)

Cs Character strings from unquoted names

Description

Cs makes a vector of character strings from a list of valid R names. .q is similar but also makes
uses of names of arguments.

Usage

Cs(...)
.q(...)

Arguments

... any number of names separated by commas. For .q any names of arguments
will be used.

Value

character string vector. For .q there will be a names attribute to the vector if any names appeared in
. . . .

See Also

sys.frame, deparse

Examples

Cs(a,cat,dog)
subset.data.frame <- dataframe[,Cs(age,sex,race,bloodpressure,height)]
.q(a, b, c, 'this and that')
.q(dog=a, giraffe=b, cat=c)

56 csv.get

csv.get Read Comma-Separated Text Data Files

Description

Read comma-separated text data files, allowing optional translation to lower case for variable names
after making them valid S names. There is a facility for reading long variable labels as one of the
rows. If labels are not specified and a final variable name is not the same as that in the header, the
original variable name is saved as a variable label. Uses read.csv if the data.table package is
not in effect, otherwise calls fread.

Usage

csv.get(file, lowernames=FALSE, datevars=NULL, datetimevars=NULL,
dateformat='%F',
fixdates=c('none','year'), comment.char="", autodate=TRUE,
allow=NULL, charfactor=FALSE,
sep=',', skip=0, vnames=NULL, labels=NULL, text=NULL, ...)

Arguments

file the file name for import.

lowernames set this to TRUE to change variable names to lower case.

datevars character vector of names (after lowernames is applied) of variables to consider
as a factor or character vector containing dates in a format matching dateformat.
The default is "%F" which uses the yyyy-mm-dd format.

datetimevars character vector of names (after lowernames is applied) of variables to con-
sider to be date-time variables, with date formats as described under datevars
followed by a space followed by time in hh:mm:ss format. chron is used to
store such variables. If all times in the variable are 00:00:00 the variable will be
converted to an ordinary date variable.

dateformat for cleanup.import is the input format (see strptime)

fixdates for any of the variables listed in datevars that have a dateformat that cleanup.import
understands, specifying fixdates allows corrections of certain formatting in-
consistencies before the fields are attempted to be converted to dates (the default
is to assume that the dateformat is followed for all observation for datevars).
Currently fixdates='year' is implemented, which will cause 2-digit or 4-digit
years to be shifted to the alternate number of digits when dateform is the de-
fault "%F" or is "%y-%m-%d", "%m/%d/%y", or "%m/%d/%Y". Two-digits years
are padded with 20 on the left. Set dateformat to the desired format, not the
exceptional format.

comment.char a character vector of length one containing a single character or an empty string.
Use ’""’ to turn off the interpretation of comments altogether.

autodate Set to true to allow function to guess at which variables are dates

csv.get 57

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

charfactor set to TRUE to change character variables to factors if they have fewer than n/2
unique values. Blanks and null strings are converted to NAs.

sep field separator, defaults to comma

skip number of records to skip before data start. Required if vnames or labels is
given.

vnames number of row containing variable names, default is one

labels number of row containing variable labels, default is no labels

text a character string containing the .csv file to use instead of file=. Passed to
read.csv as the text= argument.

... arguments to pass to read.csv other than skip and sep.

Details

csv.get reads comma-separated text data files, allowing optional translation to lower case for vari-
able names after making them valid S names. Original possibly non-legal names are taken to be
variable labels if labels is not specified. Character or factor variables containing dates can be
converted to date variables. cleanup.import is invoked to finish the job.

Value

a new data frame.

Author(s)

Frank Harrell, Vanderbilt University

See Also

sas.get, data.frame, cleanup.import, read.csv, strptime, POSIXct, Date, fread

Examples

Not run:
dat <- csv.get('myfile.csv')

Read a csv file with junk in the first row, variable names in the
second, long variable labels in the third, and junk in the 4th row
dat <- csv.get('myfile.csv', vnames=2, labels=3, skip=4)

End(Not run)

58 curveRep

curveRep Representative Curves

Description

curveRep finds representative curves from a relatively large collection of curves. The curves usually
represent time-response profiles as in serial (longitudinal or repeated) data with possibly unequal
time points and greatly varying sample sizes per subject. After excluding records containing missing
x or y, records are first stratified into kn groups having similar sample sizes per curve (subject).
Within these strata, curves are next stratified according to the distribution of x points per curve
(typically measurement times per subject). The clara clustering/partitioning function is used to
do this, clustering on one, two, or three x characteristics depending on the minimum sample size
in the current interval of sample size. If the interval has a minimum number of unique values
of one, clustering is done on the single x values. If the minimum number of unique x values is
two, clustering is done to create groups that are similar on both min(x) and max(x). For groups
containing no fewer than three unique x values, clustering is done on the trio of values min(x),
max(x), and the longest gap between any successive x. Then within sample size and x distribution
strata, clustering of time-response profiles is based on p values of y all evaluated at the same p
equally-spaced x’s within the stratum. An option allows per-curve data to be smoothed with lowess
before proceeding. Outer x values are taken as extremes of x across all curves within the stratum.
Linear interpolation within curves is used to estimate y at the grid of x’s. For curves within the
stratum that do not extend to the most extreme x values in that stratum, extrapolation uses flat lines
from the observed extremes in the curve unless extrap=TRUE. The p y values are clustered using
clara.

print and plot methods show results. By specifying an auxiliary idcol variable to plot, other
variables such as treatment may be depicted to allow the analyst to determine for example whether
subjects on different treatments are assigned to different time-response profiles. To write the fre-
quencies of a variable such as treatment in the upper left corner of each panel (instead of the grand
total number of clusters in that panel), specify freq.

curveSmooth takes a set of curves and smooths them using lowess. If the number of unique x
points in a curve is less than p, the smooth is evaluated at the unique x values. Otherwise it is
evaluated at an equally spaced set of x points over the observed range. If fewer than 3 unique x
values are in a curve, those points are used and smoothing is not done.

Usage

curveRep(x, y, id, kn = 5, kxdist = 5, k = 5, p = 5,
force1 = TRUE, metric = c("euclidean", "manhattan"),
smooth=FALSE, extrap=FALSE, pr=FALSE)

S3 method for class 'curveRep'
print(x, ...)

S3 method for class 'curveRep'
plot(x, which=1:length(res),

method=c('all','lattice','data'),

curveRep 59

m=NULL, probs=c(.5, .25, .75), nx=NULL, fill=TRUE,
idcol=NULL, freq=NULL, plotfreq=FALSE,
xlim=range(x), ylim=range(y),
xlab='x', ylab='y', colorfreq=FALSE, ...)

curveSmooth(x, y, id, p=NULL, pr=TRUE)

Arguments

x a numeric vector, typically measurement times. For plot.curveRep is an object
created by curveRep.

y a numeric vector of response values

id a vector of curve (subject) identifiers, the same length as x and y

kn number of curve sample size groups to construct. curveRep tries to divide the
data into equal numbers of curves across sample size intervals.

kxdist maximum number of x-distribution clusters to derive using clara

k maximum number of x-y profile clusters to derive using clara

p number of x points at which to interpolate y for profile clustering. For curveSmooth
is the number of equally spaced points at which to evaluate the lowess smooth,
and if p is omitted the smooth is evaluated at the original x values (which will
allow curveRep to still know the x distribution

force1 By default if any curves have only one point, all curves consisting of one point
will be placed in a separate stratum. To prevent this separation, set force1 =
FALSE.

metric see clara

smooth By default, linear interpolation is used on raw data to obtain y values to cluster to
determine x-y profiles. Specify smooth = TRUE to replace observed points with
lowess before computing y points on the grid. Also, when smooth is used, it
may be desirable to use extrap=TRUE.

extrap set to TRUE to use linear extrapolation to evaluate y points for x-y clustering. Not
recommended unless smoothing has been or is being done.

pr set to TRUE to print progress notes

which an integer vector specifying which sample size intervals to plot. Must be speci-
fied if method='lattice' and must be a single number in that case.

method The default makes individual plots of possibly all x-distribution by sample size
by cluster combinations. Fewer may be plotted by specifying which. Specify
method='lattice' to show a lattice xyplot of a single sample size interval,
with x distributions going across and clusters going down. To not plot but instead
return a data frame for a single sample size interval, specify method='data'

m the number of curves in a cluster to randomly sample if there are more than m
in a cluster. Default is to draw all curves in a cluster. For method = "lattice"
you can specify m = "quantiles" to use the xYplot function to show quantiles
of y as a function of x, with the quantiles specified by the probs argument. This
cannot be used to draw a group containing n = 1.

60 curveRep

nx applies if m = "quantiles". See xYplot.

probs 3-vector of probabilities with the central quantile first. Default uses quartiles.

fill for method = "all", by default if a sample size x-distribution stratum did not
have enough curves to stratify into k x-y profiles, empty graphs are drawn so
that a matrix of graphs will have the next row starting with a different sample
size range or x-distribution. See the example below.

idcol a named vector to be used as a table lookup for color assignments (does not
apply when m = "quantile"). The names of this vector are curve ids and the
values are color names or numbers.

freq a named vector to be used as a table lookup for a grouping variable such as treat-
ment. The names are curve ids and values are any values useful for grouping in
a frequency tabulation.

plotfreq set to TRUE to plot the frequencies from the freq variable as horizontal bars
instead of printing them. Applies only to method = "lattice". By default the
largest bar is 0.1 times the length of a panel’s x-axis. Specify plotfreq = 0.5
for example to make the longest bar half this long.

colorfreq set to TRUE to color the frequencies printed by plotfreq using the colors pro-
vided by idcol.

xlim, ylim, xlab, ylab
plotting parameters. Default ranges are the ranges in the entire set of raw data
given to curveRep.

... arguments passed to other functions.

Details

In the graph titles for the default graphic output, n refers to the minimum sample size, x refers to
the sequential x-distribution cluster, and c refers to the sequential x-y profile cluster. Graphs from
method = "lattice" are produced by xyplot and in the panel titles distribution refers to the
x-distribution stratum and cluster refers to the x-y profile cluster.

Value

a list of class "curveRep" with the following elements

res a hierarchical list first split by sample size intervals, then by x distribution clus-
ters, then containing a vector of cluster numbers with id values as a names
attribute

ns a table of frequencies of sample sizes per curve after removing NAs

nomit total number of records excluded due to NAs

missfreq a table of frequencies of number of NAs excluded per curve

ncuts cut points for sample size intervals

kn number of sample size intervals

kxdist number of clusters on x distribution

k number of clusters of curves within sample size and distribution groups

p number of points at which to evaluate each curve for clustering

curveRep 61

x

y

id input data after removing NAs

curveSmooth returns a list with elements x,y,id.

Note

The references describe other methods for deriving representative curves, but those methods were
not used here. The last reference which used a cluster analysis on principal components motivated
curveRep however. The kml package does k-means clustering of longitudinal data with imputation.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Segal M. (1994): Representative curves for longitudinal data via regression trees. J Comp Graph
Stat 3:214-233.

Jones MC, Rice JA (1992): Displaying the important features of large collections of similar curves.
Am Statistician 46:140-145.

Zheng X, Simpson JA, et al (2005): Data from a study of effectiveness suggested potential prog-
nostic factors related to the patterns of shoulder pain. J Clin Epi 58:823-830.

See Also

clara,dataRep

Examples

Not run:
Simulate 200 curves with per-curve sample sizes ranging from 1 to 10
Make curves with odd-numbered IDs have an x-distribution that is random
uniform [0,1] and those with even-numbered IDs have an x-dist. that is
half as wide but still centered at 0.5. Shift y values higher with
increasing IDs
set.seed(1)
N <- 200
nc <- sample(1:10, N, TRUE)
id <- rep(1:N, nc)
x <- y <- id
for(i in 1:N) {

x[id==i] <- if(i %% 2) runif(nc[i]) else runif(nc[i], c(.25, .75))
y[id==i] <- i + 10*(x[id==i] - .5) + runif(nc[i], -10, 10)

}

62 curveRep

w <- curveRep(x, y, id, kxdist=2, p=10)
w
par(ask=TRUE, mfrow=c(4,5))
plot(w) # show everything, profiles going across
par(mfrow=c(2,5))
plot(w,1) # show n=1 results
Use a color assignment table, assigning low curves to green and
high to red. Unique curve (subject) IDs are the names of the vector.
cols <- c(rep('green', N/2), rep('red', N/2))
names(cols) <- as.character(1:N)
plot(w, 3, idcol=cols)
par(ask=FALSE, mfrow=c(1,1))

plot(w, 1, 'lattice') # show n=1 results
plot(w, 3, 'lattice') # show n=4-5 results
plot(w, 3, 'lattice', idcol=cols) # same but different color mapping
plot(w, 3, 'lattice', m=1) # show a single "representative" curve
Show median, 10th, and 90th percentiles of supposedly representative curves
plot(w, 3, 'lattice', m='quantiles', probs=c(.5,.1,.9))
Same plot but with much less grouping of x variable
plot(w, 3, 'lattice', m='quantiles', probs=c(.5,.1,.9), nx=2)

Use ggplot2 for one sample size interval
z <- plot(w, 2, 'data')
require(ggplot2)
ggplot(z, aes(x, y, color=curve)) + geom_line() +

facet_grid(distribution ~ cluster) +
theme(legend.position='none') +
labs(caption=z$ninterval[1])

Smooth data before profiling. This allows later plotting to plot
smoothed representative curves rather than raw curves (which
specifying smooth=TRUE to curveRep would do, if curveSmooth was not used)
d <- curveSmooth(x, y, id)
w <- with(d, curveRep(x, y, id))

Example to show that curveRep can cluster profiles correctly when
there is no noise. In the data there are four profiles - flat, flat
at a higher mean y, linearly increasing then flat, and flat at the
first height except for a sharp triangular peak

set.seed(1)
x <- 0:100
m <- length(x)
profile <- matrix(NA, nrow=m, ncol=4)
profile[,1] <- rep(0, m)
profile[,2] <- rep(3, m)
profile[,3] <- c(0:3, rep(3, m-4))
profile[,4] <- c(0,1,3,1,rep(0,m-4))
col <- c('black','blue','green','red')
matplot(x, profile, type='l', col=col)
xeval <- seq(0, 100, length.out=5)

cut2 63

s <- x
matplot(x[s], profile[s,], type='l', col=col)

id <- rep(1:100, each=m)
X <- Y <- id
cols <- character(100)
names(cols) <- as.character(1:100)
for(i in 1:100) {

s <- id==i
X[s] <- x
j <- sample(1:4,1)
Y[s] <- profile[,j]
cols[i] <- col[j]

}
table(cols)
yl <- c(-1,4)
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=4)
plot(w, 1, 'lattice', idcol=cols, ylim=yl)
Found 4 clusters but two have same profile
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=3)
plot(w, 1, 'lattice', idcol=cols, freq=cols, plotfreq=TRUE, ylim=yl)
Incorrectly combined black and red because default value p=5 did
not result in different profiles at x=xeval
w <- curveRep(X, Y, id, kn=1, kxdist=1, k=4, p=40)
plot(w, 1, 'lattice', idcol=cols, ylim=yl)
Found correct clusters because evaluated curves at 40 equally
spaced points and could find the sharp triangular peak in profile 4

End(Not run)

cut2 Cut a Numeric Variable into Intervals

Description

cut2 is a function like cut but left endpoints are inclusive and labels are of the form [lower,
upper), except that last interval is [lower,upper]. If cuts are given, will by default make sure that
cuts include entire range of x. Also, if cuts are not given, will cut x into quantile groups (g given) or
groups with a given minimum number of observations (m). Whereas cut creates a category object,
cut2 creates a factor object. m is not guaranteed but is a target.

cutGn guarantees that the grouped variable will have a minimum of m observations in any group.
This is done by an exhaustive algorithm that runs fast due to being coded in Fortran.

Usage

cut2(x, cuts, m=150, g, levels.mean=FALSE, digits, minmax=TRUE,
oneval=TRUE, onlycuts=FALSE, formatfun=format, ...)

cutGn(x, m, what=c('mean', 'factor', 'summary', 'cuts', 'function'), rcode=FALSE)

64 cut2

Arguments

x numeric vector to classify into intervals

cuts cut points

m desired minimum number of observations in a group. The algorithm does not
guarantee that all groups will have at least m observations.

g number of quantile groups

levels.mean set to TRUE to make the new categorical vector have levels attribute that is the
group means of x instead of interval endpoint labels

digits number of significant digits to use in constructing levels. Default is 3 (5 if
levels.mean=TRUE)

minmax if cuts is specified but min(x)<min(cuts) or max(x)>max(cuts), augments
cuts to include min and max x

oneval if an interval contains only one unique value, the interval will be labeled with
the formatted version of that value instead of the interval endpoints, unless
oneval=FALSE

onlycuts set to TRUE to only return the vector of computed cuts. This consists of the
interior values plus outer ranges.

formatfun formatting function, supports formula notation (if rlang is installed)

... additional arguments passed to formatfun

what specifies the kind of vector values to return from cutGn, the default being like
'levels.mean' of cut2. Specify 'summary' to return a numeric 3-column ma-
trix that summarizes the intervals satisfying the m requirement. Use what='cuts'
to only return the vector of computed cutpoints. To create a function that will re-
code the variable in play using the same intervals as computed by cutGn, specify
what='function'. This function will have a what argument to allow the user
to decide later whether to recode into interval means or into a factor variable.

rcode set to TRUE to run the cutgn algorithm in R. This is useful for speed comparisons
with the default compiled code.

Value

a factor variable with levels of the form [a,b) or formatted means (character strings) unless onlycuts
is TRUE in which case a numeric vector is returned

See Also

cut, quantile, combine.levels

Examples

set.seed(1)
x <- runif(1000, 0, 100)
z <- cut2(x, c(10,20,30))
table(z)
table(cut2(x, g=10)) # quantile groups

data.frame.create.modify.check 65

table(cut2(x, m=50)) # group x into intevals with at least 50 obs.

table(cutGn(x, m=50, what='factor'))
f <- cutGn(x, m=50, what='function')
f
f(c(-1, 2, 10), what='mean')
f(c(-1, 2, 10), what='factor')
Not run:

x <- round(runif(200000), 3)
system.time(a <- cutGn(x, m=20)) # 0.02s
system.time(b <- cutGn(x, m=20, rcode=TRUE)) # 1.51s
identical(a, b)

End(Not run)

data.frame.create.modify.check

Tips for Creating, Modifying, and Checking Data Frames

Description

This help file contains a template for importing data to create an R data frame, correcting some
problems resulting from the import and making the data frame be stored more efficiently, modifying
the data frame (including better annotating it and changing the names of some of its variables), and
checking and inspecting the data frame for reasonableness of the values of its variables and to
describe patterns of missing data. Various built-in functions and functions in the Hmisc library are
used. At the end some methods for creating data frames “from scratch” within R are presented.

The examples below attempt to clarify the separation of operations that are done on a data frame
as a whole, operations that are done on a small subset of its variables without attaching the whole
data frame, and operations that are done on many variables after attaching the data frame in search
position one. It also tries to clarify that for analyzing several separate variables using R commands
that do not support a data argument, it is helpful to attach the data frame in a search position later
than position one.

It is often useful to create, modify, and process datasets in the following order.

1. Import external data into a data frame (if the raw data do not contain column names, provide
these during the import if possible)

2. Make global changes to a data frame (e.g., changing variable names)

3. Change attributes or values of variables within a data frame

4. Do analyses involving the whole data frame (without attaching it)
(Data frame still in .Data)

5. Do analyses of individual variables (after attaching the data frame in search position two or
later)

66 data.frame.create.modify.check

Details

The examples below use the FEV dataset from Rosner 1995. Almost any dataset would do. The
jcetable data are taken from Galobardes, etal.

Presently, giving a variable the "units" attribute (using the Hmisc units function) only benefits
the Hmisc describe function and the rms library’s version of the link[rms]{Surv} function.
Variables labels defined with the Hmisc label function are used by describe, summary.formula,
and many of the plotting functions in Hmisc and rms.

References

Alzola CF, Harrell FE (2006): An Introduction to S and the Hmisc and Design Libraries. Chapters
3 and 4, https://hbiostat.org/R/doc/sintro.pdf.

Galobardes, et al. (1998), J Clin Epi 51:875-881.

Rosner B (1995): Fundamentals of Biostatistics, 4th Edition. New York: Duxbury Press.

See Also

scan, read.table, cleanup.import, sas.get, data.frame, attach, detach, describe, datadensity,
plot.data.frame, hist.data.frame, naclus, factor, label, units, names, expand.grid, summary.formula,
summary.data.frame, casefold, edit, page, plot.data.frame, Cs, combine.levels,upData

Examples

Not run:
First, we do steps that create or manipulate the data
frame in its entirety. For S-Plus, these are done with
.Data in search position one (the default at the
start of the session).
#

Step 1: Create initial draft of data frame
#
We usually begin by importing a dataset from
another application. ASCII files may be imported
using the scan and read.table functions. SAS
datasets may be imported using the Hmisc sas.get
function (which will carry more attributes from
SAS than using File \dots Import) from the GUI
menus. But for most applications (especially
Excel), File \dots Import will suffice. If using
the GUI, it is often best to provide variable
names during the import process, using the Options
tab, rather than renaming all fields later Of
course, if the data to be imported already have
field names (e.g., in Excel), let S use those
automatically. If using S-Plus, you can use a
command to execute File \dots Import, e.g.:

import.data(FileName = "/windows/temp/fev.asc",

https://hbiostat.org/R/doc/sintro.pdf

data.frame.create.modify.check 67

FileType = "ASCII", DataFrame = "FEV")

Here we name the new data frame FEV rather than
fev, because we wanted to distinguish a variable
in the data frame named fev from the data frame
name. For S-Plus the command will look
instead like the following:

FEV <- importData("/tmp/fev.asc")

Step 2: Clean up data frame / make it be more
efficiently stored
#
Unless using sas.get to import your dataset
(sas.get already stores data efficiently), it is
usually a good idea to run the data frame through
the Hmisc cleanup.import function to change
numeric variables that are always whole numbers to
be stored as integers, the remaining numerics to
single precision, strange values from Excel to
NAs, and character variables that always contain
legal numeric values to numeric variables.
cleanup.import typically halves the size of the
data frame. If you do not specify any parameters
to cleanup.import, the function assumes that no
numeric variable needs more than 7 significant
digits of precision, so all non-integer-valued
variables will be converted to single precision.

FEV <- cleanup.import(FEV)

Step 3: Make global changes to the data frame
#
A data frame has attributes that are "external" to
its variables. There are the vector of its
variable names ("names" attribute), the
observation identifiers ("row.names"), and the
"class" (whose value is "data.frame"). The
"names" attribute is the one most commonly in need
of modification. If we had wanted to change all
the variable names to lower case, we could have
specified lowernames=TRUE to the cleanup.import

68 data.frame.create.modify.check

invocation above, or type

names(FEV) <- casefold(names(FEV))

The upData function can also be used to change
variable names in two ways (see below).
To change names in a non-systematic way we use
other options. Under Windows/NT the most
straigtforward approach is to change the names
interactively. Click on the data frame in the
left panel of the Object Browser, then in the
right pane click twice (slowly) on a variable.
Use the left arrow and other keys to edit the
name. Click outside that name field to commit the
change. You can also rename columns while in a
Data Sheet. To instead use programming commands
to change names, use something like:

names(FEV)[6] <- 'smoke' # assumes you know the positions!
names(FEV)[names(FEV)=='smoking'] <- 'smoke'
names(FEV) <- edit(names(FEV))

The last example is useful if you are changing
many names. But none of the interactive
approaches such as edit() are handy if you will be
re-importing the dataset after it is updated in
its original application. This problem can be
addressed by saving the new names in a permanent
vector in .Data:

new.names <- names(FEV)

Then if the data are re-imported, you can type

names(FEV) <- new.names

to rename the variables.

Step 4: Delete unneeded variables
#
To delete some of the variables, you can

data.frame.create.modify.check 69

right-click on variable names in the Object
Browser's right pane, then select Delete. You can
also set variables to have NULL values, which
causes the system to delete them. We don't need
to delete any variables from FEV but suppose we
did need to delete some from mydframe.

mydframe$x1 <- NULL
mydframe$x2 <- NULL
mydframe[c('age','sex')] <- NULL # delete 2 variables
mydframe[Cs(age,sex)] <- NULL # same thing

The last example uses the Hmisc short-cut quoting
function Cs. See also the drop parameter to upData.

Step 5: Make changes to individual variables
within the data frame
#
After importing data, the resulting variables are
seldom self - documenting, so we commonly need to
change or enhance attributes of individual
variables within the data frame.
#
If you are only changing a few variables, it is
efficient to change them directly without
attaching the entire data frame.

FEV$sex <- factor(FEV$sex, 0:1, c('female','male'))
FEV$smoke <- factor(FEV$smoke, 0:1,

c('non-current smoker','current smoker'))
units(FEV$age) <- 'years'
units(FEV$fev) <- 'L'
label(FEV$fev) <- 'Forced Expiratory Volume'
units(FEV$height) <- 'inches'

When changing more than one or two variables it is
more convenient change the data frame using the
Hmisc upData function.

FEV2 <- upData(FEV,
rename=c(smoking='smoke'),
omit if renamed above
drop=c('var1','var2'),
levels=list(sex =list(female=0,male=1),

70 data.frame.create.modify.check

smoke=list('non-current smoker'=0,
'current smoker'=1)),

units=list(age='years', fev='L', height='inches'),
labels=list(fev='Forced Expiratory Volume'))

An alternative to levels=list(\dots) is for example
upData(FEV, sex=factor(sex,0:1,c('female','male'))).
#
Note that we saved the changed data frame into a
new data frame FEV2. If we were confident of the
correctness of our changes we could have stored
the new data frame on top of the old one, under
the original name FEV.

Step 6: Check the data frame
#
The Hmisc describe function is perhaps the first
function that should be used on the new data
frame. It provides documentation of all the
variables and the frequency tabulation, counts of
NAs, and 5 largest and smallest values are
helpful in detecting data errors. Typing
describe(FEV) will write the results to the
current output window. To put the results in a
new window that can persist, even upon exiting
S, we use the page function. The describe
output can be minimized to an icon but kept ready
for guiding later steps of the analysis.

page(describe(FEV2), multi=TRUE)
multi=TRUE allows that window to persist while
control is returned to other windows

The new data frame is OK. Store it on top of the
old FEV and then use the graphical user interface
to delete FEV2 (click on it and hit the Delete
key) or type rm(FEV2) after the next statement.

FEV <- FEV2

Next, we can use a variety of other functions to
check and describe all of the variables. As we
are analyzing all or almost all of the variables,
this is best done without attaching the data
frame. Note that plot.data.frame plots inverted
CDFs for continuous variables and dot plots

data.frame.create.modify.check 71

showing frequency distributions of categorical
ones.

summary(FEV)
basic summary function (summary.data.frame)

plot(FEV) # plot.data.frame
datadensity(FEV)
rug plots and freq. bar charts for all var.

hist.data.frame(FEV)
for variables having > 2 values

by(FEV, FEV$smoke, summary)
use basic summary function with stratification

Step 7: Do detailed analyses involving individual
variables
#
Analyses based on the formula language can use
data= so attaching the data frame may not be
required. This saves memory. Here we use the
Hmisc summary.formula function to compute 5
statistics on height, stratified separately by age
quartile and by sex.

options(width=80)
summary(height ~ age + sex, data=FEV,

fun=function(y)c(smean.sd(y),
smedian.hilow(y,conf.int=.5)))

This computes mean height, S.D., median, outer quartiles

fit <- lm(height ~ age*sex, data=FEV)
summary(fit)

For this analysis we could also have attached the
data frame in search position 2. For other
analyses, it is mandatory to attach the data frame
unless FEV$ prefixes each variable name.
Important: DO NOT USE attach(FEV, 1) or
attach(FEV, pos=1, \dots) if you are only analyzing
and not changing the variables, unless you really

72 data.frame.create.modify.check

need to avoid conflicts with variables in search
position 1 that have the same names as the
variables in FEV. Attaching into search position
1 will cause S-Plus to be more of a memory hog.

attach(FEV)
Use e.g. attach(FEV[,Cs(age,sex)]) if you only
want to analyze a small subset of the variables
Use e.g. attach(FEV[FEV$sex=='male',]) to
analyze a subset of the observations

summary(height ~ age + sex,
fun=function(y)c(smean.sd(y),

smedian.hilow(y,conf.int=.5)))
fit <- lm(height ~ age*sex)

Run generic summary function on height and fev,
stratified by sex
by(data.frame(height,fev), sex, summary)

Cross-classify into 4 sex x smoke groups
by(FEV, list(sex,smoke), summary)

Plot 5 quantiles
s <- summary(fev ~ age + sex + height,

fun=function(y)quantile(y,c(.1,.25,.5,.75,.9)))

plot(s, which=1:5, pch=c(1,2,15,2,1), #pch=c('=','[','o',']','='),
main='A Discovery', xlab='FEV')

Use the nonparametric bootstrap to compute a
0.95 confidence interval for the population mean fev
smean.cl.boot(fev) # in Hmisc

Use the Statistics \dots Compare Samples \dots One Sample
keys to get a normal-theory-based C.I. Then do it
more manually. The following method assumes that
there are no NAs in fev

sd <- sqrt(var(fev))
xbar <- mean(fev)
xbar
sd
n <- length(fev)

data.frame.create.modify.check 73

qt(.975,n-1)
prints 0.975 critical value of t dist. with n-1 d.f.

xbar + c(-1,1)*sd/sqrt(n)*qt(.975,n-1)
prints confidence limits

Fit a linear model
fit <- lm(fev ~ other variables \dots)

detach()

The last command is only needed if you want to
start operating on another data frame and you want
to get FEV out of the way.

Creating data frames from scratch
#
Data frames can be created from within S. To
create a small data frame containing ordinary
data, you can use something like

dframe <- data.frame(age=c(10,20,30),
sex=c('male','female','male'),
stringsAsFactors=TRUE)

You can also create a data frame using the Data
Sheet. Create an empty data frame with the
correct variable names and types, then edit in the
data.

dd <- data.frame(age=numeric(0),sex=character(0),
stringsAsFactors=TRUE)

The sex variable will be stored as a factor, and
levels will be automatically added to it as you
define new values for sex in the Data Sheet's sex
column.
#
When the data frame you need to create is defined
by systematically varying variables (e.g., all
possible combinations of values of each variable),

74 dataRep

the expand.grid function is useful for quickly
creating the data. Then you can add
non-systematically-varying variables to the object
created by expand.grid, using programming
statements or editing the Data Sheet. This
process is useful for creating a data frame
representing all the values in a printed table.
In what follows we create a data frame
representing the combinations of values from an 8
x 2 x 2 x 2 (event x method x sex x what) table,
and add a non-systematic variable percent to the
data.

jcetable <- expand.grid(
event=c('Wheezing at any time',

'Wheezing and breathless',
'Wheezing without a cold',
'Waking with tightness in the chest',
'Waking with shortness of breath',
'Waking with an attack of cough',
'Attack of asthma',
'Use of medication'),

method=c('Mail','Telephone'),
sex=c('Male','Female'),
what=c('Sensitivity','Specificity'))

jcetable$percent <-
c(756,618,706,422,356,578,289,333,

576,421,789,273,273,212,212,212,
613,763,713,403,377,541,290,226,
613,684,632,290,387,613,258,129,
656,597,438,780,732,679,938,919,
714,600,494,877,850,703,963,987,
755,420,480,794,779,647,956,941,
766,423,500,833,833,604,955,986) / 10

In jcetable, event varies most rapidly, then
method, then sex, and what.

End(Not run)

dataRep Representativeness of Observations in a Data Set

Description

These functions are intended to be used to describe how well a given set of new observations (e.g.,
new subjects) were represented in a dataset used to develop a predictive model. The dataRep

dataRep 75

function forms a data frame that contains all the unique combinations of variable values that existed
in a given set of variable values. Cross–classifications of values are created using exact values of
variables, so for continuous numeric variables it is often necessary to round them to the nearest v
and to possibly curtail the values to some lower and upper limit before rounding. Here v denotes a
numeric constant specifying the matching tolerance that will be used. dataRep also stores marginal
distribution summaries for all the variables. For numeric variables, all 101 percentiles are stored,
and for all variables, the frequency distributions are also stored (frequencies are computed after any
rounding and curtailment of numeric variables). For the purposes of rounding and curtailing, the
roundN function is provided. A print method will summarize the calculations made by dataRep,
and if long=TRUE all unique combinations of values and their frequencies in the original dataset are
printed.

The predict method for dataRep takes a new data frame having variables named the same as
the original ones (but whose factor levels are not necessarily in the same order) and examines the
collapsed cross-classifications created by dataRep to find how many observations were similar to
each of the new observations after any rounding or curtailment of limits is done. predict also does
some calculations to describe how the variable values of the new observations "stack up" against
the marginal distributions of the original data. For categorical variables, the percent of observations
having a given variable with the value of the new observation (after rounding for variables that were
through roundN in the formula given to dataRep) is computed. For numeric variables, the percentile
of the original distribution in which the current value falls will be computed. For this purpose, the
data are not rounded because the 101 original percentiles were retained; linear interpolation is used
to estimate percentiles for values between two tabulated percentiles. The lowest marginal frequency
of matching values across all variables is also computed. For example, if an age, sex combination
matches 10 subjects in the original dataset but the age value matches 100 ages (after rounding) and
the sex value matches the sex code of 300 observations, the lowest marginal frequency is 100, which
is a "best case" upper limit for multivariable matching. I.e., matching on all variables has to result
on a lower frequency than this amount. A print method for the output of predict.dataRep prints
all calculations done by predict by default. Calculations can be selectively suppressed.

Usage

dataRep(formula, data, subset, na.action)

roundN(x, tol=1, clip=NULL)

S3 method for class 'dataRep'
print(x, long=FALSE, ...)

S3 method for class 'dataRep'
predict(object, newdata, ...)

S3 method for class 'predict.dataRep'
print(x, prdata=TRUE, prpct=TRUE, ...)

Arguments

formula a formula with no left-hand-side. Continuous numeric variables in need of
rounding should appear in the formula as e.g. roundN(x,5) to have a tolerance

76 dataRep

of e.g. +/- 2.5 in matching. Factor or character variables as well as numeric ones
not passed through roundN are matched on exactly.

x a numeric vector or an object created by dataRep

object the object created by dataRep or predict.dataRep
data, subset, na.action

standard modeling arguments. Default na.action is na.delete, i.e., observa-
tions in the original dataset having any variables missing are deleted up front.

tol rounding constant (tolerance is actually tol/2 as values are rounded to the near-
est tol)

clip a 2-vector specifying a lower and upper limit to curtail values of x before round-
ing

long set to TRUE to see all unique combinations and frequency count

newdata a data frame containing all the variables given to dataRep but not necessarily in
the same order or having factor levels in the same order

prdata set to FALSE to suppress printing newdata and the count of matching observa-
tions (plus the worst-case marginal frequency).

prpct set to FALSE to not print percentiles and percents

... unused

Value

dataRep returns a list of class "dataRep" containing the collapsed data frame and frequency counts
along with marginal distribution information. predict returns an object of class "predict.dataRep"
containing information determined by matching observations in newdata with the original (col-
lapsed) data.

Side Effects

print.dataRep prints.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

See Also

round, table

Examples

set.seed(13)
num.symptoms <- sample(1:4, 1000,TRUE)
sex <- factor(sample(c('female','male'), 1000,TRUE))
x <- runif(1000)

deff 77

x[1] <- NA
table(num.symptoms, sex, .25*round(x/.25))

d <- dataRep(~ num.symptoms + sex + roundN(x,.25))
print(d, long=TRUE)

predict(d, data.frame(num.symptoms=1:3, sex=c('male','male','female'),
x=c(.03,.5,1.5)))

deff Design Effect and Intra-cluster Correlation

Description

Computes the Kish design effect and corresponding intra-cluster correlation for a single cluster-
sampled variable

Usage

deff(y, cluster)

Arguments

y variable to analyze

cluster a variable whose unique values indicate cluster membership. Any type of vari-
able is allowed.

Value

a vector with named elements n (total number of non-missing observations), clusters (number of
clusters after deleting missing data), rho(intra-cluster correlation), and deff (design effect).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

bootcov, robcov

78 describe

Examples

set.seed(1)
blood.pressure <- rnorm(1000, 120, 15)
clinic <- sample(letters, 1000, replace=TRUE)
deff(blood.pressure, clinic)

describe Concise Statistical Description of a Vector, Matrix, Data Frame, or
Formula

Description

describe is a generic method that invokes describe.data.frame, describe.matrix, describe.vector,
or describe.formula. describe.vector is the basic function for handling a single variable. This
function determines whether the variable is character, factor, category, binary, discrete numeric,
and continuous numeric, and prints a concise statistical summary according to each. A numeric
variable is deemed discrete if it has <= 10 distinct values. In this case, quantiles are not printed. A
frequency table is printed for any non-binary variable if it has no more than 20 distinct values. For
any variable for which the frequency table is not printed, the 5 lowest and highest values are printed.
This behavior can be overriden for long character variables with many levels using the listunique
parameter, to get a complete tabulation.

describe is especially useful for describing data frames created by *.get, as labels, formats, value
labels, and (in the case of sas.get) frequencies of special missing values are printed.

For a binary variable, the sum (number of 1’s) and mean (proportion of 1’s) are printed. If the first
argument is a formula, a model frame is created and passed to describe.data.frame. If a variable is
of class "impute", a count of the number of imputed values is printed. If a date variable has an
attribute partial.date (this is set up by sas.get), counts of how many partial dates are actually
present (missing month, missing day, missing both) are also presented. If a variable was created
by the special-purpose function substi (which substitutes values of a second variable if the first
variable is NA), the frequency table of substitutions is also printed.

For numeric variables, describe adds an item called Info which is a relative information measure
using the relative efficiency of a proportional odds/Wilcoxon test on the variable relative to the same
test on a variable that has no ties. Info is related to how continuous the variable is, and ties are less
harmful the more untied values there are. The formula for Info is one minus the sum of the cubes
of relative frequencies of values divided by one minus the square of the reciprocal of the sample
size. The lowest information comes from a variable having only one distinct value following by a
highly skewed binary variable. Info is reported to two decimal places.

A latex method exists for converting the describe object to a LaTeX file. For numeric variables
having more than 20 distinct values, describe saves in its returned object the frequencies of 100
evenly spaced bins running from minimum observed value to the maximum. When there are less
than or equal to 20 distinct values, the original values are maintained. latex and html insert a spike
histogram displaying these frequency counts in the tabular material using the LaTeX picture envi-
ronment. For example output see https://hbiostat.org/doc/rms/book/chapter7edition1.
pdf. Note that the latex method assumes you have the following styles installed in your latex instal-
lation: setspace and relsize.

https://hbiostat.org/doc/rms/book/chapter7edition1.pdf
https://hbiostat.org/doc/rms/book/chapter7edition1.pdf

describe 79

The html method mimics the LaTeX output. This is useful in the context of Quarto/Rmarkdown
html and html notebook output. If options(prType='html') is in effect, calling print on an
object that is the result of running describe on a data frame will result in rendering the HTML
version. If run from the console a browser window will open. When which is specified to print,
whether or not prType='html' is in effect, a gt package html table will be produced containing
only the types of variables requested. When which='both' a list with element names Continuous
and Categorical is produced, making it convenient for the user to print as desired, or to pass the
list directed to the qreport maketabs function when using Quarto.

The plot method is for describe objects run on data frames. It produces spike histograms for
a graphic of continuous variables and a dot chart for categorical variables, showing category pro-
portions. The graphic format is ggplot2 if the user has not set options(grType='plotly') or
has set the grType option to something other than 'plotly'. Otherwise plotly graphics that are
interactive are produced, and these can be placed into an Rmarkdown html notebook. The user
must install the plotly package for this to work. When the use hovers the mouse over a bin for a
raw data value, the actual value will pop-up (formatted using digits). When the user hovers over
the minimum data value, most of the information calculated by describe will pop up. For each
variable, the number of missing values is used to assign the color to the histogram or dot chart, and
a legend is drawn. Color is not used if there are no missing values in any variable. For categorical
variables, hovering over the leftmost point for a variable displays details, and for all points propor-
tions, numerators, and denominators are displayed in the popup. If both continuous and categorical
variables are present and which='both' is specified, the plot method returns an unclassed list
containing two objects, named 'Categorical' and 'Continuous', in that order.

Sample weights may be specified to any of the functions, resulting in weighted means, quantiles,
and frequency tables.

Note: As discussed in Cox and Longton (2008), Stata Technical Bulletin 8(4) pp. 557, the term
"unique" has been replaced with "distinct" in the output (but not in parameter names).

When weights are not used, the pseudomedian and Gini’s mean difference are computed for nu-
meric variables. The pseudomedian is labeled pMedian and is the median of all possible pairwise
averages. It is a robust and efficient measure of location that equals the mean and median for
symmetric distributions. It is also called the Hodges-Lehmann one-sample estimator. Gini’s mean
difference is a robust measure of dispersion that is the mean absolute difference between any pairs
of observations. In simple output Gini’s difference is labeled Gmd.

formatdescribeSingle is a service function for latex, html, and print methods for single vari-
ables that is not intended to be called by the user.

Usage

S3 method for class 'vector'
describe(x, descript, exclude.missing=TRUE, digits=4,

listunique=0, listnchar=12,
weights=NULL, normwt=FALSE, minlength=NULL, shortmChoice=TRUE,
rmhtml=FALSE, trans=NULL, lumptails=0.01, ...)

S3 method for class 'matrix'
describe(x, descript, exclude.missing=TRUE, digits=4, ...)
S3 method for class 'data.frame'
describe(x, descript, exclude.missing=TRUE,

digits=4, trans=NULL, ...)

80 describe

S3 method for class 'formula'
describe(x, descript, data, subset, na.action,

digits=4, weights, ...)
S3 method for class 'describe'
print(x, which = c('both', 'categorical', 'continuous'), ...)
S3 method for class 'describe'
latex(object, title=NULL,

file=paste('describe',first.word(expr=attr(object,'descript')),'tex',sep='.'),
append=FALSE, size='small', tabular=TRUE, greek=TRUE,
spacing=0.7, lspace=c(0,0), ...)

S3 method for class 'describe.single'
latex(object, title=NULL, vname,

file, append=FALSE, size='small', tabular=TRUE, greek=TRUE,
lspace=c(0,0), ...)

S3 method for class 'describe'
html(object, size=85, tabular=TRUE,

greek=TRUE, scroll=FALSE, rows=25, cols=100, ...)
S3 method for class 'describe.single'
html(object, size=85,

tabular=TRUE, greek=TRUE, ...)
formatdescribeSingle(x, condense=c('extremes', 'frequencies', 'both', 'none'),

lang=c('plain', 'latex', 'html'), verb=0, lspace=c(0, 0),
size=85, ...)

S3 method for class 'describe'
plot(x, which=c('both', 'continuous', 'categorical'),

what=NULL,
sort=c('ascending', 'descending', 'none'),
n.unique=10, digits=5, bvspace=2, ...)

Arguments

x a data frame, matrix, vector, or formula. For a data frame, the describe.data.frame
function is automatically invoked. For a matrix, describe.matrix is called.
For a formula, describe.data.frame(model.frame(x)) is invoked. The formula
may or may not have a response variable. For print, latex, html, or formatdescribeSingle,
x is an object created by describe.

descript optional title to print for x. The default is the name of the argument or the
"label" attributes of individual variables. When the first argument is a formula,
descript defaults to a character representation of the formula.

exclude.missing

set toTRUE to print the names of variables that contain only missing values.
This list appears at the bottom of the printout, and no space is taken up for such
variables in the main listing.

digits number of significant digits to print. For plot.describe is the number of sig-
nificant digits to put in hover text for plotly when showing raw variable values.

listunique For a character variable that is not an mChoice variable, that has its longest string
length greater than listnchar, and that has no more than listunique distinct
values, all values are listed in alphabetic order. Any value having more than

describe 81

one occurrence has the frequency of occurrence included. Specify listunique
equal to some value at least as large as the number of observations to ensure
that all character variables will have all their values listed. For purposes of
tabulating character strings, multiple white spaces of any kind are translated to
a single space, leading and trailing white space are ignored, and case is ignored.

listnchar see listunique

weights a numeric vector of frequencies or sample weights. Each observation will be
treated as if it were sampled weights times.

minlength value passed to summary.mChoice

shortmChoice set to FALSE to have summary of mChoice variables use actual levels every-
where, instead of abbreviating to integers and printing of all original labels at
the top

rmhtml set to TRUE to strip html from variable labels

trans for describe.vector is a list specifying how to transform x for constructing the
frequency distribution used in spike histograms. The first element of the list is a
character string describing the transformation, the second is the transformation
function, and the third argument is the inverse of this function that is used in
labeling points on the original scale, e.g. trans=list('log', log, exp). For
describe.data.frame trans is a list of such lists, with the name of each list
being name of the variable to which the transformation applies. See https:
//hbiostat.org/rmsc/impred.html#data for an example.

lumptails specifies the quantile to use (its complement is also used) for grouping obser-
vations in the tails so that outliers have less chance of distorting the variable’s
range for sparkline spike histograms. The default is 0.01, i.e., observations be-
low the 0.01 quantile are grouped together in the leftmost bin, and observations
above the 0.99 quantile are grouped to form the last bin.

normwt The default, normwt=FALSE results in the use of weights as weights in com-
puting various statistics. In this case the sample size is assumed to be equal to
the sum of weights. Specify normwt=TRUE to divide weights by a constant so
that weights sum to the number of observations (length of vectors specified to
describe). In this case the number of observations is taken to be the actual
number of records given to describe.

object a result of describe

title unused

data a data frame, data table, or list

subset a subsetting expression

na.action These are used if a formula is specified. na.action defaults to na.retain
which does not delete any NAs from the data frame. Use na.action=na.omit
or na.delete to drop any observation with any NA before processing.

... arguments passed to describe.default which are passed to calls to format
for numeric variables. For example if using R POSIXct or Date date/time for-
mats, specifying describe(d,format='%d%b%y') will print date/time variables
as "01Jan2000". This is useful for omitting the time component. See the help
file for format.POSIXct or format.Date for more information. For plot meth-
ods, . . . is ignored. For html and latex methods, . . . is used to pass optional

https://hbiostat.org/rmsc/impred.html#data
https://hbiostat.org/rmsc/impred.html#data

82 describe

arguments to formatdescribeSingle, especially the condense argument. For
the print method when which= is given, possible arguments to use for tabu-
lating continuous variable output are sparkwidth (the width of the spike his-
togram sparkline in pixels, defaulting to 200), qcondense (set to FALSE to de-
vote separate columns to all quantiles), extremes (set to TRUE to print the 5
lowest and highest values in the table of continuous variables). For categorical
variable output, the argument freq can be used to specify how frequency ta-
bles are rendered: 'chart' (the default; an interactive sparkline frequency bar
chart) or freq='table' for small tables. sort is another argument passed to
html_describe_cat. For sparkline frequency charts the default is to sort non-
numeric categories in descending order of frequency. Set code=FALSE to use the
original data order. The w argument also applies to categorical variable output.

file name of output file (should have a suffix of .tex). Default name is formed from
the first word of the descript element of the describe object, prefixed by
"describe". Set file="" to send LaTeX code to standard output instead of a
file.

append set to TRUE to have latex append text to an existing file named file

size LaTeX text size ("small", the default, or "normalsize", "tiny", "scriptsize",
etc.) for the describe output in LaTeX. For html is the percent of the prevailing
font size to use for the output.

tabular set to FALSE to use verbatim rather than tabular (or html table) environment for
the summary statistics output. By default, tabular is used if the output is not too
wide.

greek By default, the latex and html methods will change names of greek letters that
appear in variable labels to appropriate LaTeX symbols in math mode, or html
symbols, unless greek=FALSE.

spacing By default, the latex method for describe run on a matrix or data frame uses
the setspace LaTeX package with a line spacing of 0.7 so as to no waste space.
Specify spacing=0 to suppress the use of the setspace’s spacing environment,
or specify another positive value to use this environment with a different spacing.

lspace extra vertical scape, in character size units (i.e., "ex" as appended to the space).
When using certain font sizes, there is too much space left around LaTeX ver-
batim environments. This two-vector specifies space to remove (i.e., the values
are negated in forming the vspace command) before (first element) and after
(second element of lspace) verbatims

scroll set to TRUE to create an html scrollable box for the html output
rows, cols the number of rows or columns to allocate for the scrollable box
vname unused argument in latex.describe.single

which specifies whether to plot numeric continuous or binary/categorical variables, or
both. When "both" a list with two elements is created. Each element is a
ggplot2 or plotly object. If there are no variables of a given type, a single
ggplot2 or plotly object is returned, ready to print. For print.describe may
be "categorical" or "continuous", causing a gt table to be created with the
categorical or continuous variable describe results.

what character or numeric vector specifying which variables to plot; default is to plot
all

describe 83

sort specifies how and whether variables are sorted in order of the proportion of pos-
itives when which="categorical". Specify sort="none" to leave variables in
the order they appear in the original data.

n.unique the minimum number of distinct values a numeric variable must have before
plot.describe uses it in a continuous variable plot

bvspace the between-variable spacing for categorical variables. Defaults to 2, meaning
twice the amount of vertical space as what is used for between-category spacing
within a variable

condense specifies whether to condense the output with regard to the 5 lowest and highest
values ("extremes") and the frequency table

lang specifies the markup language

verb set to 1 if a verbatim environment is already in effect for LaTeX

Details

If options(na.detail.response=TRUE) has been set and na.action is "na.delete" or "na.keep",
summary statistics on the response variable are printed separately for missing and non-missing
values of each predictor. The default summary function returns the number of non-missing re-
sponse values and the mean of the last column of the response values, with a names attribute of
c("N","Mean"). When the response is a Surv object and the mean is used, this will result in the
crude proportion of events being used to summarize the response. The actual summary function can
be designated through options(na.fun.response = "function name").

If you are modifying LaTex parskip or certain other parameters, you may need to shrink the area
around tabular and verbatim environments produced by latex.describe. You can do this using
for example \usepackage{etoolbox}\makeatletter\preto{\@verbatim}{\topsep=-1.4pt \partopsep=0pt}\preto{\@tabular}{\parskip=2pt
\parsep=0pt}\makeatother in the LaTeX preamble.

Multiple choice (mChoice) variables’ describe output renders well in html but not when included
in a Quarto document.

Value

a list containing elements descript, counts, values. The list is of class describe. If the input
object was a matrix or a data frame, the list is a list of lists, one list for each variable analyzed.
latex returns a standard latex object. For numeric variables having at least 20 distinct values, an
additional component intervalFreq. This component is a list with two elements, range (contain-
ing two values) and count, a vector of 100 integer frequency counts. print with which= returns
a ‘gt‘ table object. The user can modify the table by piping formatting changes, column removals,
and other operations, before final rendering.

Author(s)

Frank Harrell
Vanderbilt University
<fh@fharrell.com>

84 describe

See Also

spikecomp, sas.get, quantile, GiniMd, pMedian, table, summary, model.frame.default, naprint,
lapply, tapply, Surv, na.delete, na.keep, na.detail.response, latex

Examples

set.seed(1)
describe(runif(200),dig=2) #single variable, continuous

#get quantiles .05,.10,\dots

dfr <- data.frame(x=rnorm(400),y=sample(c('male','female'),400,TRUE))
describe(dfr)

Not run:
options(grType='plotly')
d <- describe(mydata)
p <- plot(d) # create plots for both types of variables
p[[1]]; p[[2]] # or p$Categorical; p$Continuous
plotly::subplot(p[[1]], p[[2]], nrows=2) # plot both in one
plot(d, which='categorical') # categorical ones

d <- sas.get(".","mydata",special.miss=TRUE,recode=TRUE)
describe(d) #describe entire data frame
attach(d, 1)
describe(relig) #Has special missing values .D .F .M .R .T

#attr(relig,"label") is "Religious preference"

#relig : Religious preference Format:relig
n missing D F M R T distinct
4038 263 45 33 7 2 1 8
#
#0:none (251, 6%), 1:Jewish (372, 9%), 2:Catholic (1230, 30%)
#3:Jehovah's Witnes (25, 1%), 4:Christ Scientist (7, 0%)
#5:Seventh Day Adv (17, 0%), 6:Protestant (2025, 50%), 7:other (111, 3%)

Method for describing part of a data frame:
describe(death.time ~ age*sex + rcs(blood.pressure))
describe(~ age+sex)
describe(~ age+sex, weights=freqs) # weighted analysis

fit <- lrm(y ~ age*sex + log(height))
describe(formula(fit))
describe(y ~ age*sex, na.action=na.delete)
report on number deleted for each variable
options(na.detail.response=TRUE)
keep missings separately for each x, report on dist of y by x=NA
describe(y ~ age*sex)
options(na.fun.response="quantile")
describe(y ~ age*sex) # same but use quantiles of y by x=NA

d <- describe(my.data.frame)

discrete 85

d$age # print description for just age
d[c('age','sex')] # print description for two variables
d[sort(names(d))] # print in alphabetic order by var. names
d2 <- d[20:30] # keep variables 20-30
page(d2) # pop-up window for these variables

Test date/time formats and suppression of times when they don't vary
library(chron)
d <- data.frame(a=chron((1:20)+.1),

b=chron((1:20)+(1:20)/100),
d=ISOdatetime(year=rep(2003,20),month=rep(4,20),day=1:20,

hour=rep(11,20),min=rep(17,20),sec=rep(11,20)),
f=ISOdatetime(year=rep(2003,20),month=rep(4,20),day=1:20,

hour=1:20,min=1:20,sec=1:20),
g=ISOdate(year=2001:2020,month=rep(3,20),day=1:20))

describe(d)

Make a function to run describe, latex.describe, and use the kdvi
previewer in Linux to view the result and easily make a pdf file

ldesc <- function(data) {
options(xdvicmd='kdvi')
d <- describe(data, desc=deparse(substitute(data)))
dvi(latex(d, file='/tmp/z.tex'), nomargins=FALSE, width=8.5, height=11)
}

ldesc(d)

End(Not run)

discrete Discrete Vector tools

Description

discrete creates a discrete vector which is distinct from a continuous vector, or a factor/ordered
vector. The other function are tools for manipulating descrete vectors.

Usage

as.discrete(x, ...)
Default S3 method:
as.discrete(x, ...)
discrete(x, levels = sort(unique.default(x), na.last = TRUE), exclude = NA)
S3 replacement method for class 'discrete'
x[...] <- value
S3 method for class 'discrete'
x[..., drop = FALSE]
S3 method for class 'discrete'

86 discrete

x[[i]]
is.discrete(x)
S3 replacement method for class 'discrete'
is.na(x) <- value
S3 replacement method for class 'discrete'
length(x) <- value

Arguments

x a vector

drop Should unused levels be dropped.

exclude logical: should NA be excluded.

i indexing vector

levels charater: list of individual level values

value index of elements to set to NA

... arguments to be passed to other functions

Details

as.discrete converts a vector into a discrete vector.

discrete creates a discrete vector from provided values.

is.discrete tests to see if the vector is a discrete vector.

Value

as.discrete, discrete returns a vector of discrete type.

is.discrete returan logical TRUE if the vector is of class discrete other wise it returns FALSE.

Author(s)

Charles Dupont

See Also

[[, [, factor

Examples

a <- discrete(1:25)
a

is.discrete(a)

b <- as.discrete(2:4)
b

dotchart2 87

dotchart2 Enhanced Dot Chart

Description

dotchart2 is an enhanced version of the dotchart function with several new options.

Usage

dotchart2(data, labels, groups=NULL, gdata=NA, horizontal=TRUE, pch=16,
xlab='', ylab='', xlim=NULL, auxdata, auxgdata=NULL, auxtitle,
lty=1, lines=TRUE, dotsize = .8,
cex = par("cex"), cex.labels = cex,
cex.group.labels = cex.labels*1.25, sort.=TRUE,

add=FALSE, dotfont=par('font'), groupfont=2,
reset.par=add, xaxis=TRUE, width.factor=1.1,

lcolor='gray', leavepar=FALSE,
axisat=NULL, axislabels=NULL, ...)

Arguments

data a numeric vector whose values are shown on the x-axis

labels a vector of labels for each point, corresponding to x. If omitted, names(data)
are used, and if there are no names, integers prefixed by "#" are used.

groups an optional categorical variable indicating how data values are grouped

gdata data values for groups, typically summaries such as group medians

horizontal set to FALSE to make the chart vertical instead of the default

pch default character number or value for plotting dots in dot charts. The default is
16.

xlab x-axis title

ylab y-axis title

xlim x-axis limits. Applies only to horizontal=TRUE.

auxdata a vector of auxiliary data given to dotchart2, of the same length as the first
(data) argument. If present, this vector of values will be printed outside the
right margin of the dot chart. Usually auxdata represents cell sizes.

auxgdata similar to auxdata but corresponding to the gdata argument. These usually
represent overall sample sizes for each group of lines.

auxtitle if auxdata is given, auxtitle specifies a column heading for the extra printed
data in the chart, e.g., "N"

lty line type for horizontal lines. Default is 1 for R, 2 for S-Plus

lines set to FALSE to suppress drawing of reference lines

dotsize cex value for drawing dots. Default is 0.8. Note that the original dotchart
function used a default of 1.2.

88 dotchart2

cex see par

cex.labels cex parameter that applies only to the line labels for the dot chart cex parameter
for major grouping labels for dotchart2. Defaults to cex.

cex.group.labels

value of cex corresponding to gdata

sort. set to FALSE to keep dotchart2 from sorting the input data, i.e., it will assume
that the data are already properly arranged. This is especially useful when you
are using gdata and groups and you want to control the order that groups appear
on the chart (from top to bottom).

add set to TRUE to add to an existing plot

dotfont font number of plotting dots. Default is one. Use -1 to use "outline" fonts. For
example, pch=183, dotfont=-1 plots an open circle for UNIX on postscript.
pch=1 makes an open octagon under Windows.

groupfont font number to use in drawing group labels for dotchart2. Default is 2 for
boldface.

reset.par set to FALSE to cause dotchart2 to not reset the par parameters when finished.
This is useful when add=TRUE is about to be used in another call. The default is
to reset the par parameters if add=TRUE and not if add=FALSE, i.e., the program
assumes that only one set of points will be added to an existing set. If you fail to
use reset.par=TRUE for the first of a series of plots, the next call to plot with
add=TRUE will result in distorted x-axis scaling.

xaxis set to FALSE to suppress drawing x-axis

width.factor When the calculated left margin turns out to be faulty, specify a factor by which
to multiple the left margin as width.factor to get the appropriate space for
labels on horizonal charts.

lcolor color for horizontal reference lines. Default is "gray" for R, par("col") for
S-Plus.

leavepar set to TRUE to leave par() unchanged. This assumes the user has allocated
sufficient left and right margins for a horizontal dot chart.

axisat a vector of tick mark locations to pass to axis. Useful if transforming the data
axis

axislabels a vector of strings specifying axis tick mark labels. Useful if transforming the
data axis

... arguments passed to plot.default

Side Effects

dotchart will leave par altered if reset.par=FALSE.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

dotchart3 89

See Also

dotchart

Examples

set.seed(135)
maj <- factor(c(rep('North',13),rep('South',13)))
g <- paste('Category',rep(letters[1:13],2))
n <- sample(1:15000, 26, replace=TRUE)
y1 <- runif(26)
y2 <- pmax(0, y1 - runif(26, 0, .1))
dotchart2(y1, g, groups=maj, auxdata=n, auxtitle='n', xlab='Y')
dotchart2(y2, g, groups=maj, pch=17, add=TRUE)
Compare with dotchart function (no superpositioning or auxdata allowed):
dotchart(y1, g, groups=maj, xlab='Y')

To plot using a transformed scale add for example
axisat=sqrt(pretty(y)), axislabels=pretty(y)

dotchart3 Enhanced Version of dotchart Function

Description

These are adaptations of the R dotchart function that sorts categories top to bottom, adds auxdata
and auxtitle arguments to put extra information in the right margin, and for dotchart3 adds
arguments cex.labels, cex.group.labels, and groupfont. By default, group headings are in a
larger, bold font. dotchart3 also cuts a bit of white space from the top and bottom of the chart.
The most significant change, however, is in how x is interpreted. Columns of x no longer provide
an alternate way to define groups. Instead, they define superpositioned values. This is useful for
showing three quartiles, for example. Going along with this change, for dotchart3 pch can now
be a vector specifying symbols to use going across columns of x. x was changed in this way
because to put multiple points on a line (e.g., quartiles) and keeping track of par() parameters
when dotchart2 was called with add=TRUE was cumbersome. dotchart3 changes the margins to
account for horizontal labels.

dotchartp is a version of dotchart3 for making the chart with the plotly package.

summaryD creates aggregate data using summarize and calls dotchart3 with suitable arguments to
summarize data by major and minor categories. If options(grType='plotly') is in effect and the
plotly package is installed, summaryD uses dotchartp instead of dotchart3.

summaryDp is a streamlined summaryD-like function that uses the dotchartpl function to render
a plotly graphic. It is used to compute summary statistics stratified separately by a series of
variables.

90 dotchart3

Usage

dotchart3(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = pch, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(c(x, gdata), na.rm=TRUE), main = NULL, xlab = NULL,
ylab = NULL, auxdata = NULL, auxtitle = NULL, auxgdata=NULL,
axisat=NULL, axislabels=NULL,
cex.labels = cex, cex.group.labels = cex.labels * 1.25,
cex.auxdata=cex, groupfont = 2,
auxwhere=NULL, height=NULL, width=NULL, ...)

dotchartp(x, labels = NULL, groups = NULL, gdata = NULL,
xlim = range(c(x, gdata), na.rm=TRUE), main=NULL,
xlab = NULL, ylab = '', auxdata=NULL, auxtitle=NULL,
auxgdata=NULL, auxwhere=c('right', 'hover'),
symbol='circle', col=colorspace::rainbow_hcl,
legendgroup=NULL,
axisat=NULL, axislabels=NULL, sort=TRUE, digits=4, dec=NULL,
height=NULL, width=700, layoutattr=FALSE, showlegend=TRUE, ...)

summaryD(formula, data=NULL, fun=mean, funm=fun,
groupsummary=TRUE, auxvar=NULL, auxtitle='',
auxwhere=c('hover', 'right'),
vals=length(auxvar) > 0, fmtvals=format,
symbol=if(use.plotly) 'circle' else 21,
col=if(use.plotly) colorspace::rainbow_hcl else 1:10,
legendgroup=NULL,
cex.auxdata=.7, xlab=v[1], ylab=NULL,
gridevery=NULL, gridcol=gray(.95), sort=TRUE, ...)

summaryDp(formula,
fun=function(x) c(Mean=mean(x, na.rm=TRUE),

N=sum(! is.na(x))),
overall=TRUE, xlim=NULL, xlab=NULL,
data=NULL, subset=NULL, na.action=na.retain,
ncharsmax=c(50, 30),
digits=4, ...)

Arguments

x a numeric vector or matrix

labels labels for categories corresponding to rows of x. If not specified these are taken
from row names of x.

groups, gdata, cex, pch, gpch, bg, color, gcolor, lcolor, xlim, main, xlab,
ylab

see dotchart

auxdata a vector of information to be put in the right margin, in the same order as x. May
be numeric, character, or a vector of expressions containing plotmath markup.

dotchart3 91

For dotchartp, auxdata may be a matrix to go along with the numeric x-axis
variable, to result in point-specific hover text.

auxtitle a column heading for auxdata

auxgdata similar to auxdata but corresponding to the gdata argument. These usually
represent overall sample sizes for each group of lines.

axisat a vector of tick mark locations to pass to axis. Useful if transforming the data
axis

axislabels a vector of strings specifying axis tick mark labels. Useful if transforming the
data axis

digits number of significant digits for formatting numeric data in hover text for dotchartp
and summaryDp

dec for dotchartp only, overrides digits to specify the argument to round() for
rounding values for hover labels

cex.labels cex for labels
cex.group.labels

cex for group labels

cex.auxdata cex for auxdata

groupfont font number for group headings

auxwhere for summaryD and dotchartp specifies whether auxdata and auxgdata are to
be placed on the far right of the chart, or should appear as pop-up tooltips when
hovering the mouse over the ordinary x data points on the chart. Ignored for
dotchart3.

... other arguments passed to some of the graphics functions, or to dotchart3 or
dotchartp from summaryD. The auxwhere='hover' option is a useful argu-
ment to pass from summaryD to dotchartp. Also used to pass other arguments
to dotchartpl from summaryDp.

layoutattr set to TRUE to put plotly::layout information in a list as an attribute layout
of the returned plotly object instead of running the plotly object through the
layout function. This is useful if running dotchartp multiple times to later
put together using plotly::subplot and only then running the result through
plotly::layout.

showlegend set to FALSE to suppress the plotly legend with dotchartp

formula a formula with one variable on the left hand side (the variable to compute sum-
mary statistics on), and one or two variables on the right hand side. If there are
two variables, the first is taken as the major grouping variable. If the left hand
side variable is a matrix it has to be a legal R variable name, not an expression,
and fun needs to be able to process a matrix. For summaryDp there may be more
than two right-hand-side variables.

data a data frame or list used to find the variables in formula. If omitted, the parent
environment is used.

fun a summarization function creating a single number from a vector. Default is the
mean. For summaryDp, fun produces a named vector of summary statistics, with
the default computing the Mean and N (number of non-missing values).

92 dotchart3

funm applies if there are two right hand variables and groupsummary=TRUE and the
marginal summaries over just the first x variable need to be computed differently
than the summaries that are cross-classified by both variables. funm defaults to
fun and should have the same structure as fun.

groupsummary By default, when there are two right-hand variables, summarize(..., fun) is
called a second time without the use of the second variable, to obtain marginal
summaries for the major grouping variable and display the results as a dot (and
optionally in the right margin). Set groupsummary=FALSE to suppress this in-
formation.

auxvar when fun returns more than one statistic and the user names the elements in the
returned vector, you can specify auxvar as a single character string naming one
of them. This will cause the named element to be written in the right margin,
and that element to be deleted when plotting the statistics.

vals set to TRUE to show data values (dot locations) in the right margin. Defaults to
TRUE if auxvar is specified.

fmtvals an optional function to format values before putting them in the right margin.
Default is the format function.

symbol a scalar or vector of pch values for ordinary graphics or a character vector or
scalar of plotly symbols. These correspond to columns of x or elements pro-
duced by fun.

col a function or vector of colors to assign to multiple points plotted in one line.
If a function it will be evaluated with an argument equal to the number of
groups/columns.

legendgroup see plotly documentation; corresponds to column names/fun output for plotly
graphs only

gridevery specify a positive number to draw very faint vertical grid lines every gridevery
x-axis units; for non-plotly charts

gridcol color for grid lines; default is very faint gray scale

sort specify sort=FALSE to plot data in the original order, from top to bottom on the
dot chart. For dotchartp, set sort to 'descending' to sort in descending order
of the first column of x, or 'ascending' to do the reverse. These do not make
sense if groups is present.

height, width height and width in pixels for dotchartp if not using plotly defaults. Ignored
for dotchart3. If set to "auto" the height is computed using Hmisc::plotlyHeightDotchart.

overall set to FALSE to suppress plotting of unstratified estimates

subset an observation subsetting expression

na.action an NA action function

ncharsmax a 2-vector specifying the number of characters after which an html new line
character should be placed, respectively for the x-axis label and the stratification
variable levels

Value

the function returns invisibly

dotchartpl 93

Author(s)

Frank Harrell

See Also

dotchart,dotchart2,summarize, rlegend

Examples

set.seed(135)
maj <- factor(c(rep('North',13),rep('South',13)))
g <- paste('Category',rep(letters[1:13],2))
n <- sample(1:15000, 26, replace=TRUE)
y1 <- runif(26)
y2 <- pmax(0, y1 - runif(26, 0, .1))
dotchart3(cbind(y1,y2), g, groups=maj, auxdata=n, auxtitle='n',

xlab='Y', pch=c(1,17))
Compare with dotchart function (no superpositioning or auxdata allowed):
dotchart(y1, g, groups=maj, xlab='Y')

Not run:
dotchartp(cbind(y1, y2), g, groups=maj, auxdata=n, auxtitle='n',

xlab='Y', gdata=cbind(c(0,.1), c(.23,.44)), auxgdata=c(-1,-2),
symbol=c('circle', 'line-ns-open'))

summaryDp(sbp ~ region + sex + race + cut2(age, g=5), data=mydata)

End(Not run)

Put options(grType='plotly') to have the following use dotchartp
(rlegend will not apply)
Add argument auxwhere='hover' to summaryD or dotchartp to put
aux info in hover text instead of right margin
summaryD(y1 ~ maj + g, xlab='Mean')
summaryD(y1 ~ maj + g, groupsummary=FALSE)
summaryD(y1 ~ g, fmtvals=function(x) sprintf('%4.2f', x))
Y <- cbind(y1, y2) # summaryD cannot handle cbind(...) ~ ...
summaryD(Y ~ maj + g, fun=function(y) y[1,], symbol=c(1,17))
rlegend(.1, 26, c('y1','y2'), pch=c(1,17))

summaryD(y1 ~ maj, fun=function(y) c(Mean=mean(y), n=length(y)),
auxvar='n', auxtitle='N')

dotchartpl Enhanced Version of dotchart Function for plotly

94 dotchartpl

Description

This function produces a plotly interactive graphic and accepts a different format of data input
than the other dotchart functions. It was written to handle a hierarchical data structure including
strata that further subdivide the main classes. Strata, indicated by the mult variable, are shown on
the same horizontal line, and if the variable big is FALSE will appear slightly below the main line,
using smaller symbols, and having some transparency. This is intended to handle output such as
that from the summaryP function when there is a superpositioning variable group and a stratification
variable mult, especially when the data have been run through the addMarginal function to create
mult categories labelled "All" for which the user will specify big=TRUE to indicate non-stratified
estimates (stratified only on group) to emphasize.

When viewing graphics that used mult and big, the user can click on the legends for the small
points for groups to vanish the finely stratified estimates.

When group is used by mult and big are not, and when the group variable has exactly two distinct
values, you can specify refgroup to get the difference between two proportions in addition to
the individual proportions. The individual proportions are plotted, but confidence intervals for the
difference are shown in hover text and half-width confidence intervals for the difference, centered
at the midpoint of the proportions, are shown. These have the property of intersecting the two
proportions if and only if there is no significant difference at the 1 - conf.int level.

Specify fun=exp and ifun=log if estimates and confidence limits are on the log scale. Make sure
that zeros were prevented in the original calculations. For exponential hazard rates this can be
accomplished by replacing event counts of 0 with 0.5.

Usage

dotchartpl(x, major=NULL, minor=NULL, group=NULL, mult=NULL,
big=NULL, htext=NULL, num=NULL, denom=NULL,
numlabel='', denomlabel='',
fun=function(x) x, ifun=function(x) x, op='-',
lower=NULL, upper=NULL,
refgroup=NULL, sortdiff=TRUE, conf.int=0.95,
minkeep=NULL, xlim=NULL, xlab='Proportion',
tracename=NULL, limitstracename='Limits',
nonbigtracename='Stratified Estimates',
dec=3, width=800, height=NULL,
col=colorspace::rainbow_hcl)

Arguments

x a numeric vector used for values on the x-axis

major major vertical category, e.g., variable labels

minor minor vertical category, e.g. category levels within variables

group superpositioning variable such as treatment

mult strata names for further subdivisions without groups

big omit if all levels of mult are equally important or if mult is omitted. Other-
wise denotes major (larger points, right on horizontal lines) vs. minor (smaller,
transparent points slightly below the line).

dotchartpl 95

htext additional hover text per point

num if x represents proportions, optionally specifies numerators to be used in frac-
tions added to hover text. When num is given, x is automatically added to hover
text, rounded to 3 digits after the decimal point.

denom like num but for denominators

numlabel character string to put to the right of the numerator in hover text

denomlabel character string to put to the right of the denominator in hover text

fun a transformation to make when printing estimates. For example, one may spec-
ify fun=exp to anti-log estimates and confidence limites that were computed on
a log basis

ifun inverse transformation of fun

op set to for example '/' when fun=exp and effects are computed as ratios instead
of differences. This is used in hover text.

lower lower limits for optional error bars

upper upper limits for optional error bars

refgroup if group is specified and there are exactly two groups, specify the character
string for the reference group in computing difference in proportions. For ex-
ample if refgroup='A' and the group levels are 'A','B', you will get B - A.

sortdiff minor categories are sorted by descending values of the difference in proportions
when refgroup is used, unless you specify sortdiff=FALSE

conf.int confidence level for computing confidence intervals for the difference in two
proportions. Specify conf.int=FALSE to suppress confidence intervals.

minkeep if refgroup and minkeep are both given, observations that are at or above
minkeep for at least one of the groups are retained. The defaults to to keep
all observations.

xlim x-axis limits

xlab x-axis label

tracename plotly trace name if group is not used
limitstracename

plotly trace name for lower and upper if group is not used
nonbigtracename

plotly trace name used for non-big elements, which usually represent stratified
versions of the "big" observations

col a function or vector of colors to assign to group. If a function it will be evaluated
with an argument equal to the number of distinct groups.

dec number of places to the right of the decimal place for formatting numeric quan-
tities in hover text

width width of plot in pixels

height height of plot in pixels; computed from number of strata by default

96 dotchartpl

Value

a plotly object. An attribute levelsRemoved is added if minkeep is used and any categories were
omitted from the plot as a result. This is a character vector with categories removed. If major is
present, the strings are of the form major:minor

Author(s)

Frank Harrell

See Also

dotchartp

Examples

Not run:
set.seed(1)
d <- expand.grid(major=c('Alabama', 'Alaska', 'Arkansas'),

minor=c('East', 'West'),
group=c('Female', 'Male'),
city=0:2)

n <- nrow(d)
d$num <- round(100*runif(n))
d$denom <- d$num + round(100*runif(n))
d$x <- d$num / d$denom
d$lower <- d$x - runif(n)
d$upper <- d$x + runif(n)

with(d,
dotchartpl(x, major, minor, group, city, lower=lower, upper=upper,

big=city==0, num=num, denom=denom, xlab='x'))

Show half-width confidence intervals for Female - Male differences
after subsetting the data to have only one record per
state/region/group
d <- subset(d, city == 0)
with(d,
dotchartpl(x, major, minor, group, num=num, denom=denom,

lower=lower, upper=upper, refgroup='Male')
)

n <- 500
set.seed(1)
d <- data.frame(

race = sample(c('Asian', 'Black/AA', 'White'), n, TRUE),
sex = sample(c('Female', 'Male'), n, TRUE),
treat = sample(c('A', 'B'), n, TRUE),
smoking = sample(c('Smoker', 'Non-smoker'), n, TRUE),
hypertension = sample(c('Hypertensive', 'Non-Hypertensive'), n, TRUE),
region = sample(c('North America','Europe','South America',

'Europe', 'Asia', 'Central America'), n, TRUE))

dualSD 97

d <- upData(d, labels=c(race='Race', sex='Sex'))

dm <- addMarginal(d, region)
s <- summaryP(race + sex + smoking + hypertension ~

region + treat, data=dm)

s$region <- ifelse(s$region == 'All', 'All Regions', as.character(s$region))

with(s,
dotchartpl(freq / denom, major=var, minor=val, group=treat, mult=region,

big=region == 'All Regions', num=freq, denom=denom)
)

s2 <- s[- attr(s, 'rows.to.exclude1'),]
with(s2,

dotchartpl(freq / denom, major=var, minor=val, group=treat, mult=region,
big=region == 'All Regions', num=freq, denom=denom)

)
Note these plots can be created by plot.summaryP when options(grType='plotly')

Plot hazard rates and ratios with confidence limits, on log scale
d <- data.frame(tx=c('a', 'a', 'b', 'b'),

event=c('MI', 'stroke', 'MI', 'stroke'),
count=c(10, 5, 5, 2),
exposure=c(1000, 1000, 900, 900))

There were no zero event counts in this dataset. In general we
want to handle that, hence the 0.5 below
d <- upData(d, hazard = pmax(0.5, count) / exposure,

selog = sqrt(1. / pmax(0.5, count)),
lower = log(hazard) - 1.96 * selog,
upper = log(hazard) + 1.96 * selog)

with(d,
dotchartpl(log(hazard), minor=event, group=tx, num=count, denom=exposure,

lower=lower, upper=upper,
fun=exp, ifun=log, op='/',
numlabel='events', denomlabel='years',
refgroup='a', xlab='Events Per Person-Year')

)

End(Not run)

dualSD Dual Standard Deviations

Description

Computes one standard deviation for the lower half of the distribution of a numeric vector and
another SD for the upper half. By default the center of the distribution for purposes of splitting
into "halves" is the mean. The user may override this with center. When splitting into halves,
observations equal to the center value are included in both subsets.

98 dualSD

Usage

dualSD(x, na.rm = FALSE, nmin = 10, center = xbar)

Arguments

x a numeric vector

na.rm set to TRUE to find any NA values and remove them before computing SDs.

nmin the minimum number of non-NA obesrvations that must be present for two SDs
to be computed. If the mumber of non-missing values falls below nmin, the
regular SD is duplicated in the result.

center center point for making the two subsets. The sample mean is used to compute
the two SDs no matter what is specified for center.

Details

The purpose of dual SDs is to describe variability for asymmetric distributions. Symmetric distri-
butions are also handled, though slightly less efficiently than a single SD does.

Value

a 2-vector of SDs with names bottom and top

Author(s)

Frank Harrell

See Also

pMedian()

Examples

set.seed(1)
x <- rnorm(20000)
sd(x)
dualSD(x)
y <- exp(x)
s1 <- sd(y)
s2 <- dualSD(y)
s1
s2
quantile(y, c(0.025, 0.975))
mean(y) + 1.96 * c(-1, 1) * s1
mean(y) + 1.96 * c(- s2['bottom'], s2['top'])
c(mean=mean(y), pseudomedian=pMedian(y), median=median(y))

ebpcomp 99

ebpcomp ebpcomp

Description

Computation of Coordinates of Extended Box Plots Elements

Usage

ebpcomp(x, qref = c(0.5, 0.25, 0.75), probs = c(0.05, 0.125, 0.25, 0.375))

Arguments

x a numeric variable

qref quantiles for major corners

probs quantiles for minor corners

Details

For an extended box plots computes all the elements needed for plotting it. This is typically used
when adding to a ggplot2 plot.

Value

list with elements segments, lines, points, points2

Author(s)

Frank Harrell

Examples

ebpcomp(1:1000)

Ecdf Empirical Cumulative Distribution Plot

100 Ecdf

Description

Computes coordinates of cumulative distribution function of x, and by defaults plots it as a step
function. A grouping variable may be specified so that stratified estimates are computed and (by
default) plotted. If there is more than one group, the labcurve function is used (by default) to label
the multiple step functions or to draw a legend defining line types, colors, or symbols by linking
them with group labels. A weights vector may be specified to get weighted estimates. Specify
normwt to make weights sum to the length of x (after removing NAs). Other wise the total sample
size is taken to be the sum of the weights.

Ecdf is actually a method, and Ecdf.default is what’s called for a vector argument. Ecdf.data.frame
is called when the first argument is a data frame. This function can automatically set up a matrix of
ECDFs and wait for a mouse click if the matrix requires more than one page. Categorical variables,
character variables, and variables having fewer than a set number of unique values are ignored. If
par(mfrow=..) is not set up before Ecdf.data.frame is called, the function will try to figure the
best layout depending on the number of variables in the data frame. Upon return the original mfrow
is left intact.

When the first argument to Ecdf is a formula, a Trellis/Lattice function Ecdf.formula is called.
This allows for multi-panel conditioning, superposition using a groups variable, and other Trellis
features, along with the ability to easily plot transformed ECDFs using the fun argument. For exam-
ple, if fun=qnorm, the inverse normal transformation will be used for the y-axis. If the transformed
curves are linear this indicates normality. Like the xYplot function, Ecdf will create a function Key
if the groups variable is used. This function can be invoked by the user to define the keys for the
groups.

Usage

Ecdf(x, ...)

Default S3 method:
Ecdf(x, what=c('F','1-F','f','1-f'),

weights=rep(1, length(x)), normwt=FALSE,
xlab, ylab, q, pl=TRUE, add=FALSE, lty=1,
col=1, group=rep(1,length(x)), label.curves=TRUE, xlim,
subtitles=TRUE, datadensity=c('none','rug','hist','density'),
side=1,
frac=switch(datadensity,none=NA,rug=.03,hist=.1,density=.1),
dens.opts=NULL, lwd=1, log='', ...)

S3 method for class 'data.frame'
Ecdf(x, group=rep(1,nrows),

weights=rep(1, nrows), normwt=FALSE,
label.curves=TRUE, n.unique=10, na.big=FALSE, subtitles=TRUE,
vnames=c('labels','names'),...)

S3 method for class 'formula'
Ecdf(x, data=sys.frame(sys.parent()), groups=NULL,

prepanel=prepanel.Ecdf, panel=panel.Ecdf, ..., xlab,
ylab, fun=function(x)x, what=c('F','1-F','f','1-f'), subset=TRUE)

Ecdf 101

Arguments

x a numeric vector, data frame, or Trellis/Lattice formula

what The default is "F" which results in plotting the fraction of values <= x. Set to
"1-F" to plot the fraction > x or "f" to plot the cumulative frequency of values
<= x. Use "1-f" to plot the cumulative frequency of values >= x.

weights numeric vector of weights. Omit or specify a zero-length vector or NULL to get
unweighted estimates.

normwt see above

xlab x-axis label. Default is label(x) or name of calling argument. For Ecdf.formula,
xlab defaults to the label attribute of the x-axis variable.

ylab y-axis label. Default is "Proportion <= x", "Proportion > x", or "Frequency
<= x" depending on value of what.

q a vector for quantiles for which to draw reference lines on the plot. Default is
not to draw any.

pl set to F to omit the plot, to just return estimates

add set to TRUE to add the cdf to an existing plot. Does not apply if using lattice
graphics (i.e., if a formula is given as the first argument).

lty integer line type for plot. If group is specified, this can be a vector.

lwd line width for plot. Can be a vector corresponding to groups.

log see plot. Set log='x' to use log scale for x-axis.

col color for step function. Can be a vector.

group a numeric, character, or factor categorical variable used for stratifying esti-
mates. If group is present, as many ECDFs are drawn as there are non–missing
group levels.

label.curves applies if more than one group exists. Default is TRUE to use labcurve to label
curves where they are farthest apart. Set label.curves to a list to specify
options to labcurve, e.g., label.curves=list(method="arrow", cex=.8).
These option names may be abbreviated in the usual way arguments are ab-
breviated. Use for example label.curves=list(keys=1:5) to draw symbols
periodically (as in pch=1:5 - see points) on the curves and automatically po-
sition a legend in the most empty part of the plot. Set label.curves=FALSE to
suppress drawing curve labels. The col, lty, and type parameters are automat-
ically passed to labcurve, although you can override them here. You can set
label.curves=list(keys="lines") to have different line types defined in an
automatically positioned key.

xlim x-axis limits. Default is entire range of x.

subtitles set to FALSE to suppress putting a subtitle at the bottom left of each plot. The
subtitle indicates the numbers of non-missing and missing observations, which
are labeled n, m.

datadensity If datadensity is not "none", either scat1d or histSpike is called to add
a rug plot (datadensity="rug"), spike histogram (datadensity="hist"), or
smooth density estimate ("density") to the bottom or top of the ECDF.

102 Ecdf

side If datadensity is not "none", the default is to place the additional information
on top of the x-axis (side=1). Use side=3 to place at the top of the graph.

frac passed to histSpike

dens.opts a list of optional arguments for histSpike

... other parameters passed to plot if add=F. For data frames, other parameters to
pass to Ecdf.default. For Ecdf.formula, if groups is not used, you can also
add data density information to each panel’s ECDF by specifying the datadensity
and optional frac, side, dens.opts arguments.

n.unique minimum number of unique values before an ECDF is drawn for a variable in a
data frame. Default is 10.

na.big set to TRUE to draw the number of NAs in larger letters in the middle of the plot
for Ecdf.data.frame

vnames By default, variable labels are used to label x-axes. Set vnames="names" to
instead use variable names.

method method for computing the empirical cumulative distribution. See wtd.Ecdf.
The default is to use the standard "i/n" method as is used by the non-Trellis
versions of Ecdf.

fun a function to transform the cumulative proportions, for the Trellis-type usage of
Ecdf

data, groups, subset, prepanel, panel
the usual Trellis/Lattice parameters, with groups causing Ecdf.formula to over-
lay multiple ECDFs on one panel.

Value

for Ecdf.default an invisible list with elements x and y giving the coordinates of the cdf. If there
is more than one group, a list of such lists is returned. An attribute, N, is in the returned object. It
contains the elements n and m, the number of non-missing and missing observations, respectively.

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

See Also

wtd.Ecdf, label, table, cumsum, labcurve, xYplot, histSpike

Ecdf 103

Examples

set.seed(1)
ch <- rnorm(1000, 200, 40)
Ecdf(ch, xlab="Serum Cholesterol")
scat1d(ch) # add rug plot
histSpike(ch, add=TRUE, frac=.15) # add spike histogram
Better: add a data density display automatically:
Ecdf(ch, datadensity='density')

label(ch) <- "Serum Cholesterol"
Ecdf(ch)
other.ch <- rnorm(500, 220, 20)
Ecdf(other.ch,add=TRUE,lty=2)

sex <- factor(sample(c('female','male'), 1000, TRUE))
Ecdf(ch, q=c(.25,.5,.75)) # show quartiles
Ecdf(ch, group=sex,

label.curves=list(method='arrow'))

Example showing how to draw multiple ECDFs from paired data
pre.test <- rnorm(100,50,10)
post.test <- rnorm(100,55,10)
x <- c(pre.test, post.test)
g <- c(rep('Pre',length(pre.test)),rep('Post',length(post.test)))
Ecdf(x, group=g, xlab='Test Results', label.curves=list(keys=1:2))
keys=1:2 causes symbols to be drawn periodically on top of curves

Draw a matrix of ECDFs for a data frame
m <- data.frame(pre.test, post.test,

sex=sample(c('male','female'),100,TRUE))
Ecdf(m, group=m$sex, datadensity='rug')

freqs <- sample(1:10, 1000, TRUE)
Ecdf(ch, weights=freqs) # weighted estimates

Trellis/Lattice examples:

region <- factor(sample(c('Europe','USA','Australia'),100,TRUE))
year <- factor(sample(2001:2002,1000,TRUE))
Ecdf(~ch | region*year, groups=sex)
Key() # draw a key for sex at the default location
Key(locator(1)) # user-specified positioning of key
age <- rnorm(1000, 50, 10)
Ecdf(~ch | lattice::equal.count(age), groups=sex) # use overlapping shingles
Ecdf(~ch | sex, datadensity='hist', side=3) # add spike histogram at top

104 ecdfSteps

ecdfSteps ecdfSteps

Description

Compute Coordinates of an Empirical Distribution Function

Usage

ecdfSteps(x, extend)

Arguments

x numeric vector, possibly with NAs that are ignored

extend a 2-vector do extend the range of x (low, high). Set extend=FALSE to not extend
x, or leave it missing to extend it 1/20th of the observed range on other side.

Details

For a numeric vector uses the R built-in ecdf function to compute coordinates of the ECDF, with
extension slightly below and above the range of x by default. This is useful for ggplot2 where the
ECDF may need to be transformed. The returned object is suitable for creating stratified statistics
using data.table and other methods.

Value

a list with components x and y

Author(s)

Frank Harrell

See Also

stats::ecdf()

Examples

ecdfSteps(0:10)
Not run:
Use data.table for obtaining ECDFs by country and region
w <- d[, ecdfSteps(z, extend=c(1,11)), by=.(country, region)] # d is a DT
Use ggplot2 to make one graph with multiple regions' ECDFs
and use faceting for countries
ggplot(w, aes(x, y, color=region)) + geom_step() +

facet_wrap(~ country)

End(Not run)

equalBins 105

equalBins Multicolumn Formating

Description

Expands the width either supercolumns or the subcolumns so that the the sum of the supercolumn
widths is the same as the sum of the subcolumn widths.

Usage

equalBins(widths, subwidths)

Arguments

widths widths of the supercolumns.

subwidths list of widths of the subcolumns for each supercolumn.

Details

This determins the correct subwidths of each of various columns in a table for printing. The correct
width of the multicolumns is deterimed by summing the widths of it subcolumns.

Value

widths of the the columns for a table.

Author(s)

Charles Dupont

See Also

nchar, stringDims

Examples

mcols <- c("Group 1", "Group 2")
mwidth <- nchar(mcols, type="width")
spancols <- c(3,3)
ccols <- c("a", "deer", "ad", "cat", "help", "bob")
cwidth <- nchar(ccols, type="width")

subwidths <- partition.vector(cwidth, spancols)

equalBins(mwidth, subwidths)

106 errbar

errbar Plot Error Bars

Description

Add vertical error bars to an existing plot or makes a new plot with error bars.

Usage

errbar(x, y, yplus, yminus, cap=0.015, main = NULL,
sub=NULL, xlab=as.character(substitute(x)),
ylab=if(is.factor(x) || is.character(x)) ""

else as.character(substitute(y)),
add=FALSE, lty=1, type='p', ylim=NULL,
lwd=1, pch=16, errbar.col, Type=rep(1, length(y)),
...)

Arguments

x vector of numeric x-axis values (for vertical error bars) or a factor or character
variable (for horizontal error bars, x representing the group labels)

y vector of y-axis values.

yplus vector of y-axis values: the tops of the error bars.

yminus vector of y-axis values: the bottoms of the error bars.

cap the width of the little lines at the tops and bottoms of the error bars in units of
the width of the plot. Defaults to 0.015.

main a main title for the plot, passed to plot, see also title.

sub a sub title for the plot, passed to plot

xlab optional x-axis labels if add=FALSE.

ylab optional y-axis labels if add=FALSE. Defaults to blank for horizontal charts.

add set to TRUE to add bars to an existing plot (available only for vertical error bars)

lty type of line for error bars

type type of point. Use type="b" to connect dots.

ylim y-axis limits. Default is to use range of y, yminus, and yplus. For horizonal
charts, ylim is really the x-axis range, excluding differences.

lwd line width for line segments (not main line)

pch character to use as the point.

errbar.col color to use for drawing error bars.

Type used for horizontal bars only. Is an integer vector with values 1 if corresponding
values represent simple estimates, 2 if they represent differences.

... other parameters passed to all graphics functions.

escapeRegex 107

Details

errbar adds vertical error bars to an existing plot or makes a new plot with error bars. It can
also make a horizontal error bar plot that shows error bars for group differences as well as bars for
groups. For the latter type of plot, the lower x-axis scale corresponds to group estimates and the
upper scale corresponds to differences. The spacings of the two scales are identical but the scale
for differences has its origin shifted so that zero may be included. If at least one of the confidence
intervals includes zero, a vertical dotted reference line at zero is drawn.

Author(s)

Charles Geyer, University of Chicago. Modified by Frank Harrell, Vanderbilt University, to handle
missing data, to add the parameters add and lty, and to implement horizontal charts with differ-
ences.

Examples

set.seed(1)
x <- 1:10
y <- x + rnorm(10)
delta <- runif(10)
errbar(x, y, y + delta, y - delta)

Show bootstrap nonparametric CLs for 3 group means and for
pairwise differences on same graph
group <- sample(c('a','b','d'), 200, TRUE)
y <- runif(200) + .25*(group=='b') + .5*(group=='d')
cla <- smean.cl.boot(y[group=='a'],B=100,reps=TRUE) # usually B=1000
a <- attr(cla,'reps')
clb <- smean.cl.boot(y[group=='b'],B=100,reps=TRUE)
b <- attr(clb,'reps')
cld <- smean.cl.boot(y[group=='d'],B=100,reps=TRUE)
d <- attr(cld,'reps')
a.b <- quantile(a-b,c(.025,.975))
a.d <- quantile(a-d,c(.025,.975))
b.d <- quantile(b-d,c(.025,.975))
errbar(c('a','b','d','a - b','a - d','b - d'),

c(cla[1],clb[1],cld[1],cla[1]-clb[1],cla[1]-cld[1],clb[1]-cld[1]),
c(cla[3],clb[3],cld[3],a.b[2],a.d[2],b.d[2]),
c(cla[2],clb[2],cld[2],a.b[1],a.d[1],b.d[1]),
Type=c(1,1,1,2,2,2), xlab='', ylab='')

escapeRegex Escapes any characters that would have special meaning in a reqular
expression.

Description

Escapes any characters that would have special meaning in a reqular expression.

108 estSeqMarkovOrd

Usage

escapeRegex(string)
escapeBS(string)

Arguments

string string being operated on.

Details

escapeRegex will escape any characters that would have special meaning in a reqular expression.
For any string grep(regexpEscape(string), string) will always be true.

escapeBS will escape any backslash ‘\’ in a string.

Value

The value of the string with any characters that would have special meaning in a reqular expression
escaped.

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

grep

Examples

string <- "this\\(system) {is} [full]."
escapeRegex(string)

escapeBS(string)

estSeqMarkovOrd estSeqMarkovOrd

Description

Simulate Comparisons For Use in Sequential Markov Longitudinal Clinical Trial Simulations

estSeqMarkovOrd 109

Usage

estSeqMarkovOrd(
y,
times,
initial,
absorb = NULL,
intercepts,
parameter,
looks,
g,
formula,
ppo = NULL,
yprevfactor = TRUE,
groupContrast = NULL,
cscov = FALSE,
timecriterion = NULL,
coxzph = FALSE,
sstat = NULL,
rdsample = NULL,
maxest = NULL,
maxvest = NULL,
nsim = 1,
progress = FALSE,
pfile = ""

)

Arguments

y vector of possible y values in order (numeric, character, factor)

times vector of measurement times

initial a vector of probabilities summing to 1.0 that specifies the frequency distribution
of initial values to be sampled from. The vector must have names that corre-
spond to values of y representing non-absorbing states.

absorb vector of absorbing states, a subset of y. The default is no absorbing states. Ob-
servations are truncated when an absorbing state is simulated. May be numeric,
character, or factor.

intercepts vector of intercepts in the proportional odds model. There must be one fewer of
these than the length of y.

parameter vector of true parameter (effects; group differences) values. These are group 2:1
log odds ratios in the transition model, conditioning on the previous y.

looks integer vector of ID numbers at which maximum likelihood estimates and their
estimated variances are computed. For a single look specify a scalar value for
loops equal to the number of subjects in the sample.

g a user-specified function of three or more arguments which in order are yprev
- the value of y at the previous time, the current time t, the gap between the

110 estSeqMarkovOrd

previous time and the current time, an optional (usually named) covariate vec-
tor X, and optional arguments such as a regression coefficient value to simulate
from. The function needs to allow yprev to be a vector and yprev must not
include any absorbing states. The g function returns the linear predictor for the
proportional odds model aside from intercepts. The returned value must be a
matrix with row names taken from yprev. If the model is a proportional odds
model, the returned value must be one column. If it is a partial proportional
odds model, the value must have one column for each distinct value of the re-
sponse variable Y after the first one, with the levels of Y used as optional column
names. So columns correspond to intercepts. The different columns are used
for y-specific contributions to the linear predictor (aside from intercepts) for
a partial or constrained partial proportional odds model. Parameters for partial
proportional odds effects may be included in the ... arguments.

formula a formula object given to the lrm() function using variables with these name: y,
time, yprev, and group (factor variable having values ’1’ and ’2’). The yprev
variable is converted to a factor before fitting the model unless yprevfactor=FALSE.

ppo a formula specifying the part of formula for which proportional odds is not to
be assumed, i.e., that specifies a partial proportional odds model. Specifying
ppo triggers the use of VGAM::vglm() instead of rms::lrm and will make the
simulations run slower.

yprevfactor see formula

groupContrast omit this argument if group has only one regression coefficient in formula.
Otherwise if ppo is omitted, provide groupContrast as a list of two lists that
are passed to rms::contrast.rms() to compute the contrast of interest and
its standard error. The first list corresponds to group 1, the second to group 2,
to get a 2:1 contrast. If ppo is given and the group effect is not just a simple
regression coefficient, specify as groupContrast a function of a vglm fit that
computes the contrast of interest and its standard error and returns a list with
elements named Contrast and SE. For the latter type you can optionally have
formal arguments n1, n2, and parameter that are passed to groupContrast to
compute the standard error of the group contrast, where n1 and n2 respectively
are the sample sizes for the two groups and parameter is the true group effect
parameter value.

cscov applies if ppo is not used. Set to TRUE to use the cluster sandwich covariance
estimator of the variance of the group comparison.

timecriterion a function of a time-ordered vector of simulated ordinal responses y that returns
a vector FALSE or TRUE values denoting whether the current y level met the
condition of interest. For example estSeqMarkovOrd will compute the first
time at which y >= 5 if you specify timecriterion=function(y) y >= 5. This
function is only called at the last data look for each simulated study. To have
more control, instead of timecriterion returning a logical vector have it return
a numeric 2-vector containing, in order, the event/censoring time and the 1/0
event/censoring indicator.

coxzph set to TRUE if timecriterion is specified and you want to compute a statistic
for testing proportional hazards at the last look of each simulated data

estSeqMarkovOrd 111

sstat set to a function of the time vector and the corresponding vector of ordinal re-
sponses for a single group if you want to compute a Wilcoxon test on a derived
quantity such as the number of days in a given state.

rdsample an optional function to do response-dependent sampling. It is a function of these
arguments, which are vectors that stop at any absorbing state: times (ascending
measurement times for one subject), y (vector of ordinal outcomes at these times
for one subject. The function returns NULL if no observations are to be dropped,
returns the vector of new times to sample.

maxest maximum acceptable absolute value of the contrast estimate, ignored if NULL.
Any values exceeding maxest will result in the estimate being set to NA.

maxvest like maxest but for the estimated variance of the contrast estimate

nsim number of simulations (default is 1)

progress set to TRUE to send current iteration number to pfile every 10 iterations. Each
iteration will really involve multiple simulations, if parameter has length greater
than 1.

pfile file to which to write progress information. Defaults to '' which is the console.
Ignored if progress=FALSE.

Details

Simulates sequential clinical trials of longitudinal ordinal outcomes using a first-order Markov
model. Looks are done sequentially after subject ID numbers given in the vector looks with the
earliest possible look being after subject 2. At each look, a subject’s repeated records are either
all used or all ignored depending on the sequent ID number. For each true effect parameter value,
simulation, and at each look, runs a function to compute the estimate of the parameter of interest
along with its variance. For each simulation, data are first simulated for the last look, and these
data are sequentially revealed for earlier looks. The user provides a function g that has extra ar-
guments specifying the true effect of parameter the treatment group expecting treatments to be
coded 1 and 2. parameter is usually on the scale of a regression coefficient, e.g., a log odds ratio.
Fitting is done using the rms::lrm() function, unless non-proportional odds is allowed in which
case VGAM::vglm() is used. If timecriterion is specified, the function also, for the last data look
only, computes the first time at which the criterion is satisfied for the subject or use the event time
and event/censoring indicator computed by timecriterion. The Cox/logrank chi-square statistic
for comparing groups on the derived time variable is saved. If coxzph=TRUE, the survival package
correlation coefficient rho from the scaled partial residuals is also saved so that the user can later
determine to what extent the Markov model resulted in the proportional hazards assumption being
violated when analyzing on the time scale. vglm is accelerated by saving the first successful fit for
the largest sample size and using its coefficients as starting value for further vglm fits for any sample
size for the same setting of parameter.

Value

a data frame with number of rows equal to the product of nsim, the length of looks, and the length
of parameter, with variables sim, parameter, look, est (log odds ratio for group), and vest (the
variance of the latter). If timecriterion is specified the data frame also contains loghr (Cox
log hazard ratio for group), lrchisq (chi-square from Cox test for group), and if coxph=TRUE,
phchisq, the chi-square for testing proportional hazards. The attribute etimefreq is also present

112 estSeqSim

if timecriterion is present, and it probvides the frequency distribution of derived event times
by group and censoring/event indicator. If sstat is given, the attribute sstat is also present,
and it contains an array with dimensions corresponding to simulations, parameter values within
simulations, id, and a two-column subarray with columns group and y, the latter being the summary
measure computed by the sstat function. The returned data frame also has attribute lrmcoef
which are the last-look logistic regression coefficient estimates over the nsim simulations and the
parameter settings, and an attribute failures which is a data frame containing the variables reason
and frequency cataloging the reasons for unsuccessful model fits.

Author(s)

Frank Harrell

See Also

gbayesSeqSim(), simMarkovOrd(), https://hbiostat.org/R/Hmisc/markov/

estSeqSim estSeqSim

Description

Simulate Comparisons For Use in Sequential Clinical Trial Simulations

Usage

estSeqSim(parameter, looks, gendat, fitter, nsim = 1, progress = FALSE)

Arguments

parameter vector of true parameter (effects; group differences) values

looks integer vector of observation numbers at which posterior probabilities are com-
puted

gendat a function of three arguments: true parameter value (scalar), sample size for first
group, sample size for second group

fitter a function of two arguments: 0/1 group indicator vector and the dependent vari-
able vector

nsim number of simulations (default is 1)

progress set to TRUE to send current iteration number to the console

https://hbiostat.org/R/Hmisc/markov/

estSeqSim 113

Details

Simulates sequential clinical trials. Looks are done sequentially at observation numbers given in the
vector looks with the earliest possible look being at observation 2. For each true effect parameter
value, simulation, and at each look, runs a function to compute the estimate of the parameter of
interest along with its variance. For each simulation, data are first simulated for the last look, and
these data are sequentially revealed for earlier looks. The user provides a function gendat that
given a true effect of parameter and the two sample sizes (for treatment groups 1 and 2) returns
a list with vectors y1 and y2 containing simulated data. The user also provides a function fitter
with arguments x (group indicator 0/1) and y (response variable) that returns a 2-vector containing
the effect estimate and its variance. parameter is usually on the scale of a regression coefficient,
e.g., a log odds ratio.

Value

a data frame with number of rows equal to the product of nsim, the length of looks, and the length
of parameter.

Author(s)

Frank Harrell

See Also

gbayesSeqSim(), simMarkovOrd(), estSeqMarkovOrd()

Examples

if (requireNamespace("rms", quietly = TRUE)) {
Run 50 simulations, 5 looks, 2 true parameter values
Total simulation time: 2s
lfit <- function(x, y) {
f <- rms::lrm.fit(x, y)
k <- length(coef(f))
c(coef(f)[k], vcov(f)[k, k])

}
gdat <- function(beta, n1, n2) {

Cell probabilities for a 7-category ordinal outcome for the control group
p <- c(2, 1, 2, 7, 8, 38, 42) / 100

Compute cell probabilities for the treated group
p2 <- pomodm(p=p, odds.ratio=exp(beta))
y1 <- sample(1 : 7, n1, p, replace=TRUE)
y2 <- sample(1 : 7, n2, p2, replace=TRUE)
list(y1=y1, y2=y2)

}

set.seed(1)
est <- estSeqSim(c(0, log(0.7)), looks=c(50, 75, 95, 100, 200),

gendat=gdat,
fitter=lfit, nsim=50)

head(est)

114 event.chart

}

event.chart Flexible Event Chart for Time-to-Event Data

Description

Creates an event chart on the current graphics device. Also, allows user to plot legend on plot area
or on separate page. Contains features useful for plotting data with time-to-event outcomes Which
arise in a variety of studies including randomized clinical trials and non-randomized cohort studies.
This function can use as input a matrix or a data frame, although greater utility and ease of use will
be seen with a data frame.

Usage

event.chart(data, subset.r = 1:dim(data)[1], subset.c = 1:dim(data)[2],

sort.by = NA, sort.ascending = TRUE,
sort.na.last = TRUE, sort.after.subset = TRUE,
y.var = NA, y.var.type = "n",
y.jitter = FALSE, y.jitter.factor = 1,
y.renum = FALSE, NA.rm = FALSE, x.reference = NA,
now = max(data[, subset.c], na.rm = TRUE),
now.line = FALSE, now.line.lty = 2,
now.line.lwd = 1, now.line.col = 1, pty = "m",
date.orig = c(1, 1, 1960), titl = "Event Chart",

y.idlabels = NA, y.axis = "auto",
y.axis.custom.at = NA, y.axis.custom.labels = NA,
y.julian = FALSE, y.lim.extend = c(0, 0),
y.lab = ifelse(is.na(y.idlabels), "", as.character(y.idlabels)),

x.axis.all = TRUE, x.axis = "auto",
x.axis.custom.at = NA, x.axis.custom.labels = NA,
x.julian = FALSE, x.lim.extend = c(0, 0), x.scale = 1,
x.lab = ifelse(x.julian, "Follow-up Time", "Study Date"),

line.by = NA, line.lty = 1, line.lwd = 1, line.col = 1,
line.add = NA, line.add.lty = NA,
line.add.lwd = NA, line.add.col = NA,
point.pch = 1:length(subset.c),
point.cex = rep(0.6, length(subset.c)),
point.col = rep(1, length(subset.c)),

point.cex.mult = 1., point.cex.mult.var = NA,
extra.points.no.mult = rep(NA, length(subset.c)),

event.chart 115

legend.plot = FALSE, legend.location = "o", legend.titl = titl,
legend.titl.cex = 3, legend.titl.line = 1,
legend.point.at = list(x = c(5, 95), y = c(95, 30)),
legend.point.pch = point.pch,

legend.point.text = ifelse(rep(is.data.frame(data), length(subset.c)),
names(data[, subset.c]),
subset.c),

legend.cex = 2.5, legend.bty = "n",
legend.line.at = list(x = c(5, 95), y = c(20, 5)),
legend.line.text = names(table(as.character(data[, line.by]),

exclude = c("", "NA"))),
legend.line.lwd = line.lwd, legend.loc.num = 1,

...)

Arguments

data a matrix or data frame with rows corresponding to subjects and columns cor-
responding to variables. Note that for a data frame or matrix containing multi-
ple time-to-event data (e.g., time to recurrence, time to death, and time to last
follow-up), one column is required for each specific event.

subset.r subset of rows of original matrix or data frame to place in event chart. Logical ar-
guments may be used here (e.g., treatment.arm == 'a', if the data frame, data,
has been attached to the search directory; otherwise, data$treatment.arm ==
"a").

subset.c subset of columns of original matrix or data frame to place in event chart; if
working with a data frame, a vector of data frame variable names may be used
for subsetting purposes (e.g., c('randdate', 'event1').

sort.by column(s) or data frame variable name(s) with which to sort the chart’s output.
The default is NA, thereby resulting in a chart sorted by original row number.

sort.ascending logical flag (which takes effect only if the argument sort.by is utilized). If
TRUE (default), sorting is done in ascending order; if FALSE, descending order.

sort.na.last logical flag (which takes effect only if the argument sort.by is utilized). If
TRUE (default), NA values are considered as last values in ordering.

sort.after.subset

logical flag (which takes effect only if the argument sort.by is utilized). If FALSE,
sorting data (via sort.by specified variables or columns) will be performed
prior to row subsetting (via subset.r); if TRUE (default), row subsetting of orig-
inal data will be done before sorting.

y.var variable name or column number of original matrix or data frame with which to
scale y-axis. Default is NA, which will result in equally spaced lines on y-axis
(based on original data or sorted data if requested by sort.by). Otherwise, loca-
tion of lines on y-axis will be dictated by specified variable or column. Examples
of specified variables may be date of an event or a physiological covariate. Any
observation which has a missing value for the y.var variable will not appear on
the graph.

116 event.chart

y.var.type type of variable specified in y.var (which will only take effect if argument
y.var is utilized). If "d", specifed variable is a date (either numeric julian date
or an S-Plus dates object); if "n", specifed variable is numeric (e.g., systolic
blood pressure level) although not a julian date.

y.jitter logical flag (which takes effect only if the argument y.var is utilized). Due
to potential ties in y.var variable, y.jitter (when TRUE) will jitter the data
to allow discrimination between observations at the possible cost of producing
slightly inaccurate dates or covariate values; if FALSE (the default), no jittering
will be performed. The y.jitter algorithm assumes a uniform distribution of
observations across the range of y.var. The algorithm is as follows:
size.jitter <- (diff(range(y.var)) / (2 * (length(y.var) - 1))) * y.jitter.factor

The default of y.jitter.factor is 1. The entire product is then used as an ar-
gument into runif: y.var <- y.var + runif(length(y.var), -size.jitter,
size.jitter)

y.jitter.factor

an argument used with the y.jitter function to scale the range of added noise.
Default is 1.

y.renum logical flag. If TRUE, subset observations are listed on y-axis from 1 to length(subset.r);
if FALSE (default), subset observations are listed on y-axis in original form. As
an example, if subset.r = 301:340 and y.renum ==TRUE, y-axis will be shown
as 1 through 40. However, if y.renum ==FALSE, y-axis will be shown as 301
through 340. The above examples assume the following argument, NA.rm, is set
to FALSE.

NA.rm logical flag. If TRUE, subset observations which have NA for each variable spec-
ified in subset.c will not have an entry on the y-axis. Also, if the following
argument, x.reference, is specified, observations with missing x.reference
values will also not have an entry on the y-axis. If FALSE (default), user can
identify those observations which do have NA for every variable specified in
subset.c (or, if x.reference is specified, also those observations which are
missing only the x.reference value); this can easily be done by examining the
resulting y-axis and recognizing the observations without any plotting symbols.

x.reference column of original matrix or data frame with which to reference the x-axis.
That is, if specified, all columns specified in subset.c will be substracted by
x.reference. An example may be to see the timing of events before and after
treatment or to see time-to-event after entry into study. The event times will be
aligned using the x.reference argument as the reference point.

now the “now” date which will be used for top of y-axis when creating the Goldman
eventchart (see reference below). Default is max(data[, subset.c], na.rm
=TRUE).

now.line logical flag. A feature utilized by the Goldman Eventchart. When x.reference
is specified as the start of follow-up and y.var = x.reference, then the Gold-
man chart can be created. This argument, if TRUE, will cause the plot region to
be square, and will draw a line with a slope of -1 from the top of the y-axis to the
right end of the x-axis. Essentially, it denotes end of current follow-up period
for looking at the time-to-event data. Default is FALSE.

event.chart 117

now.line.lty line type of now.line.
now.line.lwd line width of now.line.
now.line.col color of now.line.
pty graph option, pty='m' is the default; use pty='s' for the square looking Gold-

man’s event chart.
date.orig date of origin to consider if dates are in julian, SAS , or S-Plus dates object

format; default is January 1, 1960 (which is the default origin used by both S-
Plus and SAS). Utilized when either y.julian = FALSE or x.julian = FALSE.

titl title for event chart. Default is ’Event Chart’.
y.idlabels column or data frame variable name used for y-axis labels. For example, if

c('pt.no') is specified, patient ID (stored in pt.no) will be seen on y-axis
labels instead of sequence specified by subset.r. This argument takes prece-
dence over both y.axis = 'auto' and y.axis = 'custom' (see below). NOTE:
Program will issue warning if this argument is specified and if is.na(y.var)
== FALSE; y.idlabels will not be used in this situation. Also, attempting to
plot too many patients on a single event chart will cause undesirable plotting of
y.idlabels.

y.axis character string specifying whether program will control labelling of y-axis
(with argument "auto"), or if user will control labelling (with argument "custom").
If "custom" is chosen, user must specify location and text of labels using y.axis.custom.at
and y.axis.custom.labels arguments, respectively, listed below. This argu-
ment will not be utilized if y.idlabels is specified.

y.axis.custom.at

user-specified vector of y-axis label locations. Must be used when y.axis =
"custom"; will not be used otherwise.

y.axis.custom.labels

user-specified vector of y-axis labels. Must be used when y.axis = "custom";
will not be used otherwise.

y.julian logical flag (which will only be considered if y.axis == "auto" and (!is.na(y.var)
& y.var.type== "d"). If FALSE (default), will convert julian numeric dates or
S-Plus dates objects into “mm/dd/yy” format for the y-axis labels. If TRUE, dates
will be printed in julian (numeric) format.

y.lim.extend two-dimensional vector representing the number of units that the user wants to
increase ylim on bottom and top of y-axis, respectively. Default c(0,0). This
argument will not take effect if the Goldman chart is utilized.

y.lab single label to be used for entire y-axis. Default will be the variable name or
column number of y.idlabels (if non-missing) and blank otherwise.

x.axis.all logical flag. If TRUE (default), lower and upper limits of x-axis will be based
on all observations (rows) in matrix or data frame. If FALSE, lower and up-
per limits will be based only on those observations specified by subset.r (ei-
ther before or after sorting depending on specification of sort.by and value of
sort.after.subset).

x.axis character string specifying whether program will control labelling of x-axis
(with argument "auto"), or if user will control labelling (with argument "custom").
If "custom" is chosen, user must specify location and text of labels using x.axis.custom.at
and x.axis.custom.labels arguments, respectively, listed below.

118 event.chart

x.axis.custom.at

user-specified vector of x-axis label locations. Must be used when x.axis ==
"custom"; will not be used otherwise.

x.axis.custom.labels

user-specified vector of x-axis labels. Must be used when x.axis == "custom";
will not be used otherwise.

x.julian logical flag (which will only be considered if x.axis == "auto"). If FALSE (de-
fault), will convert julian dates or S-plus dates objects into “mm/dd/yy” format
for the x-axis labels. If TRUE, dates will be printed in julian (numeric) format.
NOTE: This argument should remain TRUE if x.reference is specified.

x.lim.extend two-dimensional vector representing the number of time units (usually in days)
that the user wants to increase xlim on left-hand side and right-hand side of x-
axis, respectively. Default is c(0,0). This argument will not take effect if the
Goldman chart is utilized.

x.scale a factor whose reciprocal is multiplied to original units of the x-axis. For exam-
ple, if the original data frame is in units of days, x.scale = 365 will result in
units of years (notwithstanding leap years). Default is 1.

x.lab single label to be used for entire x-axis. Default will be “On Study Date” if
x.julian = FALSE and “Time on Study” if x.julian = TRUE.

line.by column or data frame variable name for plotting unique lines by unique values of
vector (e.g., specify c('arm') to plot unique lines by treatment arm). Can take
at most one column or variable name. Default is NA which produces identical
lines for each patient.

line.lty vector of line types corresponding to ascending order of line.by values. If
line.by is specified, the vector should be the length of the number of unique
values of line.by. If line.by is NA, only line.lty[1] will be used. The
default is 1.

line.lwd vector of line widths corresponding to ascending order of line.by values. If
line.by is specified, the vector should be the length of the number of unique
values of line.by. If line.by is NA, only line.lwd[1] will be used. The
default is 1.

line.col vector of line colors corresponding to ascending order of line.by values. If
line.by is specified, the vector should be the length of the number of unique
values of line.by. If line.by is NA, only line.col[1] will be used. The
default is 1.

line.add a 2xk matrix with k=number of pairs of additional line segments to add. For ex-
ample, if it is of interest to draw additional line segments connecting events one
and two, two and three, and four and five, (possibly with different colors), an ap-
propriate line.add argument would be matrix(c('first.event','second.event','second.event','third.event',
'fourth.event','fifth.event'), 2, 3). One line segment would be drawn
between first.event and second.event, a second line segment would be
drawn between second.event and third.event, and a third line segment would
be drawn between fourth.event and fifth.event. Different line types, widths
and colors can be specified (in arguments listed just below).
The convention use of subset.c and line.add must match (i.e., column name
must be used for both or column number must be used for both).

event.chart 119

If line.add != NA, length of line.add.lty, line.add.lwd, and line.add.col
must be the same as number of pairs of additional line segments to add.
NOTE: The drawing of the original default line may be suppressed (with line.col
= 0), and line.add can be used to do all the line plotting for the event chart.

line.add.lty a kx1 vector corresponding to the columns of line.add; specifies the line types
for the k line segments.

line.add.lwd a kx1 vector corresponding to the columns of line.add; specifies the line widths
for the k line segments.

line.add.col a kx1 vector corresponding to the columns of line.add; specifies the line colors
for the k line segments.

point.pch vector of pch values for points representing each event. If similar events are
listed in multiple columns (e.g., regular visits or a recurrent event), repeated pch
values may be listed in the vector (e.g., c(2,4,rep(183,3))). If length(point.pch)
< length(subset.c), point.pch will be repeated until lengths are equal; a
warning message will verify this condition.

point.cex vector of size of points representing each event. If length(point.cex) < length(subset.c),
point.cex will be repeated until lengths are equal; a warning message will ver-
ify this condition.

point.col vector of colors of points representing each event. If length(point.col) <
length(subset.c), point.col will be repeated until lengths are equal; a warn-
ing message will verify this condition.

point.cex.mult a single number (may be non-integer), which is the base multiplier for the
value of the cex of the plotted points, when interest lies in a variable size al-
lowed for certain points, as a function of the quantity of the variable(s) in the
dataset specified in the point.cex.mult.var argument; multiplied by origi-
nal point.cex value and then the value of interest (for an individual) from the
point.cex.mult.var argument; used only when non-NA arguments are pro-
vided to point.cex.mult.var; default is 1. .

point.cex.mult.var

vector of variables to be used in determining what point.cex.mult is multiplied
by for determining size of plotted points from (possibly a subset of) subset.c
variables, when interest lies in a variable size allowed for certain points, as a
function of the level of some variable(s) in the dataset; default is NA.

extra.points.no.mult

vector of variables in the dataset to ignore for purposes of using point.cex.mult;
for example, for some variables there may be interest in allowing a variable size
allowed for the plotting of the points, whereas other variables (e.g., dropout
time), there may be no interest in such manipulation; the vector should be the
same size as the number of variables specified in subset.c, with NA entries
where variable point size is of interest and the variable name (or location in
subset.c) specified when the variable point size is not of interest; in this latter
case, the associated argument in point.cex is instead used as the point cex;
used only when non-NA arguments are provided to point.cex.mult.var; de-
fault is NA

legend.plot logical flag; if TRUE, a legend will be plotted. Location of legend will be based
on specification of legend.location along with values of other arguments listed
below. Default is FALSE (i.e., no legend plotting).

120 event.chart

legend.location

will be used only if legend.plot = TRUE. If "o" (default), a one-page legend
will precede the output of the chart. The user will need to hit enter in order
for the event chart to be displayed. This feature is possible due to the dev.ask
option. If "i", an internal legend will be placed in the plot region based on
legend.point.at. If "l", a legend will be placed in the plot region using the
locator option. Legend will map points to events (via column names, by default)
and, if line.by is specified, lines to groups (based on levels of line.by).

legend.titl title for the legend; default is title to be used for main plot. Only used when
legend.location = "o".

legend.titl.cex

size of text for legend title. Only used when legend.location = "o".

legend.titl.line

line location of legend title dictated by mtext function with outer = FALSE op-
tion; default is 1.0. Only used when legend.location = "o".

legend.point.at

location of upper left and lower right corners of legend area to be utilized for
describing events via points and text.

legend.point.pch

vector of pch values for points representing each event in the legend. Default is
point.pch.

legend.point.text

text to be used for describing events; the default is setup for a data frame, as it
will print the names of the columns specified by subset.c.

legend.cex size of text for points and event descriptions. Default is 2.5 which is setup for
legend.location = "o". A much smaller cex is recommended (possibly 0.75)
for use with legend.location = "i" or legend.location = "l".

legend.bty option to put a box around the legend(s); default is to have no box (legend.bty
= "n"). Option legend.bty = "o" will produce a legend box.

legend.line.at if line.by was specified (with legend.location = "o" or legend.location
= "i"), this argument will dictate the location of the upper left and lower right
corners of legend area to be utilized for describing the different line.by values
(e.g., treatment.arm). The default is setup for legend.location = "o".

legend.line.text

text to be used for describing line.by values; the default are the names of the
unique non-missing line.by values as produced from the table function.

legend.line.lwd

vector of line widths corresponding to line.by values.

legend.loc.num number used for locator argument when legend.locator = "l". If 1 (default),
user is to locate only the top left corner of the legend box. If 2, user is to locate
both the top left corner and the lower right corner. This will be done twice when
line.by is specified (once for points and once for lines).

... additional par arguments for use in main plot.

event.chart 121

Details

if you want to put, say, two eventcharts side-by-side, in a plot region, you should not set up
par(mfrow=c(1,2)) before running the first plot. Instead, you should add the argument mfg=c(1,1,1,2)
to the first plot call followed by the argument mfg=c(1,2,1,2) to the second plot call.

if dates in original data frame are in a specialized form (eg., mm/dd/yy) of mode CHARACTER, the
user must convert those columns to become class dates or julian numeric mode (see Date for more
information). For example, in a data frame called testdata, with specialized dates in columns 4
thru 10, the following code could be used: as.numeric(dates(testdata[,4:10])). This will
convert the columns to numeric julian dates based on the function’s default origin of January 1,
1960. If original dates are in class dates or julian form, no extra work is necessary.

In the survival analysis, the data typically come in two columns: one column containing survival
time and the other containing censoring indicator or event code. The event.convert function
converts this type of data into multiple columns of event times, one column of each event type,
suitable for the event.chart function.

Side Effects

an event chart is created on the current graphics device. If legend.plot =TRUE and legend.location
= ’o’, a one-page legend will precede the event chart. Please note that par parameters on completion
of function will be reset to par parameters existing prior to start of function.

Author(s)

J. Jack Lee and Kenneth R. Hess
Department of Biostatistics
University of Texas
M.D. Anderson Cancer Center
Houston, TX 77030
<jjlee@mdanderson.org>, <khess@mdanderson.org>

Joel A. Dubin
Department of Statistics
University of Waterloo
<jdubin@uwaterloo.ca>

References

Lee J.J., Hess, K.R., Dubin, J.A. (2000). Extensions and applications of event charts. The American
Statistician, 54:1, 63–70.

Dubin, J.A., Lee, J.J., Hess, K.R. (1997). The Utility of Event Charts. Proceedings of the Biometrics
Section, American Statistical Association.

Dubin, J.A., Muller H-G, Wang J-L (2001). Event history graphs for censored survival data. Statis-
tics in Medicine, 20: 2951–2964.

Goldman, A.I. (1992). EVENTCHARTS: Visualizing Survival and Other Timed-Events Data. The
American Statistician, 46:1, 13–18.

122 event.chart

See Also

event.history, Date

Examples

The sample data set is an augmented CDC AIDS dataset (ASCII)
which is used in the examples in the help file. This dataset is
described in Kalbfleisch and Lawless (JASA, 1989).
Here, we have included only children 4 years old and younger.
We have also added a new field, dethdate, which
represents a fictitious death date for each patient. There was
no recording of death date on the original dataset. In addition, we have
added a fictitious viral load reading (copies/ml) for each patient at time of AIDS diagnosis,
noting viral load was also not part of the original dataset.
#
All dates are julian with julian=0 being
January 1, 1960, and julian=14000 being 14000 days beyond
January 1, 1960 (i.e., May 1, 1998).

cdcaids <- data.frame(
age=c(4,2,1,1,2,2,2,4,2,1,1,3,2,1,3,2,1,2,4,2,2,1,4,2,4,1,4,2,1,1,3,3,1,3),
infedate=c(
7274,7727,7949,8037,7765,8096,8186,7520,8522,8609,8524,8213,8455,8739,
8034,8646,8886,8549,8068,8682,8612,9007,8461,8888,8096,9192,9107,9001,
9344,9155,8800,8519,9282,8673),
diagdate=c(
8100,8158,8251,8343,8463,8489,8554,8644,8713,8733,8854,8855,8863,8983,
9035,9037,9132,9164,9186,9221,9224,9252,9274,9404,9405,9433,9434,9470,
9470,9472,9489,9500,9585,9649),
diffdate=c(
826,431,302,306,698,393,368,1124,191,124,330,642,408,244,1001,391,246,
615,1118,539,612,245,813,516,1309,241,327,469,126,317,689,981,303,976),
dethdate=c(
8434,8304,NA,8414,8715,NA,8667,9142,8731,8750,8963,9120,9005,9028,9445,
9180,9189,9406,9711,9453,9465,9289,9640,9608,10010,9488,9523,9633,9667,
9547,9755,NA,9686,10084),
censdate=c(
NA,NA,8321,NA,NA,8519,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,
NA,NA,NA,NA,NA,NA,NA,NA,NA,10095,NA,NA),
viralload=c(
13000,36000,70000,90000,21000,110000,75000,12000,125000,110000,13000,39000,79000,135000,14000,
42000,123000,20000,12000,18000,16000,140000,16000,58000,11000,120000,85000,31000,24000,115000,
17000,13100,72000,13500)
)

cdcaids <- upData(cdcaids,
labels=c(age ='Age, y', infedate='Date of blood transfusion',

diagdate='Date of AIDS diagnosis',
diffdate='Incubation period (days from HIV to AIDS)',
dethdate='Fictitious date of death',
censdate='Fictitious censoring date',

event.chart 123

viralload='Fictitious viral load'))

Note that the style options listed with these
examples are best suited for output to a postscript file (i.e., using
the postscript function with horizontal=TRUE) as opposed to a graphical
window (e.g., motif).

To produce simple calendar event chart (with internal legend):
postscript('example1.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'observation dates',
y.lab='patients (sorted by AIDS diagnosis date)',
titl='AIDS data calendar event chart 1',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i', legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
legend.point.at = list(c(7210, 8100), c(35, 27)), legend.bty='o')

To produce simple interval event chart (with internal legend):
postscript('example2.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since transfusion (in days)',
y.lab='patients (sorted by AIDS diagnosis date)',
titl='AIDS data interval event chart 1',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i', legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='infedate', x.julian=TRUE,
legend.bty='o', legend.point.at = list(c(1400, 1950), c(7, -1)))

To produce simple interval event chart (with internal legend),
but now with flexible diagdate symbol size based on viral load variable:
postscript('example2a.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since transfusion (in days)',
y.lab='patients (sorted by AIDS diagnosis date)',
titl='AIDS data interval event chart 1a, with viral load at diagdate represented',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
point.cex.mult = 0.00002, point.cex.mult.var = 'viralload', extra.points.no.mult = c(1,NA,1,1),
legend.plot=TRUE, legend.location='i', legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='infedate', x.julian=TRUE,
legend.bty='o', legend.point.at = list(c(1400, 1950), c(7, -1)))

To produce more complicated interval chart which is

124 event.convert

referenced by infection date, and sorted by age and incubation period:
postscript('example3.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since diagnosis of AIDS (in days)',
y.lab='patients (sorted by age and incubation length)',
titl='AIDS data interval event chart 2 (sorted by age, incubation)',
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8),
legend.plot=TRUE, legend.location='i',legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='diagdate', x.julian=TRUE, sort.by=c('age','diffdate'),
line.by='age', line.lty=c(1,3,2,4), line.lwd=rep(1,4), line.col=rep(1,4),
legend.bty='o', legend.point.at = list(c(-1350, -800), c(7, -1)),
legend.line.at = list(c(-1350, -800), c(16, 8)),
legend.line.text=c('age = 1', ' = 2', ' = 3', ' = 4'))

To produce the Goldman chart:
postscript('example4.ps', horizontal=TRUE)
event.chart(cdcaids,
subset.c=c('infedate','diagdate','dethdate','censdate'),
x.lab = 'time since transfusion (in days)', y.lab='dates of observation',
titl='AIDS data Goldman event chart 1',
y.var = c('infedate'), y.var.type='d', now.line=TRUE, y.jitter=FALSE,
point.pch=c(1,2,15,0), point.cex=c(1,1,0.8,0.8), mgp = c(3.1,1.6,0),
legend.plot=TRUE, legend.location='i',legend.cex=1.0,
legend.point.text=c('transfusion','AIDS diagnosis','death','censored'),
x.reference='infedate', x.julian=TRUE,
legend.bty='o', legend.point.at = list(c(1500, 2800), c(9300, 10000)))

To convert coded time-to-event data, then, draw an event chart:
surv.time <- c(5,6,3,1,2)
cens.ind <- c(1,0,1,1,0)
surv.data <- cbind(surv.time,cens.ind)
event.data <- event.convert(surv.data)
event.chart(cbind(rep(0,5),event.data),x.julian=TRUE,x.reference=1)

event.convert Event Conversion for Time-to-Event Data

Description

Convert a two-column data matrix with event time and event code into multiple column event time
with one event in each column

Usage

event.convert(data2, event.time = 1, event.code = 2)

event.history 125

Arguments

data2 a matrix or dataframe with at least 2 columns; by default, the first column con-
tains the event time and the second column contains the k event codes (e.g.
1=dead, 0=censord)

event.time the column number in data contains the event time

event.code the column number in data contains the event code

Details

In the survival analysis, the data typically come in two columns: one column containing survival
time and the other containing censoring indicator or event code. The event.convert function
converts this type of data into multiple columns of event times, one column of each event type,
suitable for the event.chart function.

Author(s)

J. Jack Lee and Kenneth R. Hess
Department of Biostatistics
University of Texas
M.D. Anderson Cancer Center
Houston, TX 77030
<jjlee@mdanderson.org>, <khess@mdanderson.org>

Joel A. Dubin
Department of Statistics
University of Waterloo
<jdubin@uwaterloo.ca>

See Also

event.history, Date, event.chart

Examples

To convert coded time-to-event data, then, draw an event chart:
surv.time <- c(5,6,3,1,2)
cens.ind <- c(1,0,1,1,0)
surv.data <- cbind(surv.time,cens.ind)
event.data <- event.convert(surv.data)
event.chart(cbind(rep(0,5),event.data),x.julian=TRUE,x.reference=1)

event.history Produces event.history graph for survival data

126 event.history

Description

Produces an event history graph for right-censored survival data, including time-dependent covari-
ate status, as described in Dubin, Muller, and Wang (2001). Effectively, a Kaplan-Meier curve
is produced with supplementary information regarding individual survival information, censoring
information, and status over time of an individual time-dependent covariate or time-dependent co-
variate function for both uncensored and censored individuals.

Usage

event.history(data, survtime.col, surv.col,
surv.ind = c(1, 0), subset.rows = NULL,
covtime.cols = NULL, cov.cols = NULL,
num.colors = 1, cut.cov = NULL, colors = 1,
cens.density = 10, mult.end.cens = 1.05,
cens.mark.right =FALSE, cens.mark = "-",
cens.mark.ahead = 0.5, cens.mark.cutoff = -1e-08,
cens.mark.cex = 1,
x.lab = "time under observation",
y.lab = "estimated survival probability",
title = "event history graph", ...)

Arguments

data A matrix or data frame with rows corresponding to units (often individuals)
and columns corresponding to survival time, event/censoring indicator. Also,
multiple columns may be devoted to time-dependent covariate level and time
change.

survtime.col Column (in data) representing minimum of time-to-event or right-censoring time
for individual.

surv.col Column (in data) representing event indicator for an individual. Though, tradi-
tionally, such an indicator will be 1 for an event and 0 for a censored observa-
tion, this indicator can be represented by any two numbers, made explicit by the
surv.ind argument.

surv.ind Two-element vector representing, respectively, the number for an event, as listed
in surv.col, followed by the number for a censored observation. Default is
traditional survival data represention, i.e., c(1,0).

subset.rows Subset of rows of original matrix or data frame (data) to place in event history
graph. Logical arguments may be used here (e.g., treatment.arm == "a", if the
data frame, data, has been attached to the search directory;

covtime.cols Column(s) (in data) representing the time when change of time-dependent co-
variate (or time-dependent covariate function) occurs. There should be a unique
non-NA entry in the column for each such change (along with corresponding
cov.cols column entry representing the value of the covariate or function at
that change time). Default is NULL, meaning no time-dependent covariate infor-
mation will be presented in the graph.

cov.cols Column(s) (in data) representing the level of the time-dependent covariate (or
time-dependent covariate function). There should be a unique non-NA column

event.history 127

entry representing each change in the level (along with a corresponding cov-
time.cols column entry representing the time of the change). Default is NULL,
meaning no time-dependent covariate information will be presented in the graph.

num.colors Colors are utilized for the time-dependent covariate level for an individual. This
argument provides the number of unique covariate levels which will be dis-
played by mapping the number of colors (via num.colors) to the number of
desired covariate levels. This will divide the covariate span into roughly equally-
sized intervals, via the S-Plus cut function. Default is one color, meaning no
time-dependent information will be presented in the graph. Note that this argu-
ment will be ignored/superceded if a non-NULL argument is provided for the
cut.cov parameter.

cut.cov This argument allows the user to explicitly state how to define the intervals for
the time-dependent covariate, such that different colors will be allocated to the
user-defined covariate levels. For example, for plotting five colors, six ordered
points within the span of the data’s covariate levels should be provided. Default
is NULL, meaning that the num.colors argument value will dictate the number of
breakpoints, with the covariate span defined into roughly equally-sized intervals
via the S-Plus cut function. However, if is.null(cut.cov) == FALSE, then this
argument supercedes any entry for the num.colors argument.

colors This is a vector argument defining the actual colors used for the time-dependent
covariate levels in the plot, with the index of this vector corresponding to the
ordered levels of the covariate. The number of colors (i.e., the length of the
colors vector) should correspond to the value provided to the num.colors argu-
ment or the number of ordered points - 1 as defined in the cut.cov argument
(with cut.cov superceding num.colors if is.null(cut.cov) == FALSE). The
function, as currently written, allows for as much as twenty distinct colors. This
argument effectively feeds into the col argument for the S-Plus polygon func-
tion. Default is colors = 1. See the col argument for the both the S-Plus par
function and polygon function for more information.

cens.density This will provide the shading density at the end of the individual bars for those
who are censored. For more information on shading density, see the density
argument in the S-Plus polygon function. Default is cens.density=10.

mult.end.cens This is a multiplier that extends the length of the longest surviving individual
bar (or bars, if a tie exists) if right-censored, presuming that no event times
eventually follow this final censored time. Default extends the length 5 percent
beyond the length of the observed right-censored survival time.

cens.mark.right

A logical argument that states whether an explicit mark should be placed to
the right of the individual right-censored survival bars. This argument is most
useful for large sample sizes, where it may be hard to detect the special shading
via cens.density, particularly for the short-term survivors.

cens.mark Character argument which describes the censored mark that should be used if
cens.mark.right = TRUE. Default is "-".

cens.mark.ahead

A numeric argument, which specifies the absolute distance to be placed between
the individual right-censored survival bars and the mark as defined in the above

128 event.history

cens.mark argument. Default is 0.5 (that is, a half of day, if survival time is
measured in days), but may very well need adjusting depending on the maximum
survival time observed in the dataset.

cens.mark.cutoff

A negative number very close to 0 (by default cens.mark.cutoff = -1e-8) to
ensure that the censoring marks get plotted correctly. See event.history code
in order to see its usage. This argument typically will not need adjustment.

cens.mark.cex Numeric argument defining the size of the mark defined in the cens.mark argu-
ment above. See more information by viewing the cex argument for the S-Plus
par function. Default is cens.mark.cex = 1.0.

x.lab Single label to be used for entire x-axis. Default is "time under observation".

y.lab Single label to be used for entire y-axis. Default is "estimated survival
probability".

title Title for the event history graph. Default is "event history graph".

... This allows arguments to the plot function call within the event.history func-
tion. So, for example, the axes representations can be manipulated with ap-
propriate arguments, or particular areas of the event.history graph can be
“zoomed”. See the details section for more comments about zooming.

Details

In order to focus on a particular area of the event history graph, zooming can be performed. This
is best done by specifying appropriate xlim and ylim arguments at the end of the event.history
function call, taking advantage of the ... argument link to the plot function. An example of zoom-
ing can be seen in Plate 4 of the paper referenced below.

Please read the reference below to understand how the individual covariate and survival information
is provided in the plot, how ties are handled, how right-censoring is handled, etc.

WARNING

This function has been tested thoroughly, but only within a restricted version and environment, i.e.,
only within S-Plus 2000, Version 3, and within S-Plus 6.0, version 2, both on a Windows 2000
machine. Hence, we cannot currently vouch for the function’s effectiveness in other versions of
S-Plus (e.g., S-Plus 3.4) nor in other operating environments (e.g., Windows 95, Linux or Unix).
The function has also been verified to work on R under Linux.

Note

The authors have found better control of the use of color by producing the graphs via the postscript
plotting device in S-Plus. In fact, the provided examples utilize the postscript function. How-
ever, your past experiences may be different, and you may prefer to control color directly (to the
graphsheet in Windows environment, for example). The event.history function will work with either
approach.

Author(s)

Joel Dubin
<jdubin@uwaterloo.ca>

event.history 129

References

Dubin, J.A., Muller, H.-G., and Wang, J.-L. (2001). Event history graphs for censored survival data.
Statistics in Medicine, 20, 2951-2964.

See Also

plot,polygon, event.chart, par

Examples

Code to produce event history graphs for SIM paper
#
before generating plots, some pre-processing needs to be performed,
in order to get dataset in proper form for event.history function;
need to create one line per subject and sort by time under observation,
with those experiencing event coming before those tied with censoring time;
require('survival')
data(heart)

creation of event.history version of heart dataset (call heart.one):

heart.one <- matrix(nrow=length(unique(heart$id)), ncol=8)
for(i in 1:length(unique(heart$id)))
{
if(length(heart$id[heart$id==i]) == 1)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,]))
else if(length(heart$id[heart$id==i]) == 2)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,][2,]))

}

heart.one[,3][heart.one[,3] == 0] <- 2 ## converting censored events to 2, from 0
if(is.factor(heart$transplant))
heart.one[,7] <- heart.one[,7] - 1
getting back to correct transplantation coding

heart.one <- as.data.frame(heart.one[order(unlist(heart.one[,2]), unlist(heart.one[,3])),])
names(heart.one) <- names(heart)
back to usual censoring indicator:
heart.one[,3][heart.one[,3] == 2] <- 0
note: transplant says 0 (for no transplants) or 1 (for one transplant)
and event = 1 is death, while event = 0 is censored

plot single Kaplan-Meier curve from heart data, first creating survival object
heart.surv <- survfit(Surv(stop, event) ~ 1, data=heart.one, conf.int = FALSE)

figure 3: traditional Kaplan-Meier curve
postscript('ehgfig3.ps', horiz=TRUE)
omi <- par(omi=c(0,1.25,0.5,1.25))
plot(heart.surv, ylab='estimated survival probability',

xlab='observation time (in days)')
title('Figure 3: Kaplan-Meier curve for Stanford data', cex=0.8)
dev.off()

130 event.history

now, draw event history graph for Stanford heart data; use as Figure 4

postscript('ehgfig4.ps', horiz=TRUE, colors = seq(0, 1, len=20))
par(omi=c(0,1.25,0.5,1.25))
event.history(heart.one,

survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation (in days)',
title='Figure 4: Event history graph for\nStanford data',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 30.0, cens.mark.cex = 0.85)
dev.off()

now, draw age-stratified event history graph for Stanford heart data;
use as Figure 5

two plots, stratified by age status
postscript('c:\temp\ehgfig5.ps', horiz=TRUE, colors = seq(0, 1, len=20))
par(omi=c(0,1.25,0.5,1.25))
par(mfrow=c(1,2))

event.history(data=heart.one, subset.rows = (heart.one[,4] < 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5a:\nStanford data\n(age < 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))

event.history(data=heart.one, subset.rows = (heart.one[,4] >= 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5b:\nStanford data\n(age >= 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))
dev.off()
par(omi=omi)

we will not show liver cirrhosis data manipulation, as it was
a bit detailed; however, here is the
event.history code to produce Figure 7 / Plate 1

extractlabs 131

Figure 7 / Plate 1 : prothrombin ehg with color
Not run:
second.arg <- 1 ### second.arg is for shading
third.arg <- c(rep(1,18),0,1) ### third.arg is for intensity

postscript('c:\temp\ehgfig7.ps', horiz=TRUE,
colors = cbind(seq(0, 1, len = 20), second.arg, third.arg))
par(omi=c(0,1.25,0.5,1.25), col=19)
event.history(cirrhos2.eh, subset.rows = NULL,

survtime.col=cirrhos2.eh$time, surv.col=cirrhos2.eh$event,
covtime.cols = as.matrix(cirrhos2.eh[, ((2:18)*2)]),
cov.cols = as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),
cut.cov = as.numeric(quantile(as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),
c(0,.2,.4,.6,.8,1), na.rm=TRUE) + c(-1,0,0,0,0,1)),

colors=c(20,4,8,11,14),
x.lab = 'time under observation (in days)',
title='Figure 7: Event history graph for liver cirrhosis data (color)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 100.0, cens.mark.cex = 0.85)
dev.off()

End(Not run)

extractlabs extractlabs

Description

Extract Labels and Units From Multiple Datasets

Usage

extractlabs(..., print = TRUE)

Arguments

... one ore more data frames or data tables

print set to FALSE to not print details about variables with conflicting attributes

Details

For one or more data frames/tables extracts all labels and units and comb ines them over dataset,
dropping any variables not having either labels or units defined. The resulting data table is returned
and is used by the hlab function if the user stores the result in an objectnamed LabelsUnits. The
result is NULL if no variable in any dataset has a non-blank label or units. Variables found in more
than one dataset with duplicate label and units are consolidated. A warning message is issued
when duplicate variables have conflicting labels or units, and by default, details are printed. No
attempt is made to resolve these conflicts.

132 Fdebug

Value

a data table

Author(s)

Frank Harrell

See Also

label(), contents(), units(), hlab()

Examples

d <- data.frame(x=1:10, y=(1:10)/10)
d <- upData(d, labels=c(x='X', y='Y'), units=c(x='mmHg'), print=FALSE)
d2 <- d
units(d2$x) <- 'cm'
LabelsUnits <- extractlabs(d, d2)
LabelsUnits

Fdebug Debug Printing Function Generator

Description

Takes the name of a system options(opt=) and checks to see if option opt is set to TRUE, tak-
ing its default value to be FALSE. If TRUE, a function is created that calls prn() to print an object
with the object’s name in the description along with the option name and the name of the func-
tion within which the generated function was called, if any. If option opt is not set, a dummy
function is generated instead. If options(debug_file=) is set when the generated function is
called, prn() output will be appended to that file name instead of the console. At any time, set
options(debug_file='') to resume printing to the console.

Usage

Fdebug(opt)

Arguments

opt character string containing an option name

Value

a function

Author(s)

Fran Harrell

fImport 133

Examples

dfun <- Fdebug('my_option_name') # my_option_name not currently set
dfun
dfun(sqrt(2))
options(my_option_name=TRUE)
dfun <- Fdebug('my_option_name')
dfun
dfun(sqrt(2))
options(debug_file='/tmp/z') to append output to /tmp/z
options(my_option_name=NULL)

fImport fImport

Description

General File Import Using rio

Usage

fImport(
file,
format,
lowernames = c("not mixed", "no", "yes"),
und. = FALSE,
...

)

Arguments

file name of file to import, or full URL. rio determines the file type from the file
suffix unless you override this with format

format format of file to import, usually not needed. See rio::import() for details

lowernames defaults to changing variable names to all lower case unless the name as mixed
upper and lower case, which results in keeping the original characters in the
name. Set lowernames='no' to leave variable names as they were created in
the original file export, or set lowernames='yes' to set all names to lower case
whether they have mixed case or not. For all options, a check is made to see if
the name conversions would result in any duplicate names. If so, the original
names are retained and a warning message issued.

und. set to TRUE to change all underscores in names to periods

... more arguments to pass to rio::import()

134 find.matches

Details

This is a front-end for the rio package’s import function. fImport includes options for setting
variable names to lower case and to change underscores in names to periods. Variables on the
imported data frame that have labels are converted to Hmisc package labelled class so that
subsetting the data frame will preserve the labels.

Value

a data frame created by rio, unless a rio option is given to use another format

Author(s)

Frank Harrell

See Also

upData, especially the moveUnits option

Examples

Not run:
Get a Stata dataset
d <- fImport('http://www.principlesofeconometrics.com/stata/alcohol.dta')
contents(d)

End(Not run)

find.matches Find Close Matches

Description

Compares each row in x against all the rows in y, finding rows in y with all columns within a
tolerance of the values a given row of x. The default tolerance tol is zero, i.e., an exact match is
required on all columns. For qualifying matches, a distance measure is computed. This is the sum
of squares of differences between x and y after scaling the columns. The default scaling values are
tol, and for columns with tol=1 the scale values are set to 1.0 (since they are ignored anyway).
Matches (up to maxmatch of them) are stored and listed in order of increasing distance.
The summary method prints a frequency distribution of the number of matches per observation
in x, the median of the minimum distances for all matches per x, as a function of the number
of matches, and the frequency of selection of duplicate observations as those having the smallest
distance. The print method prints the entire matches and distance components of the result from
find.matches.
matchCases finds all controls that match cases on a single variable x within a tolerance of tol.
This is intended for prospective cohort studies that use matching for confounder adjustment (even
though regression models usually work better).

find.matches 135

Usage

find.matches(x, y, tol=rep(0, ncol(y)), scale=tol, maxmatch=10)
S3 method for class 'find.matches'
summary(object, ...)
S3 method for class 'find.matches'
print(x, digits, ...)

matchCases(xcase, ycase, idcase=names(ycase),
xcontrol, ycontrol, idcontrol=names(ycontrol),
tol=NULL,
maxobs=max(length(ycase),length(ycontrol))*10,
maxmatch=20, which=c('closest','random'))

Arguments

x a numeric matrix or the result of find.matches

y a numeric matrix with same number of columns as x

xcase numeric vector to match on for cases

xcontrol numeric vector to match on for controls, not necessarily the same length as
xcase

ycase a vector or matrix

ycontrol ycase and ycontrol are vectors or matrices, not necessarily having the same
number of rows, specifying a variable to carry along from cases and matching
controls. If you instead want to carry along rows from a data frame, let ycase
and ycontrol be non-overlapping integer subscripts of the donor data frame.

tol a vector of tolerances with number of elements the same as the number of
columns of y, for find.matches. For matchCases is a scalar tolerance.

scale a vector of scaling constants with number of elements the same as the number
of columns of y.

maxmatch maximum number of matches to allow. For matchCases, maximum number of
controls to match with a case (default is 20). If more than maxmatch match-
ing controls are available, a random sample without replacement of maxmatch
controls is used (if which="random").

object an object created by find.matches

digits number of digits to use in printing distances

idcase vector the same length as xcase

idcontrol idcase and idcontrol are vectors the same length as xcase and xcontrol
respectively, specifying the id of cases and controls. Defaults are integers spec-
ifying original element positions within each of cases and controls.

maxobs maximum number of cases and all matching controls combined (maximum di-
mension of data frame resulting from matchControls). Default is ten times the
maximum of the number of cases and number of controls. maxobs is used to
allocate space for the resulting data frame.

136 find.matches

which set to "closest" (the default) to match cases with up to maxmatch controls that
most closely match on x. Set which="random" to use randomly chosen controls.
In either case, only those controls within tol on x are allowed to be used.

... unused

Value

find.matches returns a list of class find.matches with elements matches and distance. Both
elements are matrices with the number of rows equal to the number of rows in x, and with k columns,
where k is the maximum number of matches (<= maxmatch) that occurred. The elements of matches
are row identifiers of y that match, with zeros if fewer than maxmatch matches are found (blanks
if y had row names). matchCases returns a data frame with variables idcase (id of case currently
being matched), type (factor variable with levels "case" and "control"), id (id of case if case
row, or id of matching case), and y.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Ming K, Rosenbaum PR (2001): A note on optimal matching with variable controls using the
assignment algorithm. J Comp Graph Stat 10:455–463.

Cepeda MS, Boston R, Farrar JT, Strom BL (2003): Optimal matching with a variable number of
controls vs. a fixed number of controls for a cohort study: trade-offs. J Clin Epidemiology 56:230-
237. Note: These papers were not used for the functions here but probably should have been.

See Also

scale, apply

Examples

y <- rbind(c(.1, .2),c(.11, .22), c(.3, .4), c(.31, .41), c(.32, 5))
x <- rbind(c(.09,.21), c(.29,.39))
y
x
w <- find.matches(x, y, maxmatch=5, tol=c(.05,.05))

set.seed(111) # so can replicate results
x <- matrix(runif(500), ncol=2)
y <- matrix(runif(2000), ncol=2)
w <- find.matches(x, y, maxmatch=5, tol=c(.02,.03))
w$matches[1:5,]
w$distance[1:5,]
Find first x with 3 or more y-matches

find.matches 137

num.match <- apply(w$matches, 1, function(x)sum(x > 0))
j <- ((1:length(num.match))[num.match > 2])[1]
x[j,]
y[w$matches[j,],]

summary(w)

For many applications would do something like this:
attach(df1)
x <- cbind(age, sex) # Just do as.matrix(df1) if df1 has no factor objects
attach(df2)
y <- cbind(age, sex)
mat <- find.matches(x, y, tol=c(5,0)) # exact match on sex, 5y on age

Demonstrate matchCases
xcase <- c(1,3,5,12)
xcontrol <- 1:6
idcase <- c('A','B','C','D')
idcontrol <- c('a','b','c','d','e','f')
ycase <- c(11,33,55,122)
ycontrol <- c(11,22,33,44,55,66)
matchCases(xcase, ycase, idcase,

xcontrol, ycontrol, idcontrol, tol=1)

If y is a binary response variable, the following code
will produce a Mantel-Haenszel summary odds ratio that
utilizes the matching.
Standard variance formula will not work here because
a control will match more than one case
WARNING: The M-H procedure exemplified here is suspect
because of the small strata and widely varying number
of controls per case.

x <- c(1, 2, 3, 3, 3, 6, 7, 12, 1, 1:7)
y <- c(0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1)
case <- c(rep(TRUE, 8), rep(FALSE, 8))
id <- 1:length(x)

m <- matchCases(x[case], y[case], id[case],
x[!case], y[!case], id[!case], tol=1)

iscase <- m$type=='case'
Note: the first tapply on insures that event indicators are
sorted by case id. The second actually does something.
event.case <- tapply(m$y[iscase], m$idcase[iscase], sum)
event.control <- tapply(m$y[!iscase], m$idcase[!iscase], sum)
n.control <- tapply(!iscase, m$idcase, sum)
n <- tapply(my, midcase, length)

138 first.word

or <- sum(event.case * (n.control - event.control) / n) /
sum(event.control * (1 - event.case) / n)

or

Bootstrap this estimator by sampling with replacement from
subjects. Assumes id is unique when combine cases+controls
(id was constructed this way above). The following algorithms
puts all sampled controls back with the cases to whom they were
originally matched.

ids <- unique(m$id)
idgroups <- split(1:nrow(m), m$id)
B <- 50 # in practice use many more
ors <- numeric(B)
Function to order w by ids, leaving unassigned elements zero
align <- function(ids, w) {

z <- structure(rep(0, length(ids)), names=ids)
z[names(w)] <- w
z

}
for(i in 1:B) {

j <- sample(ids, replace=TRUE)
obs <- unlist(idgroups[j])
u <- m[obs,]
iscase <- u$type=='case'
n.case <- align(ids, tapply(u$type, u$idcase,

function(v)sum(v=='case')))
n.control <- align(ids, tapply(u$type, u$idcase,

function(v)sum(v=='control')))
event.case <- align(ids, tapply(u$y[iscase], u$idcase[iscase], sum))
event.control <- align(ids, tapply(u$y[!iscase], u$idcase[!iscase], sum))
n <- n.case + n.control
Remove sets having 0 cases or 0 controls in resample
s <- n.case > 0 & n.control > 0
denom <- sum(event.control[s] * (n.case[s] - event.case[s]) / n[s])
or <- if(denom==0) NA else
sum(event.case[s] * (n.control[s] - event.control[s]) / n[s]) / denom
ors[i] <- or

}
describe(ors)

first.word First Word in a String or Expression

Description

first.word finds the first word in an expression. A word is defined by unlisting the elements of the
expression found by the S parser and then accepting any elements whose first character is either a

format.df 139

letter or period. The principal intended use is for the automatic generation of temporary file names
where it is important to exclude special characters from the file name. For Microsoft Windows,
periods in names are deleted and only up to the first 8 characters of the word is returned.

Usage

first.word(x, i=1, expr=substitute(x))

Arguments

x any scalar character string

i word number, default value = 1. Used when the second or ith word is wanted.
Currently only the i=1 case is implemented.

expr any S object of mode expression.

Value

a character string

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
<fh@fharrell.com>

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
<rmh@temple.edu>

Examples

first.word(expr=expression(y ~ x + log(w)))

format.df Format a Data Frame or Matrix for LaTeX or HTML

Description

format.df does appropriate rounding and decimal alignment, and outputs a character matrix con-
taining the formatted data. If x is a data.frame, then do each component separately. If x is a
matrix, but not a data.frame, make it a data.frame with individual components for the columns. If a
component x$x is a matrix, then do all columns the same.

140 format.df

Usage

format.df(x, digits, dec=NULL, rdec=NULL, cdec=NULL,
numeric.dollar=!dcolumn, na.blank=FALSE, na.dot=FALSE,
blank.dot=FALSE, col.just=NULL, cdot=FALSE,
dcolumn=FALSE, matrix.sep=' ', scientific=c(-4,4),
math.row.names=FALSE, already.math.row.names=FALSE,
math.col.names=FALSE, already.math.col.names=FALSE,
double.slash=FALSE, format.Date="%m/%d/%Y",
format.POSIXt="%m/%d/%Y %H:%M:%OS", ...)

Arguments

x a matrix (usually numeric) or data frame

digits causes all values in the table to be formatted to digits significant digits. dec is
usually preferred.

dec If dec is a scalar, all elements of the matrix will be rounded to dec decimal
places to the right of the decimal. dec can also be a matrix whose elements
correspond to x, for customized rounding of each element. A matrix dec must
have number of columns equal to number of columns of input x. A scalar dec is
expanded to a vector cdec with number of items equal to number of columns of
input x.

rdec a vector specifying the number of decimal places to the right for each row (cdec
is more commonly used than rdec) A vector rdec must have number of items
equal to number of rows of input x. rdec is expanded to matrix dec.

cdec a vector specifying the number of decimal places for each column. The vector
must have number of items equal to number of columns or components of input
x.

cdot Set to TRUE to use centered dots rather than ordinary periods in numbers. The
output uses a syntax appropriate for latex.

na.blank Set to TRUE to use blanks rather than NA for missing values. This usually looks
better in latex.

dcolumn Set to TRUE to use David Carlisle’s dcolumn style for decimal alignment in
latex. Default is FALSE. You will probably want to use dcolumn if you use
rdec, as a column may then contain varying number of places to the right of
the decimal. dcolumn can line up all such numbers on the decimal point, with
integer values right justified at the decimal point location of numbers that actu-
ally contain decimal places. When you use dcolumn = TRUE, numeric.dollar
is set by default to FALSE. When you use dcolumn = TRUE, the object attribute
"style" set to ‘dcolumn’ as the latex usepackage must reference [dcolumn].
The three files ‘dcolumn.sty’, ‘newarray.sty’, and ‘array.sty’ will need
to be in a directory in your TEXINPUTS path. When you use dcolumn=TRUE,
numeric.dollar should be set to FALSE.

numeric.dollar logical, default !dcolumn. Set to TRUE to place dollar signs around numeric
values when dcolumn = FALSE. This assures that latex will use minus signs
rather than hyphens to indicate negative numbers. Set to FALSE when dcolumn
= TRUE, as dcolumn.sty automatically uses minus signs.

format.df 141

math.row.names logical, set true to place dollar signs around the row names.
already.math.row.names

set to TRUE to prevent any math mode changes to row names

math.col.names logical, set true to place dollar signs around the column names.
already.math.col.names

set to TRUE to prevent any math mode changes to column names

na.dot Set to TRUE to use periods rather than NA for missing numeric values. This works
with the SAS convention that periods indicate missing values.

blank.dot Set to TRUE to use periods rather than blanks for missing character values. This
works with the SAS convention that periods indicate missing values.

col.just Input vector col.just must have number of columns equal to number of columns
of the output matrix. When NULL, the default, the col.just attribute of the result
is set to ‘l’ for character columns and to ‘r’ for numeric columns. The user can
override the default by an argument vector whose length is equal to the number
of columns of the result matrix. When format.df is called by latex.default,
the col.just is used as the cols argument to the tabular environment and
the letters ‘l’, ‘r’, and ‘c’ are valid values. When format.df is called by SAS,
the col.just is used to determine whether a ‘\$’ is needed on the ‘input’ line
of the ‘sysin’ file, and the letters ‘l’ and ‘r’ are valid values. You can pass
specifications other than l,r,c in col.just, e.g., "p{3in}" to get paragraph-
formatted columns from latex().

matrix.sep When x is a data frame containing a matrix, so that new column names are
constructed from the name of the matrix object and the names of the individual
columns of the matrix, matrix.sep specifies the character to use to separate
object names from individual column names.

scientific specifies ranges of exponents (or a logical vector) specifying values not to con-
vert to scientific notation. See format.default for details.

double.slash should escaping backslashes be themselves escaped.

format.Date String used to format objects of the Date class.

format.POSIXt String used to format objects of the POSIXt class.

... other arguments are accepted and passed to format.default. For latexVerbatim
these arguments are passed to the print function.

Value

a character matrix with character images of properly rounded x. Matrix components of input x
are now just sets of columns of character matrix. Object attribute"col.just" repeats the value of
the argument col.just when provided, otherwise, it includes the recommended justification for
columns of output. See the discussion of the argument col.just. The default justification is ‘l’
for characters and factors, ‘r’ for numeric. When dcolumn==TRUE, numerics will have ‘.’ as the
justification character.

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,

142 format.pval

Vanderbilt University,
<fh@fharrell.com>

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
<rmh@temple.edu>

See Also

latex

Examples

Not run:
x <- data.frame(a=1:2, b=3:4)
x$m <- 10000*matrix(5:8,nrow=2)
names(x)
dim(x)
x
format.df(x, big.mark=",")
dim(format.df(x))

End(Not run)

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(x, pv=x, digits = max(1, .Options$digits - 2),
eps = .Machine$double.eps, na.form = "NA", ...)

Arguments

pv a numeric vector.

x argument for method compliance.

digits how many significant digits are to be used.

eps a numerical tolerance: see Details.

na.form character representation of NAs.

... arguments passed to format in the format.pval function body.

gbayes 143

Details

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate for-
matting for fixed, floating point and very small values; those less than eps are formatted as “‘<
[eps]”’ (where “‘[eps]”’ stands for format(eps, digits)).

Value

A character vector.

Note

This is the base format.pval function with the ablitiy to pass the nsmall argument to format

Examples

format.pval(c(runif(5), pi^-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))
format.pval(c(0.1, 1e-27), nsmall=3)

gbayes Gaussian Bayesian Posterior and Predictive Distributions

Description

gbayes derives the (Gaussian) posterior and optionally the predictive distribution when both the
prior and the likelihood are Gaussian, and when the statistic of interest comes from a 2-sample
problem. This function is especially useful in obtaining the expected power of a statistical test,
averaging over the distribution of the population effect parameter (e.g., log hazard ratio) that is
obtained using pilot data. gbayes is also useful for summarizing studies for which the statistic of
interest is approximately Gaussian with known variance. An example is given for comparing two
proportions using the angular transformation, for which the variance is independent of unknown
parameters except for very extreme probabilities. A plot method is also given. This plots the prior,
posterior, and predictive distributions on a single graph using a nice default for the x-axis limits and
using the labcurve function for automatic labeling of the curves.

gbayes2 uses the method of Spiegelhalter and Freedman (1986) to compute the probability of cor-
rectly concluding that a new treatment is superior to a control. By this we mean that a 1-alpha
normal theory-based confidence interval for the new minus old treatment effect lies wholly to the
right of delta.w, where delta.w is the minimally worthwhile treatment effect (which can be zero
to be consistent with ordinary null hypothesis testing, a method not always making sense). This
kind of power function is averaged over a prior distribution for the unknown treatment effect. This
procedure is applicable to the situation where a prior distribution is not to be used in constructing
the test statistic or confidence interval, but is only used for specifying the distribution of delta, the
parameter of interest.

Even though gbayes2 assumes that the test statistic has a normal distribution with known variance
(which is strongly a function of the sample size in the two treatment groups), the prior distribution
function can be completely general. Instead of using a step-function for the prior distribution as

144 gbayes

Spiegelhalter and Freedman used in their appendix, gbayes2 uses the built-in integrate function
for numerical integration. gbayes2 also allows the variance of the test statistic to be general as
long as it is evaluated by the user. The conditional power given the parameter of interest delta is
1 - pnorm((delta.w - delta)/sd + z), where z is the normal critical value corresponding to 1 -
alpha/2.

gbayesMixPredNoData derives the predictive distribution of a statistic that is Gaussian given delta
when no data have yet been observed and when the prior is a mixture of two Gaussians.

gbayesMixPost derives the posterior density, cdf, or posterior mean of delta given the statistic x,
when the prior for delta is a mixture of two Gaussians and when x is Gaussian given delta.

gbayesMixPowerNP computes the power for a test for delta > delta.w for the case where (1) a
Gaussian prior or mixture of two Gaussian priors is used as the prior distribution, (2) this prior is
used in forming the statistical test or credible interval, (3) no prior is used for the distribution of
delta for computing power but instead a fixed single delta is given (as in traditional frequentist
hypothesis tests), and (4) the test statistic has a Gaussian likelihood with known variance (and mean
equal to the specified delta). gbayesMixPowerNP is handy where you want to use an earlier study
in testing for treatment effects in a new study, but you want to mix with this prior a non-informative
prior. The mixing probability mix can be thought of as the "applicability" of the previous study. As
with gbayes2, power here means the probability that the new study will yield a left credible interval
that is to the right of delta.w. gbayes1PowerNP is a special case of gbayesMixPowerNP when the
prior is a single Gaussian.

Usage

gbayes(mean.prior, var.prior, m1, m2, stat, var.stat,
n1, n2, cut.prior, cut.prob.prior=0.025)

S3 method for class 'gbayes'
plot(x, xlim, ylim, name.stat='z', ...)

gbayes2(sd, prior, delta.w=0, alpha=0.05, upper=Inf, prior.aux)

gbayesMixPredNoData(mix=NA, d0=NA, v0=NA, d1=NA, v1=NA,
what=c('density','cdf'))

gbayesMixPost(x=NA, v=NA, mix=1, d0=NA, v0=NA, d1=NA, v1=NA,
what=c('density','cdf','postmean'))

gbayesMixPowerNP(pcdf, delta, v, delta.w=0, mix, interval,
nsim=0, alpha=0.05)

gbayes1PowerNP(d0, v0, delta, v, delta.w=0, alpha=0.05)

Arguments

mean.prior mean of the prior distribution
cut.prior, cut.prob.prior, var.prior

variance of the prior. Use a large number such as 10000 to effectively use a flat
(noninformative) prior. Sometimes it is useful to compute the variance so that

gbayes 145

the prior probability that stat is greater than some impressive value u is only
alpha. The correct var.prior to use is then ((u-mean.prior)/qnorm(1-alpha))^2.
You can specify cut.prior=u and cut.prob.prior=alpha (whose default is
0.025) in place of var.prior to have gbayes compute the prior variance in this
manner.

m1 sample size in group 1

m2 sample size in group 2

stat statistic comparing groups 1 and 2, e.g., log hazard ratio, difference in means,
difference in angular transformations of proportions

var.stat variance of stat, assumed to be known. var.stat should either be a constant
(allowed if n1 is not specified), or a function of two arguments which specify
the sample sizes in groups 1 and 2. Calculations will be approximate when the
variance is estimated from the data.

x an object returned by gbayes or the value of the statistic which is an estimator
of delta, the parameter of interest

sd the standard deviation of the treatment effect

prior a function of possibly a vector of unknown treatment effects, returning the prior
density at those values

pcdf a function computing the posterior CDF of the treatment effect delta, such as a
function created by gbayesMixPost with what="cdf".

delta a true unknown single treatment effect to detect

v the variance of the statistic x, e.g., s^2 * (1/n1 + 1/n2). Neither x nor v need to
be defined to gbayesMixPost, as they can be defined at run time to the function
created by gbayesMixPost.

n1 number of future observations in group 1, for obtaining a predictive distribution

n2 number of future observations in group 2

xlim vector of 2 x-axis limits. Default is the mean of the posterior plus or minus 6
standard deviations of the posterior.

ylim vector of 2 y-axis limits. Default is the range over combined prior and posterior
densities.

name.stat label for x-axis. Default is "z".

... optional arguments passed to labcurve from plot.gbayes

delta.w the minimum worthwhile treatment difference to detech. The default is zero for
a plain uninteristing null hypothesis.

alpha type I error, or more accurately one minus the confidence level for a two-sided
confidence limit for the treatment effect

upper upper limit of integration over the prior distribution multiplied by the normal
likelihood for the treatment effect statistic. Default is infinity.

prior.aux argument to pass to prior from integrate through gbayes2. Inside of power
the argument must be named prior.aux if it exists. You can pass multiple
parameters by passing prior.aux as a list and pulling off elements of the list
inside prior. This setup was used because of difficulties in passing ... argu-
ments through integrate for some situations.

146 gbayes

mix mixing probability or weight for the Gaussian prior having mean d0 and variance
v0. mix must be between 0 and 1, inclusive.

d0 mean of the first Gaussian distribution (only Gaussian for gbayes1PowerNP and
is a required argument)

v0 variance of the first Gaussian (only Gaussian for gbayes1PowerNP and is a re-
quired argument)

d1 mean of the second Gaussian (if mix < 1)

v1 variance of the second Gaussian (if mix < 1). Any of these last 5 arguments can
be omitted to gbayesMixPredNoData as they can be provided at run time to the
function created by gbayesMixPredNoData.

what specifies whether the predictive density or the CDF is to be computed. Default
is "density".

interval a 2-vector containing the lower and upper limit for possible values of the test
statistic x that would result in a left credible interval exceeding delta.w with
probability 1-alpha/2

nsim defaults to zero, causing gbayesMixPowerNP to solve numerically for the critical
value of x, then to compute the power accordingly. Specify a nonzero number
such as 20000 for nsim to instead have the function estimate power by sim-
ulation. In this case 0.95 confidence limits on the estimated power are also
computed. This approach is sometimes necessary if uniroot can’t solve the
equation for the critical value.

Value

gbayes returns a list of class "gbayes" containing the following names elements: mean.prior,var.prior,mean.post,
var.post, and if n1 is specified, mean.pred and var.pred. Note that mean.pred is identical to
mean.post. gbayes2 returns a single number which is the probability of correctly rejecting the null
hypothesis in favor of the new treatment. gbayesMixPredNoData returns a function that can be used
to evaluate the predictive density or cumulative distribution. gbayesMixPost returns a function that
can be used to evaluate the posterior density or cdf. gbayesMixPowerNP returns a vector containing
two values if nsim = 0. The first value is the critical value for the test statistic that will make the
left credible interval > delta.w, and the second value is the power. If nsim > 0, it returns the power
estimate and confidence limits for it if nsim > 0. The examples show how to use these functions.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Spiegelhalter DJ, Freedman LS, Parmar MKB (1994): Bayesian approaches to randomized trials.
JRSS A 157:357–416. Results for gbayes are derived from Equations 1, 2, 3, and 6.

Spiegelhalter DJ, Freedman LS (1986): A predictive approach to selecting the size of a clinical trial,
based on subjective clinical opinion. Stat in Med 5:1–13.

gbayes 147

Joseph, Lawrence and Belisle, Patrick (1997): Bayesian sample size determination for normal
means and differences between normal means. The Statistician 46:209–226.

Grouin, JM, Coste M, Bunouf P, Lecoutre B (2007): Bayesian sample size determination in non-
sequential clinical trials: Statistical aspects and some regulatory considerations. Stat in Med 26:4914–
4924.

See Also

gbayesSeqSim

Examples

Compare 2 proportions using the var stabilizing transformation
arcsin(sqrt((x+3/8)/(n+3/4))) (Anscombe), which has variance
1/[4(n+.5)]

m1 <- 100; m2 <- 150
deaths1 <- 10; deaths2 <- 30

f <- function(events,n) asin(sqrt((events+3/8)/(n+3/4)))
stat <- f(deaths1,m1) - f(deaths2,m2)
var.stat <- function(m1, m2) 1/4/(m1+.5) + 1/4/(m2+.5)
cat("Test statistic:",format(stat)," s.d.:",

format(sqrt(var.stat(m1,m2))), "\n")
#Use unbiased prior with variance 1000 (almost flat)
b <- gbayes(0, 1000, m1, m2, stat, var.stat, 2*m1, 2*m2)
print(b)
plot(b)
#To get posterior Prob[parameter > w] use
1-pnorm(w, b$mean.post, sqrt(b$var.post))

#If g(effect, n1, n2) is the power function to
#detect an effect of 'effect' with samples size for groups 1 and 2
#of n1,n2, estimate the expected power by getting 1000 random
#draws from the posterior distribution, computing power for
#each value of the population effect, and averaging the 1000 powers
#This code assumes that g will accept vector-valued 'effect'
#For the 2-sample proportion problem just addressed, 'effect'
#could be taken approximately as the change in the arcsin of
#the square root of the probability of the event

g <- function(effect, n1, n2, alpha=.05) {
sd <- sqrt(var.stat(n1,n2))
z <- qnorm(1 - alpha/2)
effect <- abs(effect)
1 - pnorm(z - effect/sd) + pnorm(-z - effect/sd)

}

148 gbayes

effects <- rnorm(1000, b$mean.post, sqrt(b$var.post))
powers <- g(effects, 500, 500)
hist(powers, nclass=35, xlab='Power')
describe(powers)

gbayes2 examples
First consider a study with a binary response where the
sample size is n1=500 in the new treatment arm and n2=300
in the control arm. The parameter of interest is the
treated:control log odds ratio, which has variance
1/[n1 p1 (1-p1)] + 1/[n2 p2 (1-p2)]. This is not
really constant so we average the variance over plausible
values of the probabilities of response p1 and p2. We
think that these are between .4 and .6 and we take a
further short cut

v <- function(n1, n2, p1, p2) 1/(n1*p1*(1-p1)) + 1/(n2*p2*(1-p2))
n1 <- 500; n2 <- 300
ps <- seq(.4, .6, length=100)
vguess <- quantile(v(n1, n2, ps, ps), .75)
vguess
75%
0.02183459

The minimally interesting treatment effect is an odds ratio
of 1.1. The prior distribution on the log odds ratio is
a 50:50 mixture of a vague Gaussian (mean 0, sd 100) and
an informative prior from a previous study (mean 1, sd 1)

prior <- function(delta)
0.5*dnorm(delta, 0, 100)+0.5*dnorm(delta, 1, 1)

deltas <- seq(-5, 5, length=150)
plot(deltas, prior(deltas), type='l')

Now compute the power, averaged over this prior
gbayes2(sqrt(vguess), prior, log(1.1))
[1] 0.6133338

See how much power is lost by ignoring the previous
study completely

gbayes2(sqrt(vguess), function(delta)dnorm(delta, 0, 100), log(1.1))
[1] 0.4984588

gbayes 149

What happens to the power if we really don't believe the treatment
is very effective? Let's use a prior distribution for the log
odds ratio that is uniform between log(1.2) and log(1.3).
Also check the power against a true null hypothesis

prior2 <- function(delta) dunif(delta, log(1.2), log(1.3))
gbayes2(sqrt(vguess), prior2, log(1.1))
[1] 0.1385113

gbayes2(sqrt(vguess), prior2, 0)
[1] 0.3264065

Compare this with the power of a two-sample binomial test to
detect an odds ratio of 1.25
bpower(.5, odds.ratio=1.25, n1=500, n2=300)
Power
0.3307486

For the original prior, consider a new study with equal
sample sizes n in the two arms. Solve for n to get a
power of 0.9. For the variance of the log odds ratio
assume a common p in the center of a range of suspected
probabilities of response, 0.3. For this example we
use a zero null value and the uniform prior above

v <- function(n) 2/(n*.3*.7)
pow <- function(n) gbayes2(sqrt(v(n)), prior2)
uniroot(function(n) pow(n)-0.9, c(50,10000))$root
[1] 2119.675
Check this value
pow(2119.675)
[1] 0.9

Get the posterior density when there is a mixture of two priors,
with mixing probability 0.5. The first prior is almost
non-informative (normal with mean 0 and variance 10000) and the
second has mean 2 and variance 0.3. The test statistic has a value
of 3 with variance 0.4.
f <- gbayesMixPost(3, 4, mix=0.5, d0=0, v0=10000, d1=2, v1=0.3)

args(f)

Plot this density

150 gbayesSeqSim

delta <- seq(-2, 6, length=150)
plot(delta, f(delta), type='l')

Add to the plot the posterior density that used only
the almost non-informative prior
lines(delta, f(delta, mix=1), lty=2)

The same but for an observed statistic of zero
lines(delta, f(delta, mix=1, x=0), lty=3)

Derive the CDF instead of the density
g <- gbayesMixPost(3, 4, mix=0.5, d0=0, v0=10000, d1=2, v1=0.3,

what='cdf')
Had mix=0 or 1, gbayes1PowerNP could have been used instead
of gbayesMixPowerNP below

Compute the power to detect an effect of delta=1 if the variance
of the test statistic is 0.2
gbayesMixPowerNP(g, 1, 0.2, interval=c(-10,12))

Do the same thing by simulation
gbayesMixPowerNP(g, 1, 0.2, interval=c(-10,12), nsim=20000)

Compute by what factor the sample size needs to be larger
(the variance needs to be smaller) so that the power is 0.9
ratios <- seq(1, 4, length=50)
pow <- single(50)
for(i in 1:50)

pow[i] <- gbayesMixPowerNP(g, 1, 0.2/ratios[i], interval=c(-10,12))[2]

Solve for ratio using reverse linear interpolation
approx(pow, ratios, xout=0.9)$y

Check this by computing power
gbayesMixPowerNP(g, 1, 0.2/2.1, interval=c(-10,12))
So the study will have to be 2.1 times as large as earlier thought

gbayesSeqSim gbayesSeqSim

Description

Simulate Bayesian Sequential Treatment Comparisons Using a Gaussian Model

gbayesSeqSim 151

Usage

gbayesSeqSim(est, asserts)

Arguments

est data frame created by estSeqSim()

asserts list of lists. The first element of each list is the user-specified name for each as-
sertion/prior combination, e.g., "efficacy". The other elements are, in order, a
character string equal to "<", ">", or "in", a parameter value cutoff (for "<" and
">") or a 2-vector specifying an interval for "in", and either a prior distribution
mean and standard deviation named mu and sigma respectively, or a parameter
value ("cutprior") and tail area "tailprob". If the latter is used, mu is as-
sumed to be zero and sigma is solved for such that P(parameter > ’cutprior’) =
P(parameter < - ’cutprior’) = tailprob.

Details

Simulate a sequential trial under a Gaussian model for parameter estimates, and Gaussian priors
using simulated estimates and variances returned by estSeqSim. For each row of the data frame
est and for each prior/assertion combination, computes the posterior probability of the assertion.

Value

a data frame with number of rows equal to that of est with a number of new columns equal to the
number of assertions added. The new columns are named p1, p2, p3, ... (posterior probabilities),
mean1, mean2, ... (posterior means), and sd1, sd2, ... (posterior standard deviations). The returned
data frame also has an attribute asserts added which is the original asserts augmented with any
derived mu and sigma and converted to a data frame, and another attribute alabels which is a
named vector used to map p1, p2, ... to the user-provided labels in asserts.

Author(s)

Frank Harrell

See Also

gbayes(), estSeqSim(), simMarkovOrd(), estSeqMarkovOrd()

Examples

Not run:
Simulate Bayesian operating characteristics for an unadjusted
proportional odds comparison (Wilcoxon test)
For 100 simulations, 5 looks, 2 true parameter values, and
2 assertion/prior combinations, compute the posterior probability
Use a low-level logistic regression call to speed up simuluations
Use data.table to compute various summary measures
Total simulation time: 2s
lfit <- function(x, y) {
f <- rms::lrm.fit(x, y)

152 geom_stepconfint

k <- length(coef(f))
c(coef(f)[k], vcov(f)[k, k])

}
gdat <- function(beta, n1, n2) {

Cell probabilities for a 7-category ordinal outcome for the control group
p <- c(2, 1, 2, 7, 8, 38, 42) / 100

Compute cell probabilities for the treated group
p2 <- pomodm(p=p, odds.ratio=exp(beta))
y1 <- sample(1 : 7, n1, p, replace=TRUE)
y2 <- sample(1 : 7, n2, p2, replace=TRUE)
list(y1=y1, y2=y2)

}

Assertion 1: log(OR) < 0 under prior with prior mean 0.1 and sigma 1 on log OR scale
Assertion 2: OR between 0.9 and 1/0.9 with prior mean 0 and sigma computed so that
P(OR > 2) = 0.05
asserts <- list(list('Efficacy', '<', 0, mu=0.1, sigma=1),

list('Similarity', 'in', log(c(0.9, 1/0.9)),
cutprior=log(2), tailprob=0.05))

set.seed(1)
est <- estSeqSim(c(0, log(0.7)), looks=c(50, 75, 95, 100, 200),

gendat=gdat,
fitter=lfit, nsim=100)

z <- gbayesSeqSim(est, asserts)
head(z)
attr(z, 'asserts')

Compute the proportion of simulations that hit targets (different target posterior
probabilities for efficacy vs. similarity)

For the efficacy assessment compute the first look at which the target
was hit (set to infinity if never hit)
require(data.table)
z <- data.table(z)
u <- z[, .(first=min(p1 > 0.95)), by=.(parameter, sim)]
Compute the proportion of simulations that ever hit the target and
that hit it by the 100th subject
u[, .(ever=mean(first < Inf)), by=.(parameter)]
u[, .(by75=mean(first <= 100)), by=.(parameter)]

End(Not run)

geom_stepconfint Step function confidence intervals for ggplot2

Description

Produces a step function confidence interval for survival curves. This function is taken from the
utile.visuals package by Eric Finnesgard. That package is not used because of its strong depen-

geom_stepconfint 153

dencies.

Usage

geom_stepconfint(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
...

)

Arguments

mapping Aesthetic mappings with aes() function. Like geom_ribbon(), you must provide
columns for x, ymin (lower limit), ymax (upper limit).

data The data to be displayed in this layer. Can inherit from ggplot parent.

stat The statistical transformation to use on the data for this layer, as a string. De-
faults to ’identity’.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

... Optional. Any other ggplot geom_ribbon() arguments.

Note

Originally adapted from the survminer package <https://github.com/kassambara/survminer>.

Author(s)

Eric Finnesgard

Examples

require(survival)
require(ggplot2)

f <- survfit(Surv(time, status) ~ trt, data = diabetic)
d <- with(f, data.frame(time, surv, lower, upper, trt=rep(names(f$strata), f$strata)))
ggplot(d, aes(x = time, y=surv)) +

geom_step(aes(color = trt)) +
geom_stepconfint(aes(ymin = lower, ymax = upper, fill = trt), alpha = 0.3) +
coord_cartesian(c(0, 50)) +
scale_x_continuous(expand = c(0.02,0)) +
labs(x = 'Time', y = 'Freedom From Event') +
scale_color_manual(

values = c('#d83641', '#1A45A7'),

154 getHdata

name = 'Treatment',
labels = c('None', 'Laser'),
aesthetics = c('colour', 'fill'))

getabd getabd

Description

Data from The Analysis of Biological Data by Shitlock and Schluter

Usage

getabd(name = "", lowernames = FALSE, allow = "_")

Arguments

name name of dataset to fetch. Omit to get a data table listing all available datasets.

lowernames set to TRUE to change variable names to lower case

allow set to NULL to convert underscores in variable names to periods

Details

Fetches csv files for exercises in the book

Value

data frame with attributes label and url

Author(s)

Frank Harrell

getHdata Download and Install Datasets for Hmisc, rms, and Statistical Mod-
eling

getHdata 155

Description

This function downloads and makes ready to use datasets from the main web site for the Hmisc
and rms libraries. For R, the datasets were stored in compressed save format and getHdata makes
them available by running load after download. For S-Plus, the datasets were stored in data.dump
format and are made available by running data.restore after import. The dataset is run through
the cleanup.import function. Calling getHdata with no file argument provides a character
vector of names of available datasets that are currently on the web site. For R, R’s default browser
can optionally be launched to view html files that were already prepared using the Hmisc command
html(contents()) or to view ‘.txt’ or ‘.html’ data description files when available.

If options(localHfiles=TRUE) the scripts are read from local directory ~/web/data/repo in-
stead of from the web server.

Usage

getHdata(file, what = c("data", "contents", "description", "all"),
where="https://hbiostat.org/data/repo")

Arguments

file an unquoted name of a dataset on the web site, e.g. ‘prostate’. Omit file to
obtain a list of available datasets.

what specify what="contents" to browse the contents (metadata) for the dataset
rather than fetching the data themselves. Specify what="description" to browse
a data description file if available. Specify what="all" to retrieve the data and
see the metadata and description.

where URL containing the data and metadata files

Value

getHdata() without a file argument returns a character vector of dataset base names. When a
dataset is downloaded, the data frame is placed in search position one and is not returned as value
of getHdata.

Author(s)

Frank Harrell

See Also

download.file, cleanup.import, data.restore, load

Examples

Not run:
getHdata() # download list of available datasets
getHdata(prostate) # downloads, load() or data.restore()

runs cleanup.import for S-Plus 6
getHdata(valung, "contents") # open browser (options(browser="whatever"))

after downloading valung.html

156 getRs

(result of html(contents()))
getHdata(support, "all") # download and open one browser window
datadensity(support)
attach(support) # make individual variables available
getHdata(plasma, "all") # download and open two browser windows

(description file is available for plasma)

End(Not run)

getRs Interact with github rscripts Project

Description

The github rscripts project at https://github.com/harrelfe/rscripts contains R scripts that
are primarily analysis templates for teaching with RStudio. This function allows the user to print an
organized list of available scripts, to download a script and source() it into the current session (the
default), to download a script and load it into an RStudio script editor window, to list scripts whose
major category contains a given string (ignoring case), or to list all major and minor categories. If
options(localHfiles=TRUE) the scripts are read from local directory ~/R/rscripts instead of
from github.

Usage

getRs(file=NULL, guser='harrelfe', grepo='rscripts', gdir='raw/master',
dir=NULL, browse=c('local', 'browser'), cats=FALSE,
put=c('source', 'rstudio'))

Arguments

file a character string containing a script file name. Omit file to obtain a list of
available scripts with major and minor categories.

guser GitHub user name, default is 'harrelfe'
grepo Github repository name, default is 'rscripts'
gdir Github directory under which to find retrievable files
dir directory under grepo in which to find files
browse When showing the rscripts contents directory, the default is to list in tabular form

in the console. Specify browse='browser' to open the online contents in a web
browser.

cats Leave at the default (FALSE) to list whole contents or download a script. Specify
cats=TRUE to list major and minor categories available. Specify a character
string to list all scripts whose major category contains the string (ignoring case).

put Leave at the default ('source') to source() the file. This is useful when the file
just defines a function you want to use in the session. Use load put='rstudio'
to load the file into the RStudio script editor window using the rstudioapi
navigateToFile function. If RStudio is not running, file.edit() is used
instead.

https://github.com/harrelfe/rscripts

getZip 157

Value

a data frame or list, depending on arguments

Author(s)

Frank Harrell and Cole Beck

See Also

download.file

Examples

Not run:
getRs() # list available scripts
scripts <- getRs() # likewise, but store in an object that can easily

be viewed on demand in RStudio
getRs('introda.r') # download introda.r and put in script editor
getRs(cats=TRUE) # list available major and minor categories
categories <- getRs(cats=TRUE)
likewise but store results in a list for later viewing
getRs(cats='reg') # list all scripts in a major category containing 'reg'
getRs('importREDCap.r') # source() to define a function
source() a new version of the Hmisc package's cut2 function:
getRs('cut2.s', grepo='Hmisc', dir='R')

End(Not run)

getZip Open a Zip File From a URL

Description

Allows downloading and reading of a zip file containing one file

Usage

getZip(url, password=NULL)

Arguments

url either a path to a local file or a valid URL.

password required to decode password-protected zip files

Details

Allows downloading and reading of zip file containing one file. The file may be password protected.
If a password is needed then one will be requested unless given.

Note: to make password-protected zip file z.zip, do zip -e z myfile

158 ggfreqScatter

Value

Returns a file O/I pipe.

Author(s)

Frank E. Harrell

See Also

pipe

Examples

Not run:
read.csv(getZip('http://test.com/z.zip'))

End(Not run)

ggfreqScatter Frequency Scatterplot

Description

Uses ggplot2 to plot a scatterplot or dot-like chart for the case where there is a very large number
of overlapping values. This works for continuous and categorical x and y. For continuous variables
it serves the same purpose as hexagonal binning. Counts for overlapping points are grouped into
quantile groups and level of transparency and rainbow colors are used to provide count information.

Instead, you can specify stick=TRUE not use color but to encode cell frequencies with the height
of a black line y-centered at the middle of the bins. Relative frequencies are not transformed, and
the maximum cell frequency is shown in a caption. Every point with at least a frequency of one is
depicted with a full-height light gray vertical line, scaled to the above overall maximum frequency.
In this way to relative frequency is to proportion of these light gray lines that are black, and one can
see points whose frequencies are too low to see the black lines.

The result can also be passed to ggplotly. Actual cell frequencies are added to the hover text in
that case using the label ggplot2 aesthetic.

Usage

ggfreqScatter(x, y, by=NULL, bins=50, g=10, cuts=NULL,
xtrans = function(x) x,
ytrans = function(y) y,
xbreaks = pretty(x, 10),
ybreaks = pretty(y, 10),
xminor = NULL, yminor = NULL,
xlab = as.character(substitute(x)),
ylab = as.character(substitute(y)),
fcolors = viridisLite::viridis(10), nsize=FALSE,
stick=FALSE, html=FALSE, prfreq=FALSE, ...)

ggfreqScatter 159

Arguments

x x-variable

y y-variable

by an optional vector used to make separate plots for each distinct value using
facet_wrap()

bins for continuous x or y is the number of bins to create by rounding. Ignored for
categorical variables. If a 2-vector, the first element corresponds to x and the
second to y.

g number of quantile groups to make for frequency counts. Use g=0 to use fre-
quencies continuously for color coding. This is recommended only when using
plotly.

cuts instead of using g, specify cuts to provide the vector of cuts for categorizing
frequencies for assignment to colors

xtrans, ytrans functions specifying transformations to be made before binning and plotting
xbreaks, ybreaks

vectors of values to label on axis, on original scale

xminor, yminor values at which to put minor tick marks, on original scale

xlab, ylab axis labels. If not specified and variable has a label, thatu label will be used.

fcolors colors argument to pass to scale_color_gradientn to color code frequen-
cies. Use fcolors=gray.colors(10, 0.75, 0) to show gray scale, for exam-
ple. Another good choice is fcolors=hcl.colors(10, 'Blue-Red').

nsize set to TRUE to not vary color or transparency but instead to size the symbols in
relation to the number of points. Best with both x and y are discrete. ggplot2
size is taken as the fourth root of the frequency. If there are 15 or unique
frequencies all the unique frequencies are used, otherwise g quantile groups of
frequencies are used.

stick set to TRUE to not use colors but instead use varying-height black vertical lines
to depict cell frequencies.

html set to TRUE to use html in axis labels instead of plotmath

prfreq set to TRUE to print the frequency distributions of the binned coordinate frequen-
cies

... arguments to pass to geom_point such as shape and size

Value

a ggplot object

Author(s)

Frank Harrell

See Also

cut2

160 ggplotlyr

Examples

require(ggplot2)
set.seed(1)
x <- rnorm(1000)
y <- rnorm(1000)
count <- sample(1:100, 1000, TRUE)
x <- rep(x, count)
y <- rep(y, count)
color=alpha=NULL below makes loess smooth over all points
g <- ggfreqScatter(x, y) + # might add g=0 if using plotly

geom_smooth(aes(color=NULL, alpha=NULL), se=FALSE) +
ggtitle("Using Deciles of Frequency Counts, 2500 Bins")

g
plotly::ggplotly(g, tooltip='label') # use plotly, hover text = freq. only
Plotly makes it somewhat interactive, with hover text tooltips

Instead use varying-height sticks to depict frequencies
ggfreqScatter(x, y, stick=TRUE) +
labs(subtitle='Relative height of black lines to gray lines

is proportional to cell frequency.
Note that points with even tiny frequency are visable
(gray line with no visible black line).')

Try with x categorical
x1 <- sample(c('cat', 'dog', 'giraffe'), length(x), TRUE)
ggfreqScatter(x1, y)

Try with y categorical
y1 <- sample(LETTERS[1:10], length(x), TRUE)
ggfreqScatter(x, y1)

Both categorical, larger point symbols, box instead of circle
ggfreqScatter(x1, y1, shape=15, size=7)
Vary box size instead
ggfreqScatter(x1, y1, nsize=TRUE, shape=15)

ggplotlyr ggplotlyr

Description

Render plotly Graphic from a ggplot2 Object

Usage

ggplotlyr(ggobject, tooltip = "label", remove = "txt: ", ...)

GiniMd 161

Arguments

ggobject an object produced by ggplot

tooltip attribute specified to ggplot to hold hover text

remove extraneous text to remove from hover text. Default is set to assume tooltip='label'
and assumed the user specified aes(..., label=txt). If you instead specified
aes(..., label=myvar) use remove='myvar: '.

... other arguments passed to ggplotly

Details

Uses plotly::ggplotly() to render a plotly graphic with a specified tooltip attribute, removing
extraneous text that ggplotly puts in hover text when tooltip='label'

Value

a plotly object

Author(s)

Frank Harrell

GiniMd Gini’s Mean Difference

Description

GiniMD computes Gini’s mean difference on a numeric vector. This index is defined as the mean
absolute difference between any two distinct elements of a vector. For a Bernoulli (binary) variable
with proportion of ones equal to p and sample size n, Gini’s mean difference is 2 n

n−1p(1 − p).
For a trinomial variable (e.g., predicted values for a 3-level categorical predictor using two dummy
variables) having (predicted) values A,B,C with corresponding proportions a, b, c, Gini’s mean
difference is 2 n

n−1 [ab|A−B|+ ac|A− C|+ bc|B − C|]

Usage

GiniMd(x, na.rm=FALSE)

Arguments

x a numeric vector (for GiniMd)

na.rm set to TRUE if you suspect there may be NAs in x; these will then be removed.
Otherwise an error will result.

Value

a scalar numeric

162 hashCheck

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

David HA (1968): Gini’s mean difference rediscovered. Biometrika 55:573–575.

Examples

set.seed(1)
x <- rnorm(40)
Test GiniMd against a brute-force solution
gmd <- function(x) {

n <- length(x)
sum(outer(x, x, function(a, b) abs(a - b))) / n / (n - 1)
}

GiniMd(x)
gmd(x)

z <- c(rep(0,17), rep(1,6))
n <- length(z)
GiniMd(z)
2*mean(z)*(1-mean(z))*n/(n-1)

a <- 12; b <- 13; c <- 7; n <- a + b + c
A <- -.123; B <- -.707; C <- 0.523
xx <- c(rep(A, a), rep(B, b), rep(C, c))
GiniMd(xx)
2*(a*b*abs(A-B) + a*c*abs(A-C) + b*c*abs(B-C))/n/(n-1)

hashCheck hashCheck

Description

Check for Changes in List of Objects

Usage

hashCheck(..., file, .print. = TRUE, .names. = NULL)

hdquantile 163

Arguments

... a list of objects including data frames, vectors, functions, and all other types of
R objects that represent dependencies of a certain calculation

file name of file in which results are stored

.print. set to FALSE to suppress printing information messages about what has changed

.names. vector of names of original arguments if not calling hashCheck directly

Details

Given an RDS file name and a list of objects, does the following:

• makes a vector of hashes, one for each object. Function objects are run through deparse so
that the environment of the function will not be considered.

• see if the file exists; if not, return a list with result=NULL, hash = new vector of hashes,
changed='All'

• if the file exists, read the file and its hash attribute as prevhash

• if prevhash is not identical to hash: if .print.=TRUE (default), print to console a summary
of what’s changed return a list with result=NULL, hash = new hash vector, changed

• if prevhash = hash, return a list with result=file object, hash=new hash, changed=”

Set options(debughash=TRUE) to trace results in /tmp/debughash.txt

Value

a list with elements result (the computations), hash (the new hash), and changed which details
what changed to make computations need to be run

Author(s)

Frank Harrell

hdquantile Harrell-Davis Distribution-Free Quantile Estimator

Description

Computes the Harrell-Davis (1982) quantile estimator and jacknife standard errors of quantiles.
The quantile estimator is a weighted linear combination or order statistics in which the order statis-
tics used in traditional nonparametric quantile estimators are given the greatest weight. In small
samples the H-D estimator is more efficient than traditional ones, and the two methods are asymp-
totically equivalent. The H-D estimator is the limit of a bootstrap average as the number of bootstrap
resamples becomes infinitely large.

Usage

hdquantile(x, probs = seq(0, 1, 0.25),
se = FALSE, na.rm = FALSE, names = TRUE, weights=FALSE)

164 hdquantile

Arguments

x a numeric vector

probs vector of quantiles to compute

se set to TRUE to also compute standard errors

na.rm set to TRUE to remove NAs from x before computing quantiles

names set to FALSE to prevent names attributions from being added to quantiles and
standard errors

weights set to TRUE to return a "weights" attribution with the matrix of weights used in
the H-D estimator corresponding to order statistics, with columns corresponding
to quantiles.

Details

A Fortran routine is used to compute the jackknife leave-out-one quantile estimates. Standard errors
are not computed for quantiles 0 or 1 (NAs are returned).

Value

A vector of quantiles. If se=TRUE this vector will have an attribute se added to it, containing the
standard errors. If weights=TRUE, also has a "weights" attribute which is a matrix.

Author(s)

Frank Harrell

References

Harrell FE, Davis CE (1982): A new distribution-free quantile estimator. Biometrika 69:635-640.

Hutson AD, Ernst MD (2000): The exact bootstrap mean and variance of an L-estimator. J Roy
Statist Soc B 62:89-94.

See Also

quantile

Examples

set.seed(1)
x <- runif(100)
hdquantile(x, (1:3)/4, se=TRUE)

Not run:
Compare jackknife standard errors with those from the bootstrap
library(boot)
boot(x, function(x,i) hdquantile(x[i], probs=(1:3)/4), R=400)

End(Not run)

hidingTOC 165

hidingTOC Moving and Hiding Table of Contents

Description

Moving and hiding table of contents for Rmd HTML documents

Usage

hidingTOC(
buttonLabel = "Contents",
levels = 3,
tocSide = c("right", "left"),
buttonSide = c("right", "left"),
posCollapse = c("margin", "top", "bottom"),
hidden = FALSE

)

Arguments

buttonLabel the text on the button that hides and unhides the table of contents. Defaults to
Contents.

levels the max depth of the table of contents that it is desired to have control over the
display of. (defaults to 3)

tocSide which side of the page should the table of contents be placed on. Can be either
'right' or 'left'. Defaults to 'right'

buttonSide which side of the page should the button that hides the TOC be placed on. Can
be either 'right' or 'left'. Defaults to 'right'

posCollapse if 'margin' then display the depth select buttons vertically along the side of
the page choosen by buttonSide. If 'top' then display the depth select but-
tons horizontally under the button that hides the TOC. Defaults to 'margin'.
'bottom' is currently unimplemented.

hidden Logical should the table of contents be hidden at page load Defaults to FALSE

Details

hidingTOC creates a table of contents in a Rmd document that can be hidden at the press of a button.
It also generate buttons that allow the hiding or unhiding of the diffrent level depths of the table of
contents.

Value

a HTML formated text string to be inserted into an markdown document

Author(s)

Thomas Dupont

166 hist.data.frame

Examples

Not run:
hidingTOC()

End(Not run)

hist.data.frame Histograms for Variables in a Data Frame

Description

This functions tries to compute the maximum number of histograms that will fit on one page, then
it draws a matrix of histograms. If there are more qualifying variables than will fit on a page, the
function waits for a mouse click before drawing the next page.

Usage

S3 method for class 'data.frame'
hist(x, n.unique = 3, nclass = "compute",

na.big = FALSE, rugs = FALSE, freq=TRUE, mtitl = FALSE, ...)

Arguments

x a data frame

n.unique minimum number of unique values a variable must have before a histogram is
drawn

nclass number of bins. Default is max(2,trunc(min(n/10,25*log(n,10))/2)), where n is
the number of non-missing values for a variable.

na.big set to TRUE to draw the number of missing values on the top of the histogram in
addition to in a subtitle. In the subtitle, n is the number of non-missing values
and m is the number of missing values

rugs set to TRUE to add rug plots at the top of each histogram

freq see hist. Default is to show frequencies.

mtitl set to a character string to set aside extra outside top margin and to use the string
for an overall title

... arguments passed to scat1d

Value

the number of pages drawn

Author(s)

Frank E Harrell Jr

histbackback 167

See Also

hist, scat1d

Examples

d <- data.frame(a=runif(200), b=rnorm(200),
w=factor(sample(c('green','red','blue'), 200, TRUE)))

hist.data.frame(d) # in R, just say hist(d)

histbackback Back to Back Histograms

Description

Takes two vectors or a list with x and y components, and produces back to back histograms of the
two datasets.

Usage

histbackback(x, y, brks=NULL, xlab=NULL, axes=TRUE, probability=FALSE,
xlim=NULL, ylab='', ...)

Arguments

x, y either two vectors or a list given as x with two components. If the components
have names, they will be used to label the axis (modification FEH).

brks vector of the desired breakpoints for the histograms.

xlab a vector of two character strings naming the two datasets.

axes logical flag stating whether or not to label the axes.

probability logical flag: if TRUE, then the x-axis corresponds to the units for a density. If
FALSE, then the units are counts.

xlim x-axis limits. First value must be negative, as the left histogram is placed at
negative x-values. Second value must be positive, for the right histogram. To
make the limits symmetric, use e.g. ylim=c(-20,20).

ylab label for y-axis. Default is no label.

... additional graphics parameters may be given.

Value

a list is returned invisibly with the following components:

left the counts for the dataset plotted on the left.

right the counts for the dataset plotted on the right.

breaks the breakpoints used.

168 histboxp

Side Effects

a plot is produced on the current graphics device.

Author(s)

Pat Burns
Salomon Smith Barney
London
<pburns@dorado.sbi.com>

See Also

hist, histogram

Examples

options(digits=3)
set.seed(1)
histbackback(rnorm(20), rnorm(30))

fool <- list(x=rnorm(40), y=rnorm(40))
histbackback(fool)
age <- rnorm(1000,50,10)
sex <- sample(c('female','male'),1000,TRUE)
histbackback(split(age, sex))
agef <- age[sex=='female']; agem <- age[sex=='male']
histbackback(list(Female=agef,Male=agem), probability=TRUE, xlim=c(-.06,.06))

histboxp Use plotly to Draw Stratified Spike Histogram and Box Plot Statistics

Description

Uses plotly to draw horizontal spike histograms stratified by group, plus the mean (solid dot) and
vertical bars for these quantiles: 0.05 (red, short), 0.25 (blue, medium), 0.50 (black, long), 0.75
(blue, medium), and 0.95 (red, short). The robust dispersion measure Gini’s mean difference and
the SD may optionally be added. These are shown as horizontal lines starting at the minimum value
of x having a length equal to the mean difference or SD. Even when Gini’s and SD are computed,
they are not drawn unless the user clicks on their legend entry.

Spike histograms have the advantage of effectively showing the raw data for both small and huge
datasets, and unlike box plots allow multi-modality to be easily seen.

histboxpM plots multiple histograms stacked vertically, for variables in a data frame having a com-
mon group variable (if any) and combined using plotly::subplot.

dhistboxp is like histboxp but no plotly graphics are actually drawn. Instead, a data frame
suitable for use with plotlyM is returned. For dhistboxp an additional level of stratification strata
is implemented. group causes a different result here to produce back-to-back histograms (in the case
of two groups) for each level of strata.

histboxp 169

Usage

histboxp(p = plotly::plot_ly(height=height), x, group = NULL,
xlab=NULL, gmd=TRUE, sd=FALSE, bins = 100, wmax=190, mult=7,
connect=TRUE, showlegend=TRUE)

dhistboxp(x, group = NULL, strata=NULL, xlab=NULL,
gmd=FALSE, sd=FALSE, bins = 100, nmin=5, ff1=1, ff2=1)

histboxpM(p=plotly::plot_ly(height=height, width=width), x, group=NULL,
gmd=TRUE, sd=FALSE, width=NULL, nrows=NULL, ncols=NULL, ...)

Arguments

p plotly graphics object if already begun

x a numeric vector, or for histboxpM a numeric vector or a data frame of numeric
vectors, hopefully with label and units attributes

group a discrete grouping variable. If omitted, defaults to a vector of ones

strata a discrete numeric stratification variable. Values are also used to space out dif-
ferent spike histograms. Defaults to a vector of ones.

xlab x-axis label, defaults to labelled version include units of measurement if any

gmd set to FALSE to not compute Gini’s mean difference

sd set to TRUE to compute the SD

width width in pixels

nrows number of rows for layout of multiple plots

ncols number of columns for layout of multiple plots. At most one of nrows,ncols
should be specified.

bins number of equal-width bins to use for spike histogram. If the number of distinct
values of x is less than bins, the actual values of x are used.

nmin minimum number of non-missing observations for a group-stratum combination
before the spike histogram and quantiles are drawn

ff1, ff2 fudge factors for position and bar length for spike histograms

wmax, mult tweaks for margin to allocate

connect set to FALSE to suppress lines connecting quantiles

showlegend used if producing multiple plots to be combined with subplot; set to FALSE for
all but one plot

... other arguments for histboxpM that are passed to histboxp

Value

a plotly object. For dhistboxp a data frame as expected by plotlyM

Author(s)

Frank Harrell

170 hlab

See Also

histSpike, plot.describe, scat1d

Examples

Not run:
dist <- c(rep(1, 500), rep(2, 250), rep(3, 600))
Distribution <- factor(dist, 1 : 3, c('Unimodal', 'Bimodal', 'Trimodal'))
x <- c(rnorm(500, 6, 1),

rnorm(200, 3, .7), rnorm(50, 7, .4),
rnorm(200, 2, .7), rnorm(300, 5.5, .4), rnorm(100, 8, .4))

histboxp(x=x, group=Distribution, sd=TRUE)
X <- data.frame(x, x2=runif(length(x)))
histboxpM(x=X, group=Distribution, ncols=2) # separate plots

End(Not run)

hlab hlab

Description

Easy Extraction of Labels/Units Expressions for Plotting

Usage

hlab(x, name = NULL, html = FALSE, plotmath = TRUE)

Arguments

x a single variable name, unquoted

name a single character string providing an alternate way to name x that is useful when
hlab is called from another function such as hlabs

html set to TRUE to return HTML strings instead of plotmath expressions

plotmath set to FALSE to use plain text instead of plotmath

Details

Given a single unquoted variable, first looks to see if a non-NULL LabelsUnits object exists (pro-
duced by extractlabs()). When LabelsUnits does not exist or is NULL, looks up the attributes in
the current dataset, which defaults to d or may be specified by options(current_ds='name of the
data frame/table'). Finally the existence of a variable of the given name in the global environ-
ment is checked. When a variable is not found in any of these three sources or has a blank label and
units, an expression() with the variable name alone is returned. If html=TRUE, HTML strings
are constructed instead, suitable for plotly graphics.

The result is useful for xlab and ylab in base plotting functions or in ggplot2, along with being
useful for labs in ggplot2. See example.

hlabs 171

Value

an expression created by labelPlotmath with plotmath=TRUE

Author(s)

Frank Harrell

See Also

label(), units(), contents(), hlabs(), extractlabs(), plotmath

Examples

d <- data.frame(x=1:10, y=(1:10)/10)
d <- upData(d, labels=c(x='X', y='Y'), units=c(x='mmHg'), print=FALSE)
hlab(x)
hlab(x, html=TRUE)
hlab(z)
require(ggplot2)
ggplot(d, aes(x, y)) + geom_point() + labs(x=hlab(x), y=hlab(y))
Can use xlab(hlab(x)) + ylab(hlab(y)) also
Store names, labels, units for all variables in d in object
LabelsUnits <- extractlabs(d)
Remove d; labels/units still found
rm(d)
hlab(x)
Remove LabelsUnits and use a current dataset named
d2 instead of the default d
rm(LabelsUnits)
options(current_ds='d2')

hlabs hlabs

Description

Front-end to ggplot2 labs Function

Usage

hlabs(x, y, html = FALSE)

Arguments

x a single variable name, unquoted

y a single variable name, unquoted

html set to TRUE to render in html (for plotly), otherwise the result is plotmath
expressions

172 HmiscOverview

Details

Runs x, y, or both through hlab() and passes the constructed labels to the ggplot2::labs function to
specify x- and y-axis labels specially formatted for units of measurement

Value

result of ggplot2::labs()

Author(s)

Frank Harrell

Examples

Name the current dataset d, or specify a name with
options(curr_ds='...') or run `extractlabs`, then
ggplot(d, aes(x,y)) + geom_point() + hlabs(x,y)
to specify only the x-axis label use hlabs(x), or to
specify only the y-axis label use hlabs(y=...)

HmiscOverview Overview of Hmisc Library

Description

The Hmisc library contains many functions useful for data analysis, high-level graphics, utility op-
erations, functions for computing sample size and power, translating SAS datasets into R, imputing
missing values, advanced table making, variable clustering, character string manipulation, conver-
sion of R objects to LaTeX code, recoding variables, and bootstrap repeated measures analysis.
Most of these functions were written by F Harrell, but a few were collected from statlib and from
s-news; other authors are indicated below. This collection of functions includes all of Harrell’s sub-
missions to statlib other than the functions in the rms and display libraries. A few of the functions
do not have “Help” documentation.

To make Hmisc load silently, issue options(Hverbose=FALSE) before library(Hmisc).

Functions

Function Name Purpose
abs.error.pred Computes various indexes of predictive accuracy based

on absolute errors, for linear models
addMarginal Add marginal observations over selected variables
all.is.numeric Check if character strings are legal numerics
approxExtrap Linear extrapolation
aregImpute Multiple imputation based on additive regression,

bootstrapping, and predictive mean matching
areg.boot Nonparametrically estimate transformations for both

HmiscOverview 173

sides of a multiple additive regression, and
bootstrap these estimates and R2

ballocation Optimum sample allocations in 2-sample proportion test
binconf Exact confidence limits for a proportion and more accurate

(narrower!) score stat.-based Wilson interval
(Rollin Brant, mod. FEH)

bootkm Bootstrap Kaplan-Meier survival or quantile estimates
bpower Approximate power of 2-sided test for 2 proportions

Includes bpower.sim for exact power by simulation
bpplot Box-Percentile plot

(Jeffrey Banfield, <umsfjban@bill.oscs.montana.edu>)
bpplotM Chart extended box plots for multiple variables
bsamsize Sample size requirements for test of 2 proportions
bystats Statistics on a single variable by levels of >=1 factors
bystats2 2-way statistics
character.table Shows numeric equivalents of all latin characters

Useful for putting many special chars. in graph titles
(Pierre Joyet, <pierre.joyet@bluewin.ch>)

ciapower Power of Cox interaction test
cleanup.import More compactly store variables in a data frame, and clean up

problem data when e.g. Excel spreadsheet had a non-
numeric value in a numeric column

combine.levels Combine infrequent levels of a categorical variable
confbar Draws confidence bars on an existing plot using multiple

confidence levels distinguished using color or gray scale
contents Print the contents (variables, labels, etc.) of a data frame
cpower Power of Cox 2-sample test allowing for noncompliance
Cs Vector of character strings from list of unquoted names
csv.get Enhanced importing of comma separated files labels
cut2 Like cut with better endpoint label construction and allows

construction of quantile groups or groups with given n
datadensity Snapshot graph of distributions of all variables in

a data frame. For continuous variables uses scat1d.
dataRep Quantify representation of new observations in a database
ddmmmyy SAS “date7” output format for a chron object
deff Kish design effect and intra-cluster correlation
describe Function to describe different classes of objects.

Invoke by saying describe(object). It calls one of the
following:

describe.data.frame Describe all variables in a data frame (generalization
of SAS UNIVARIATE)

describe.default Describe a variable (generalization of SAS UNIVARIATE)
dotplot3 A more flexible version of dotplot
Dotplot Enhancement of Trellis dotplot allowing for matrix

x-var., auto generation of Key function, superposition
drawPlot Simple mouse-driven drawing program, including a function

for fitting Bezier curves
Ecdf Empirical cumulative distribution function plot

174 HmiscOverview

errbar Plot with error bars (Charles Geyer, U. Chi., mod FEH)
event.chart Plot general event charts (Jack Lee, <jjlee@mdanderson.org>,

Ken Hess, Joel Dubin; Am Statistician 54:63-70,2000)
event.history Event history chart with time-dependent cov. status

(Joel Dubin, <jdubin@uwaterloo.ca>)
find.matches Find matches (with tolerances) between columns of 2 matrices
first.word Find the first word in an R expression (R Heiberger)
fit.mult.impute Fit most regression models over multiple transcan imputations,

compute imputation-adjusted variances and avg. betas
format.df Format a matrix or data frame with much user control

(R Heiberger and FE Harrell)
ftupwr Power of 2-sample binomial test using Fleiss, Tytun, Ury
ftuss Sample size for 2-sample binomial test using " " " "

(Both by Dan Heitjan, <dheitjan@biostats.hmc.psu.edu>)
gbayes Bayesian posterior and predictive distributions when both

the prior and the likelihood are Gaussian
getHdata Fetch and list datasets on our web site
hdquantile Harrell-Davis nonparametric quantile estimator with s.e.
histbackback Back-to-back histograms (Pat Burns, Salomon Smith

Barney, London, <pburns@dorado.sbi.com>)
hist.data.frame Matrix of histograms for all numeric vars. in data frame

Use hist.data.frame(data.frame.name)
histSpike Add high-resolution spike histograms or density estimates

to an existing plot
hoeffd Hoeffding’s D test (omnibus test of independence of X and Y)
impute Impute missing data (generic method)
interaction More flexible version of builtin function
is.present Tests for non-blank character values or non-NA numeric values
james.stein James-Stein shrinkage estimates of cell means from raw data
labcurve Optimally label a set of curves that have been drawn on

an existing plot, on the basis of gaps between curves.
Also position legends automatically at emptiest rectangle.

label Set or fetch a label for an R-object
Lag Lag a vector, padding on the left with NA or ”
latex Convert an R object to LaTeX (R Heiberger & FE Harrell)
list.tree Pretty-print the structure of any data object

(Alan Zaslavsky, <zaslavsk@hcp.med.harvard.edu>)
Load Enhancement of load
mask 8-bit logical representation of a short integer value

(Rick Becker)
matchCases Match each case on one continuous variable
matxv Fast matrix * vector, handling intercept(s) and NAs
mgp.axis Version of axis() that uses appropriate mgp from

mgp.axis.labels and gets around bug in axis(2, ...)
that causes it to assume las=1

mgp.axis.labels Used by survplot and plot in rms library (and other
functions in the future) so that different spacing
between tick marks and axis tick mark labels may be

HmiscOverview 175

specified for x- and y-axes.
Use mgp.axis.labels(’default’) to set defaults.
Users can set values manually using
mgp.axis.labels(x,y) where x and y are 2nd value of
par(’mgp’) to use. Use mgp.axis.labels(type=w) to
retrieve values, where w=’x’, ’y’, ’x and y’, ’xy’,
to get 3 mgp values (first 3 types) or 2 mgp.axis.labels.

minor.tick Add minor tick marks to an existing plot
mtitle Add outer titles and subtitles to a multiple plot layout
multLines Draw multiple vertical lines at each x

in a line plot
%nin% Opposite of %in%
nobsY Compute no. non-NA observations for left hand formula side
nomiss Return a matrix after excluding any row with an NA
panel.bpplot Panel function for trellis bwplot - box-percentile plots
panel.plsmo Panel function for trellis xyplot - uses plsmo
pBlock Block variables for certain lattice charts
pc1 Compute first prin. component and get coefficients on

original scale of variables
plotCorrPrecision Plot precision of estimate of correlation coefficient
plsmo Plot smoothed x vs. y with labeling and exclusion of NAs

Also allows a grouping variable and plots unsmoothed data
popower Power and sample size calculations for ordinal responses

(two treatments, proportional odds model)
prn prn(expression) does print(expression) but titles the

output with ’expression’. Do prn(expression,txt) to add
a heading (‘txt’) before the ‘expression’ title

pstamp Stamp a plot with date in lower right corner (pstamp())
Add ,pwd=T and/or ,time=T to add current directory
name or time
Put additional text for label as first argument, e.g.
pstamp(’Figure 1’) will draw ’Figure 1 date’

putKey Different way to use key()
putKeyEmpty Put key at most empty part of existing plot
rcorr Pearson or Spearman correlation matrix with pairwise deletion

of missing data
rcorr.cens Somers’ Dxy rank correlation with censored data
rcorrp.cens Assess difference in concordance for paired predictors
rcspline.eval Evaluate restricted cubic spline design matrix
rcspline.plot Plot spline fit with nonparametric smooth and grouped estimates
rcspline.restate Restate restricted cubic spline in unrestricted form, and

create TeX expression to print the fitted function
reShape Reshape a matrix into 3 vectors, reshape serial data
rm.boot Bootstrap spline fit to repeated measurements model,

with simultaneous confidence region - least
squares using spline function in time

rMultinom Generate multinomial random variables with varying prob.
samplesize.bin Sample size for 2-sample binomial problem

176 HmiscOverview

(Rick Chappell, <chappell@stat.wisc.edu>)
sas.get Convert SAS dataset to S data frame
sasxport.get Enhanced importing of SAS transport dataset in R
Save Enhancement of save
scat1d Add 1-dimensional scatterplot to an axis of an existing plot

(like bar-codes, FEH/Martin Maechler,
<maechler@stat.math.ethz.ch>/Jens Oehlschlaegel-Akiyoshi,
<oehl@psyres-stuttgart.de>)

score.binary Construct a score from a series of binary variables or
expressions

sedit A set of character handling functions written entirely
in R. sedit() does much of what the UNIX sed
program does. Other functions included are
substring.location, substring<-, replace.string.wild,
and functions to check if a string is numeric or
contains only the digits 0-9

setTrellis Set Trellis graphics to use blank conditioning panel strips,
line thickness 1 for dot plot reference lines:
setTrellis(); 3 optional arguments

show.col Show colors corresponding to col=0,1,...,99
show.pch Show all plotting characters specified by pch=.

Just type show.pch() to draw the table on the
current device.

showPsfrag Use LaTeX to compile, and dvips and ghostview to
display a postscript graphic containing psfrag strings

solvet Version of solve with argument tol passed to qr
somers2 Somers’ rank correlation and c-index for binary y
spearman Spearman rank correlation coefficient spearman(x,y)
spearman.test Spearman 1 d.f. and 2 d.f. rank correlation test
spearman2 Spearman multiple d.f. ρ2, adjusted ρ2, Wilcoxon-Kruskal-

Wallis test, for multiple predictors
spower Simulate power of 2-sample test for survival under

complex conditions
Also contains the Gompertz2,Weibull2,Lognorm2 functions.

spss.get Enhanced importing of SPSS files using read.spss function
src src(name) = source("name.s") with memory
store store an object permanently (easy interface to assign function)
strmatch Shortest unique identifier match

(Terry Therneau, <therneau@mayo.edu>)
subset More easily subset a data frame
substi Substitute one var for another when observations NA
summarize Generate a data frame containing stratified summary

statistics. Useful for passing to trellis.
summary.formula General table making and plotting functions for summarizing

data
summaryD Summarizing using user-provided formula and dotchart3
summaryM Replacement for summary.formula(..., method=’reverse’)
summaryP Multi-panel dot chart for summarizing proportions

HmiscOverview 177

summaryS Summarize multiple response variables for multi-panel
dot chart or scatterplot

summaryRc Summary for continuous variables using lowess
symbol.freq X-Y Frequency plot with circles’ area prop. to frequency
sys Execute unix() or dos() depending on what’s running
tabulr Front-end to tabular function in the tables package
tex Enclose a string with the correct syntax for using

with the LaTeX psfrag package, for postscript graphics
transace ace() packaged for easily automatically transforming all

variables in a matrix
transcan automatic transformation and imputation of NAs for a

series of predictor variables
trap.rule Area under curve defined by arbitrary x and y vectors,

using trapezoidal rule
trellis.strip.blank To make the strip titles in trellis more visible, you can

make the backgrounds blank by saying trellis.strip.blank().
Use before opening the graphics device.

t.test.cluster 2-sample t-test for cluster-randomized observations
uncbind Form individual variables from a matrix
upData Update a data frame (change names, labels, remove vars, etc.)
units Set or fetch "units" attribute - units of measurement for var.
varclus Graph hierarchical clustering of variables using squared

Pearson or Spearman correlations or Hoeffding D as similarities
Also includes the naclus function for examining similarities in
patterns of missing values across variables.

wtd.mean
wtd.var
wtd.quantile
wtd.Ecdf
wtd.table
wtd.rank
wtd.loess.noiter
num.denom.setup Set of function for obtaining weighted estimates
xy.group Compute mean x vs. function of y by groups of x
xYplot Like trellis xyplot but supports error bars and multiple

response variables that are connected as separate lines
ynbind Combine a series of yes/no true/false present/absent variables into a matrix
zoom Zoom in on any graphical display

(Bill Dunlap, <bill@statsci.com>)

Copyright Notice

GENERAL DISCLAIMER
This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at your
option) any later version.

178 hoeffd

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

In short: You may use it any way you like, as long as you don’t charge money for it, remove this
notice, or hold anyone liable for its results. Also, please acknowledge the source and communicate
changes to the author.

If this software is used is work presented for publication, kindly reference it using for example:
Harrell FE (2014): Hmisc: A package of miscellaneous R functions. Programs available from
https://hbiostat.org/R/Hmisc/.
Be sure to reference R itself and other libraries used.

Author(s)

Frank E Harrell Jr
Professor of Biostatistics
Vanderbilt University School of Medicine
Nashville, Tennessee
<fh@fharrell.com>

References

See Alzola CF, Harrell FE (2004): An Introduction to S and the Hmisc and Design Libraries at
https://hbiostat.org/R/doc/sintro.pdf for extensive documentation and examples for the
Hmisc package.

hoeffd Matrix of Hoeffding’s D Statistics

Description

Computes a matrix of Hoeffding’s (1948) D statistics for all possible pairs of columns of a matrix. D
is a measure of the distance between F(x,y) and G(x)H(y), where F(x,y) is the joint CDF of X and
Y, and G and H are marginal CDFs. Missing values are deleted in pairs rather than deleting all rows
of x having any missing variables. The D statistic is robust against a wide variety of alternatives to
independence, such as non-monotonic relationships. The larger the value of D, the more dependent
are X and Y (for many types of dependencies). D used here is 30 times Hoeffding’s original D, and
ranges from -0.5 to 1.0 if there are no ties in the data. print.hoeffd prints the information derived
by hoeffd. The higher the value of D, the more dependent are x and y. hoeffd also computes
the mean and maximum absolute values of the difference between the joint empirical CDF and the
product of the marginal empirical CDFs.

https://hbiostat.org/R/Hmisc/
https://hbiostat.org/R/doc/sintro.pdf

hoeffd 179

Usage

hoeffd(x, y)
S3 method for class 'hoeffd'
print(x, ...)

Arguments

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent), or
an object created by hoeffd

y a numeric vector or matrix which will be concatenated to x

... ignored

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by
linear interpolation on the table in Hollander and Wolfe, which uses the asymptotically equivalent
Blum-Kiefer-Rosenblatt statistic. For P<.0001 or >0.5, P values are computed using a well-fitting
linear regression function in log P vs. the test statistic. Ranks (but not bivariate ranks) are computed
using efficient algorithms (see reference 3).

Value

a list with elements D, the matrix of D statistics, n the matrix of number of observations used in
analyzing each pair of variables, and P, the asymptotic P-values. Pairs with fewer than 5 non-
missing values have the D statistic set to NA. The diagonals of n are the number of non-NAs for the
single variable corresponding to that row and column.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Hoeffding W. (1948): A non-parametric test of independence. Ann Math Stat 19:546–57.

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods, pp. 228–235, 423. New
York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

See Also

rcorr, varclus

180 html

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
q <- c(1, 2, 3, 4, 5)
hoeffd(cbind(x,y,z,q))

Hoeffding's test can detect even one-to-many dependency
set.seed(1)
x <- seq(-10,10,length=200)
y <- x*sign(runif(200,-1,1))
plot(x,y)
hoeffd(x,y)

html Convert an S object to HTML

Description

html is a generic function, for which only two methods are currently implemented, html.latex
and a rudimentary html.data.frame. The former uses the HeVeA LaTeX to HTML translator by
Maranget to create an HTML file from a LaTeX file like the one produced by latex. html.default
just runs html.data.frame. htmlVerbatim prints all of its arguments to the console in an html
verbatim environment, using a specified percent of the prevailing character size. This is useful for
R Markdown with knitr.

Most of the html-producing functions in the Hmisc and rms packages return a character vector
passed through htmltools::HTML so that kintr will correctly format the result without the need
for the user putting results='asis' in the chunk header.

Usage

html(object, ...)
S3 method for class 'latex'
html(object, file, where=c('cwd', 'tmp'),
method=c('hevea', 'htlatex'),
rmarkdown=FALSE, cleanup=TRUE, ...)

S3 method for class 'data.frame'
html(object,
file=paste(first.word(deparse(substitute(object))),'html',sep='.'), header,

caption=NULL, rownames=FALSE, align='r', align.header='c',
bold.header=TRUE, col.header='Black',
border=2, width=NULL, size=100, translate=FALSE,
append=FALSE, link=NULL, linkCol=1,
linkType=c('href','name'), disableq=FALSE, ...)

Default S3 method:
html(object,

html 181

file=paste(first.word(deparse(substitute(object))),'html',sep='.'),
append=FALSE, link=NULL, linkCol=1, linkType=c('href','name'), ...)

htmlVerbatim(..., size=75, width=85, scroll=FALSE, rows=10, cols=100,
propts=NULL, omit1b=FALSE)

Arguments

object a data frame or an object created by latex. For the generic html is any object
for which an html method exists.

file name of the file to create. The default file name is object.html where object is
the first word in the name of the argument for object. For html.latex specify
file='' or file=character(0) to print html code to the console, as when
using knitr. For the data.frame method, file may be set to FALSE which
causes a character vector enclosed in htmltools::HTML to be returned instead
of writing to the console.

where for html. Default is to put output files in current working directory. Specify
where='tmp' to put in a system temporary directory area.

method default is to use system command hevea to convert from LaTeX to html. Spec-
ifymethod='htlatex' to use system command htlatex, assuming the system
package TeX4ht is installed.

rmarkdown set to TRUE if using RMarkdown (usually under knitr and RStudio). This causes
html to be packaged for RMarkdown and output to go into the console stream.
file is ignored when rmarkdown=TRUE.

cleanup if using method='htlatex' set to FALSE if where='cwd' to prevent deletion
of auxiliary files created by htlatex that are not needed when using the final
html document (only the .css file is needed in addition to .html). If using
method='hevea', cleanup=TRUE causes deletion of the generated .haux file.

header vector of column names. Defaults to names in object. Set to NULL to suppress
column names.

caption a character string to be used as a caption before the table

rownames set to FALSE to ignore row names even if they are present

align alignment for table columns (all are assumed to have the same if is a scalar).
Specify "c", "r", "l" for center, right, or left alignment.

align.header same coding as for align but pertains to header

bold.header set to FALSE to not bold face column headers

col.header color for column headers

border set to 0 to not include table cell borders, 1 to include only outer borders, or 2
(the default) to put borders around cells too

translate set to TRUE to run header and table cell text through the htmlTranslate function

width optional table width for html.data.frame. For full page width use width="100%",
for use in options() for printing objects.

size a number between 0 and 100 representing the percent of the prevailing character
size to be used by htmlVerbatim and the data frame method.

append set to TRUE to append to an existing file

182 html

link character vector specifying hyperlink names to attach to selected elements of
the matrix or data frame. No hyperlinks are used if link is omitted or for ele-
ments of link that are "". To allow multiple links per link, link may also be a
character matrix shaped as object in which case linkCol is ignored.

linkCol column number of object to which hyperlinks are attached. Defaults to first
column.

linkType defaults to "href"

disableq set to TRUE to add code to the html table tag that makes Quarto not use its usual
table style

... ignored except for htmlVerbatim - is a list of objects to print()

scroll set to TRUE to put the html in a scrollable textarea

rows, cols the number of rows and columns to devote to the visable part of the scrollable
box

propts options, besides quote=FALSE to pass to the print method, for htmlVerbatim

omit1b for htmlVerbatim if TRUE causes an initial and a final line of output that is all
blank to be deleted

Author(s)

Frank E. Harrell, Jr.
Department of Biostatistics,
Vanderbilt University,
<fh@fharrell.com>

References

Maranget, Luc. HeVeA: a LaTeX to HTML translater. URL: http://para.inria.fr/~maranget/hevea/

See Also

latex

Examples

Not run:
x <- matrix(1:6, nrow=2, dimnames=list(c('a','b'),c('c','d','e')))
w <- latex(x)
h <- html(w) # run HeVeA to convert .tex to .html
h <- html(x) # convert x directly to html
w <- html(x, link=c('','B')) # hyperlink first row first col to B

Assuming system package tex4ht is installed, easily convert advanced
LaTeX tables to html
getHdata(pbc)
s <- summaryM(bili + albumin + stage + protime + sex + age + spiders ~ drug,

data=pbc, test=TRUE)
w <- latex(s, npct='slash', file='s.tex')
z <- html(w)

htmltabv 183

browseURL(z$file)

d <- describe(pbc)
w <- latex(d, file='d.tex')
z <- html(w)
browseURL(z$file)

End(Not run)

htmltabv htmltabc

Description

Simple HTML Table of Verbatim Output

Usage

htmltabv(..., cols = 2, propts = list(quote = FALSE))

Arguments

... objects to print(). The arguments must be named with the labels you want to
print before the verbatim print().

cols number of columns in the html table

propts an option list of arguments to pass to the print() methods; default is to not
quote character strings

Details

Uses capture.output to capture as character strings the results of running print() on each ele-
ment of If an element of ... has length of 1 and is a blank string, nothing is printed for that
cell other than its name (not in verbatim).

Value

character string of html

Author(s)

Frank Harrell

184 impute

impute Generic Functions and Methods for Imputation

Description

These functions do simple and transcan imputation and print, summarize, and subscript variables
that have NAs filled-in with imputed values. The simple imputation method involves filling in NAs
with constants, with a specified single-valued function of the non-NAs, or from a sample (with
replacement) from the non-NA values (this is useful in multiple imputation). More complex impu-
tations can be done with the transcan function, which also works with the generic methods shown
here, i.e., impute can take a transcan object and use the imputed values created by transcan (with
imputed=TRUE) to fill-in NAs. The print method places * after variable values that were imputed.
The summary method summarizes all imputed values and then uses the next summary method avail-
able for the variable. The subscript method preserves attributes of the variable and subsets the list
of imputed values corresponding with how the variable was subsetted. The is.imputed function is
for checking if observations are imputed.

Usage

impute(x, ...)

Default S3 method:
impute(x, fun=median, ...)

S3 method for class 'impute'
print(x, ...)

S3 method for class 'impute'
summary(object, ...)

is.imputed(x)

Arguments

x a vector or an object created by transcan, or a vector needing basic uncondi-
tional imputation. If there are no NAs and x is a vector, it is returned unchanged.

fun the name of a function to use in computing the (single) imputed value from the
non-NAs. The default is median. If instead of specifying a function as fun, a
single value or vector (numeric, or character if object is a factor) is specified,
those values are used for insertion. fun can also be the character string "random"
to draw random values for imputation, with the random values not forced to be
the same if there are multiple NAs. For a vector of constants, the vector must
be of length one (indicating the same value replaces all NAs) or must be as long
as the number of NAs, in which case the values correspond to consecutive NAs
to replace. For a factor object, constants for imputation may include character
values not in the current levels of object. In that case new levels are added. If

intMarkovOrd 185

object is of class "factor", fun is ignored and the most frequent category is
used for imputation.

object an object of class "impute"

... ignored

Value

a vector with class "impute" placed in front of existing classes. For is.imputed, a vector of logical
values is returned (all TRUE if object is not of class impute).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

transcan, impute.transcan, describe, na.include, sample

Examples

age <- c(1,2,NA,4)
age.i <- impute(age)
Could have used impute(age,2.5), impute(age,mean), impute(age,"random")
age.i
summary(age.i)
is.imputed(age.i)

intMarkovOrd intMarkovOrd

Description

Compute Parameters for Proportional Odds Markov Model

Usage

intMarkovOrd(
y,
times,
initial,
absorb = NULL,
intercepts,
extra = NULL,
g,
target,

186 intMarkovOrd

t,
ftarget = NULL,
onlycrit = FALSE,
constraints = NULL,
printsop = FALSE,
...

)

Arguments

y vector of possible y values in order (numeric, character, factor)

times vector of measurement times

initial initial value of y (baseline state; numeric, character, or factor matching y). If
length 1 this value is used for all subjects, otherwise it is a vector of length n.

absorb vector of absorbing states, a subset of y (numeric, character, or factor matching
y). The default is no absorbing states. Observations are truncated when an
absorbing state is simulated.

intercepts vector of initial guesses for the intercepts

extra an optional vector of intial guesses for other parameters passed to g such as
regression coefficients for previous states and for general time trends. Name the
elements of extra for more informative output.

g a user-specified function of three or more arguments which in order are yprev
- the value of y at the previous time, the current time t, the gap between the
previous time and the current time, an optional (usually named) covariate vec-
tor X, and optional arguments such as a regression coefficient value to simulate
from. The function needs to allow yprev to be a vector and yprev must not
include any absorbing states. The g function returns the linear predictor for the
proportional odds model aside from intercepts. The returned value must be a
matrix with row names taken from yprev. If the model is a proportional odds
model, the returned value must be one column. If it is a partial proportional
odds model, the value must have one column for each distinct value of the re-
sponse variable Y after the first one, with the levels of Y used as optional column
names. So columns correspond to intercepts. The different columns are used
for y-specific contributions to the linear predictor (aside from intercepts) for
a partial or constrained partial proportional odds model. Parameters for partial
proportional odds effects may be included in the ... arguments.

target vector of target state occupancy probabilities at time t. If extra is specified,
target must be a matrix where row names are character versions of t and
columns represent occupancy probabilities corresponding to values of y at the
time given in the row.

t target times. Can have more than one element only if extra is given.

ftarget an optional function defining constraints that relate to transition probabilities.
The function returns a penalty which is a sum of absolute differences in prob-
abilities from target probabilities over possibly multiple targets. The ftarget
function must have two arguments: intercepts and extra.

onlycrit set to TRUE to only return the achieved objective criterion and not print anything

knitrSet 187

constraints a function of two arguments: the vector of current intercept values and the vec-
tor of extra parameters, returning TRUE if that vector meets the constrains and
FALSE otherwise

printsop set to TRUE to print solved-for state occupancy probabilities for groups 1 and 2
and log odds ratios corresponding to them

... optional arguments to pass to stats::nlm(). If this is specified, the arguments
that intMarkovOrd normally sends to nlm are not used.

Details

Given a vector intercepts of initial guesses at the intercepts in a Markov proportional odds model,
and a vector extra if there are other parameters, solves for the intercepts and extra vectors that
yields a set of occupancy probabilities at time t that equal, as closely as possible, a vector of target
values.

Value

list containing two vectors named intercepts and extra unless oncrit=TRUE in which case the
best achieved sum of absolute errors is returned

Author(s)

Frank Harrell

See Also

https://hbiostat.org/R/Hmisc/markov/

knitrSet knitr Setup and plotly Service Function

Description

knitrSet sets up knitr to use better default parameters for base graphics, better code formatting,
and to allow several arguments to be passed from code chunk headers, such as bty, mfrow, ps, bot
(extra bottom margin for base graphics), top (extra top margin), left (extra left margin), rt (extra
right margin), lwd, mgp, las, tcl, axes, xpd, h (usually fig.height in knitr), w (usually fig.width
in knitr), wo (out.width in knitr), ho (out.height in knitr), cap (character string containing figure
caption), scap (character string containing short figure caption for table of figures). The capfile
argument facilities auto-generating a table of figures for certain Rmarkdown report themes. This is
done by the addition of a hook function that appends data to the capfile file each time a chunk
runs that has a long or short caption in the chunk header.

plotlySave saves a plotly graphic with name foo.png where foo is the name of the current chunk.
You must have a free plotly account from plot.ly to use this function, and you must have run
Sys.setenv(plotly_username="your_plotly_username") and Sys.setenv(plotly_api_key="your_api_key").
The API key can be found in one’s profile settings.

https://hbiostat.org/R/Hmisc/markov/

188 knitrSet

Usage

knitrSet(basename=NULL, w=if(! bd) 4, h=if(! bd) 3, wo=NULL, ho=NULL,
fig.path=if(length(basename)) basename else '',
fig.align=if(! bd) 'center', fig.show='hold',
fig.pos=if(! bd) 'htbp',
fig.lp = if(! bd) paste('fig', basename, sep=':'),
dev=switch(lang, latex='pdf', markdown='png',

blogdown=NULL, quarto=NULL),
tidy=FALSE, error=FALSE,
messages=c('messages.txt', 'console'),
width=61, decinline=5, size=NULL, cache=FALSE,
echo=TRUE, results='markup', capfile=NULL,
lang=c('latex','markdown','blogdown','quarto'))

plotlySave(x, ...)

Arguments

basename base name to be added in front of graphics file names. basename is followed by
a minus sign.

w, h default figure width and height in inches

wo, ho default figure rendering width and height, in integer pixels or percent as a char-
acter string, e.g. '40%'

fig.path path for figures. To put figures in a subdirectory specify e.g. fig.path='folder/'.
Ignored for blogdown.

fig.align, fig.show, fig.pos, fig.lp, tidy, cache, echo, results, error,
size

see knitr documentation

dev graphics device, with default figured from lang

messages By default warning and other messages such as those from loading packages are
sent to file 'messages.txt' in the current working directory. You can specify
messages='console' to send them directly to the console.

width text output width for R code and output

decinline number of digits to the right of the decimal point to round numeric values ap-
pearing inside Sexpr

capfile the name of a file in the current working directory that is used to accumulate
chunk labels, figure cross-reference tags, and figure short captions (long cap-
tions if no short caption is defined) for the purpose of using markupSpecs$markdown$tof()
to insert a table of figures in a report. The file as appended to, which is useful
if cache=TRUE is used since this will keep some chunks from running. The
tof function will remove earlier duplicated figure tags if this is the case. If not
cacheing, the user should initialize the file to empty at the top of the script.

lang Default is 'latex' to use LaTeX. Set to 'markdown' when using R Markdown
or 'blogdown' or 'quarto'. For 'blogdown' and 'quarto', par and knitr
graphics-related hooks are not called as this would prevent writing graphics files
in the correct directory for the blog system.

labcurve 189

x a plotly graphics object or a named list of such objects. The resulting png file
will go in the file path given by the knitr fig.path value, and have a base name
equal to the current knitr chunk name. If x is a list, a minus sign followed by
the chunk name are inserted before .png.

... additional arguments passed to plotly::plotly_IMAGE

Author(s)

Frank Harrell

See Also

knit

Examples

Not run:
Typical call (without # comment symbols):
<<echo=FALSE>>=
require(Hmisc)
knitrSet()
@

knitrSet() # use all defaults and don't use a graphics file prefix
knitrSet('modeling') # use modeling- prefix for a major section or chapter
knitrSet(cache=TRUE, echo=FALSE) # global default to cache and not print code
knitrSet(w=5,h=3.75) # override default figure width, height

```{r chunkname}
p <- plotly::plot_ly(...)
plotlySave(p) # creates fig.path/chunkname.png

End(Not run)

labcurve Label Curves, Make Keys, and Interactively Draw Points and Curves

Description

labcurve optionally draws a set of curves then labels the curves. A variety of methods for drawing
labels are implemented, ranging from positioning using the mouse to automatic labeling to auto-
matic placement of key symbols with manual placement of key legends to automatic placement of
legends. For automatic positioning of labels or keys, a curve is labeled at a point that is maximally
separated from all of the other curves. Gaps occurring when curves do not start or end at the same
x-coordinates are given preference for positioning labels. If labels are offset from the curves (the
default behaviour), if the closest curve to curve i is above curve i, curve i is labeled below its line.
If the closest curve is below curve i, curve i is labeled above its line. These directions are reversed
if the resulting labels would appear outside the plot region.

190 labcurve

Both ordinary lines and step functions are handled, and there is an option to draw the labels at the
same angle as the curve within a local window.

Unless the mouse is used to position labels or plotting symbols are placed along the curves to
distinguish them, curves are examined at 100 (by default) equally spaced points over the range of
x-coordinates in the current plot area. Linear interpolation is used to get y-coordinates to line up
(step function or constant interpolation is used for step functions). There is an option to instead
examine all curves at the set of unique x-coordinates found by unioning the x-coordinates of all the
curves. This option is especially useful when plotting step functions. By setting adj="auto" you
can have labcurve try to optimally left- or right-justify labels depending on the slope of the curves
at the points at which labels would be centered (plus a vertical offset). This is especially useful
when labels must be placed on steep curve sections.

You can use the on top method to write (short) curve names directly on the curves (centered on the
y-coordinate). This is especially useful when there are many curves whose full labels would run
into each other. You can plot letters or numbers on the curves, for example (using the keys option),
and have labcurve use the key function to provide long labels for these short ones (see the end of
the example). There is another option for connecting labels to curves using arrows. When keys is
a vector of integers, it is taken to represent plotting symbols (pchs), and these symbols are plotted
at equally-spaced x-coordinates on each curve (by default, using 5 points per curve). The points are
offset in the x-direction between curves so as to minimize the chance of collisions.

To add a legend defining line types, colors, or line widths with no symbols, specify keys="lines",
e.g., labcurve(curves,keys="lines", lty=1:2).

putKey provides a different way to use key() by allowing the user to specify vectors for labels, line
types, plotting characters, etc. Elements that do not apply (e.g., pch for lines (type="l")) may be
NA. When a series of points is represented by both a symbol and a line, the corresponding elements
of both pch and lty, col., or lwd will be non-missing.

putKeyEmpty, given vectors of all the x-y coordinates that have been plotted, uses largest.empty
to find the largest empty rectangle large enough to hold the key, and draws the key using putKey.

drawPlot is a simple mouse-driven function for drawing series of lines, step functions, polyno-
mials, Bezier curves, and points, and automatically labeling the point groups using labcurve or
putKeyEmpty. When drawPlot is invoked it creates temporary functions Points, Curve, and
Abline. The user calls these functions inside the call to drawPlot to define groups of points in
the order they are defined with the mouse. Abline is used to call abline and not actually great a
group of points. For some curve types, the curve generated to represent the corresponding series
of points is drawn after all points are entered for that series, and this curve may be different than
the simple curve obtained by connecting points at the mouse clicks. For example, to draw a general
smooth Bezier curve the user need only click on a few points, and she must overshoot the final
curve coordinates to define the curve. The originally entered points are not erased once the curve
is drawn. The same goes for step functions and polynomials. If you plot() the object returned by
drawPlot, however, only final curves will be shown. The last examples show how to use drawPlot.

The largest.empty function finds the largest rectangle that is large enough to hold a rectangle of
a given height and width, such that the rectangle does not contain any of a given set of points. This
is used by labcurve and putKeyEmpty to position keys at the most empty part of an existing plot.
The default method was created by Hans Borchers.

Usage

labcurve(curves, labels=names(curves),

labcurve 191

method=NULL, keys=NULL, keyloc=c("auto","none"),
type="l", step.type=c("left", "right"),
xmethod=if(any(type=="s")) "unique" else "grid",
offset=NULL, xlim=NULL,
tilt=FALSE, window=NULL, npts=100, cex=NULL,
adj="auto", angle.adj.auto=30,
lty=pr$lty, lwd=pr$lwd, col.=pr$col, transparent=TRUE,
arrow.factor=1, point.inc=NULL, opts=NULL, key.opts=NULL,
empty.method=c('area','maxdim'), numbins=25,
pl=!missing(add), add=FALSE,
ylim=NULL, xlab="", ylab="",
whichLabel=1:length(curves),
grid=FALSE, xrestrict=NULL, ...)

putKey(z, labels, type, pch, lty, lwd,
cex=par('cex'), col=rep(par('col'),nc),
transparent=TRUE, plot=TRUE, key.opts=NULL, grid=FALSE)

putKeyEmpty(x, y, labels, type=NULL,
pch=NULL, lty=NULL, lwd=NULL,
cex=par('cex'), col=rep(par('col'),nc),
transparent=TRUE, plot=TRUE, key.opts=NULL,
empty.method=c('area','maxdim'),
numbins=25,
xlim=pr$usr[1:2], ylim=pr$usr[3:4], grid=FALSE)

drawPlot(..., xlim=c(0,1), ylim=c(0,1), xlab='', ylab='',
ticks=c('none','x','y','xy'),
key=FALSE, opts=NULL)

Points(label=' ', type=c('p','r'),
n, pch=pch.to.use[1], cex=par('cex'), col=par('col'),
rug = c('none','x','y','xy'), ymean)

Curve(label=' ',
type=c('bezier','polygon','linear','pol','loess','step','gauss'),
n=NULL, lty=1, lwd=par('lwd'), col=par('col'), degree=2,
evaluation=100, ask=FALSE)

Abline(\dots)

S3 method for class 'drawPlot'
plot(x, xlab, ylab, ticks,

key=x$key, keyloc=x$keyloc, ...)

largest.empty(x, y, width=0, height=0,
numbins=25, method=c('exhaustive','rexhaustive','area','maxdim'),
xlim=pr$usr[1:2], ylim=pr$usr[3:4],

192 labcurve

pl=FALSE, grid=FALSE)

Arguments

curves a list of lists, each of which have at least two components: a vector of x val-
ues and a vector of corresponding y values. curves is mandatory except when
method="mouse" or "locator", in which case labels is mandatory. Each list
in curves may optionally have any of the parameters type, lty, lwd, or col for
that curve, as defined below (see one of the last examples).

z a two-element list specifying the coordinate of the center of the key, e.g. locator(1)
to use the mouse for positioning

labels For labcurve, a vector of character strings used to label curves (which may
contain newline characters to stack labels vertically). The default labels are
taken from the names of the curves list. Setting labels=FALSE will suppress
drawing any labels (for labcurve only). For putKey and putKeyEmpty is a
vector of character strings specifying group labels

x see below

y for putKeyEmpty and largest.empty, x and y are same-length vectors specify-
ing points that have been plotted. x can also be an object created by drawPlot.

... For drawPlot is a series of invocations of Points and Curve (see example).
Any number of point groups can be defined in this way. For Abline these may
be any arguments to abline. For labcurve, other parameters to pass to text.

width see below

height for largest.empty, specifies the minimum allowable width in x units and the
minimum allowable height in y units

method "offset" (the default) offsets labels at largest gaps between curves, and draws
labels beside curves. "on top" draws labels on top of the curves (especially
good when using keys). "arrow" draws arrows connecting labels to the curves.
"mouse" or "locator" positions labels according to mouse clicks. If keys is
specified and is an integer vector or is "lines", method defaults to "on top". If
keys is character, method defaults to "offset". Set method="none" to suppress
all curve labeling and key drawing, which is useful when pl=TRUE and you only
need labcurve to draw the curves and the rest of the basic graph.
For largest.empty specifies the method a rectangle that does not collide with
any of the (x, y) points. The default method, 'exhaustive', uses a Fortran
translation of an R function and algorithm developed by Hans Borchers. The
same result, more slowly, may be obtained by using pure R code by spec-
ifying method='rexhaustive'. The original algorithms using binning (and
the only methods supported for S-Plus) are still available. For all methods,
screening of candidate rectangles having at least a given width in x-units of
width or having at least a given height in y-units of height is possible. Use
method="area" to use the binning method to find the rectangle having the
largest area, or method="maxdim" to use the binning method to return with last
rectangle searched that had both the largest width and largest height over all
previous rectangles.

labcurve 193

keys This causes keys (symbols or short text) to be drawn on or beside curves, and if
keyloc is not equal to "none", a legend to be automatically drawn. The legend
links keys with full curve labels and optionally with colors and line types. Set
keys to a vector of character strings, or a vector of integers specifying plotting
character (pch values - see points). For the latter case, the default behavior is
to plot the symbols periodically, at equally spaced x-coordinates.

keyloc When keys is specified, keyloc specifies how the legend is to be positioned for
drawing using the key function in trellis. The default is "auto", for which
the largest.empty function to used to find the most empty part of the plot.
If no empty rectangle large enough to hold the key is found, no key will be
drawn. Specify keyloc="none" to suppress drawing a legend, or set keyloc
to a 2-element list containing the x and y coordinates for the center of the
legend. For example, use keyloc=locator(1) to click the mouse at the cen-
ter. keyloc specifies the coordinates of the center of the key to be drawn with
plot.drawPlot when key=TRUE.

type for labcurve, a scalar or vector of character strings specifying the method that
the points in the curves were connected. "l" means ordinary connections be-
tween points and "s" means step functions. For putKey and putKeyEmpty is a
vector of plotting types, "l" for regular line, "p" for point, "b" for both point
and line, and "n" for none. For Points is either "p" (the default) for regular
points, or "r" for rugplot (one-dimensional scatter diagram to be drawn using
the scat1d function). For Curve, type is "bezier" (the default) for drawing
a smooth Bezier curves (which can represent a non-1-to-1 function such as a
circle), "polygon" for orginary line segments, "linear" for a straight line de-
fined by two endpoints, "pol" for a degree-degree polynomial to be fitted to the
mouse-clicked points, "step" for a left-step-function, "gauss" to plot a Gaus-
sian density fitted to 3 clicked points, "loess" to use the lowess function to
smooth the clicked points, or a function to draw a user-specified function, eval-
uated at evaluation points spanning the whole x-axis. For the density the user
must click in the left tail, at the highest value (at the mean), and in the right tail,
with the two tail values being approximately equidistant from the mean. The
density is scaled to fit in the highest value regardless of its area.

step.type type of step functions used (default is "left")

xmethod method for generating the unique set of x-coordinates to examine (see above).
Default is "grid" for type="l" or "unique" for type="s".

offset distance in y-units between the center of the label and the line being labeled.
Default is 0.75 times the height of an "m" that would be drawn in a label.
For R grid/lattice you must specify offset using the grid unit function, e.g.,
offset=unit(2,"native") or offset=unit(.25,"cm") ("native" means data
units)

xlim limits for searching for label positions, and is also used to set up plots when
pl=TRUE and add=FALSE. Default is total x-axis range for current plot (par("usr")[1:2]).
For largest.empty, xlim limits the search for largest rectanges, but it has the
same default as above. For pl=TRUE,add=FALSE you may want to extend xlim
somewhat to allow large keys to fit, when using keyloc="auto". For drawPlot
default is c(0,1). When using largest.empty with ggplot2, xlim and ylim
are mandatory.

194 labcurve

tilt set to TRUE to tilt labels to follow the curves, for method="offset" when keys
is not given.

window width of a window, in x-units, to use in determining the local slope for tilting
labels. Default is 0.5 times number of characters in the label times the x-width
of an "m" in the current character size and font.

npts number of points to use if xmethod="grid"

cex character size to pass to text and key. Default is current par("cex"). For
putKey, putKeyEmpty, and Points is the size of the plotting symbol.

adj Default is "auto" which has labcurve figure justification automatically when
method="offset". This will cause centering to be used when the local angle
of the curve is less than angle.adj.auto in absolute value, left justification if
the angle is larger and either the label is under a curve of positive slope or over
a curve of negative slope, and right justification otherwise. For step functions,
left justification is used when the label is above the curve and right justifcation
otherwise. Set adj=.5 to center labels at computed coordinates. Set to 0 for
left-justification, 1 for right. Set adj to a vector to vary adjustments over the
curves.

angle.adj.auto see adj. Does not apply to step functions.

lty vector of line types which were used to draw the curves. This is only used when
keys are drawn. If all of the line types, line widths, and line colors are the same,
lines are not drawn in the key.

lwd vector of line widths which were used to draw the curves. This is only used
when keys are drawn. See lty also.

col. vector of integer color numbers

col vector of integer color numbers for use in curve labels, symbols, lines, and leg-
ends. Default is par("col") for all curves. See lty also.

transparent Default is TRUE to make key draw transparent legends, i.e., to suppress drawing
a solid rectangle background for the legend. Set to FALSE otherwise.

arrow.factor factor by which to multiply default arrow lengths

point.inc When keys is a vector of integers, point.inc specifies the x-increment be-
tween the point symbols that are overlaid periodically on the curves. By default,
point.inc is equal to the range for the x-axis divided by 5.

opts an optional list which can be used to specify any of the options to labcurve,
with the usual element name abbreviations allowed. This is useful when labcurve
is being called from another function. Example: opts=list(method="arrow",
cex=.8, np=200). For drawPlot a list of labcurve options to pass as labcurve(...,
opts=).

key.opts a list of extra arguments you wish to pass to key(), e.g., key.opts=list(background=1,
between=3). The argument names must be spelled out in full.

empty.method see below

numbins These two arguments are passed to the largest.empty function’s method and
numbins arguments (see below). For largest.empty specifies the number of
bins in which to discretize both the x and y directions for searching for rectan-
gles. Default is 25.

labcurve 195

pl set to TRUE (or specify add) to cause the curves in curves to be drawn, un-
der the control of type,lty,lwd,col parameters defined either in the curves
lists or in the separate arguments given to labcurve or through opts. For
largest.empty, set pl=TRUE to show the rectangle the function found by draw-
ing it with a solid color. May not be used under ggplot2.

add By default, when curves are actually drawn by labcurve a new plot is started.
To add to an existing plot, set add=TRUE.

ylim When a plot has already been started, ylim defaults to par("usr")[3:4]. When
pl=TRUE, ylim and xlim are determined from the ranges of the data. Specify
ylim yourself to take control of the plot construction. In some cases it is advis-
able to make ylim larger than usual to allow for automatically-positioned keys.
For largest.empty, ylim specifies the limits on the y-axis to limit the search
for rectangle. Here ylim defaults to the same as above, i.e., the range of the
y-axis of an open plot from par. For drawPlot the default is c(0,1).

xlab see below

ylab x-axis and y-axis labels when pl=TRUE and add=FALSE or for drawPlot. De-
faults to "" unless the first curve has names for its first two elements, in which
case the names of these elements are taken as xlab and ylab.

whichLabel integer vector corresponding to curves specifying which curves are to be la-
belled or have a legend

grid set to TRUE if the R grid package was used to draw the current plot. This pre-
vents labcurve from using par("usr") etc. If using R grid you can pass coor-
dinates and lengths having arbitrary units, as documented in the unit function.
This is especially useful for offset.

xrestrict When having labcurve label curves where they are most separated, you can
restrict the search for this separation point to a range of the x-axis, specified as
a 2-vector xrestrict. This is useful when one part of the curve is very steep.
Even though steep regions may have maximum separation, the labels will collide
when curves are steep.

pch vector of plotting characters for putKey and putKeyEmpty. Can be any value
including NA when only a line is used to indentify the group. Is a single plotting
character for Points, with the default being the next unused value from among
1, 2, 3, 4, 16, 17, 5, 6, 15, 18, 19.

plot set to FALSE to keep putKey or putKeyEmpty from actually drawing the key.
Instead, the size of the key will be return by putKey, or the coordinates of the
key by putKeyEmpty.

ticks tells drawPlot which axes to draw tick marks and tick labels. Default is "none".

key for drawPlot and plot.drawPlot. Default is FALSE so that labcurve is used
to label points or curves. Set to TRUE to use putKeyEmpty.

Details

The internal functions Points, Curve, Abline have unique arguments as follows.

label: for Points and Curve is a single character string to label that group of points

n: number of points to accept from the mouse. Default is to input points until a right mouse click.

196 labcurve

rug: for Points. Default is "none" to not show the marginal x or y distributions as rug plots,
for the points entered. Other possibilities are used to execute scat1d to show the marginal
distribution of x, y, or both as rug plots.

ymean: for Points, subtracts a constant from each y-coordinate entered to make the overall mean
ymean

degree: degree of polynomial to fit to points by Curve

evaluation: number of points at which to evaluate Bezier curves, polynomials, and other func-
tions in Curve

ask: set ask=TRUE to give the user the opportunity to try again at specifying points for Bezier
curves, step functions, and polynomials

The labcurve function used some code from the function plot.multicurve written by Rod Tjoelker
of The Boeing Company (<tjoelker@espresso.rt.cs.boeing.com>).

If there is only one curve, a label is placed at the middle x-value, and no fancy features such as
angle or positive/negative offsets are used.

key is called once (with the argument plot=FALSE) to find the key dimensions. Then an empty
rectangle with at least these dimensions is searched for using largest.empty. Then key is called
again to draw the key there, using the argument corner=c(.5,.5) so that the center of the rectangle
can be specified to key.

If you want to plot the data, an easier way to use labcurve is through xYplot as shown in some of
its examples.

Value

labcurve returns an invisible list with components x, y, offset, adj, cex, col, and if tilt=TRUE,
angle. offset is the amount to add to y to draw a label. offset is negative if the label is drawn
below the line. adj is a vector containing the values 0, .5, 1.

largest.empty returns a list with elements x and y specifying the coordinates of the center of the
rectangle which was found, and element rect containing the 4 x and y coordinates of the corners
of the found empty rectangle. The area of the rectangle is also returned.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

approx, text, legend, scat1d, xYplot, abline

Examples

n <- 2:8
m <- length(n)
type <- c('l','l','l','l','s','l','l')

labcurve 197

s=step function l=ordinary line (polygon)
curves <- vector('list', m)

plot(0,1,xlim=c(0,1),ylim=c(-2.5,4),type='n')

set.seed(39)

for(i in 1:m) {
x <- sort(runif(n[i]))
y <- rnorm(n[i])
lines(x, y, lty=i, type=type[i], col=i)
curves[[i]] <- list(x=x,y=y)

}

labels <- paste('Label for',letters[1:m])
labcurve(curves, labels, tilt=TRUE, type=type, col=1:m)

Put only single letters on curves at points of
maximum space, and use key() to define the letters,
with automatic positioning of the key in the most empty
part of the plot
Have labcurve do the plotting, leaving extra space for key

names(curves) <- labels
labcurve(curves, keys=letters[1:m], type=type, col=1:m,

pl=TRUE, ylim=c(-2.5,4))

Put plotting symbols at equally-spaced points,
with a key for the symbols, ignoring line types

labcurve(curves, keys=1:m, lty=1, type=type, col=1:m,
pl=TRUE, ylim=c(-2.5,4))

Plot and label two curves, with line parameters specified with data
set.seed(191)
ages.f <- sort(rnorm(50,20,7))
ages.m <- sort(rnorm(40,19,7))
height.f <- pmin(ages.f,21)*.2+60
height.m <- pmin(ages.m,21)*.16+63

labcurve(list(Female=list(ages.f,height.f,col=2),

198 labcurve

Male =list(ages.m,height.m,col=3,lty='dashed')),
xlab='Age', ylab='Height', pl=TRUE)

add ,keys=c('f','m') to label curves with single letters
For S-Plus use lty=2

Plot power for testing two proportions vs. n for various odds ratios,
using 0.1 as the probability of the event in the control group.
A separate curve is plotted for each odds ratio, and the curves are
labeled at points of maximum separation

n <- seq(10, 1000, by=10)
OR <- seq(.2,.9,by=.1)
pow <- lapply(OR, function(or,n)list(x=n,y=bpower(p1=.1,odds.ratio=or,n=n)),

n=n)
names(pow) <- format(OR)
labcurve(pow, pl=TRUE, xlab='n', ylab='Power')

Plot some random data and find the largest empty rectangle
that is at least .1 wide and .1 tall

x <- runif(50)
y <- runif(50)
plot(x, y)
z <- largest.empty(x, y, .1, .1)
z
points(z,pch=3) # mark center of rectangle, or
polygon(z$rect, col='blue') # to draw the rectangle, or
#key(zx, zy, \dots stuff for legend)

Use the mouse to draw a series of points using one symbol, and
two smooth curves or straight lines (if two points are clicked),
none of these being labeled

d <- drawPlot(Points(), Curve(), Curve())
plot(d)

Not run:
Use the mouse to draw a Gaussian density, two series of points
using 2 symbols, one Bezier curve, a step function, and raw data
along the x-axis as a 1-d scatter plot (rug plot). Draw a key.
The density function is fit to 3 mouse clicks
Abline draws a dotted horizontal reference line
d <- drawPlot(Curve('Normal',type='gauss'),

Points('female'), Points('male'),

label 199

Curve('smooth',ask=TRUE,lty=2), Curve('step',type='s',lty=3),
Points(type='r'), Abline(h=.5, lty=2),
xlab='X', ylab='y', xlim=c(0,100), key=TRUE)

plot(d, ylab='Y')
plot(d, key=FALSE) # label groups using labcurve

End(Not run)

label Label Attribute of an Object

Description

label(x) retrieves the label attribute of x. label(x) <- "a label" stores the label attribute, and
also puts the class labelled as the first class of x (for S-Plus this class is not used and methods for
handling this class are not defined so the "label" and "units" attributes are lost upon subsetting).
The reason for having this class is so that the subscripting method for labelled, [.labelled,
can preserve the label attribute in S. Also, the print method for labelled objects prefaces the
print with the object’s label (and units if there). If the variable is also given a "units" attribute
using the units function, subsetting the variable (using [.labelled) will also retain the "units"
attribute.

label can optionally append a "units" attribute to the string, and it can optionally return a string
or expression (for R’s plotmath facility) suitable for plotting. labelPlotmath is a function that
also has this function, when the input arguments are the 'label' and 'units' rather than a vector
having those attributes. When plotmath mode is used to construct labels, the 'label' or 'units'
may contain math expressions but they are typed verbatim if they contain percent signs, blanks, or
underscores. labelPlotmath can optionally create the expression as a character string, which is
useful in building ggplot commands.

For Surv objects, label first looks to see if there is an overall "label" attribute for the object, then
it looks for saved attributes that Surv put in the "inputAttributes" object, looking first at the
event variable, then time2, and finally time. You can restrict the looking by specifying type.

labelLatex constructs suitable LaTeX labels a variable or from the label and units arguments,
optionally right-justifying units if hfill=TRUE. This is useful when making tables when the vari-
able in question is not a column heading. If x is specified, label and units values are extracted
from its attributes instead of from the other arguments.

Label (actually Label.data.frame) is a function which generates S source code that makes the
labels in all the variables in a data frame easy to edit.

llist is like list except that it preserves the names or labels of the component variables in the vari-
ables label attribute. This can be useful when looping over variables or using sapply or lapply.
By using llist instead of list one can annotate the output with the current variable’s name or
label. llist also defines a names attribute for the list and pulls the names from the arguments’
expressions for non-named arguments.

prList prints a list with element names (without the dollar sign as in default list printing) and if an
element of the list is an unclassed list with a name, all of those elements are printed, with titles of the
form "primary list name : inner list name". This is especially useful for Rmarkdown html notebooks

200 label

when a user-written function creates multiple html and graphical outputs to all be printed in a code
chunk. Optionally the names can be printed after the object, and the htmlfig option provides more
capabilities when making html reports. prList does not work for regular html documents.

putHfig is similar to prList but for a single graphical object that is rendered with a print method,
making it easy to specify long captions, and short captions for the table of contents in HTML
documents. Table of contents entries are generated with the short caption, which is taken as the
long caption if there is none. One can optionally not make a table of contents entry. If argument
table=TRUE table captions will be produced instead. Using expcoll, markupSpecs html function
expcoll will be used to make tables expand upon clicking an arrow rather than always appear.

putHcap is like putHfig except that it assumes that users render the graphics or table outside of the
putHcap call. This allows things to work in ordinary html documents. putHcap does not handle
collapsed text.

plotmathTranslate is a simple function that translates certain character strings to character strings
that can be used as part of R plotmath expressions. If the input string has a space or percent inside,
the string is surrounded by a call to plotmath’s paste function.

as.data.frame.labelled is a utility function that is called by [.data.frame. It is just a copy
of as.data.frame.vector. data.frame.labelled is another utility function, that adds a class
"labelled" to every variable in a data frame that has a "label" attribute but not a "labelled"
class.

relevel.labelled is a method for preserving labels with the relevel function.

reLabelled is used to add a 'labelled' class back to variables in data frame that have a ’label’
attribute but no ’labelled’ class. Useful for changing cleanup.import()’d S-Plus data frames back
to general form for R and old versions of S-Plus.

Usage

label(x, default=NULL, ...)

Default S3 method:
label(x, default=NULL, units=plot, plot=FALSE,

grid=FALSE, html=FALSE, ...)

S3 method for class 'Surv'
label(x, default=NULL, units=plot, plot=FALSE,

grid=FALSE, html=FALSE, type=c('any', 'time', 'event'), ...)

S3 method for class 'data.frame'
label(x, default=NULL, self=FALSE, ...)

label(x, ...) <- value

Default S3 replacement method:
label(x, ...) <- value

S3 replacement method for class 'data.frame'
label(x, self=TRUE, ...) <- value

label 201

labelPlotmath(label, units=NULL, plotmath=TRUE, html=FALSE, grid=FALSE,
chexpr=FALSE)

labelLatex(x=NULL, label='', units='', size='smaller[2]',
hfill=FALSE, bold=FALSE, default='', double=FALSE)

S3 method for class 'labelled'
print(x, ...) ## or x - calls print.labelled

Label(object, ...)

S3 method for class 'data.frame'
Label(object, file='', append=FALSE, ...)

llist(..., labels=TRUE)

prList(x, lcap=NULL, htmlfig=0, after=FALSE)

putHfig(x, ..., scap=NULL, extra=NULL, subsub=TRUE, hr=TRUE,
table=FALSE, file='', append=FALSE, expcoll=NULL)

putHcap(..., scap=NULL, extra=NULL, subsub=TRUE, hr=TRUE,
table=FALSE, file='', append=FALSE)

plotmathTranslate(x)

data.frame.labelled(object)

S3 method for class 'labelled'
relevel(x, ...)

reLabelled(object)

combineLabels(...)

Arguments

x any object (for plotmathTranslate is a character string). For relevel is a
factor variable. For prList is a named list. For putHfig is a graphical object
for which a print method will render the graphic (e.g., a ggplot2 or plotly
object).

self lgoical, where to interact with the object or its components

units set to TRUE to append the 'units' attribute (if present) to the returned label.
The 'units' are surrounded by brackets. For labelPlotmath and labelLatex
is a character string containing the units of measurement. When plot is TRUE,
units defaults to TRUE.

plot set to TRUE to return a label suitable for R’s plotmath facility (returns an expres-
sion instead of a character string) if R is in effect. If units is also TRUE, and if

202 label

both 'label' and 'units' attributes are present, the 'units' will appear after
the label but in smaller type and will not be surrounded by brackets.

default if x does not have a 'label' attribute and default (a character string) is spec-
ified, the label will be taken as default. For labelLatex the default is the
name of the first argument if it is a variable and not a label.

grid Currently R’s lattice and grid functions do not support plotmath expressions
for xlab and ylab arguments. When using lattice functions in R, set the
argument grid to TRUE so that labelPlotmath can return an ordinary character
string instead of an expression.

html set to TRUE to use HTML formatting instead of plotmath expressions for con-
structing labels with units

type for Surv objects specifies the type of element for which to restrict the search for
a label

label a character string containing a variable’s label
plotmath set to TRUE to have labelMathplot return an expression for plotting using R’s

plotmath facility. If R is not in effect, an ordinary character string is returned.
chexpr set to TRUE to have labelPlotmath return a character string of the form "expression(...)"

size LaTeX size for units. Default is two sizes smaller than label, which assumes
that the LaTeX relsize package is in use.

hfill set to TRUE to right-justify units in the field. This is useful when multiple
labels are being put into rows in a LaTeX tabular environment, and will cause
a problem if the label is used in an environment where hfill is not appropriate.

bold set to TRUE to have labelLatex put the label in bold face.
double set to TRUE to represent backslash in LaTeX as four backslashes in place of two.

This is needed if, for example, you need to convert the result using as.formula

value the label of the object, or "".
object a data frame
... a list of variables or expressions to be formed into a list. Ignored for print.labelled.

For relevel is the level (a single character string) to become the new refer-
ence (first) category. For putHfig and putHcap represents one or more character
strings that are pasted together, separated by a blank.

file the name of a file to which to write S source code. Default is "", meaning
standard output. For putHcap, set file to FALSE to return a character vector
instead of writing to file.

append set to TRUE to append code generated by Label to file file. Also used for
putHfig, putHcap.

labels set to FALSE to make llist ignore the variables’ label attribute and use the
variables’ names.

lcap an optional vector of character strings corresponding to elements in x for prList.
These contain long captions that do not appear in the table of contents but which
are printed right after the short caption in the body, in the same font.

htmlfig for prList set to 1 to use HTML markup by running the object names through
markupSpecs$html$cap for figure captions. Set htmlfig=2 to also preface the
figure caption with "### " so that it will appear in the table of contents.

label 203

after set to TRUE to have prList put names after the printed object instead of before

scap a character string specifying the short (or possibly only) caption.

extra an optional vector of character strings. When present the long caption will be put
in the first column of an HTML table and the elements of extra in subsequent
columns. This allows extra information to appear in the long caption in a way
that is right-justified to the right of the flowing caption text.

subsub set to FALSE to suppress "### " from being placed in front of the short caption.
Set it to different character string to use that instead. Set it to "" to ignore
short captions entirely. For example to use second-level headings for the table
of contents specify subsub="## ".

hr applies if a caption is present. Specify FALSE to not put a horizontal line before
the caption and figure.

table set to TRUE to produce table captions instead of figure captions

expcoll character string to be visible, with a clickable arrow following to allow initial
hiding of a table and its captions. Cannot be used with table=FALSE.

Value

label returns the label attribute of x, if any; otherwise, "". label is used most often for the
individual variables in data frames. The function sas.get copies labels over from SAS if they
exist.

See Also

sas.get, describe, extractlabs, hlab

Examples

age <- c(21,65,43)
y <- 1:3
label(age) <- "Age in Years"
plot(age, y, xlab=label(age))

data <- data.frame(age=age, y=y)
label(data)

label(data, self=TRUE) <- "A data frame"
label(data, self=TRUE)

x1 <- 1:10
x2 <- 10:1
label(x2) <- 'Label for x2'
units(x2) <- 'mmHg'
x2
x2[1:5]
dframe <- data.frame(x1, x2)
Label(dframe)

labelLatex(x2, hfill=TRUE, bold=TRUE)

204 Lag

labelLatex(label='Velocity', units='m/s')

##In these examples of llist, note that labels are printed after
##variable names, because of print.labelled
a <- 1:3
b <- 4:6
label(b) <- 'B Label'
llist(a,b)
llist(a,b,d=0)
llist(a,b,0)

w <- llist(a, b>5, d=101:103)
sapply(w, function(x){

hist(as.numeric(x), xlab=label(x))
locator(1) ## wait for mouse click

})

Or: for(u in w) {hist(u); title(label(u))}

Lag Lag a Numeric, Character, or Factor Vector

Description

Shifts a vector shift elements later. Character or factor variables are padded with "", numerics
with NA. The shift may be negative.

Usage

Lag(x, shift = 1)

Arguments

x a vector

shift integer specifying the number of observations to be shifted to the right. Negative
values imply shifts to the left.

Details

A.ttributes of the original object are carried along to the new lagged one.

Value

a vector like x

Author(s)

Frank Harrell

latestFile 205

See Also

lag

Examples

Lag(1:5,2)
Lag(letters[1:4],2)
Lag(factor(letters[1:4]),-2)
Find which observations are the first for a given subject
id <- c('a','a','b','b','b','c')
id != Lag(id)
!duplicated(id)

latestFile latestFile

Description

Find File With Latest Modification Time

Usage

latestFile(pattern, path = ".", verbose = TRUE)

Arguments

pattern a regular expression; see base::list.files()

path full path, defaulting to current working directory

verbose set to FALSE to not report on total number of matching files

Details

Subject to matching on pattern finds the last modified file, and if verbose is TRUE reports on how
many total files matched pattern.

Value

the name of the last modified file

Author(s)

Frank Harrell

See Also

base::list.files()

206 latex

latex Convert an S object to LaTeX, and Related Utilities

Description

latex converts its argument to a ‘.tex’ file appropriate for inclusion in a LaTeX2e document.
latex is a generic function that calls one of latex.default, latex.function, latex.list.

latex.default does appropriate rounding and decimal alignment and produces a file containing a
LaTeX tabular environment to print the matrix or data.frame x as a table.

latex.function prepares an S function for printing by issuing sed commands that are similar
to those in the S.to.latex procedure in the s.to.latex package (Chambers and Hastie, 1993).
latex.function can also produce verbatim output or output that works with the Sweavel LaTeX
style.

latex.list calls latex recursively for each element in the argument.

latexTranslate translates particular items in character strings to LaTeX format, e.g., makes ‘a^2
= a\$^2\$’ for superscript within variable labels. LaTeX names of greek letters (e.g., "alpha")
will have backslashes added if greek==TRUE. Math mode is inserted as needed. latexTranslate
assumes that input text always has matches, e.g. [) [] (] (), and that surrounding by ‘\$\$’ is
OK.

htmlTranslate is similar to latexTranslate but for html translation. It doesn’t need math mode
and assumes dollar signs are just that.

latexSN converts a vector floating point numbers to character strings using LaTeX exponents. Dol-
lar signs to enter math mode are not added. Similarly, htmlSN converts to scientific notation in
html.

latexVerbatim on an object executes the object’s print method, capturing the output for a file
inside a LaTeX verbatim environment.

dvi uses the system latex command to compile LaTeX code produced by latex, including any
needed styles. dvi will put a ‘\documentclass{report}’ and ‘\end{document}’ wrapper around
a file produced by latex. By default, the ‘geometry’ LaTeX package is used to omit all margins
and to set the paper size to a default of 5.5in wide by 7in tall. The result of dvi is a .dvi file. To both
format and screen display a non-default size, use for example print(dvi(latex(x), width=3,
height=4),width=3,height=4). Note that you can use something like ‘xdvi -geometry 460x650
-margins 2.25in file’ without changing LaTeX defaults to emulate this.

dvips will use the system dvips command to print the .dvi file to the default system printer, or
create a postscript file if file is specified.

dvigv uses the system dvips command to convert the input object to a .dvi file, and uses the system
dvips command to convert it to postscript. Then the postscript file is displayed using Ghostview
(assumed to be the system command gv).

There are show methods for displaying typeset LaTeX on the screen using the system xdvi com-
mand. If you show a LaTeX file created by latex without running it through dvi using show.dvi(object),
the show method will run it through dvi automatically. These show methods are not S Version 4
methods so you have to use full names such as show.dvi and show.latex. Use the print methods
for more automatic display of typesetting, e.g. typing latex(x) will invoke xdvi to view the typeset
document.

latex 207

Usage

latex(object, ...)

Default S3 method:
latex(object,

title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE, label=title,
rowlabel=title, rowlabel.just="l",
cgroup=NULL, n.cgroup=NULL,
rgroup=NULL, n.rgroup=NULL,
cgroupTexCmd="bfseries",
rgroupTexCmd="bfseries",
rownamesTexCmd=NULL,
colnamesTexCmd=NULL,
cellTexCmds=NULL,
rowname, cgroup.just=rep("c",length(n.cgroup)),
colheads=NULL,
extracolheads=NULL, extracolsize='scriptsize',
dcolumn=FALSE, numeric.dollar=!dcolumn, cdot=FALSE,
longtable=FALSE, draft.longtable=TRUE, ctable=FALSE, booktabs=FALSE,
table.env=TRUE, here=FALSE, lines.page=40,
caption=NULL, caption.lot=NULL, caption.loc=c('top','bottom'),
star=FALSE,
double.slash=FALSE,
vbar=FALSE, collabel.just=rep("c",nc), na.blank=TRUE,
insert.bottom=NULL, insert.bottom.width=NULL,
insert.top=NULL,
first.hline.double=!(booktabs | ctable),
where='!tbp', size=NULL,
center=c('center','centering','centerline','none'),
landscape=FALSE,
multicol=TRUE,
math.row.names=FALSE, already.math.row.names=FALSE,
math.col.names=FALSE, already.math.col.names=FALSE,
hyperref=NULL, continued='continued',
...) # x is a matrix or data.frame

S3 method for class 'function'
latex(
object,
title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE,
assignment=TRUE, type=c('example','verbatim','Sinput'),

width.cutoff=70, size='', ...)

S3 method for class 'list'

208 latex

latex(
object,
title=first.word(deparse(substitute(object))),
file=paste(title, ".tex", sep=""),
append=FALSE,
label,
caption,
caption.lot,
caption.loc=c('top','bottom'),
...)

S3 method for class 'latex'
print(x, ...)

latexTranslate(object, inn=NULL, out=NULL, pb=FALSE, greek=FALSE, na='',
...)

htmlTranslate(object, inn=NULL, out=NULL, greek=FALSE, na='',
code=htmlSpecialType(), ...)

latexSN(x)

htmlSN(x, pretty=TRUE, ...)

latexVerbatim(x, title=first.word(deparse(substitute(x))),
file=paste(title, ".tex", sep=""),
append=FALSE, size=NULL, hspace=NULL,
width=.Options$width, length=.Options$length, ...)

dvi(object, ...)
S3 method for class 'latex'
dvi(object, prlog=FALSE, nomargins=TRUE, width=5.5, height=7, ...)
S3 method for class 'dvi'
print(x, ...)
dvips(object, ...)
S3 method for class 'latex'
dvips(object, ...)
S3 method for class 'dvi'
dvips(object, file, ...)
S3 method for class 'latex'
show(object) # or show.dvi(object) or just object
dvigv(object, ...)
S3 method for class 'latex'
dvigv(object, ...) # or gvdvi(dvi(object))
S3 method for class 'dvi'
dvigv(object, ...)

latex 209

Arguments

object For latex, any S object. For dvi or dvigv, an object created by latex. For
latexTranslate is a vector of character strings to translate. Any NAs are set to
blank strings before conversion.

x any object to be printed verbatim for latexVerbatim. For latexSN or htmlSN,
x is a numeric vector.

title name of file to create without the ‘.tex’ extension. If this option is not set,
value/string of x (see above) is printed in the top left corner of the table. Set
title='' to suppress this output.

file name of the file to create. The default file name is ‘x.tex’ where x is the first
word in the name of the argument for x. Set file="" to have the generated La-
TeX code just printed to standard output. This is especially useful when running
under Sweave in R using its ‘results=tex’ tag, to save having to manage many
small external files. When file="", latex keeps track of LaTeX styles that are
called for by creating or modifying an object latexStyles (in .GlobalTemp in
R or in frame 0 in S-Plus). latexStyles is a vector containing the base names
of all the unique LaTeX styles called for so far in the current session. See the end
of the examples section for a way to use this object to good effect. For dvips,
file is the name of an output postscript file.

append defaults to FALSE. Set to TRUE to append output to an existing file.

label a text string representing a symbolic label for the table for referencing in the
LaTeX ‘\label’ and ‘\ref’ commands. label is only used if caption is given.

rowlabel If x has row dimnames, rowlabel is a character string containing the column
heading for the row dimnames. The default is the name of the argument for x.

rowlabel.just If x has row dimnames, specifies the justification for printing them. Possi-
ble values are "l", "r", "c". The heading (rowlabel) itself is left justified
if rowlabel.just="l", otherwise it is centered.

cgroup a vector of character strings defining major column headings. The default is to
have none.

n.cgroup a vector containing the number of columns for which each element in cgroup is a
heading. For example, specify cgroup=c("Major 1","Major 2"), n.cgroup=c(3,3)
if "Major 1" is to span columns 1-3 and "Major 2" is to span columns 4-6.
rowlabel does not count in the column numbers. You can omit n.cgroup if all
groups have the same number of columns.

rgroup a vector of character strings containing headings for row groups. n.rgroup must
be present when rgroup is given. The first n.rgroup[1] rows are sectioned off
and rgroup[1] is used as a bold heading for them. The usual row dimnames
(which must be present if rgroup is) are indented. The next n.rgroup[2] rows
are treated likewise, etc.

n.rgroup integer vector giving the number of rows in each grouping. If rgroup is not
specified, n.rgroup is just used to divide off blocks of rows by horizontal lines.
If rgroup is given but n.rgroup is omitted, n.rgroup will default so that each
row group contains the same number of rows.

210 latex

cgroupTexCmd A character string specifying a LaTeX command to be used to format column
group labels. The default, "bfseries", sets the current font to ‘bold’. It is pos-
sible to supply a vector of strings so that each column group label is formatted
differently. Please note that the first item of the vector is used to format the
title (even if a title is not used). Currently the user needs to handle these issue.
Multiple effects can be achieved by creating custom LaTeX commands; for ex-
ample, "\providecommand{\redscshape}{\color{red}\scshape}" creates
a LaTeX command called ‘\redscshape’ that formats the text in red small-caps.

rgroupTexCmd A character string specifying a LaTeX command to be used to format row group
labels. The default, "bfseries", sets the current font to ‘bold’. A vector of
strings can be supplied to format each row group label differently. Normal re-
cycling applies if the vector is shorter than n.rgroups. See also cgroupTexCmd
above regarding multiple effects.

rownamesTexCmd A character string specifying a LaTeX command to be used to format rownames.
The default, NULL, applies no command. A vector of different commands can
also be supplied. See also cgroupTexCmd above regarding multiple effects.

colnamesTexCmd A character string specifying a LaTeX command to be used to format column
labels. The default, NULL, applies no command. It is possible to supply a vector
of strings to format each column label differently. If column groups are not used,
the first item in the vector will be used to format the title. Please note that if col-
umn groups are used the first item of cgroupTexCmd and not colnamesTexCmd
is used to format the title. The user needs to allow for these issues when sup-
plying a vector of commands. See also cgroupTexCmd above regarding multiple
effects.

cellTexCmds A matrix of character strings which are LaTeX commands to be used to format
each element, or cell, of the object. The matrix must have the same NROW() and
NCOL() as the object. The default, NULL, applies no formats. Empty strings
also apply no formats, and one way to start might be to create a matrix of empty
strings with matrix(rep("", NROW(x) * NCOL(x)), nrow=NROW(x)) and then
selectively change appropriate elements of the matrix. Note that you might need
to set numeric.dollar=FALSE (to disable math mode) for some effects to work.
See also cgroupTexCmd above regarding multiple effects.

na.blank Set to TRUE to use blanks rather than NA for missing values. This usually looks
better in latex.

insert.bottom an optional character string to typeset at the bottom of the table. For "ctable"
style tables, this is placed in an unmarked footnote.

insert.bottom.width

character string; a tex width controlling the width of the insert.bottom text. Cur-
rently only does something with using longtable=TRUE.

insert.top a character string to insert as a heading right before beginning tabular environ-
ment. Useful for multiple sub-tables.

first.hline.double

set to FALSE to use single horizontal rules for styles other than "bookmark" or
"ctable"

rowname rownames for tabular environment. Default is rownames of matrix or data.frame.
Specify rowname=NULL to suppress the use of row names.

latex 211

cgroup.just justification for labels for column groups. Defaults to "c".

colheads a character vector of column headings if you don’t want to use dimnames(object)[[2]].
Specify colheads=FALSE to suppress column headings.

extracolheads an optional vector of extra column headings that will appear under the main
headings (e.g., sample sizes). This character vector does not need to include an
empty space for any rowname in effect, as this will be added automatically. You
can also form subheadings by splitting character strings defining the column
headings using the usual backslash n newline character.

extracolsize size for extracolheads or for any second lines in column names; default is
"scriptsize"

dcolumn see format.df

numeric.dollar logical, default !dcolumn. Set to TRUE to place dollar signs around numeric val-
ues when dcolumn=FALSE. This assures that latex will use minus signs rather
than hyphens to indicate negative numbers. Set to FALSE when dcolumn=TRUE,
as dcolumn.sty automatically uses minus signs.

math.row.names logical, set true to place dollar signs around the row names.
already.math.row.names

set to TRUE to prevent any math mode changes to row names

math.col.names logical, set true to place dollar signs around the column names.
already.math.col.names

set to TRUE to prevent any math mode changes to column names

hyperref if table.env=TRUE is a character string used to generate a LaTeX hyperref
enclosure

continued a character string used to indicate pages after the first when making a long table

cdot see format.df

longtable Set to TRUE to use David Carlisle’s LaTeX longtable style, allowing long ta-
bles to be split over multiple pages with headers repeated on each page. The
"style" element is set to "longtable". The latex ‘\usepackage’ must ref-
erence ‘[longtable]’. The file ‘longtable.sty’ will need to be in a directory
in your TEXINPUTS path.

draft.longtable

I forgot what this does.

ctable set to TRUE to use Wybo Dekker’s ‘ctable’ style from CTAN. Even though
for historical reasons it is not the default, it is generally the preferred method.
Thicker but not doubled ‘\hline’s are used to start a table when ctable is in
effect.

booktabs set booktabs=TRUE to use the ‘booktabs’ style of horizontal rules for better
tables. In this case, double ‘\hline’s are not used to start a table.

table.env Set table.env=FALSE to suppress enclosing the table in a LaTeX ‘table’ envi-
ronment. table.env only applies when longtable=FALSE. You may not spec-
ify a caption if table.env=FALSE.

here Set to TRUE if you are using table.env=TRUE with longtable=FALSE and you
have installed David Carlisle’s ‘here.sty’ LaTeX style. This will cause the La-
TeX ‘table’ environment to be set up with option ‘H’ to guarantee that the table

212 latex

will appear exactly where you think it will in the text. The "style" element
is set to "here". The latex ‘\usepackage’ must reference ‘[here]’. The file
‘here.sty’ will need to be in a directory in your TEXINPUTS path. ‘here’ is
largely obsolete with LaTeX2e.

lines.page Applies if longtable=TRUE. No more than lines.page lines in the body of a
table will be placed on a single page. Page breaks will only occur at rgroup
boundaries.

caption a text string to use as a caption to print at the top of the first page of the table.
Default is no caption.

caption.lot a text string representing a short caption to be used in the “List of Tables”. By
default, LaTeX will use caption. If you get inexplicable ‘latex’ errors, you
may need to supply caption.lot to make the errors go away.

caption.loc set to "bottom" to position a caption below the table instead of the default of
"top".

star apply the star option for ctables to allow a table to spread over two columns
when in twocolumn mode.

double.slash set to TRUE to output ‘"\"’ as ‘"\\"’ in LaTeX commands. Useful when you are
reading the output file back into an S vector for later output.

vbar logical. When vbar==TRUE, columns in the tabular environment are separated
with vertical bar characters. When vbar==FALSE, columns are separated with
white space. The default, vbar==FALSE, produces tables consistent with the
style sheet for the Journal of the American Statistical Association.

collabel.just justification for column labels.

assignment logical. When TRUE, the default, the name of the function and the assignment
arrow are printed to the file.

where specifies placement of floats if a table environment is used. Default is "!tbp".
To allow tables to appear in the middle of a page of text you might specify
where="!htbp" to latex.default.

size size of table text if a size change is needed (default is no change). For ex-
ample you might specify size="small" to use LaTeX font size “small”. For
latex.function is a character string that will be appended to "Sinput" such
as "small".

center default is "center" to enclose the table in a ‘center’ environment. Use center="centering"
or "centerline" to instead use LaTeX ‘centering’ or centerline directives,
or center="none" to use no centering. centerline can be useful when objects
besides a tabular are enclosed in a single table environment. This option was
implemented by Markus Jï¿½ntti <markus.jantti@iki.fi> of Abo Akademi
University.

landscape set to TRUE to enclose the table in a ‘landscape’ environment. When ctable is
TRUE, will use the rotate argument to ctable.

type The default uses the S alltt environment for latex.function, Set type="verbatim"
to instead use the LaTeX ‘verbatim’ environment. Use type="Sinput" if using
Sweave, especially if you have customized the Sinput environment, for example
using the Sweavel style which uses the listings LaTeX package.

latex 213

width.cutoff width of function text output in columns; see deparse

... other arguments are accepted and ignored except that latex passes arguments
to format.df (e.g., col.just and other formatting options like dec, rdec, and
cdec). For latexVerbatim these arguments are passed to the print function.
Ignored for latexTranslate and htmlTranslate. For htmlSN, these argu-
ments are passed to prettyNum or format.

inn, out specify additional input and translated strings over the usual defaults

pb If pb=TRUE, latexTranslate also translates ‘[()]’ to math mode using ‘\left,
\right’.

greek set to TRUE to have latexTranslate put names for greek letters in math mode
and add backslashes. For htmlTranslate, translates greek letters to corre-
sponding html characters, ignoring "modes".

na single character string to translate NA values to for latexTranslate and htmlTranslate

code set to 'unicode' to use HTML unicode characters or '&' to use the ampersand
pound number format

pretty set to FALSE to have htmlSN use format instead of prettyNum

hspace horizontal space, e.g., extra left margin for verbatim text. Default is none. Use
e.g. hspace="10ex" to add 10 extra spaces to the left of the text.

length for S-Plus only; is the length of the output page for printing and capturing ver-
batim text

width, height are the options() to have in effect only for when print is executed. Defaults
are current options. For dvi these specify the paper width and height in inches
if nomargins=TRUE, with defaults of 5.5 and 7, respectively.

prlog set to TRUE to have dvi print, to the S-Plus session, the LaTeX .log file.

multicol set to FALSE to not use ‘\multicolumn’ in header of table

nomargins set to FALSE to use default LaTeX margins when making the .dvi file

Details

latex.default optionally outputs a LaTeX comment containing the calling statement. To output
this comment, run options(omitlatexcom=FALSE) before running. The default behavior or sup-
pressing the comment is helpful when running RMarkdown to produce pdf output using LaTeX, as
this uses pandoc which is fooled into try to escape the percent comment symbol.

If running under Windows and using MikTeX, latex and yap must be in your system path, and
yap is used to browse ‘.dvi’ files created by latex. You should install the ‘geometry.sty’ and
‘ctable.sty’ styles in MikTeX to make optimum use of latex().

On Mac OS X, you may have to append the ‘/usr/texbin’ directory to the system path. Thanks to
Kevin Thorpe (<kevin.thorpe@utoronto.ca>) one way to set up Mac OS X is to install ‘X11’ and
‘X11SDK’ if not already installed, start ‘X11’ within the R GUI, and issue the command Sys.setenv(
PATH=paste(Sys.getenv("PATH"),"/usr/texbin",sep=":")). To avoid any complications of
using ‘X11’ under MacOS, users can install the ‘TeXShop’ package, which will associate ‘.dvi’
files with a viewer that displays a ‘pdf’ version of the file after a hidden conversion from ‘dvi’ to
‘pdf’.

214 latex

System options can be used to specify external commands to be used. Defaults are given by
options(xdvicmd='xdvi') or options(xdvicmd='yap'), options(dvipscmd='dvips'), options(latexcmd='latex').
For MacOS specify options(xdvicmd='MacdviX') or if TeXShop is installed, options(xdvicmd='open').

To use ‘pdflatex’ rather than ‘latex’, set options(latexcmd='pdflatex'), options(dviExtension='pdf'),
and set options('xdvicmd') to your chosen PDF previewer.

If running S-Plus and your directory for temporary files is not ‘/tmp’ (Unix/Linux) or ‘\windows\temp’
(Windows), add your own tempdir function such as tempdir <- function() "/yourmaindirectory/yoursubdirectory"

To prevent the latex file from being displayed store the result of latex in an object, e.g. w <-
latex(object, file='foo.tex').

Value

latex and dvi return a list of class latex or dvi containing character string elements file and
style. file contains the name of the generated file, and style is a vector (possibly empty) of
styles to be included using the LaTeX2e ‘\usepackage’ command.

latexTranslate returns a vector of character strings

Side Effects

creates various system files and runs various Linux/UNIX system commands which are assumed to
be in the system path.

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
<fh@fharrell.com>

Richard M. Heiberger,
Department of Statistics,
Temple University, Philadelphia, PA.
<rmh@temple.edu>

David R. Whiting,
School of Clinical Medical Sciences (Diabetes),
University of Newcastle upon Tyne, UK.
<david.whiting@ncl.ac.uk>

See Also

html, format.df, texi2dvi

Examples

x <- matrix(1:6, nrow=2, dimnames=list(c('a','b'),c('c','d','this that')))
Not run:
latex(x) # creates x.tex in working directory
The result of the above command is an object of class "latex"
which here is automatically printed by the latex print method.

latexCheckOptions 215

The latex print method prepends and appends latex headers and
calls the latex program in the PATH. If the latex program is
not in the PATH, you will get error messages from the operating
system.

w <- latex(x, file='/tmp/my.tex')
Does not call the latex program as the print method was not invoked
print.default(w)
Shows the contents of the w variable without attempting to latex it.

d <- dvi(w) # compile LaTeX document, make .dvi
latex assumed to be in path

d # or show(d) : run xdvi (assumed in path) to display
w # or show(w) : run dvi then xdvi
dvips(d) # run dvips to print document
dvips(w) # run dvi then dvips
library(tools)
texi2dvi('/tmp/my.tex') # compile and produce pdf file in working dir.

End(Not run)
latex(x, file="") # just write out LaTeX code to screen

Not run:
Use paragraph formatting to wrap text to 3 in. wide in a column
d <- data.frame(x=1:2,

y=c(paste("a",
paste(rep("very",30),collapse=" "),"long string"),

"a short string"))
latex(d, file="", col.just=c("l", "p{3in}"), table.env=FALSE)

End(Not run)

Not run:
After running latex() multiple times with different special styles in
effect, make a file that will call for the needed LaTeX packages when
latex is run (especially when using Sweave with R)
if(exists(latexStyles))

cat(paste('\usepackage{',latexStyles,'}',sep=''),
file='stylesused.tex', sep='\n')

Then in the latex job have something like:
\documentclass{article}
\input{stylesused}
\begin{document}
...

End(Not run)

latexCheckOptions Check whether the options for latex functions have been specified.

216 latexDotchart

Description

Check whether the options for latex functions have been specified. If any of
options()[c("latexcmd","dviExtension","xdvicmd")] are NULL, an error message is displayed.

Usage

latexCheckOptions(...)

Arguments

... Any arguments are ignored.

Value

If any NULL options are detected, the invisible text of the error message. If all three options have
non-NULL values, NULL.

Author(s)

Richard M. Heiberger <rmh@temple.edu>

See Also

latex

latexDotchart Enhanced Dot Chart for LaTeX Picture Environment with epic

Description

latexDotchart is a translation of the dotchart3 function for producing a vector of character
strings containing LaTeX picture environment markup that mimics dotchart3 output. The LaTeX
epic and color packages are required. The add and horizontal=FALSE options are not available
for latexDotchart, however.

Usage

latexDotchart(data, labels, groups=NULL, gdata=NA,
xlab='', auxdata, auxgdata=NULL, auxtitle,
w=4, h=4, margin,
lines=TRUE, dotsize = .075, size='small', size.labels='small',
size.group.labels='normalsize', ttlabels=FALSE, sort.=TRUE,
xaxis=TRUE, lcolor='gray', ...)

latexDotchart 217

Arguments

data a numeric vector whose values are shown on the x-axis

labels a vector of labels for each point, corresponding to x. If omitted, names(data)
are used, and if there are no names, integers prefixed by "#" are used.

groups an optional categorical variable indicating how data values are grouped

gdata data values for groups, typically summaries such as group medians

xlab x-axis title

auxdata a vector of auxiliary data, of the same length as the first (data) argument. If
present, this vector of values will be printed outside the right margin of the dot
chart. Usually auxdata represents cell sizes.

auxgdata similar to auxdata but corresponding to the gdata argument. These usually
represent overall sample sizes for each group of lines.

auxtitle if auxdata is given, auxtitle specifies a column heading for the extra printed
data in the chart, e.g., "N"

w width of picture in inches

h height of picture in inches

margin a 4-vector representing, in inches, the margin to the left of the x-axis, below
the y-axis, to the right of the x-axis, and above the y-axis. By default these are
computed making educated cases about how to accommodate auxdata etc.

lines set to FALSE to suppress drawing of reference lines

dotsize diameter of filled circles, in inches, for drawing dots

size size of text in picture. This and the next two arguments are LaTeX font com-
mands without the opening backslash, e.g., 'normalsize', 'small', 'large',
smaller[2].

size.labels size of labels
size.group.labels

size of labels corresponding to groups

ttlabels set to TRUE to use typewriter monospaced font for labels

sort. set to FALSE to keep latexDotchart from sorting the input data, i.e., it will
assume that the data are already properly arranged. This is especially useful
when you are using gdata and groups and you want to control the order that
groups appear on the chart (from top to bottom).

xaxis set to FALSE to suppress drawing x-axis

lcolor color for horizontal reference lines. Default is "gray"

... ignored

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

218 latexTabular

See Also

dotchart3

Examples

Not run:
z <- latexDotchart(c(.1,.2), c('a','bbAAb'), xlab='This Label',

auxdata=c(.1,.2), auxtitle='Zcriteria')
f <- '/tmp/t.tex'
cat('\documentclass{article}\n\usepackage{epic,color}\n\begin{document}\n', file=f)
cat(z, sep='\n', file=f, append=TRUE)
cat('\end{document}\n', file=f, append=TRUE)

set.seed(135)
maj <- factor(c(rep('North',13),rep('South',13)))
g <- paste('Category',rep(letters[1:13],2))
n <- sample(1:15000, 26, replace=TRUE)
y1 <- runif(26)
y2 <- pmax(0, y1 - runif(26, 0, .1))
z <- latexDotchart(y1, g, groups=maj, auxdata=n, auxtitle='n', xlab='Y',

size.group.labels='large', ttlabels=TRUE)
f <- '/tmp/t2.tex'
cat('\documentclass{article}\n\usepackage{epic,color}\n\begin{document}\n\framebox{', file=f)
cat(z, sep='\n', file=f, append=TRUE)
cat('}\end{document}\n', file=f, append=TRUE)

End(Not run)

latexTabular Convert a Data Frame or Matrix to a LaTeX Tabular

Description

latexTabular creates a character vector representing a matrix or data frame in a simple ‘tabular’
environment.

Usage

latexTabular(x, headings=colnames(x),
align =paste(rep('c',ncol(x)),collapse=''),
halign=paste(rep('c',ncol(x)),collapse=''),
helvetica=TRUE, translate=TRUE, hline=0, center=FALSE, ...)

Arguments

x a matrix or data frame, or a vector that is automatically converted to a matrix

headings a vector of character strings specifying column headings for ‘latexTabular’,
defaulting to x’s colnames. To make multi-line headers use the newline charac-
ter inside elements of headings.

latexTherm 219

align a character strings specifying column alignments for ‘latexTabular’, default-
ing to paste(rep('c',ncol(x)),collapse='') to center. You may specify
align='c|c' and other LaTeX tabular formatting.

halign a character strings specifying alignment for column headings, defaulting to cen-
tered.

helvetica set to FALSE to use default LaTeX font in ‘latexTabular’ instead of helvetica.

translate set to FALSE if column headings and table entries are already in LaTeX format,
otherwise latexTabular will run them through latexTranslate

hline set to 1 to put hline after heading, 2 to also put hlines before and after heading
and at table end

center set to TRUE to enclose the tabular in a LaTeX center environment

... if present, x is run through format.df with those extra arguments

Value

a character string containing LaTeX markup

Author(s)

Frank E. Harrell, Jr.,
Department of Biostatistics,
Vanderbilt University,
<fh@fharrell.com>

See Also

latex.default, format.df

Examples

x <- matrix(1:6, nrow=2, dimnames=list(c('a','b'),c('c','d','this that')))
latexTabular(x) # a character string with LaTeX markup

latexTherm Create LaTeX Thermometers and Colored Needles

Description

latexTherm creates a LaTeX picture environment for drawing a series of thermometers whose
heights depict the values of a variable y assumed to be scaled from 0 to 1. This is useful for show-
ing fractions of sample analyzed in any table or plot, intended for a legend. For example, four
thermometers might be used to depict the fraction of enrolled patients included in the current anal-
ysis, the fraction randomized, the fraction of patients randomized to treatment A being analyzed,
and the fraction randomized to B being analyzed. The picture is placed inside a LaTeX macro defi-
nition for macro variable named name, to be invoked by the user later in the LaTeX file using name
preceeded by a backslash.

220 latexTherm

If y has an attribute "table", it is assumed to contain a character string with LaTeX code. This code
is used as a tooltip popup for PDF using the LaTeX ocgtools package or using style tooltips.
Typically the code will contain a tabular environment. The user must define a LaTeX macro
tooltipn that takes two arguments (original object and pop-up object) that does the pop-up.

latexNeedle is similar to latexTherm except that vertical needles are produced and each may have
its own color. A grayscale box is placed around the needles and provides the 0-1 y-axis reference.
Horizontal grayscale grid lines may be drawn.

pngNeedle is similar to latexNeedle but is for generating small png graphics. The full graphics
file name is returned invisibly.

Usage

latexTherm(y, name, w = 0.075, h = 0.15, spacefactor = 1/2, extra = 0.07,
file = "", append = TRUE)

latexNeedle(y, x=NULL, col='black', href=0.5, name, w=.05, h=.15,
extra=0, file = "", append=TRUE)

pngNeedle(y, x=NULL, col='black', href=0.5, lwd=3.5, w=6, h=18,
file=tempfile(fileext='.png'))

Arguments

y a vector of 0-1 scaled values. Boxes and their frames are omitted for NA elements

x a vector corresponding to y giving x-coordinates. Scaled accordingly, or defaults
to equally-spaced values.

name name of LaTeX macro variable to be defined

w width of a single box (thermometer) in inches. For latexNeedle and pngNeedle
is the spacing between needles, the latter being in pixels.

h height of a single box in inches. For latexNeedle and pngNeedle is the height
of the frame, the latter in pixels.

spacefactor fraction of w added for extra space between boxes for latexTherm

extra extra space in inches to set aside to the right of and above the series of boxes or
frame

file name of file to which to write LaTeX code. Default is the console. Also used as
base file name for png graphic. Default for that is from tempfile.

append set to FALSE to write over file

col a vector of colors corresponding to positions in y. col is repeated if too short.

href values of y (0-1) for which horizontal grayscale reference lines are drawn for
latexNeedle and pngNeedle. Set to NULL to not draw any reference lines

lwd line width of needles for pngNeedle

Author(s)

Frank Harrell

legendfunctions 221

Examples

Not run:
The following is in the Hmisc tests directory
For a knitr example see latexTherm.Rnw in that directory
ct <- function(...) cat(..., sep='')
ct('\documentclass{report}\begin{document}\n')
latexTherm(c(1, 1, 1, 1), name='lta')
latexTherm(c(.5, .7, .4, .2), name='ltb')
latexTherm(c(.5, NA, .75, 0), w=.3, h=1, name='ltc', extra=0)
latexTherm(c(.5, NA, .75, 0), w=.3, h=1, name='ltcc')
latexTherm(c(0, 0, 0, 0), name='ltd')
ct('This is a the first:\lta and the second:\ltb\\ and the third
without extra:\ltc END\\\nThird with extra:\ltcc END\\
\vspace{2in}\\
All data = zero, frame only:\ltd\\
\end{document}\n')
w <- pngNeedle(c(.2, .5, .7))
cat(tobase64image(w)) # can insert this directly into an html file

End(Not run)

legendfunctions Legend Creation Functions

Description

Wrapers to plot defined legend ploting functions

Usage

Key(...)
Key2(...)
sKey(...)

Arguments

... arguments to pass to wrapped functions

list.tree Pretty-print the Structure of a Data Object

Description

This is a function to pretty-print the structure of any data object (usually a list). It is similar to the
R function str.

222 list.tree

Usage

list.tree(struct, depth=-1, numbers=FALSE, maxlen=22, maxcomp=12,
attr.print=TRUE, front="", fill=". ", name.of, size=TRUE)

Arguments

struct The object to be displayed

depth Maximum depth of recursion (of lists within lists . . .) to be printed; negative
value means no limit on depth.

numbers If TRUE, use numbers in leader instead of dots to represent position in structure.

maxlen Approximate maximum length (in characters) allowed on each line to give the
first few values of a vector. maxlen=0 suppresses printing any values.

maxcomp Maximum number of components of any list that will be described.

attr.print Logical flag, determining whether a description of attributes will be printed.

front Front material of a line, for internal use.

fill Fill character used for each level of indentation.

name.of Name of object, for internal use (deparsed version of struct by default).

size Logical flag, should the size of the object in bytes be printed?

A description of the structure of struct will be printed in outline form, with in-
dentation for each level of recursion, showing the internal storage mode, length,
class(es) if any, attributes, and first few elements of each data vector. By default
each level of list recursion is indicated by a "." and attributes by "A".

Author(s)

Alan Zaslavsky, <zaslavsk@hcp.med.harvard.edu>

See Also

str

Examples

X <- list(a=ordered(c(1:30,30:1)),b=c("Rick","John","Allan"),
c=diag(300),e=cbind(p=1008:1019,q=4))

list.tree(X)
In R you can say str(X)

makeNstr 223

makeNstr creates a string that is a repeat of a substring

Description

Takes a character and creates a string that is the character repeated len times.

Usage

makeNstr(char, len)

Arguments

char character to be repeated

len number of times to repeat char.

Value

A string that is char repeated len times.

Author(s)

Charles Dupont

See Also

paste, rep

Examples

makeNstr(" ", 5)

mApply Apply a Function to Rows of a Matrix or Vector

Description

mApply is like tapply except that the first argument can be a matrix or a vector, and the output is
cleaned up if simplify=TRUE. It uses code adapted from Tony Plate (<tplate@blackmesacapital.com>)
to operate on grouped submatrices.

As mApply can be much faster than using by, it is often worth the trouble of converting a data frame
to a numeric matrix for processing by mApply. asNumericMatrix will do this, and matrix2dataFrame
will convert a numeric matrix back into a data frame.

224 mApply

Usage

mApply(X, INDEX, FUN, ..., simplify=TRUE, keepmatrix=FALSE)

Arguments

X a vector or matrix capable of being operated on by the function specified as the
FUN argument

INDEX list of factors, each of same number of rows as ’X’ has.

FUN the function to be applied. In the case of functions like ’+’, ’

... optional arguments to ’FUN’.

simplify set to ’FALSE’ to suppress simplification of the result in to an array, matrix, etc.

keepmatrix set to TRUE to keep result as a matrix even if simplify is TRUE, in the case of
only one stratum

Value

For mApply, the returned value is a vector, matrix, or list. If FUN returns more than one number,
the result is an array if simplify=TRUE and is a list otherwise. If a matrix is returned, its rows
correspond to unique combinations of INDEX. If INDEX is a list with more than one vector, FUN
returns more than one number, and simplify=FALSE, the returned value is a list that is an array with
the first dimension corresponding to the last vector in INDEX, the second dimension corresponding
to the next to last vector in INDEX, etc., and the elements of the list-array correspond to the values
computed by FUN. In this situation the returned value is a regular array if simplify=TRUE. The order
of dimensions is as previously but the additional (last) dimension corresponds to values computed
by FUN.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

asNumericMatrix, matrix2dataFrame, tapply, sapply, lapply, mapply, by.

Examples

require(datasets, TRUE)
a <- mApply(iris[,-5], iris$Species, mean)

mChoice 225

mChoice Methods for Storing and Analyzing Multiple Choice Variables

Description

mChoice is a function that is useful for grouping variables that represent individual choices on a
multiple choice question. These choices are typically factor or character values but may be of
any type. Levels of component factor variables need not be the same; all unique levels (or unique
character values) are collected over all of the multiple variables. Then a new character vector
is formed with integer choice numbers separated by semicolons. Optimally, a database system
would have exported the semicolon-separated character strings with a levels attribute containing
strings defining value labels corresponding to the integer choice numbers. mChoice is a function
for creating a multiple-choice variable after the fact. mChoice variables are explicitly handed by the
describe and summary.formula functions. NAs or blanks in input variables are ignored.

format.mChoice will convert the multiple choice representation to text form by substituting levels
for integer codes. as.double.mChoice converts the mChoice object to a binary numeric matrix,
one column per used level (or all levels of drop=FALSE. This is called by the user by invok-
ing as.numeric. There is a print method and a summary method, and a print method for the
summary.mChoice object. The summary method computes frequencies of all two-way choice com-
binations, the frequencies of the top 5 combinations, information about which other choices are
present when each given choice is present, and the frequency distribution of the number of choices
per observation. This summary output is used in the describe function. The print method re-
turns an html character string if options(prType='html') is in effect if render=FALSE or renders
the html otherwise. This is used by print.describe and is most effective when short=TRUE is
specified to summary.

in.mChoice creates a logical vector the same length as x whose elements are TRUE when the obser-
vation in x contains at least one of the codes or value labels in the second argument.

match.mChoice creates an integer vector of the indexes of all elements in table which contain any
of the speicified levels

nmChoice returns an integer vector of the number of choices that were made

is.mChoice returns TRUE is the argument is a multiple choice variable.

Usage

mChoice(..., label='',
sort.levels=c('original','alphabetic'),
add.none=FALSE, drop=TRUE, ignoreNA=TRUE)

S3 method for class 'mChoice'
format(x, minlength=NULL, sep=";", ...)

S3 method for class 'mChoice'
as.double(x, drop=FALSE, ...)

S3 method for class 'mChoice'

226 mChoice

print(x, quote=FALSE, max.levels=NULL,
width=getOption("width"), ...)

S3 method for class 'mChoice'
as.character(x, ...)

S3 method for class 'mChoice'
summary(object, ncombos=5, minlength=NULL,
drop=TRUE, short=FALSE, ...)

S3 method for class 'summary.mChoice'
print(x, prlabel=TRUE, render=TRUE, ...)

S3 method for class 'mChoice'
x[..., drop=FALSE]

match.mChoice(x, table, nomatch=NA, incomparables=FALSE)

inmChoice(x, values, condition=c('any', 'all'))

inmChoicelike(x, values, condition=c('any', 'all'),
ignore.case=FALSE, fixed=FALSE)

nmChoice(object)

is.mChoice(x)

S3 method for class 'mChoice'
Summary(..., na.rm)

Arguments

na.rm Logical: remove NA’s from data
table a vector (mChoice) of values to be matched against.
nomatch value to return if a value for x does not exist in table.
incomparables logical whether incomparable values should be compaired.
... a series of vectors
label a character string label attribute to attach to the matrix created by mChoice

sort.levels set sort.levels="alphabetic" to sort the columns of the matrix created by
mChoice alphabetically by category rather than by the original order of levels in
component factor variables (if there were any input variables that were factors)

add.none Set add.none to TRUE to make a new category 'none' if it doesn’t already exist
and if there is an observations with no choices selected.

drop set drop=FALSE to keep unused factor levels as columns of the matrix produced
by mChoice

ignoreNA set to FALSE to keep any NAs present in data as a real level. Prior to Hmisc 4.7-2
FALSE was the default.

mChoice 227

x an object of class "mchoice" such as that created by mChoice. For is.mChoice
is any object.

object an object of class "mchoice" such as that created by mChoice

ncombos maximum number of combos.

width With of a line of text to be formated

quote quote the output

max.levels max levels to be displayed

minlength By default no abbreviation of levels is done in format and summary. Specify a
positive integer to use abbreviation in those functions. See abbreviate.

short set to TRUE to have summary.mChoice use integer choice numbers in its tables,
and to print the choice level definitions at the top

sep character to use to separate levels when formatting

prlabel set to FALSE to keep print.summary.mChoice from printing the variable label
and number of unique values. Ignore for html output.

render applies of options(prType='html') is in effect. Set to FALSE to return the
html text instead of rendering the html.

values a scalar or vector. If values is integer, it is the choice codes, and if it is a
character vector, it is assumed to be value labels. For inmChoicelike values
must be character strings which are pieces of choice labels.

condition set to 'all' for inmChoice to require that all choices in values be present
instead of the default of any of them present.

ignore.case set to TRUE to have inmChoicelike ignore case in the data when matching on
values

fixed see grep

Value

mChoice returns a character vector of class "mChoice" plus attributes "levels" and "label".
summary.mChoice returns an object of class "summary.mChoice". inmChoice and inmChoicelike
return a logical vector. format.mChoice returns a character vector, and as.double.mChoice re-
turns a binary numeric matrix. nmChoice returns an integer vector. print.summary.mChoice re-
turns an html character string if options(prType='html') is in effect.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

label, combplotp

228 mChoice

Examples

options(digits=3)
set.seed(3)
n <- 20
sex <- factor(sample(c("m","f"), n, rep=TRUE))
age <- rnorm(n, 50, 5)
treatment <- factor(sample(c("Drug","Placebo"), n, rep=TRUE))

Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',

'Muscle Ache','Depressed')
symptom1 <- sample(symp, n, TRUE)
symptom2 <- sample(symp, n, TRUE)
symptom3 <- sample(symp, n, TRUE)
cbind(symptom1, symptom2, symptom3)[1:5,]
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
Symptoms
print(Symptoms, long=TRUE)
format(Symptoms[1:5])
inmChoice(Symptoms,'Headache')
inmChoicelike(Symptoms, 'head', ignore.case=TRUE)
levels(Symptoms)
inmChoice(Symptoms, 3)
Find all subjects with either of two symptoms
inmChoice(Symptoms, c('Headache','Hangnail'))
Note: In this example, some subjects have the same symptom checked
multiple times; in practice these redundant selections would be NAs
mChoice will ignore these redundant selections
Find all subjects with both symptoms
inmChoice(Symptoms, c('Headache', 'Hangnail'), condition='all')

meanage <- N <- numeric(5)
for(j in 1:5) {
meanage[j] <- mean(age[inmChoice(Symptoms,j)])
N[j] <- sum(inmChoice(Symptoms,j))

}
names(meanage) <- names(N) <- levels(Symptoms)
meanage
N

Manually compute mean age for 2 symptoms
mean(age[symptom1=='Headache' | symptom2=='Headache' | symptom3=='Headache'])
mean(age[symptom1=='Hangnail' | symptom2=='Hangnail' | symptom3=='Hangnail'])

summary(Symptoms)

#Frequency table sex*treatment, sex*Symptoms
summary(sex ~ treatment + Symptoms, fun=table)
Check:
ma <- inmChoice(Symptoms, 'Muscle Ache')
table(sex[ma])

mdb.get 229

could also do:
summary(sex ~ treatment + mChoice(symptom1,symptom2,symptom3), fun=table)

#Compute mean age, separately by 3 variables
summary(age ~ sex + treatment + Symptoms)

summary(age ~ sex + treatment + Symptoms, method="cross")

f <- summary(treatment ~ age + sex + Symptoms, method="reverse", test=TRUE)
f
trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)

mdb.get Read Tables in a Microsoft Access Database

Description

Assuming the mdbtools package has been installed on your system and is in the system path,
mdb.get imports one or more tables in a Microsoft Access database. Date-time variables are con-
verted to dates or chron package date-time variables. The csv.get function is used to import
automatically exported csv files. If tables is unspecified all tables in the database are retrieved. If
more than one table is imported, the result is a list of data frames.

Usage

mdb.get(file, tables=NULL, lowernames=FALSE, allow=NULL,
dateformat='%m/%d/%y', mdbexportArgs='-b strip', ...)

Arguments

file the file name containing the Access database

tables character vector specifying the names of tables to import. Default is to import
all tables. Specify tables=TRUE to return the list of available tables.

lowernames set this to TRUE to change variable names to lower case

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

dateformat see cleanup.import. Default is the usual Access format used in the U.S.

mdbexportArgs command line arguments to issue to mdb-export. Set to '' to omit '-b strip'.

... arguments to pass to csv.get

230 meltData

Details

Uses the mdbtools package executables mdb-tables, mdb-schema, and mdb-export (with by de-
fault option -b strip to drop any binary output). In Debian/Ubuntu Linux run apt get install
mdbtools. cleanup.import is invoked by csv.get to transform variables and store them as effi-
ciently as possible.

Value

a new data frame or a list of data frames

Author(s)

Frank Harrell, Vanderbilt University

See Also

data.frame, cleanup.import, csv.get, Date, chron

Examples

Not run:
Read all tables in the Microsoft Access database Nwind.mdb
d <- mdb.get('Nwind.mdb')
contents(d)
for(z in d) print(contents(z))
Just print the names of tables in the database
mdb.get('Nwind.mdb', tables=TRUE)
Import one table
Orders <- mdb.get('Nwind.mdb', tables='Orders')

End(Not run)

meltData meltData

Description

Melt a Dataset To Examine All Xs vs Y

Usage

meltData(
formula,
data,
tall = c("right", "left"),
vnames = c("labels", "names"),
sepunits = FALSE,
...

)

meltData 231

Arguments

formula a formula

data data frame or table

tall see above

vnames set to names to always use variable names instead of labels for X

sepunits set to TRUE to create a separate variable Units to hold units of measurement. The
variable is not created if no original variables have a non-blank units attribute.

... passed to label()

Details

Uses a formula with one or more left hand side variables (Y) and one or more right hand side
variables (X). Uses data.table::melt() to melt data so that each X is played against the same Y
if tall='right' (the default) or each Y is played against the same X combination if tall='left'.
The resulting data table has variables Y with their original names (if tall='right') or variables X
with their original names (if tall='left'), variable, and value. By default variable is taken
as label()s of the tall variables.

Value

data table

Author(s)

Frank Harrell

See Also

label()

Examples

d <- data.frame(y1=(1:10)/10, y2=(1:10)/100, x1=1:10, x2=101:110)
label(d$x1) <- 'X1'
units(d$x1) <- 'mmHg'
m=meltData(y1 + y2 ~ x1 + x2, data=d, units=TRUE) # consider also html=TRUE
print(m)
m=meltData(y1 + y2 ~ x1 + x2, data=d, tall='left')
print(m)

232 Merge

Merge Merge Multiple Data Frames or Data Tables

Description

Merges an arbitrarily large series of data frames or data tables containing common id variables.
Information about number of observations and number of unique ids in individual and final merged
datasets is printed. The first data frame/table has special meaning in that all of its observations
are kept whether they match ids in other data frames or not. For all other data frames, by default
non-matching observations are dropped. The first data frame is also the one against which counts
of unique ids are compared. Sometimes merge drops variable attributes such as labels and units.
These are restored by Merge.

Usage

Merge(..., id = NULL, all = TRUE, verbose = TRUE)

Arguments

... two or more dataframes or data tables

id a formula containing all the identification variables such that the combination
of these variables uniquely identifies subjects or records of interest. May be
omitted for data tables; in that case the key function retrieves the id variables.

all set to FALSE to drop observations not found in second and later data frames (only
applies if not using data.table)

verbose set to FALSE to not print information about observations

Examples

Not run:
a <- data.frame(sid=1:3, age=c(20,30,40))
b <- data.frame(sid=c(1,2,2), bp=c(120,130,140))
d <- data.frame(sid=c(1,3,4), wt=c(170,180,190))
all <- Merge(a, b, d, id = ~ sid)
First file should be the master file and must
contain all ids that ever occur. ids not in the master will
not be merged from other datasets.
a <- data.table(a); setkey(a, sid)
data.table also does not allow duplicates without allow.cartesian=TRUE
b <- data.table(sid=1:2, bp=c(120,130)); setkey(b, sid)
d <- data.table(d); setkey(d, sid)
all <- Merge(a, b, d)

End(Not run)

mgp.axis 233

mgp.axis Draw Axes With Side-Specific mgp Parameters

Description

mgp.axis is a version of axis that uses the appropriate side-specific mgp parameter (see par) to
account for different space requirements for axis labels vertical vs. horizontal tick marks. mgp.axis
also fixes a bug in axis(2,...) that causes it to assume las=1.

mgp.axis.labels is used so that different spacing between tick marks and axis tick mark labels
may be specified for x- and y-axes. Use mgp.axis.labels('default') to set defaults. Users can
set values manually using mgp.axis.labels(x,y) where x and y are 2nd value of par('mgp') to
use. Use mgp.axis.labels(type=w) to retrieve values, where w='x', 'y', 'x and y', 'xy', to get
3 mgp values (first 3 types) or 2 mgp.axis.labels.

Usage

mgp.axis(side, at = NULL, ...,
mgp = mgp.axis.labels(type = if (side == 1 | side == 3) "x"

else "y"),
axistitle = NULL, cex.axis=par('cex.axis'), cex.lab=par('cex.lab'))

mgp.axis.labels(value,type=c('xy','x','y','x and y'))

Arguments

side, at see par

... arguments passed through to axis

mgp, cex.axis, cex.lab
see par

axistitle if specified will cause axistitle to be drawn on the appropriate axis as a title

value vector of values to which to set system option mgp.axis.labels

type see above

Value

mgp.axis.labels returns the value of mgp (only the second element of mgp if type="xy" or a list
with elements x and y if type="x or y", each list element being a 3-vector) for the appropriate axis
if value is not specified, otherwise it returns nothing but the system option mgp.axis.labels is
set.

mgp.axis returns nothing.

Side Effects

mgp.axis.labels stores the value in the system option mgp.axis.labels

234 mhgr

Author(s)

Frank Harrell

See Also

par

Examples

Not run:
mgp.axis.labels(type='x') # get default value for x-axis
mgp.axis.labels(type='y') # get value for y-axis
mgp.axis.labels(type='xy') # get 2nd element of both mgps
mgp.axis.labels(type='x and y') # get a list with 2 elements
mgp.axis.labels(c(3,.5,0), type='x') # set
options('mgp.axis.labels') # retrieve

plot(..., axes=FALSE)
mgp.axis(1, "X Label")
mgp.axis(2, "Y Label")

End(Not run)

mhgr Miscellaneous Functions for Epidemiology

Description

The mhgr function computes the Cochran-Mantel-Haenszel stratified risk ratio and its confidence
limits using the Greenland-Robins variance estimator.

The lrcum function takes the results of a series of 2x2 tables representing the relationship between
test positivity and diagnosis and computes positive and negative likelihood ratios (with all their
deficiencies) and the variance of their logarithms. Cumulative likelihood ratios and their confidence
intervals (assuming independence of tests) are computed, assuming a string of all positive tests or a
string of all negative tests. The method of Simel et al as described in Altman et al is used.

Usage

mhgr(y, group, strata, conf.int = 0.95)
S3 method for class 'mhgr'
print(x, ...)

lrcum(a, b, c, d, conf.int = 0.95)
S3 method for class 'lrcum'
print(x, dec=3, ...)

mhgr 235

Arguments

y a binary response variable

group a variable with two unique values specifying comparison groups

strata the stratification variable

conf.int confidence level

x an object created by mhgr or lrcum

a frequency of true positive tests

b frequency of false positive tests

c frequency of false negative tests

d frequency of true negative tests

dec number of places to the right of the decimal to print for lrcum

... addtitional arguments to be passed to other print functions

Details

Uses equations 4 and 13 from Greenland and Robins.

Value

a list of class "mhgr" or of class "lrcum".

Author(s)

Frank E Harrell Jr <fh@fharrell.com>

References

Greenland S, Robins JM (1985): Estimation of a common effect parameter from sparse follow-up
data. Biometrics 41:55-68.

Altman DG, Machin D, Bryant TN, Gardner MJ, Eds. (2000): Statistics with Confidence, 2nd Ed.
Bristol: BMJ Books, 105-110.

Simel DL, Samsa GP, Matchar DB (1991): Likelihood ratios with confidence: sample size estima-
tion for diagnostic test studies. J Clin Epi 44:763-770.

See Also

logrank

Examples

Greate Migraine dataset used in Example 28.6 in the SAS PROC FREQ guide
d <- expand.grid(response=c('Better','Same'),

treatment=c('Active','Placebo'),
sex=c('female','male'))

d$count <- c(16, 11, 5, 20, 12, 16, 7, 19)
d

236 minor.tick

Expand data frame to represent raw data
r <- rep(1:8, d$count)
d <- d[r,]
with(d, mhgr(response=='Better', treatment, sex))

Discrete survival time example, to get Cox-Mantel relative risk and CL
From Stokes ME, Davis CS, Koch GG, Categorical Data Analysis Using the
SAS System, 2nd Edition, Sectino 17.3, p. 596-599
#
Input data in Table 17.5
d <- expand.grid(treatment=c('A','P'), center=1:3)
d$healed2w <- c(15,15,17,12, 7, 3)
d$healed4w <- c(17,17,17,13,17,17)
d$notHealed4w <- c(2, 7,10,15,16,18)
d
Reformat to the way most people would collect raw data
d1 <- d[rep(1:6, d$healed2w),]
d1$time <- '2'
d1$y <- 1
d2 <- d[rep(1:6, d$healed4w),]
d2$time <- '4'
d2$y <- 1
d3 <- d[rep(1:6, d$notHealed4w),]
d3$time <- '4'
d3$y <- 0
d <- rbind(d1, d2, d3)
d$healed2w <- d$healed4w <- d$notHealed4w <- NULL
d
Finally, duplicate appropriate observations to create 2 and 4-week
risk sets. Healed and not healed at 4w need to be in the 2-week
risk set as not healed
d2w <- subset(d, time=='4')
d2w$time <- '2'
d2w$y <- 0
d24 <- rbind(d, d2w)
with(d24, table(y, treatment, time, center))
Matches Table 17.6

with(d24, mhgr(y, treatment, interaction(center, time, sep=';')))

Get cumulative likelihood ratios and their 0.95 confidence intervals
based on the following two tables
#
Disease Disease
+ - + -
Test + 39 3 20 5
Test - 21 17 22 15

lrcum(c(39,20), c(3,5), c(21,22), c(17,15))

minor.tick Minor Tick Marks

minor.tick 237

Description

Adds minor tick marks to an existing plot. All minor tick marks that will fit on the axes will be
drawn.

Usage

minor.tick(nx=2, ny=2, tick.ratio=0.5, x.args = list(), y.args = list())

Arguments

nx number of intervals in which to divide the area between major tick marks on the
X-axis. Set to 1 to suppress minor tick marks.

ny same as nx but for the Y-axis.

tick.ratio ratio of lengths of minor tick marks to major tick marks. The length of major
tick marks is retrieved from par("tck").

x.args additionl arguments (e.g. post, lwd) used by axis() function when rendering
the X-axis.

y.args same as x.args but for Y-axis.

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>
Earl Bellinger
Max Planck Institute
<earlbellinger@gmail.com>
Viktor Horvath
Brandeis University
<vhorvath@brandeis.edu>

See Also

axis

Examples

Plot with default settings
plot(runif(20), runif(20))
minor.tick()

Plot with arguments passed to axis()
plot(c(0,1), c(0,1), type = 'n', axes = FALSE, ann = FALSE)
setting up a plot without axes and annotation

238 Misc

points(runif(20), runif(20)) # plotting data
axis(1, pos = 0.5, lwd = 2) # showing X-axis at Y = 0.5 with formatting
axis(2, col = 2) # formatted Y-axis
minor.tick(nx = 4, ny = 4, tick.ratio = 0.3,

x.args = list(pos = 0.5, lwd = 2), # X-minor tick format argumnets
y.args = list(col = 2)) # Y-minor tick format arguments

Misc Miscellaneous Functions

Description

This documents miscellaneous small functions in Hmisc that may be of interest to users.

clowess runs lowess but if the iter argument exceeds zero, sometimes wild values can result, in
which case lowess is re-run with iter=0.

confbar draws multi-level confidence bars using small rectangles that may be of different colors.

getLatestSource fetches and sources the most recent source code for functions in GitHub.

grType retrieves the system option grType, which is forced to be "base" if the plotly package is
not installed.

prType retrieves the system option prType, which is set to "plain" if the option is not set. print
methods that allow for markdown/html/latex can be automatically invoked by setting options(prType="html")
or options(prType='latex').

htmlSpecialType retrieves the system option htmlSpecialType, which is set to "unicode" if the
option is not set. htmlSpecialType='unicode' cause html-generating functions in Hmisc and rms
to use unicode for special characters, and htmlSpecialType='&' uses the older ampersand 3-digit
format.

inverseFunction generates a function to find all inverses of a monotonic or nonmonotonic func-
tion that is tabulated at vectors (x,y), typically 1000 points. If the original function is monotonic,
simple linear interpolation is used and the result is a vector, otherwise linear interpolation is used
within each interval in which the function is monotonic and the result is a matrix with number of
columns equal to the number of monotonic intervals. If a requested y is not within any interval,
the extreme x that pertains to the nearest extreme y is returned. Specifying what=’sample’ to the
returned function will cause a vector to be returned instead of a matrix, with elements taken as a
random choice of the possible inverses.

james.stein computes James-Stein shrunken estimates of cell means given a response variable
(which may be binary) and a grouping indicator.

keepHattrib for an input variable or a data frame, creates a list object saving special Hmisc at-
tributes such as label and units that might be lost during certain operations such as running
data.table. restoreHattrib restores these attributes.

km.quick provides a fast way to invoke survfitKM in the survival package to efficiently get
Kaplan-Meier or Fleming-Harrington estimates for a single stratum for a vector of time points (if
times is given) or to get a vector of survival time quantiles (if q is given). If neither is given, the
whole curve is returned in a list with objects time and surv, and there is an option to consider an

Misc 239

interval as pertaining to greater than or equal to a specific time instead of the traditional greater
than. If the censoring is not right censoring, the more general survfit is called by km.quick.

latexBuild takes pairs of character strings and produces a single character string containing con-
catenation of all of them, plus an attribute "close" which is a character string containing the LaTeX
closure that will balance LaTeX code with respect to parentheses, braces, brackets, or begin vs.
end. When an even-numbered element of the vector is not a left parenthesis, brace, or bracket, the
element is taken as a word that was surrounded by begin and braces, for which the corresponding
end is constructed in the returned attribute.

lm.fit.qr.bare is a fast stripped-down function for computing regression coefficients, residuals,
R2, and fitted values. It uses lm.fit.

matxv multiplies a matrix by a vector, handling automatic addition of intercepts if the matrix does
not have a column of ones. If the first argument is not a matrix, it will be converted to one. An op-
tional argument allows the second argument to be treated as a matrix, useful when its rows represent
bootstrap reps of coefficients. Then ab’ is computed. matxv respects the "intercepts" attribute if
it is stored on b by the rms package. This is used by orm fits that are bootstrap-repeated by bootcov
where only the intercept corresponding to the median is retained. If kint has nonzero length, it is
checked for consistency with the attribute.

makeSteps is a copy of the dostep function inside the survival package’s plot.survfit function.
It expands a series of points to include all the segments needed to plot step functions. This is useful
for drawing polygons to shade confidence bands for step functions.

nomiss returns a data frame (if its argument is one) with rows corresponding to NAs removed, or it
returns a matrix with rows with any element missing removed.

outerText uses axis() to put right-justified text strings in the right margin. Placement depends on
par('mar')[4]

plotlyParm is a list of functions useful for specifying parameters to plotly graphics.

plotp is a generic to handle plotp methods to make plotly graphics.

rendHTML renders HTML in a character vector, first converting to one character string with newline
delimeters. If knitr is currently running, runs this string through knitr::asis_output so that
the user need not include results='asis' in the chunk header for R Markdown or Quarto. If
knitr is not running, uses htmltools::browsable and htmltools::HTML and prints the result so
that an RStudio viewer (if running inside RStudio) or separate browser window displays the ren-
dered HTML. The HTML code is surrounded by yaml markup to make Pandoc not fiddle with the
HTML. Set the argument html=FALSE to not add this, in case you are really rendering markdown.
html=FALSE also invokes rmarkdown::render to convert the character vector to HTML before
using htmltools to view, assuming the characters represent RMarkdown/Quarto text other than
the YAML header. If options(rawmarkup=TRUE) is in effect, rendHTML will just cat() its first
argument. This is useful when rendering is happening inside a Quarto margin, for example.

sepUnitsTrans converts character vectors containing values such as c("3 days","3day","4month","2
years","2weeks","7") to numeric vectors (here c(3,3,122,730,14,7)) in a flexible fashion.
The user can specify a vector of units of measurements and conversion factors. The units with a
conversion factor of 1 are taken as the target units, and if those units are present in the character
strings they are ignored. The target units are added to the resulting vector as the "units" attribute.

strgraphwrap is like strwrap but is for the current graphics environment.

tobase64image is a function written by Dirk Eddelbuettel that uses the base64enc package to
convert a png graphic file to base64 encoding to include as an inline image in an html file.

240 Misc

trap.rule computes the area under a curve using the trapezoidal rule, assuming x is sorted.

trellis.strip.blank sets up Trellis or Lattice graphs to have a clear background on the strips for
panel labels.

unPaste provides a version of the S-Plus unpaste that works for R and S-Plus.

whichClosePW is a very fast function using weighted multinomial sampling to determine which
element of a vector is "closest" to each element of another vector. whichClosest quickly finds the
closest element without any randomness.

whichClosek is a slow function that finds, after jittering the lookup table, the k closest matchest to
each element of the other vector, and chooses from among these one at random.

xless is a function for Linux/Unix users to invoke the system xless command to pop up a window
to display the result of printing an object. For MacOS xless uses the system open command to
pop up a TextEdit window.

Usage

confbar(at, est, se, width, q = c(0.7, 0.8, 0.9, 0.95, 0.99),
col = gray(c(0, 0.25, 0.5, 0.75, 1)),
type = c("v", "h"), labels = TRUE, ticks = FALSE,
cex = 0.5, side = "l", lwd = 5, clip = c(-1e+30, 1e+30),
fun = function(x) x,
qfun = function(x) ifelse(x == 0.5, qnorm(x),

ifelse(x < 0.5, qnorm(x/2),
qnorm((1 + x)/2))))

getLatestSource(x=NULL, package='Hmisc', recent=NULL, avail=FALSE)
grType()
prType()
htmlSpecialType()
inverseFunction(x, y)
james.stein(y, group)
keepHattrib(obj)
km.quick(S, times, q,

type = c("kaplan-meier", "fleming-harrington", "fh2"),
interval = c(">", ">="), method=c('constant', 'linear'), fapprox=0, n.risk=FALSE)

latexBuild(..., insert, sep='')
lm.fit.qr.bare(x, y, tolerance, intercept=TRUE, xpxi=FALSE, singzero=FALSE)
matxv(a, b, kint=1, bmat=FALSE)
nomiss(x)
outerText(string, y, cex=par('cex'), ...)
plotlyParm
plotp(data, ...)
rendHTML(x, html=TRUE)
restoreHattrib(obj, attribs)
sepUnitsTrans(x, conversion=c(day=1, month=365.25/12, year=365.25, week=7),

round=FALSE, digits=0)
strgraphwrap(x, width = 0.9 * getOption("width"),

indent = 0, exdent = 0,
prefix = "", simplify = TRUE, units='user', cex=NULL)

Misc 241

tobase64image(file, Rd = FALSE, alt = "image")
trap.rule(x, y)
trellis.strip.blank()
unPaste(str, sep="/")
whichClosest(x, w)
whichClosePW(x, w, f=0.2)
whichClosek(x, w, k)
xless(x, ..., title)

Arguments

a a numeric matrix or vector

alt, Rd see base64::img

at x-coordinate for vertical confidence intervals, y-coordinate for horizontal

attribs an object returned by keepHattrib

avail set to TRUE to have getLatestSource return a data frame of available files and
latest versions instead of fetching any

b a numeric vector

cex character expansion factor

clip interval to truncate limits

col vector of colors

conversion a named numeric vector

data an object having a plotp method

digits number of digits used for round

est vector of point estimates for confidence limits

f a scaling constant

file a file name

fun function to transform scale

group a categorical grouping variable

html set to FALSE to tell rendHTML to not surround HTML code with yaml

insert a list of 3-element lists for latexBuild. The first of each 3-element list is a
character string with an environment name. The second specifies the order:
"before" or "after", the former indicating that when the environment is found,
the third element of the list is inserted before or after it, according to the second
element.

intercept set to FALSE to not automatically add a column of ones to the x matrix

k get the k closest matches

kint which element of b to add to the result if a does not contain a column for inter-
cepts

bmat set to TRUE to consider b a matrix of repeated coefficients, usually resampled
estimates with rows corresponding to resamples

labels set to FALSE to omit drawing confidence coefficients

242 Misc

lwd line widths

package name of package for getLatestSource, default is 'Hmisc'

obj a variable, data frame, or data table

q vector of confidence coefficients or quantiles

qfun quantiles on transformed scale

recent an integer telling getLatestSource to get the recent most recently modified
files from the package

round set to TRUE to round converted values

S a Surv object

se vector of standard errors

sep a single character string specifying the delimiter. For latexBuild the default is
"".

side for confbar is "b","l","t","r" for bottom, left, top, right.

str a character string vector

string a character string vector

ticks set to TRUE to draw lines between rectangles

times a numeric vector of times

title a character string to title a window or plot. Ignored for xless under MacOs.

tolerance tolerance for judging singularity in matrix

type "v" for vertical, "h" for horizontal. For km.quick specifies the type of survival
estimator.

w a numeric vector

width width of confidence rectanges in user units, or see strwrap

x a numeric vector (matrix for lm.fit.qr.bare) or data frame. For xless may
be any object that is sensible to print. For sepUnitsTrans is a character or
factor variable. For getLatestSource is a character string or vector of character
strings containing base file names to retrieve from CVS. Set x='all' to retrieve
all source files. For clowess, x may also be a list with x and y components. For
inverseFunction, x and y contain evaluations of the function whose inverse is
needed. x is typically an equally-spaced grid of 1000 points. For strgraphwrap
is a character vector. For rendHTML x is a character vector.

xpxi set to TRUE to add an element to the result containing the inverse of X ′X

singzero set to TRUE to set coefficients corresponding to singular variables to zero instead
of NA.

y a numeric vector. For inverseFunction y is the evaluated function values at x.
indent, exdent, prefix

see strwrap

simplify see sapply

units see par

interval specifies whether to deal with probabilities of exceeding a value (the default) or
of exceeding or equalling the value

Misc 243

method, fapprox see approx

n.risk set to TRUE to include the number at risk in the result

... arguments passed through to another function. For latexBuild represents pairs,
with odd numbered elements being character strings containing LaTeX code or
a zero-length object to ignore, and even-numbered elements representing LaTeX
left parenthesis, left brace, or left bracket, or environment name.

Author(s)

Frank Harrell and Charles Dupont

Examples

trap.rule(1:100,1:100)

unPaste(c('a;b or c','ab;d','qr;s'), ';')

sepUnitsTrans(c('3 days','4 months','2 years','7'))

set.seed(1)
whichClosest(1:100, 3:5)
whichClosest(1:100, rep(3,20))

whichClosePW(1:100, rep(3,20))
whichClosePW(1:100, rep(3,20), f=.05)
whichClosePW(1:100, rep(3,20), f=1e-10)

x <- seq(-1, 1, by=.01)
y <- x^2
h <- inverseFunction(x,y)
formals(h)$turns # vertex
a <- seq(0, 1, by=.01)
plot(0, 0, type='n', xlim=c(-.5,1.5))
lines(a, h(a)[,1]) ## first inverse
lines(a, h(a)[,2], col='red') ## second inverse
a <- c(-.1, 1.01, 1.1, 1.2)
points(a, h(a)[,1])

d <- data.frame(x=1:2, y=3:4, z=5:6)
d <- upData(d, labels=c(x='X', z='Z lab'), units=c(z='mm'))
a <- keepHattrib(d)

d <- data.frame(x=1:2, y=3:4, z=5:6)
d2 <- restoreHattrib(d, a)
sapply(d2, attributes)

Not run:
getLatestSource(recent=5) # source() most recent 5 revised files in Hmisc
getLatestSource('cut2') # fetch and source latest cut2.s
getLatestSource('all') # get everything
getLatestSource(avail=TRUE) # list available files and latest versions

244 movStats

End(Not run)

movStats movStats

Description

Moving Estimates Using Overlapping Windows

Usage

movStats(
formula,
stat = NULL,
discrete = FALSE,
space = c("n", "x"),
eps = if (space == "n") 15,
varyeps = FALSE,
nignore = 10,
xinc = NULL,
xlim = NULL,
times = NULL,
tunits = "year",
msmooth = c("smoothed", "raw", "both"),
tsmooth = c("supsmu", "lowess"),
bass = 8,
span = 1/4,
maxdim = 6,
penalty = NULL,
trans = function(x) x,
itrans = function(x) x,
loess = FALSE,
ols = FALSE,
qreg = FALSE,
lrm = FALSE,
orm = FALSE,
hare = FALSE,
ordsurv = FALSE,
lrm_args = NULL,
family = "logistic",
k = 5,
tau = (1:3)/4,
melt = FALSE,
data = environment(formula),
pr = c("none", "kable", "plain", "margin")

)

movStats 245

Arguments

formula a formula with the analysis variable on the left and the x-variable on the right,
following by optional stratification variables

stat function of one argument that returns a named list of computed values. Defaults
to computing mean and quartiles + N except when y is binary in which case it
computes moving proportions. If y has two columns the default statistics are
Kaplan-Meier estimates of cumulative incidence at a vector of times.

discrete set to TRUE if x-axis variable is discrete and no intervals should be created for
windows

space defines whether intervals used fixed width or fixed sample size

eps tolerance for window (half width of window). For space='x' is in data units,
otherwise is the sample size for half the window, not counting the middle target
point.

varyeps applies to space='n' and causes a smaller eps to be used in strata with fewer
than “ observations so as to arrive at three x points

nignore see description, default is to exclude nignore=10 points on the left and right
tails from estimation and plotting

xinc increment in x to evaluate stats, default is xlim range/100 for space='x'. For
space='n' xinc defaults to m observations, where m = max(n/200, 1).

xlim 2-vector of limits to evaluate if space='x' (default is nignore smallest to nignore
largest)

times vector of times for evaluating one minus Kaplan-Meier estimates

tunits time units when times is given

msmooth set to 'smoothed' or 'both' to compute lowess-smooth moving estimates.
msmooth='both' will display both. 'raw' will display only the moving statis-
tics. msmooth='smoothed' (the default) will display only he smoothed moving
estimates.

tsmooth defaults to the super-smoother 'supsmu' for after-moving smoothing. Use tsmooth='lowess'
to instead use lowess.

bass the supsmu bass parameter used to smooth the moving statistics if tsmooth='supsmu'.
The default of 8 represents quite heavy smoothing.

span the lowess span used to smooth the moving statistics

maxdim passed to hare, default is 6

penalty passed to hare, default is to use BIC. Specify 2 to use AIC.

trans transformation to apply to x

itrans inverse transformation

loess set to TRUE to also compute loess estimates

ols set to TRUE to include rcspline estimate of mean using ols

qreg set to TRUE to include quantile regression estimates w rcspline

lrm set to TRUE to include logistic regression estimates w rcspline

246 movStats

orm set to TRUE to include ordinal logistic regression estimates w rcspline (mean +
quantiles in tau)

hare set to TRUE to include hazard regression estimtes of incidence at times, using
the polspline package

ordsurv set to TRUE to include ordinal regression estimates of incidence at times, using
the rms package adapt_orm and survest.orm functions

lrm_args a list of optional arguments to pass to lrm when lrm=TRUE, e.g., list(maxit=20)
family link function for ordinal regression (see rms::orm)
k number of knots to use for ols, lrm, qreg restricted cubic splines. Linearity is

forced for binary y when the minimum of the number of events and number
of non-events is below 10 for a by-group. For ordsurv=TRUE is the maximum
number of knots tried and is passed as argument maxk to the rms adapt_orm
function.

tau quantile numbers to estimate with quantile regression
melt set to TRUE to melt data table and derive Type and Statistic
data data.table or data.frame, default is calling frame
pr defaults to no printing of window information. Use pr='plain' to print in the

ordinary way, pr='kable to convert the object to knitr::kable and print, or
pr='margin' to convert to kable and place in the Quarto right margin. For the
latter two results='asis' must be in the chunk header.

Details

Function to compute moving averages and other statistics as a function of a continuous variable,
possibly stratified by other variables. Estimates are made by creating overlapping moving windows
and computing the statistics defined in the stat function for each window. The default method,
space='n' creates varying-width intervals each having a sample size of 2*eps +1, and the smooth
estimates are made every xinc observations. Outer intervals are not symmetric in sample size (but
the mean x in those intervals will reflect that) unless eps=nignore, as outer intervals are centered
at observations nignore and n - nignore + 1 where the default for nignore is 10. The mean x-
variable within each windows is taken to represent that window. If trans and itrans are given,
x means are computed on the trans(x) scale and then itrans’d. For space='x', by default esti-
mates are made on to the nignore smallest to the nignore largest observed values of the x variable
to avoid extrapolation and to help getting the moving statistics off on an adequate start for the left
tail. Also by default the moving estimates are smoothed using supsmu. When melt=TRUE you can
feed the result into ggplot like this: ggplot(w, aes(x=age, y=crea, col=Type)) + geom_line() +
facet_wrap(~ Statistic)

See here for several examples.

Value

a data table, with attribute infon which is a data frame with rows corresponding to strata and
columns N, Wmean, Wmin, Wmax if stat computed N. These summarize the number of observations
used in the windows. If varyeps=TRUE there is an additional column eps with the computed per-
stratum eps. When space='n' and xinc is not given, the computed xinc also appears as a column.
An additional attribute info is a kable object ready for printing to describe the window character-
istics.

https://hbiostat.org/rflow/analysis.html#sec-analysis-assoc

mtitle 247

Author(s)

Frank Harrell

mtitle Margin Titles

Description

Writes overall titles and subtitles after a multiple image plot is drawn. If par()$oma==c(0,0,0,0),
title is used instead of mtext, to draw titles or subtitles that are inside the plotting region for a
single plot.

Usage

mtitle(main, ll, lc,
lr=format(Sys.time(),'%d%b%y'),
cex.m=1.75, cex.l=.5, ...)

Arguments

main main title to be centered over entire figure, default is none

ll subtitle for lower left of figure, default is none

lc subtitle for lower center of figure, default is none

lr subtitle for lower right of figure, default is today’s date in format 23Jan91 for
UNIX or R (Thu May 30 09:08:13 1996 format for Windows). Set to "" to
suppress lower right title.

cex.m character size for main, default is 1.75

cex.l character size for subtitles

... other arguments passed to mtext

Value

nothing

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

248 multLines

See Also

par, mtext, title, unix, pstamp

Examples

#Set up for 1 plot on figure, give a main title,
#use date for lr
plot(runif(20),runif(20))
mtitle("Main Title")

#Set up for 2 x 2 matrix of plots with a lower left subtitle and overall title
par(mfrow=c(2,2), oma=c(3,0,3,0))
plot(runif(20),runif(20))
plot(rnorm(20),rnorm(20))
plot(exp(rnorm(20)),exp(rnorm(20)))
mtitle("Main Title",ll="n=20")

multLines Plot Multiple Lines

Description

Plots multiple lines based on a vector x and a matrix y, draws thin vertical lines connecting limits
represented by columns of y beyond the first. It is assumed that either (1) the second and third
columns of y represent lower and upper confidence limits, or that (2) there is an even number
of columns beyond the first and these represent ascending quantiles that are symmetrically ar-
ranged around 0.5. If options(grType='plotly') is in effect, uses plotly graphics instead of
grid or base graphics. For plotly you may want to set the list of possible colors, etc. using
pobj=plot_ly(colors=...). lwd,lty,lwd.vert are ignored under plotly.

Usage

multLines(x, y, pos = c('left', 'right'), col='gray',
lwd=1, lty=1, lwd.vert = .85, lty.vert = 1,
alpha = 0.4, grid = FALSE,
pobj=plotly::plot_ly(), xlim, name=colnames(y)[1], legendgroup=name,
showlegend=TRUE, ...)

Arguments

x a numeric vector

y a numeric matrix with number of rows equal to the number of x elements

pos when pos='left' the vertical lines are drawn, right to left, to the left of the
point (x, y[,1). Otherwise lines are drawn left to right to the right of the point.

col a color used to connect (x, y[,1]) pairs. The same color but with transparency
given by the alpha argument is used to draw the vertical lines

na.delete 249

lwd line width for main lines

lty line types for main lines

lwd.vert line width for vertical lines

lty.vert line type for vertical lines

alpha transparency

grid set to TRUE when using grid/lattice

pobj an already started plotly object to add to

xlim global x-axis limits (required if using plotly)

name trace name if using plotly

legendgroup legend group name if using plotly

showlegend whether or not to show traces in legend, if using plotly

... passed to add_lines or add_segments if using plotly

Author(s)

Frank Harrell

Examples

if (requireNamespace("plotly")) {
x <- 1:4
y <- cbind(x, x-3, x-2, x-1, x+1, x+2, x+3)
plot(NA, NA, xlim=c(1,4), ylim=c(-2, 7))
multLines(x, y, col='blue')
multLines(x, y, col='red', pos='right')

}

na.delete Row-wise Deletion na.action

Description

Does row-wise deletion as na.omit, but adds frequency of missing values for each predictor to the
"na.action" attribute of the returned model frame. Optionally stores further details if options(na.detail.response=TRUE).

Usage

na.delete(frame)

Arguments

frame a model frame

Value

a model frame with rows deleted and the "na.action" attribute added.

250 na.detail.response

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

na.omit, na.keep, na.detail.response, model.frame.default, naresid, naprint

Examples

options(na.action="na.delete")
ols(y ~ x)

na.detail.response Detailed Response Variable Information

Description

This function is called by certain na.action functions if options(na.detail.response=TRUE)
is set. By default, this function returns a matrix of counts of non-NAs and the mean of the response
variable computed separately by whether or not each predictor is NA. The default action uses the
last column of a Surv object, in effect computing the proportion of events. Other summary functions
may be specified by using options(na.fun.response="name of function").

Usage

na.detail.response(mf)

Arguments

mf a model frame

Value

a matrix, with rows representing the different statistics that are computed for the response, and
columns representing the different subsets for each predictor (NA and non-NA value subsets).

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

na.detail.response 251

See Also

na.omit, na.delete, model.frame.default, naresid, naprint, describe

Examples

sex
[1] m f f m f f m m m m m m m m f f f m f m
age
[1] NA 41 23 30 44 22 NA 32 37 34 38 36 36 50 40 43 34 22 42 30
y
[1] 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
options(na.detail.response=TRUE, na.action="na.delete", digits=3)
lrm(y ~ age*sex)
#
Logistic Regression Model
#
lrm(formula = y ~ age * sex)
#
#
Frequencies of Responses
0 1
10 8
#
Frequencies of Missing Values Due to Each Variable
y age sex
0 2 0
#
#
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
N 2.0 18.000 20.00 2.0 18.000
Mean 0.5 0.444 0.45 0.5 0.444
#
\dots\dots
options(na.action="na.keep")
describe(y ~ age*sex)
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
N 2.0 18.000 20.00 2.0 18.000
Mean 0.5 0.444 0.45 0.5 0.444
#
\dots
options(na.fun.response="table") #built-in function table()
describe(y ~ age*sex)
#
Statistics on Response by Missing/Non-Missing Status of Predictors
#
age=NA age!=NA sex!=NA Any NA No NA
0 1 10 11 1 10
1 1 8 9 1 8

252 na.keep

#
\dots

na.keep Do-nothing na.action

Description

Does not delete rows containing NAs, but does add details concerning the distribution of the re-
sponse variable if options(na.detail.response=TRUE). This na.action is primarily for use
with describe.formula.

Usage

na.keep(mf)

Arguments

mf a model frame

Value

the same model frame with the "na.action" attribute

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

na.omit, na.delete, model.frame.default, na.detail.response, naresid, naprint, describe

Examples

options(na.action="na.keep", na.detail.response=TRUE)
x1 <- runif(20)
x2 <- runif(20)
x2[1:4] <- NA
y <- rnorm(20)
describe(y ~ x1*x2)

nCoincident 253

nCoincident nCoincident

Description

Number of Coincident Points

Usage

nCoincident(x, y, bins = 400)

Arguments

x numeric vector
y numeric vector
bins number of bins in both directions

Details

Computes the number of x,y pairs that are likely to be obscured in a regular scatterplot, in the sense
of overlapping pairs after binning into bins x bins squares where bins defaults to 400. NAs are
removed first.

Value

integer count

Author(s)

Frank Harrell

Examples

nCoincident(c(1:5, 4:5), c(1:5, 4:5)/10)

nobsY Compute Number of Observations for Left Hand Side of Formula

Description

After removing any artificial observations added by addMarginal, computes the number of non-
missing observations for all left-hand-side variables in formula. If formula contains a term id(variable)
variable is assumed to be a subject ID variable, and only unique subject IDs are counted. If group
is given and its value is the name of a variable in the right-hand-side of the model, an additional
object nobsg is returned that is a matrix with as many columns as there are left-hand variables, and
as many rows as there are levels to the group variable. This matrix has the further breakdown of
unique non-missing observations by group. The concatenation of all ID variables, is returned in a
list element id.

254 nstr

Usage

nobsY(formula, group=NULL, data = NULL, subset = NULL,
na.action = na.retain, matrixna=c('all', 'any'))

Arguments

formula a formula object

group character string containing optional name of a stratification variable for comput-
ing sample sizes

data a data frame

subset an optional subsetting criterion

na.action an optional NA-handling function

matrixna set to "all" if an observation is to be considered NA if all the columns of the
variable are NA, otherwise use matrixna="any" to consider the row missing if
any of the columns are missing

Value

an integer, with an attribute "formula" containing the original formula but with an id variable (if
present) removed

Examples

d <- expand.grid(sex=c('female', 'male', NA),
country=c('US', 'Romania'),
reps=1:2)

d$subject.id <- c(0, 0, 3:12)
dm <- addMarginal(d, sex, country)
dim(dm)
nobsY(sex + country ~ 1, data=d)
nobsY(sex + country ~ id(subject.id), data=d)
nobsY(sex + country ~ id(subject.id) + reps, group='reps', data=d)
nobsY(sex ~ 1, data=d)
nobsY(sex ~ 1, data=dm)
nobsY(sex ~ id(subject.id), data=dm)

nstr Creates a string of arbitry length

Description

Creates a vector of strings which consists of the string segment given in each element of the string
vector repeated times.

Usage

nstr(string, times)

num.intercepts 255

Arguments

string character: vector of string segments to be repeated. Will be recycled if argument
times is longer.

times integer: vector of number of times to repeat the corisponding segment. Will be
recycled if argument string is longer.

Value

returns a character vector the same length as the longest of the two arguments.

Note

Will throw a warning if the length of the longer argment is not a even multiple of the shorter
argument.

Author(s)

Charles Dupont

See Also

paste, rep

Examples

nstr(c("a"), c(0,3,4))

nstr(c("a", "b", "c"), c(1,2,3))

nstr(c("a", "b", "c"), 4)

num.intercepts Extract number of intercepts

Description

Extract the number of intercepts from a model

Usage

num.intercepts(fit, type=c('fit', 'var', 'coef'))

256 ordGroupBoot

Arguments

fit a model fit object

type the default is to return the formal number of intercepts used when fitting the
model. Set type='var' to return the actual number of intercepts stored in the
var object, or type='coef' to return the actual number in the fitted coefficients.
The former will be less than the number fitted for orm fits, and the latter for
orm fits passed through fit.mult.impute. If the var object is not present, the
number of intercepts is determined from the ab element of the info.matrix
object if it is present.

Value

num.intercepts returns an integer with the number of intercepts in the model.

See Also

orm, fit.mult.impute

ordGroupBoot Minimally Group an Ordinal Variable So Bootstrap Samples Will Con-
tain All Distinct Values

Description

When bootstrapping models for ordinal Y when Y is fairly continuous, it is frequently the case
that one or more bootstrap samples will not include one or more of the distinct original Y values.
When fitting an ordinal model (including a Cox PH model), this means that an intercept cannot be
estimated, and the parameter vectors will not align over bootstrap samples. To prevent this from
happening, some grouping of Y may be necessary. The ordGroupBoot function uses cutGn() to
group Y so that the minimum number in any group is guaranteed to not exceed a certain integer
m. ordGroupBoot tries a range of m and stops at the lowest m such that either all B tested bootstrap
samples contain all the original distinct values of Y (if B>0), or that the probability that a given
sample of size n with replacement will contain all the distinct original values exceeds aprob (B=0).
This probability is computed approximately using an approximation to the probability of complete
sample coverage from the coupon collector’s problem and is quite accurate for our purposes.

Usage

ordGroupBoot(
y,
B = 0,
m = 7:min(15, floor(n/3)),
what = c("mean", "factor", "m"),
aprob = 0.9999,
pr = TRUE

)

pairUpDiff 257

Arguments

y a numeric vector

B number of bootstrap samples to test, or zero to use a coverage probability ap-
proximation

m range of minimum group sizes to test; the default range is usually adequate

what specifies that either the mean y in each group should be returned, a factor
version of this with interval endpoints in the levels, or the computed value of m
should be returned

aprob minimum coverage probability sought

pr set to FALSE to not print the computed value of the minimum m satisfying the
needed condition

Value

a numeric vector corresponding to y but grouped, containing eithr the mean of y in each group or a
factor variable representing grouped y, either with the minimum m that satisfied the required sample
covrage

Author(s)

Frank Harrell

See Also

cutGn()

Examples

set.seed(1)
x <- c(1:6, NA, 7:22)
ordGroupBoot(x, m=5:10)
ordGroupBoot(x, m=5:10, B=5000, what='factor')

pairUpDiff pairUpDiff

Description

Pair-up and Compute Differences

258 pairUpDiff

Usage

pairUpDiff(
x,
major = NULL,
minor = NULL,
group,
refgroup,
lower = NULL,
upper = NULL,
minkeep = NULL,
sortdiff = TRUE,
conf.int = 0.95

)

Arguments

x a numeric vector

major an optional factor or character vector

minor an optional factor or character vector

group a required factor or character vector with two levels

refgroup a character string specifying which level of group is to be subtracted

lower an optional numeric vector giving the lower conf.int confidence limit for x

upper similar to lower but for the upper limit

minkeep the minimum value of x required to keep the observation. An observation is
kept if either group has x exceeding or equalling minkeep. Default is to keep
all observations.

sortdiff set to FALSE to avoid sorting observations by descending between-group differ-
ences

conf.int confidence level; must have been the value used to compute lower and upper if
they are provided

Details

This function sets up for plotting half-width confidence intervals for differences, sorting by de-
scending order of differences within major categories, especially for dot charts as produced by
dotchartpl(). Given a numeric vector x and a grouping (superpositioning) vector group with
exactly two levels, computes differences in possibly transformed x between levels of group for
the two observations that are equal on major and minor. If lower and upper are specified, using
conf.int and approximate normality on the transformed scale to backsolve for the standard errors
of estimates, and uses approximate normality to get confidence intervals on differences by taking
the square root of the sum of squares of the two standard errors. Coordinates for plotting half-width
confidence intervals are also computed. These intervals may be plotted on the same scale as x, hav-
ing the property that they overlap the two x values if and only if there is no "significant" difference
at the conf.int level.

panel.bpplot 259

Value

a list of two objects both sorted by descending values of differences in x. The X object is a data frame
that contains the original variables sorted by descending differences across group and in addition
a variable subscripts denoting the subscripts of original observations with possible re-sorting
and dropping depending on sortdiff and minkeep. The D data frame contains sorted differences
(diff), major, minor, sd of difference, lower and upper confidence limits for the difference, mid,
the midpoint of the two x values involved in the difference, lowermid, the midpoint minus 1/2 the
width of the confidence interval, and uppermid, the midpoint plus 1/2 the width of the confidence
interval. Another element returned is dropped which is a vector of major / minor combinations
dropped due to minkeep.

Author(s)

Frank Harrell

Examples

x <- c(1, 4, 7, 2, 5, 3, 6)
pairUpDiff(x, c(rep('A', 4), rep('B', 3)),

c('u','u','v','v','z','z','q'),
c('a','b','a','b','a','b','a'), 'a', x-.1, x+.1)

panel.bpplot Box-Percentile Panel Function for Trellis

Description

For all their good points, box plots have a high ink/information ratio in that they mainly display
3 quartiles. Many practitioners have found that the "outer values" are difficult to explain to non-
statisticians and many feel that the notion of "outliers" is too dependent on (false) expectations that
data distributions should be Gaussian.

panel.bpplot is a panel function for use with trellis, especially for bwplot. It draws box
plots (without the whiskers) with any number of user-specified "corners" (corresponding to dif-
ferent quantiles), but it also draws box-percentile plots similar to those drawn by Jeffrey Ban-
field’s (<umsfjban@bill.oscs.montana.edu>) bpplot function. To quote from Banfield, "box-
percentile plots supply more information about the univariate distributions. At any height the width
of the irregular ’box’ is proportional to the percentile of that height, up to the 50th percentile, and
above the 50th percentile the width is proportional to 100 minus the percentile. Thus, the width at
any given height is proportional to the percent of observations that are more extreme in that direc-
tion. As in boxplots, the median, 25th and 75th percentiles are marked with line segments across
the box."

panel.bpplot can also be used with base graphics to add extended box plots to an existing plot,
by specifying nogrid=TRUE, height=....

panel.bpplot is a generalization of bpplot and panel.bwplot in that it works with trellis
(making the plots horizontal so that category labels are more visable), it allows the user to specify

260 panel.bpplot

the quantiles to connect and those for which to draw reference lines, and it displays means (by
default using dots).

bpplt draws horizontal box-percentile plot much like those drawn by panel.bpplot but taking as
the starting point a matrix containing quantiles summarizing the data. bpplt is primarily intended
to be used internally by plot.summary.formula.reverse or plot.summaryM but when used with
no arguments has a general purpose: to draw an annotated example box-percentile plot with the
default quantiles used and with the mean drawn with a solid dot. This schematic plot is rendered
nicely in postscript with an image height of 3.5 inches.

bppltp is like bpplt but for plotly graphics, and it does not draw an annotated extended box plot
example.

bpplotM uses the lattice bwplot function to depict multiple numeric continuous variables with
varying scales in a single lattice graph, after reshaping the dataset into a tall and thin format.

Usage

panel.bpplot(x, y, box.ratio=1, means=TRUE, qref=c(.5,.25,.75),
probs=c(.05,.125,.25,.375), nout=0,
nloc=c('right lower', 'right', 'left', 'none'), cex.n=.7,
datadensity=FALSE, scat1d.opts=NULL,
violin=FALSE, violin.opts=NULL,
font=box.dot$font, pch=box.dot$pch,
cex.means =box.dot$cex, col=box.dot$col,
nogrid=NULL, height=NULL, ...)

E.g. bwplot(formula, panel=panel.bpplot, panel.bpplot.parameters)

bpplt(stats, xlim, xlab='', box.ratio = 1, means=TRUE,
qref=c(.5,.25,.75), qomit=c(.025,.975),
pch=16, cex.labels=par('cex'), cex.points=if(prototype)1 else 0.5,
grid=FALSE)

bppltp(p=plotly::plot_ly(),
stats, xlim, xlab='', box.ratio = 1, means=TRUE,
qref=c(.5,.25,.75), qomit=c(.025,.975),
teststat=NULL, showlegend=TRUE)

bpplotM(formula=NULL, groups=NULL, data=NULL, subset=NULL, na.action=NULL,
qlim=0.01, xlim=NULL,
nloc=c('right lower','right','left','none'),
vnames=c('labels', 'names'), cex.n=.7, cex.strip=1,
outerlabels=TRUE, ...)

Arguments

x continuous variable whose distribution is to be examined

y grouping variable

box.ratio see panel.bwplot

panel.bpplot 261

means set to FALSE to suppress drawing a character at the mean value

qref vector of quantiles for which to draw reference lines. These do not need to be
included in probs.

probs vector of quantiles to display in the box plot. These should all be less than
0.5; the mirror-image quantiles are added automatically. By default, probs
is set to c(.05,.125,.25,.375) so that intervals contain 0.9, 0.75, 0.5, and
0.25 of the data. To draw all 99 percentiles, i.e., to draw a box-percentile plot,
set probs=seq(.01,.49,by=.01). To make a more traditional box plot, use
probs=.25.

nout tells the function to use scat1d to draw tick marks showing the nout smallest
and nout largest values if nout >= 1, or to show all values less than the nout
quantile or greater than the 1-nout quantile if 0 < nout <= 0.5. If nout is a
whole number, only the first n/2 observations are shown on either side of the
median, where n is the total number of observations.

nloc location to plot number of non-NA observations next to each box. Specify nloc='none'
to suppress. For panel.bpplot, the default nloc is 'none' if nogrid=TRUE.

cex.n character size for nloc

datadensity set to TRUE to invoke scat1d to draw a data density (one-dimensional scatter
diagram or rug plot) inside each box plot.

scat1d.opts a list containing named arguments (without abbreviations) to pass to scat1d
when datadensity=TRUE or nout > 0

violin set to TRUE to invoke panel.violin in addition to drawing box-percentile plots

violin.opts a list of options to pass to panel.violin

cex.means character size for dots representing means

font, pch, col see panel.bwplot

nogrid set to TRUE to use in base graphics

height if nogrid=TRUE, specifies the height of the box in user y units

... arguments passed to points or panel.bpplot or bwplot
stats, xlim, xlab, qomit, cex.labels, cex.points, grid

undocumented arguments to bpplt. For bpplotM, xlim is a list with elements
named as the x-axis variables, to override the qlim calculations with user-specified
x-axis limits for selected variables. Example: xlim=list(age=c(20,60)).

p an already-started plotly object

teststat an html expression containing a test statistic

showlegend set to TRUE to have plotly include a legend. Not recommended when plotting
more than one variable.

formula a formula with continuous numeric analysis variables on the left hand side and
stratification variables on the right. The first variable on the right is the one that
will vary the fastest, forming the y-axis. formula may be omitted, in which case
all numeric variables with more than 5 unique values in data will be analyzed.
Or formula may be a vector of variable names in data to analyze. In the latter
two cases (and only those cases), groups must be given, representing a character
vector with names of stratification variables.

262 panel.bpplot

groups see above

data an optional data frame

subset an optional subsetting expression or logical vector

na.action specifies a function to possibly subset the data according to NAs (default is no
such subsetting).

qlim the outer quantiles to use for scaling each panel in bpplotM

vnames default is to use variable label attributes when they exist, or use variable names
otherwise. Specify vnames='names' to always use variable names for panel
labels in bpplotM

cex.strip character size for panel strip labels

outerlabels if TRUE, pass the lattice graphics through the latticeExtra package’s useOuterStrips
function if there are two conditioning (paneling) variables, to put panel labels in
outer margins.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Esty WW, Banfield J: The box-percentile plot. J Statistical Software 8 No. 17, 2003.

See Also

bpplot, panel.bwplot, scat1d, quantile, Ecdf, summaryP, useOuterStrips

Examples

set.seed(13)
x <- rnorm(1000)
g <- sample(1:6, 1000, replace=TRUE)
x[g==1][1:20] <- rnorm(20)+3 # contaminate 20 x's for group 1

default trellis box plot
require(lattice)
bwplot(g ~ x)

box-percentile plot with data density (rug plot)
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.01,.49,by=.01), datadensity=TRUE)
add ,scat1d.opts=list(tfrac=1) to make all tick marks the same size
when a group has > 125 observations

small dot for means, show only .05,.125,.25,.375,.625,.75,.875,.95 quantiles

panel.bpplot 263

bwplot(g ~ x, panel=panel.bpplot, cex.means=.3)

suppress means and reference lines for lower and upper quartiles
bwplot(g ~ x, panel=panel.bpplot, probs=c(.025,.1,.25), means=FALSE, qref=FALSE)

continuous plot up until quartiles ("Tootsie Roll plot")
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.01,.25,by=.01))

start at quartiles then make it continuous ("coffin plot")
bwplot(g ~ x, panel=panel.bpplot, probs=seq(.25,.49,by=.01))

same as previous but add a spike to give 0.95 interval
bwplot(g ~ x, panel=panel.bpplot, probs=c(.025,seq(.25,.49,by=.01)))

decile plot with reference lines at outer quintiles and median
bwplot(g ~ x, panel=panel.bpplot, probs=c(.1,.2,.3,.4), qref=c(.5,.2,.8))

default plot with tick marks showing all observations outside the outer
box (.05 and .95 quantiles), with very small ticks
bwplot(g ~ x, panel=panel.bpplot, nout=.05, scat1d.opts=list(frac=.01))

show 5 smallest and 5 largest observations
bwplot(g ~ x, panel=panel.bpplot, nout=5)

Use a scat1d option (preserve=TRUE) to ensure that the right peak extends
to the same position as the extreme scat1d
bwplot(~x , panel=panel.bpplot, probs=seq(.00,.5,by=.001),

datadensity=TRUE, scat1d.opt=list(preserve=TRUE))

Add an extended box plot to an existing base graphics plot
plot(x, 1:length(x))
panel.bpplot(x, 1070, nogrid=TRUE, pch=19, height=15, cex.means=.5)

Draw a prototype showing how to interpret the plots
bpplt()

Example for bpplotM
set.seed(1)
n <- 800
d <- data.frame(treatment=sample(c('a','b'), n, TRUE),

sex=sample(c('female','male'), n, TRUE),
age=rnorm(n, 40, 10),
bp =rnorm(n, 120, 12),
wt =rnorm(n, 190, 30))

label(d$bp) <- 'Systolic Blood Pressure'

264 partition

units(d$bp) <- 'mmHg'
bpplotM(age + bp + wt ~ treatment, data=d)
bpplotM(age + bp + wt ~ treatment * sex, data=d, cex.strip=.8)
bpplotM(age + bp + wt ~ treatment*sex, data=d,

violin=TRUE,
violin.opts=list(col=adjustcolor('blue', alpha.f=.15),

border=FALSE))

bpplotM(c('age', 'bp', 'wt'), groups='treatment', data=d)
Can use Hmisc Cs function, e.g. Cs(age, bp, wt)
bpplotM(age + bp + wt ~ treatment, data=d, nloc='left')

Without treatment: bpplotM(age + bp + wt ~ 1, data=d)

Not run:
Automatically find all variables that appear to be continuous
getHdata(support)
bpplotM(data=support, group='dzgroup',

cex.strip=.4, cex.means=.3, cex.n=.45)

Separate displays for categorical vs. continuous baseline variables
getHdata(pbc)
pbc <- upData(pbc, moveUnits=TRUE)

s <- summaryM(stage + sex + spiders ~ drug, data=pbc)
plot(s)
Key(0, .5)
s <- summaryP(stage + sex + spiders ~ drug, data=pbc)
plot(s, val ~ freq | var, groups='drug', pch=1:3, col=1:3,

key=list(x=.6, y=.8))

bpplotM(bili + albumin + protime + age ~ drug, data=pbc)

End(Not run)

partition Patitions an object into different sets

Description

Partitions an object into subsets of length defined in the sep argument.

Usage

partition.vector(x, sep, ...)
partition.matrix(x, rowsep, colsep, ...)

pc1 265

Arguments

x object to be partitioned.

sep determines how many elements should go into each set. The sum of sep should
be equal to the length of x.

rowsep determins how many rows should go into each set. The sum of rowsep must
equal the number of rows in x.

colsep determins how many columns should go into each set. The sum of colsep must
equal the number of columns in x.

... arguments used in other methods of partition.

Value

A list of equal length as sep containing the partitioned objects.

Author(s)

Charles Dupont

See Also

split

Examples

a <- 1:7
partition.vector(a, sep=c(1,3,2,1))

pc1 First Principal Component

Description

Given a numeric matrix which may or may not contain NAs, pc1 standardizes the columns to have
mean 0 and variance 1 and computes the first principal component using prcomp. The proportion
of variance explained by this component is printed, and so are the coefficients of the original (not
scaled) variables. These coefficients may be applied to the raw data to obtain the first PC.

Usage

pc1(x, hi)

Arguments

x numeric matrix

hi if specified, the first PC is scaled so that its maximum value is hi and its mini-
mum value is zero

266 plot.princmp

Value

The vector of observations with the first PC. An attribute "coef" is attached to this vector. "coef"
contains the raw-variable coefficients.

Author(s)

Frank Harrell

See Also

prcomp

Examples

set.seed(1)
x1 <- rnorm(100)
x2 <- x1 + rnorm(100)
w <- pc1(cbind(x1,x2))
attr(w,'coef')

plot.princmp plot.princmp

Description

Plot Method for princmp

Usage

S3 method for class 'princmp'
plot(
x,
which = c("scree", "loadings"),
k = x$k,
offset = 0.8,
col = 1,
adj = 0,
ylim = NULL,
add = FALSE,
abbrev = 25,
nrow = NULL,
...

)

plotCorrM 267

Arguments

x results of ‘princmp‘
which ’‘scree‘’ or ’‘loadings’‘
k number of components to show, default is ‘k‘ specified to ‘princmp‘
offset controls positioning of text labels for cumulative fraction of variance explained
col color of plotted text in scree plot
adj angle for plotting text in scree plot
ylim y-axis scree plotting limits, a 2-vector
add set to ‘TRUE‘ to add a line to an existing scree plot without drawing axes
abbrev an integer specifying the variable name length above which names are passed

through [abbreviate(..., minlength=abbrev)]
nrow number of rows to use in plotting loadings. Defaults to the ‘ggplot2‘ ‘facet_wrap‘

default.
... unused

Details

Uses base graphics to by default plot the scree plot from a [princmp()] result, showing cumultive
proportion of variance explained. Alternatively the standardized PC loadings are shown in a ‘gg-
plot2‘ bar chart.

Value

‘ggplot2‘ object if ‘which=’loadings’‘

Author(s)

Frank Harrell

plotCorrM plotCorrM

Description

Plot Correlation Matrix and Correlation vs. Time Gap

Usage

plotCorrM(
r,
what = c("plots", "data"),
type = c("rectangle", "circle"),
xlab = "",
ylab = "",
maxsize = 12,
xangle = 0

)

268 plotCorrM

Arguments

r correlation matrix

what specifies whether to return plots or the data frame used in making the plots

type specifies whether to use bottom-aligned rectangles (the default) or centered cir-
cles

xlab x-axis label for correlation matrix

ylab y-axis label for correlation matrix

maxsize maximum circle size if type='circle'

xangle angle for placing x-axis labels, defaulting to 0. Consider using xangle=45 when
labels are long.

Details

Constructs two ggplot2 graphics. The first is a half matrix of rectangles where the height of
the rectangle is proportional to the absolute value of the correlation coefficient, with positive and
negative coefficients shown in different colors. The second graphic is a variogram-like graph of
correlation coefficients on the y-axis and absolute time gap on the x-axis, with a loess smoother
added. The times are obtained from the correlation matrix’s row and column names if these are
numeric. If any names are not numeric, the times are taken as the integers 1, 2, 3, ... The two
graphics are ggplotly-ready if you use plotly::ggplotly(..., tooltip='label').

Value

a list containing two ggplot2 objects if what='plots', or a data frame if what='data'

Author(s)

Frank Harrell

Examples

set.seed(1)
r <- cor(matrix(rnorm(100), ncol=10))
g <- plotCorrM(r)
g[[1]] # plot matrix
g[[2]] # plot correlation vs gap time
ggplotlyr(g[[2]])
ggplotlyr uses ggplotly with tooltip='label' then removes
txt: from hover text

plotCorrPrecision 269

plotCorrPrecision Plot Precision of Estimate of Pearson Correlation Coefficient

Description

This function plots the precision (margin of error) of the product-moment linear correlation coeffi-
cient r vs. sample size, for a given vector of correlation coefficients rho. Precision is defined as the
larger of the upper confidence limit minus rho and rho minus the lower confidence limit. labcurve
is used to automatically label the curves.

Usage

plotCorrPrecision(rho = c(0, 0.5), n = seq(10, 400, length.out = 100),
conf.int = 0.95, offset=0.025, ...)

Arguments

rho single or vector of true correlations. A worst-case precision graph results from
rho=0

n vector of sample sizes to use on the x-axis

conf.int confidence coefficient; default uses 0.95 confidence limits

offset see labcurve

... other arguments to labcurve

Author(s)

Xing Wang and Frank Harrell

See Also

rcorr,cor,cor.test

Examples

plotCorrPrecision()
plotCorrPrecision(rho=0)

270 plotlyM

plotlyM plotly Multiple

Description

Generates multiple plotly graphics, driven by specs in a data frame

Usage

plotlyM(
data,
x = ~x,
y = ~y,
xhi = ~xhi,
yhi = ~yhi,
htext = NULL,
multplot = NULL,
strata = NULL,
fitter = NULL,
color = NULL,
size = NULL,
showpts = !length(fitter),
rotate = FALSE,
xlab = NULL,
ylab = NULL,
ylabpos = c("top", "y"),
xlim = NULL,
ylim = NULL,
shareX = TRUE,
shareY = FALSE,
height = NULL,
width = NULL,
nrows = NULL,
ncols = NULL,
colors = NULL,
alphaSegments = 1,
alphaCline = 0.3,
digits = 4,
zeroline = TRUE

)

Arguments

data input data frame

x formula specifying the x-axis variable

y formula for y-axis variable

plotlyM 271

xhi formula for upper x variable limits (x taken to be lower value)

yhi formula for upper y variable limit (y taken to be lower value)

htext formula for hovertext variable

multplot formula specifying a variable in data that when stratified on produces a separate
plot

strata formula specifying an optional stratification variable

fitter a fitting such as loess that comes with a predict method. Alternatively spec-
ify fitter='ecdf' to use an internal function for computing and displaying
ECDFs, which moves the analysis variable from the y-axis to the x-axis

color plotly formula specifying a color variable or e.g. ~ I('black'). To keep
colors constant over multiple plots you will need to specify an AsIs color when
you don’t have a variable representing color groups.

size plotly formula specifying a symbol size variable or AsIs

showpts if fitter is given, set to TRUE to show raw data points in addition to smooth fits

rotate set to TRUE to reverse the roles of x and y, for example to get horizontal dot
charts with error bars

xlab x-axis label. May contain html.

ylab a named vector of y-axis labels, possibly containing html (see example below).
The names of the vector must correspond to levels of the multplot variable.
ylab can be unnamed if multplot is not used.

ylabpos position of y-axis labels. Default is on top left of plot. Specify ylabpos='y' for
usual y-axis placement.

xlim 2-vector of x-axis limits, optional

ylim 2-vector of y-axis limits, optional

shareX specifies whether x-axes should be shared when they align vertically over mul-
tiple plots

shareY specifies whether y-axes should be shared when they align horizontally over
multiple plots

height height of the combined image in pixels

width width of the combined image in pixels

nrows the number of rows to produce using subplot

ncols the number of columns to produce using subplot (specify at most one of nrows,ncols)

colors the color palette. Leave unspecified to use the default plotly palette

alphaSegments alpha transparency for line segments (when xhi or yhi is not NA)

alphaCline alpha transparency for lines used to connect points

digits number of significant digits to use in constructing hovertext

zeroline set to FALSE to suppress vertical line at x=0

272 plotlyM

Details

Generates multiple plotly traces and combines them with plotly::subplot. The traces are con-
trolled by specifications in data frame data plus various arguments. data must contain these vari-
ables: x, y, and tracename (if color is not an "AsIs" color such as ~ I('black')), and can contain
these optional variables: xhi, yhi (rows containing NA for both xhi and yhi represent points, and
those with non-NA xhi or yhi represent segments, connect (set to TRUE for rows for points, to con-
nect the symbols), legendgroup (see plotly documentation), and htext (hovertext). If the color
argument is given and it is not an "AsIs" color, the variable named in the color formula must also
be in data. Likewise for size. If the multplot is given, the variable given in the formula must
be in data. If strata is present, another level of separate plots is generated by levels of strata,
within levels of multplot.

If fitter is specified, x,y coordinates for an individual plot are run through fitter, and a line plot
is made instead of showing data points. Alternatively you can specify fitter='ecdf' to compute
and plot emirical cumulative distribution functions.

Value

plotly object produced by subplot

Author(s)

Frank Harrell

Examples

Not run:
set.seed(1)
pts <- expand.grid(v=c('y1', 'y2', 'y3'), x=1:4, g=c('a', 'b'), yhi=NA,

tracename='mean', legendgroup='mean',
connect=TRUE, size=4)

pts$y <- round(runif(nrow(pts)), 2)

segs <- expand.grid(v=c('y1', 'y2', 'y3'), x=1:4, g=c('a', 'b'),
tracename='limits', legendgroup='limits',
connect=NA, size=6)

segs$y <- runif(nrow(pts))
segs$yhi <- segs$y + runif(nrow(pts), .05, .15)

z <- rbind(pts, segs)

xlab <- labelPlotmath('X₁₂', 'm/sec²', html=TRUE)
ylab <- c(y1=labelPlotmath('Y1', 'cm', html=TRUE),

y2='Y2',
y3=labelPlotmath('Y3', 'mm', html=TRUE))

W=plotlyM(z, multplot=~v, color=~g, xlab=xlab, ylab=ylab, ncols=2,
colors=c('black', 'blue'))

W2=plotlyM(z, multplot=~v, color=~I('black'), xlab=xlab, ylab=ylab,

plsmo 273

colors=c('black', 'blue'))

End(Not run)

plsmo Plot smoothed estimates

Description

Plot smoothed estimates of x vs. y, handling missing data for lowess or supsmu, and adding axis
labels. Optionally suppresses plotting extrapolated estimates. An optional group variable can be
specified to compute and plot the smooth curves by levels of group. When group is present, the
datadensity option will draw tick marks showing the location of the raw x-values, separately for
each curve. plsmo has an option to plot connected points for raw data, with no smoothing. The
non-panel version of plsmo allows y to be a matrix, for which smoothing is done separately over its
columns. If both group and multi-column y are used, the number of curves plotted is the product
of the number of groups and the number of y columns.

method='intervals' is often used when y is binary, as it may be tricky to specify a reasonable
smoothing parameter to lowess or supsmu in this case. The 'intervals' method uses the cutGn
function to form intervals of x containing a minimum of mobs observations. For each interval the
ifun function summarizes y, with the default being the mean (proportions for binary y). The results
are plotted as step functions, with vertical discontinuities drawn with a saturation of 0.15 of the
original color. A plus sign is drawn at the mean x within each interval. For this approach, the
default x-range is the entire raw data range, and trim and evaluate are ignored. For panel.plsmo
it is best to specify type='l' when using 'intervals'.

panel.plsmo is a panel function for trellis for the xyplot function that uses plsmo and its
options to draw one or more nonparametric function estimates on each panel. This has advan-
tages over using xyplot with panel.xyplot and panel.loess: (1) by default it will invoke
labcurve to label the curves where they are most separated, (2) the datadensity option will put
rug plots on each curve (instead of a single rug plot at the bottom of the graph), and (3) when
panel.plsmo invokes plsmo it can use the "super smoother" (supsmu function) instead of lowess,
or pass method='intervals'. panel.plsmo senses when a group variable is specified to xyplot
so that it can invoke panel.superpose instead of panel.xyplot. Using panel.plsmo through
trellis has some advantages over calling plsmo directly in that conditioning variables are allowed
and trellis uses nicer fonts etc.

When a group variable was used, panel.plsmo creates a function Key in the session frame that the
user can invoke to draw a key for individual data point symbols used for the groups. By default, the
key is positioned at the upper right corner of the graph. If Key(locator(1)) is specified, the key
will appear so that its upper left corner is at the coordinates of the mouse click.

For ggplot2 graphics the counterparts are stat_plsmo and histSpikeg.

Usage

plsmo(x, y, method=c("lowess","supsmu","raw","intervals"), xlab, ylab,
add=FALSE, lty=1 : lc, col=par("col"), lwd=par("lwd"),

274 plsmo

iter=if(length(unique(y))>2) 3 else 0, bass=0, f=2/3, mobs=30, trim,
fun, ifun=mean, group, prefix, xlim, ylim,
label.curves=TRUE, datadensity=FALSE, scat1d.opts=NULL,
lines.=TRUE, subset=TRUE,
grid=FALSE, evaluate=NULL, ...)

#To use panel function:
#xyplot(formula=y ~ x | conditioningvars, groups,
panel=panel.plsmo, type='b',
label.curves=TRUE,
lwd = superpose.line$lwd,
lty = superpose.line$lty,
pch = superpose.symbol$pch,
cex = superpose.symbol$cex,
font = superpose.symbol$font,
col = NULL, scat1d.opts=NULL, \dots)

Arguments

x vector of x-values, NAs allowed

y vector or matrix of y-values, NAs allowed

method "lowess" (the default), "supsmu", "raw" to not smooth at all, or "intervals"
to use intervals (see above)

xlab x-axis label iff add=F. Defaults of label(x) or argument name.

ylab y-axis label, like xlab.

add Set to T to call lines instead of plot. Assumes axes already labeled.

lty line type, default=1,2,3,. . . , corresponding to columns of y and group combina-
tions

col color for each curve, corresponding to group. Default is current par("col").

lwd vector of line widths for the curves, corresponding to group. Default is cur-
rent par("lwd"). lwd can also be specified as an element of label.curves if
label.curves is a list.

iter iter parameter if method="lowess", default=0 if y is binary, and 3 otherwise.

bass bass parameter if method="supsmu", default=0.

f passed to the lowess function, for method="lowess"

mobs for method='intervals', the minimum number of observations per interval

trim only plots smoothed estimates between trim and 1-trim quantiles of x. Default is
to use 10th smallest to 10th largest x in the group if the number of observations
in the group exceeds 200 (0 otherwise). Specify trim=0 to plot over entire range.

fun after computing the smoothed estimates, if fun is given the y-values are trans-
formed by fun()

ifun a summary statistic function to apply to the y-variable for method='intervals'.
Default is mean.

plsmo 275

group a variable, either a factor vector or one that will be converted to factor by
plsmo, that is used to stratify the data so that separate smooths may be computed

prefix a character string to appear in group of group labels. The presence of prefix
ensures that labcurve will be called even when add=TRUE.

xlim a vector of 2 x-axis limits. Default is observed range.

ylim a vector of 2 y-axis limits. Default is observed range.

label.curves set to FALSE to prevent labcurve from being called to label multiple curves
corresponding to groups. Set to a list to pass options to labcurve. lty and col
are passed to labcurve automatically.

datadensity set to TRUE to draw tick marks on each curve, using x-coordinates of the raw
data x values. This is done using scat1d.

scat1d.opts a list of options to hand to scat1d

lines. set to FALSE to suppress smoothed curves from being drawn. This can make
sense if datadensity=TRUE.

subset a logical or integer vector specifying a subset to use for processing, with respect
too all variables being analyzed

grid set to TRUE if the R grid package drew the current plot

evaluate number of points to keep from smoother. If specified, an equally-spaced grid of
evaluate x values will be obtained from the smoother using linear interpola-
tion. This will keep from plotting an enormous number of points if the dataset
contains a very large number of unique x values.

... optional arguments that are passed to scat1d, or optional parameters to pass to
plsmo from panel.plsmo. See optional arguments for plsmo above.

type set to p to have panel.plsmo plot points (and not call plsmo), l to call plsmo
and not plot points, or use the default b to plot both.

pch, cex, font vectors of graphical parameters corresponding to the groups (scalars if group is
absent). By default, the parameters set up by trellis will be used.

Value

plsmo returns a list of curves (x and y coordinates) that was passed to labcurve

Side Effects

plots, and panel.plsmo creates the Key function in the session frame.

See Also

lowess, supsmu, label, quantile, labcurve, scat1d, xyplot, panel.superpose, panel.xyplot,
stat_plsmo, histSpikeg, cutGn

276 plsmo

Examples

set.seed(1)
x <- 1:100
y <- x + runif(100, -10, 10)
plsmo(x, y, "supsmu", xlab="Time of Entry")
#Use label(y) or "y" for ylab

plsmo(x, y, add=TRUE, lty=2)
#Add lowess smooth to existing plot, with different line type

age <- rnorm(500, 50, 15)
survival.time <- rexp(500)
sex <- sample(c('female','male'), 500, TRUE)
race <- sample(c('black','non-black'), 500, TRUE)
plsmo(age, survival.time < 1, fun=qlogis, group=sex) # plot logit by sex

#Bivariate Y
sbp <- 120 + (age - 50)/10 + rnorm(500, 0, 8) + 5 * (sex == 'male')
dbp <- 80 + (age - 50)/10 + rnorm(500, 0, 8) - 5 * (sex == 'male')
Y <- cbind(sbp, dbp)
plsmo(age, Y)
plsmo(age, Y, group=sex)

#Plot points and smooth trend line using trellis
(add type='l' to suppress points or type='p' to suppress trend lines)
require(lattice)
xyplot(survival.time ~ age, panel=panel.plsmo)

#Do this for multiple panels
xyplot(survival.time ~ age | sex, panel=panel.plsmo)

#Repeat this using equal sample size intervals (n=25 each) summarized by
#the median, then a proportion (mean of binary y)
xyplot(survival.time ~ age | sex, panel=panel.plsmo, type='l',

method='intervals', mobs=25, ifun=median)
ybinary <- ifelse(runif(length(sex)) < 0.5, 1, 0)
xyplot(ybinary ~ age, groups=sex, panel=panel.plsmo, type='l',

method='intervals', mobs=75, ifun=mean, xlim=c(0, 120))

#Do this for subgroups of points on each panel, show the data
#density on each curve, and draw a key at the default location
xyplot(survival.time ~ age | sex, groups=race, panel=panel.plsmo,

datadensity=TRUE)
Key()

#Use wloess.noiter to do a fast weighted smooth

pMedian 277

plot(x, y)
lines(wtd.loess.noiter(x, y))
lines(wtd.loess.noiter(x, y, weights=c(rep(1,50), 100, rep(1,49))), col=2)
points(51, y[51], pch=18) # show overly weighted point
#Try to duplicate this smooth by replicating 51st observation 100 times
lines(wtd.loess.noiter(c(x,rep(x[51],99)),c(y,rep(y[51],99)),

type='ordered all'), col=3)
#Note: These two don't agree exactly

pMedian pMedian

Description

Pseudomedian

Usage

pMedian(
x,
na.rm = FALSE,
conf.int = 0,
B = 1000,
type = c("percentile", "bca")

)

Arguments

x a numeric vector

na.rm set to TRUE to exclude NAs before computing the pseudomedian

conf.int confidence level, defaulting to 0 so that no confidence limits are computed. Set
to a number between 0 and 1 to compute bootstrap confidence limits

B number of bootstrap samples if conf.int > 0

type type of bootstrap interval, defaulting to 'percentile' for n >= 150 or 'bca'
for n < 150

Details

Uses fast Fortran code to compute the pseudomedian of a numeric vector. The pseudomedian is the
median of all possible midpoints of two observations. The pseudomedian is also called the Hodges-
Lehmann one-sample estimator. The Fortran code is was originally from JF Monahan, and was
converted to C++ in the DescTools package. It has been converted to Fortran 2018 here. Bootstrap
confidence intervals are optionally computed.

If n > 250,000 a random sample of 250,000 values of x is used to limit execution time. For n >
1,000 only the percentile bootstrap confidence interval is computed.

Bootstrapping uses the Fortran subroutine directly, for efficiency.

278 popower

Value

a scalar numeric value if conf.int = 0, or a 3-vector otherwise, with named elements estimate, lower, upper
and attribute type. If the number of non-missing values is less than 5, NA is returned for both lower
and upper limits.

See Also

https://dl.acm.org/toc/toms/1984/10/3/, https://www4.stat.ncsu.edu/~monahan/jul10/,
https://www.fharrell.com/post/aci/

Examples

x <- c(1:4, 10000)
pMedian(x)
pMedian(x, conf.int=0.95)
Compare with brute force calculation and with wilcox.test
w <- outer(x, x, '+')
median(w[lower.tri(w, diag=TRUE)]) / 2
wilcox.test(x, conf.int=TRUE)

popower Power and Sample Size for Ordinal Response

Description

popower computes the power for a two-tailed two sample comparison of ordinal outcomes under the
proportional odds ordinal logistic model. The power is the same as that of the Wilcoxon test but with
ties handled properly. posamsize computes the total sample size needed to achieve a given power.
Both functions compute the efficiency of the design compared with a design in which the response
variable is continuous. print methods exist for both functions. Any of the input arguments may
be vectors, in which case a vector of powers or sample sizes is returned. These functions use the
methods of Whitehead (1993).

pomodm is a function that assists in translating odds ratios to differences in mean or median on the
original scale.

simPOcuts simulates simple unadjusted two-group comparisons under a PO model to demonstrate
the natural sampling variability that causes estimated odds ratios to vary over cutoffs of Y.

propsPO uses ggplot2 to plot a stacked bar chart of proportions stratified by a grouping variable
(and optionally a stratification variable), with an optional additional graph showing what the pro-
portions would be had proportional odds held and an odds ratio was applied to the proportions in a
reference group. If the result is passed to ggplotly, customized tooltip hover text will appear.

propsTrans uses ggplot2 to plot all successive transition proportions. formula has the state vari-
able on the left hand side, the first right-hand variable is time, and the second right-hand variable is
a subject ID variable.\

multEventChart uses ggplot2 to plot event charts showing state transitions, account for absorb-
ing states/events. It is based on code written by Lucy D’Agostino McGowan posted at https:
//livefreeordichotomize.com/posts/2020-05-21-survival-model-detective-1/.

https://dl.acm.org/toc/toms/1984/10/3/
https://www4.stat.ncsu.edu/~monahan/jul10/
https://www.fharrell.com/post/aci/
https://livefreeordichotomize.com/posts/2020-05-21-survival-model-detective-1/
https://livefreeordichotomize.com/posts/2020-05-21-survival-model-detective-1/

popower 279

Usage

popower(p, odds.ratio, n, n1, n2, alpha=0.05)
S3 method for class 'popower'
print(x, ...)
posamsize(p, odds.ratio, fraction=.5, alpha=0.05, power=0.8)
S3 method for class 'posamsize'
print(x, ...)
pomodm(x=NULL, p, odds.ratio=1)
simPOcuts(n, nsim=10, odds.ratio=1, p)
propsPO(formula, odds.ratio=NULL, ref=NULL, data=NULL, ncol=NULL, nrow=NULL)
propsTrans(formula, data=NULL, labels=NULL, arrow='\u2794',

maxsize=12, ncol=NULL, nrow=NULL)
multEventChart(formula, data=NULL, absorb=NULL, sortbylast=FALSE,

colorTitle=label(y), eventTitle='Event',
palette='OrRd',
eventSymbols=c(15, 5, 1:4, 6:10),
timeInc=min(diff(unique(x))/2))

Arguments

p a vector of marginal cell probabilities which must add up to one. For popower
and posamsize, The ith element specifies the probability that a patient will be
in response level i, averaged over the two treatment groups. For pomodm and
simPOcuts, p is the vector of cell probabilities to be translated under a given
odds ratio. For simPOcuts, if p has names, those names are taken as the ordered
distinct Y-values. Otherwise Y-values are taken as the integers 1, 2, ... up to the
length of p.

odds.ratio the odds ratio to be able to detect. It doesn’t matter which group is in the numer-
ator. For propsPO, odds.ratio is a function of the grouping (right hand side)
variable value. The value of the function specifies the odds ratio to apply to the
refernce group to get all other group’s expected proportions were proportional
odds to hold against the first group. Normally the function should return 1.0
when its x argument corresponds to the ref group. For pomodm and simPOcuts
is the odds ratio to apply to convert the given cell probabilities.

n total sample size for popower. You must specify either n or n1 and n2. If you
specify n, n1 and n2 are set to n/2. For simPOcuts is a single number equal to
the combined sample sizes of two groups.

n1 for popower, the number of subjects in treatment group 1

n2 for popower, the number of subjects in group 2

nsim number of simulated studies to create by simPOcuts

alpha type I error

x an object created by popower or posamsize, or a vector of data values given
to pomodm that corresponds to the vector p of probabilities. If x is omitted for
pomodm, the odds.ratio will be applied and the new vector of individual prob-
abilities will be returned. Otherwise if x is given to pomodm, a 2-vector with the
mean and median x after applying the odds ratio is returned.

280 popower

fraction for posamsize, the fraction of subjects that will be allocated to group 1

power for posamsize, the desired power (default is 0.8)

formula an R formula expressure for proposPO where the outcome categorical variable is
on the left hand side and the grouping variable is on the right. It is assumed that
the left hand variable is either already a factor or will have its levels in the right
order for an ordinal model when it is converted to factor. For multEventChart
the left hand variable is a categorial status variable, the first right hand side
variable represents time, and the second right side variable is a unique subject
ID. One line is produced per subject.

ref for propsPO specifies the reference group (value of the right hand side formula
variable) to use in computing proportions on which too translate proportions in
other groups, under the proportional odds assumption.

data a data frame or data.table

labels for propsTrans is an optional character vector corresponding to y=1,2,3,... that
is used to construct plotly hovertext as a label attribute in the ggplot2 aes-
thetic. Used with y is integer on axes but you want long labels in hovertext.

arrow character to use as the arrow symbol for transitions in propsTrans. The default
is the dingbats heavy wide-headed rightwards arror.

nrow, ncol see facet_wrap

maxsize maximum symbol size

... unused

absorb character vector specifying the subset of levels of the left hand side variable that
are absorbing states such as death or hospital discharge

sortbylast set to TRUE to sort the subjects by the severity of the status at the last time point

colorTitle label for legend for status

eventTitle label for legend for absorb

palette a single character string specifying the scale_fill_brewer color palette

eventSymbols vector of symbol codes. Default for first two symbols is a solid square and an
open diamond.

timeInc time increment for the x-axis. Default is 1/2 the shortest gap between any two
distincttimes in the data.

Value

a list containing power, eff (relative efficiency), and approx.se (approximate standard error of log
odds ratio) for popower, or containing n and eff for posamsize.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

popower 281

References

Whitehead J (1993): Sample size calculations for ordered categorical data. Stat in Med 12:2257–
2271.

Julious SA, Campbell MJ (1996): Letter to the Editor. Stat in Med 15: 1065–1066. Shows accuracy
of formula for binary response case.

See Also

simRegOrd, bpower, cpower, impactPO

Examples

For a study of back pain (none, mild, moderate, severe) here are the
expected proportions (averaged over 2 treatments) that will be in
each of the 4 categories:

p <- c(.1,.2,.4,.3)
popower(p, 1.2, 1000) # OR=1.2, total n=1000
posamsize(p, 1.2)
popower(p, 1.2, 3148)
If p was the vector of probabilities for group 1, here's how to
compute the average over the two groups:
p2 <- pomodm(p=p, odds.ratio=1.2)
pavg <- (p + p2) / 2

Compare power to test for proportions for binary case,
proportion of events in control group of 0.1
p <- 0.1; or <- 0.85; n <- 4000
popower(c(1 - p, p), or, n) # 0.338
bpower(p, odds.ratio=or, n=n) # 0.320
Add more categories, starting with 0.1 in middle
p <- c(.8, .1, .1)
popower(p, or, n) # 0.543
p <- c(.7, .1, .1, .1)
popower(p, or, n) # 0.67
Continuous scale with final level have prob. 0.1
p <- c(rep(1 / n, 0.9 * n), 0.1)
popower(p, or, n) # 0.843

Compute the mean and median x after shifting the probability
distribution by an odds ratio under the proportional odds model
x <- 1 : 5
p <- c(.05, .2, .2, .3, .25)
For comparison make up a sample that looks like this
X <- rep(1 : 5, 20 * p)
c(mean=mean(X), median=median(X))
pomodm(x, p, odds.ratio=1) # still have to figure out the right median
pomodm(x, p, odds.ratio=0.5)

Show variation of odds ratios over possible cutoffs of Y even when PO

282 princmp

truly holds. Run 5 simulations for a total sample size of 300.
The two groups have 150 subjects each.
s <- simPOcuts(300, nsim=5, odds.ratio=2, p=p)
round(s, 2)

An ordinal outcome with levels a, b, c, d, e is measured at 3 times
Show the proportion of values in each outcome category stratified by
time. Then compute what the proportions would be had the proportions
at times 2 and 3 been the proportions at time 1 modified by two odds ratios

set.seed(1)
d <- expand.grid(time=1:3, reps=1:30)
d$y <- sample(letters[1:5], nrow(d), replace=TRUE)
propsPO(y ~ time, data=d, odds.ratio=function(time) c(1, 2, 4)[time])
To show with plotly, save previous result as object p and then:
plotly::ggplotly(p, tooltip='label')

Add a stratification variable and don't consider an odds ratio
d <- expand.grid(time=1:5, sex=c('female', 'male'), reps=1:30)
d$y <- sample(letters[1:5], nrow(d), replace=TRUE)
propsPO(y ~ time + sex, data=d) # may add nrow= or ncol=

Show all successive transition proportion matrices
d <- expand.grid(id=1:30, time=1:10)
d$state <- sample(LETTERS[1:4], nrow(d), replace=TRUE)
propsTrans(state ~ time + id, data=d)

pt1 <- data.frame(pt=1, day=0:3,
status=c('well', 'well', 'sick', 'very sick'))

pt2 <- data.frame(pt=2, day=c(1,2,4,6),
status=c('sick', 'very sick', 'coma', 'death'))

pt3 <- data.frame(pt=3, day=1:5,
status=c('sick', 'very sick', 'sick', 'very sick', 'discharged'))

pt4 <- data.frame(pt=4, day=c(1:4, 10),
status=c('well', 'sick', 'very sick', 'well', 'discharged'))

d <- rbind(pt1, pt2, pt3, pt4)
d$status <- factor(d$status, c('discharged', 'well', 'sick',

'very sick', 'coma', 'death'))
label(d$day) <- 'Day'
require(ggplot2)
multEventChart(status ~ day + pt, data=d,

absorb=c('death', 'discharged'),
colorTitle='Status', sortbylast=TRUE) +
theme_classic() +
theme(legend.position='bottom')

princmp princmp

Description

Enhanced Output for Principal and Sparse Principal Components

princmp 283

Usage

princmp(
formula,
data = environment(formula),
method = c("regular", "sparse"),
k = min(5, p - 1),
kapprox = min(5, k),
cor = TRUE,
sw = FALSE,
nvmax = 5

)

Arguments

formula a formula with no left hand side, or a numeric matrix

data a data frame or table. By default variables come from the calling environment.

method specifies whether to use regular or sparse principal components are computed

k the number of components to plot, display, and return

kapprox the number of components to approximate with stepwise regression when sw=TRUE

cor set to FALSE to compute PCs on the original data scale, which is useful if all
variables have the same units of measurement

sw set to TRUE to run stepwise regression PC prediction/approximation

nvmax maximum number of predictors to allow in stepwise regression PC approxima-
tions

Details

Expands any categorical predictors into indicator variables, and calls princomp (if method='regular'
(the default)) or sPCAgrid in the pcaPP package (method='sparse') to compute lasso-penalized
sparse principal components. By default all variables are first scaled by their standard deviation
after observations with any NAs on any variables in formula are removed. Loadings of standard-
ized variables, and if orig=TRUE loadings on the original data scale are printed. If pl=TRUE a scree
plot is drawn with text added to indicate cumulative proportions of variance explained. If sw=TRUE,
the leaps package regsubsets function is used to approximate the PCs using forward stepwise
regression with the original variables as individual predictors.

A print method prints the results and a plot method plots the scree plot of variance explained.

Value

a list of class princmp with elements scores, a k-column matrix with principal component scores,
with NAs when the input data had an NA, and other components useful for printing and plotting. If
k=1 scores is a vector. Other components include vars (vector of variances explained), method, k.

Author(s)

Frank Harrell

284 print.char.list

print.char.list prints a list of lists in a visually readable format.

Description

Takes a list that is composed of other lists and matrixes and prints it in a visually readable format.

Usage

S3 method for class 'char.list'
print(x, ..., hsep = c("|"), vsep = c("-"), csep = c("+"), print.it = TRUE,

rowname.halign = c("left", "centre", "right"),
rowname.valign = c("top", "centre", "bottom"),
colname.halign = c("centre", "left", "right"),
colname.valign = c("centre", "top", "bottom"),
text.halign = c("right", "centre", "left"),
text.valign = c("top", "centre", "bottom"),
rowname.width, rowname.height,
min.colwidth = .Options$digits, max.rowheight = NULL,
abbreviate.dimnames = TRUE, page.width = .Options$width,
colname.width, colname.height, prefix.width,
superprefix.width = prefix.width)

Arguments

x list object to be printed

... place for extra arguments to reside.

hsep character used to separate horizontal fields

vsep character used to separate veritcal feilds

csep character used where horizontal and veritcal separators meet.

print.it should the value be printed to the console or returned as a string.

rowname.halign horizontal justification of row names.

rowname.valign verical justification of row names.

colname.halign horizontal justification of column names.

colname.valign verical justification of column names.

text.halign horizontal justification of cell text.

text.valign vertical justification of cell text.

rowname.width minimum width of row name strings.

rowname.height minimum height of row name strings.

min.colwidth minimum column width.

max.rowheight maximum row height.

print.char.matrix 285

abbreviate.dimnames

should the row and column names be abbreviated.

page.width width of the page being printed on.

colname.width minimum width of the column names.

colname.height minimum height of the column names

prefix.width maximum width of the rowname columns
superprefix.width

maximum width of the super rowname columns

Value

String that formated table of the list object.

Author(s)

Charles Dupont

print.char.matrix Function to print a matrix with stacked cells

Description

Prints a dataframe or matrix in stacked cells. Line break charcters in a matrix element will result in
a line break in that cell, but tab characters are not supported.

Usage

S3 method for class 'char.matrix'
print(x, file = "", col.name.align = "cen", col.txt.align = "right",

cell.align = "cen", hsep = "|", vsep = "-", csep = "+", row.names = TRUE,
col.names = FALSE, append = FALSE,
top.border = TRUE, left.border = TRUE, ...)

Arguments

x a matrix or dataframe

file name of file if file output is desired. If left empty, output will be to the screen

col.name.align if column names are used, they can be aligned right, left or centre. Default
"cen" results in names centred between the sides of the columns they name.
If the width of the text in the columns is less than the width of the name,
col.name.align will have no effect. Other options are "right" and "left".

col.txt.align how character columns are aligned. Options are the same as for col.name.align
with no effect when the width of the column is greater than its name.

cell.align how numbers are displayed in columns

hsep character string to use as horizontal separator, i.e. what separates columns

286 print.char.matrix

vsep character string to use as vertical separator, i.e. what separates rows. Length
cannot be more than one.

csep character string to use where vertical and horizontal separators cross. If hsep
is more than one character, csep will need to be the same length. There is no
provision for multiple vertical separators

row.names logical: are we printing the names of the rows?
col.names logical: are we printing the names of the columns?
append logical: if file is not "", are we appending to the file or overwriting?
top.border logical: do we want a border along the top above the columns?
left.border logical: do we want a border along the left of the first column?
... unused

Details

If any column of x is a mixture of character and numeric, the distinction between character and
numeric columns will be lost. This is especially so if the matrix is of a form where you would not
want to print the column names, the column information being in the rows at the beginning of the
matrix.

Row names, if not specified in the making of the matrix will simply be numbers. To prevent printing
them, set row.names = FALSE.

Value

No value is returned. The matrix or dataframe will be printed to file or to the screen.

Author(s)

Patrick Connolly <p.connolly@hortresearch.co.nz>

See Also

write, write.table

Examples

data(HairEyeColor)
print.char.matrix(HairEyeColor[, , "Male"], col.names = TRUE)
print.char.matrix(HairEyeColor[, , "Female"], col.txt.align = "left", col.names = TRUE)

z <- rbind(c("", "N", "y"),
c("[1.34,40.3)\n[40.30,48.5)\n[48.49,58.4)\n[58.44,87.8]",

" 50\n 50\n 50\n 50",
"0.530\n0.489\n0.514\n0.507"),

c("female\nmale", " 94\n106", "0.552\n0.473"),
c("", "200", "0.510"))

dimnames(z) <- list(c("", "age", "sex", "Overall"),NULL)

print.char.matrix(z)

print.princmp 287

print.princmp print.princmp

Description

Print Results of princmp

Usage

S3 method for class 'princmp'
print(x, which = c("none", "standardized", "original", "both"), k = x$k, ...)

Arguments

x results of princmp

which specifies which loadings to print, the default being 'none' and other values
being 'standardized', 'original', or 'both'

k number of components to show, defaults to k specified to princmp

... unused

Details

Simple print method for princmp()

Value

nothing

Author(s)

Frank Harrell

printL printL

Description

Print an object or a named list of objects. When multiple objects are given, their names are printed
before their contents. When an object is a vector that is not longer than maxoneline and its elements
are not named, all the elements will be printed on one line separated by commas. When dec is given,
numeric vectors or numeric columns of data frames or data tables are rounded to the nearest dec
before printing. This function is especially helpful when printing objects in a Quarto or RMarkdown
document and the code is not currently being shown to place the output in context.

288 prnz

Usage

printL(..., dec = NULL, maxoneline = 5)

Arguments

... any number of objects to print()

dec optional decimal places to the right of the decimal point for rounding

maxoneline controls how many elements may be printed on a single line for vector objects

Value

nothing

Author(s)

Frank Harrell

See Also

prn()

Examples

w <- pi + 1 : 2
printL(w=w)
printL(w, dec=3)
printL('this is it'=c(pi, pi, 1, 2),

yyy=pi,
z=data.frame(x=pi+1:2, y=3:4, z=c('a', 'b')),
qq=1:10,
dec=4)

prnz Print and Object with its Name

Description

Prints an object with its name and with an optional descriptive text string. This is useful for anno-
tating analysis output files and for debugging.

Usage

prn(x, txt, file, head=deparse(substitute(x), width.cutoff=500)[1])

prselect 289

Arguments

x any object

txt optional text string

file optional file name. By default, writes to console. append=TRUE is assumed.

head optional heading. Default is derived from the user’s expression for x

Side Effects

prints

See Also

print, cat, printL

Examples

x <- 1:5
prn(x)
prn(fit, 'Full Model Fit')

prselect Selectively Print Lines of a Text Vector

Description

Given one or two regular expressions or exact text matches, removes elements of the input vector
that match these specifications. Omitted lines are replaced by This is useful for selectively
suppressing some of the printed output of R functions such as regression fitting functions, especially
in the context of making statistical reports using Sweave or Odfweave.

Usage

prselect(x, start = NULL, stop = NULL, i = 0, j = 0, pr = TRUE)

Arguments

x input character vector

start text or regular expression to look for starting line to omit. If omitted, deletions
start at the first line.

stop text or regular expression to look for ending line to omit. If omitted, deletions
proceed until the last line.

i increment in number of first line to delete after match is found

j increment in number of last line to delete after match is found

pr set to FALSE to suppress printing

290 pstamp

Value

an invisible vector of retained lines of text

Author(s)

Frank Harrell

See Also

Sweave

Examples

x <- c('the','cat','ran','past','the','dog')
prselect(x, 'big','bad') # omit nothing- no match
prselect(x, 'the','past') # omit first 4 lines
prselect(x,'the','junk') # omit nothing- no match for stop
prselect(x,'ran','dog') # omit last 4 lines
prselect(x,'cat') # omit lines 2-
prselect(x,'cat',i=1) # omit lines 3-
prselect(x,'cat','past') # omit lines 2-4
prselect(x,'cat','past',j=1) # omit lines 2-5
prselect(x,'cat','past',j=-1)# omit lines 2-3
prselect(x,'t$','dog') # omit lines 2-6; t must be at end

Example for Sweave: run a regression analysis with the rms package
then selectively output only a portion of what print.ols prints.
(Thanks to \email{romain.francois@dbmail.com})
<<z,eval=FALSE,echo=T>>=
library(rms)
y <- rnorm(20); x1 <- rnorm(20); x2 <- rnorm(20)
ols(y ~ x1 + x2)
<<echo=F>>=
z <- capture.output({
<<z>>
})
prselect(z, 'Residuals:') # keep only summary stats; or:
prselect(z, stop='Coefficients', j=-1) # keep coefficients, rmse, R^2; or:
prselect(z, 'Coefficients', 'Residual standard error', j=-1) # omit coef
@

pstamp Date/Time/Directory Stamp the Current Plot

Description

Date-time stamp the current plot in the extreme lower right corner. Optionally add the current
working directory and arbitrary other text to the stamp.

qcrypt 291

Usage

pstamp(txt, pwd = FALSE, time. = TRUE)

Arguments

txt an optional single text string

pwd set to TRUE to add the current working directory name to the stamp

time. set to FALSE to use the date without the time

Details

Certain functions are not supported for S-Plus under Windows. For R, results may not be satisfac-
tory if par(mfrow=) is in effect.

Author(s)

Frank Harrell

Examples

plot(1:20)
pstamp(pwd=TRUE, time=FALSE)

qcrypt qcrypt

Description

Store and Encrypt R Objects or Files or Read and Decrypt Them

Usage

qcrypt(obj, base, service = "R-keyring-service", file, pw)

Arguments

obj an R object to write to disk and encrypt (if base is specified) or the base file
name to read and uncrypted (if base is not specified). Not used when file is
given.

base base file name when creating a file. Not used when file is given.

service a fairly arbitrary keyring service name. The default is almost always OK unless
you need to use different passwords for different files. service is ignored if pw
is specified as an argument.

file full name of file to encrypt or decrypt

pw a single character string containing an actual password

292 qcrypt

Details

qcrypt is used to protect sensitive information on a user’s computer or when transmitting a copy
of the file to another R user. Unencrypted information only exists for a moment, and the encryption
password does not appear in the user’s script but instead is managed by the keyring package to
remember the password across R sessions, and the getPass package, which pops up a password
entry window and does not allow the password to be visible. The password is requested only once,
except perhaps when the user logs out of their operating system session or reboots.

The keyring can be bypassed and the password entered in a popup window by specifying service=NA.
This is the preferred approach when sending an encrypted file to a user on a different computer.

qcrypt writes R objects to disk in a temporary file using the qs package qsave function. The file
is quickly encrypted using the safer package, and the temporary unencrypted qs file is deleted.
When reading an encrypted file the process is reversed.

To save an object in an encrypted file, specify the object as the first argument obj and specify a
base file name as a character string in the second argument base. The full qs file name will be of
the form base.qs.encrypted in the user’s current working directory. To unencrypt the file into a
short-lived temporary file and use qs::qread to read it, specify the base file name as a character
string with the first argument, and do not specify the base argument.

Alternatively, qcrypt can be used to encrypt or decrypt existing files of any type using the same
password and keyring mechanism. The former is done by specifying file that does not end in
'.encrypted' and the latter is done by ending file with '.encrypted'. When file does not
contain a path it is assumed to be in the current working directory. When a file is encrypted the
original file is removed. Files are decrypted into a temporary directory created by tempdir(), with
the name of the file being the value of file with '.encrypted' removed.

Interactive password provision works when running R, Rscript, RStudio, or Quarto but does not
work when running R CMD BATCH. getPass fails under RStudio on Macs.

It is also possible to pass the password as the pw argument. This is only safe if running interactively
and the password is defined by typing e.g. pw <- 'whateverpassword' in the console, then running
the script interactively with pw=pw added to the qcrypt call.

See R Workflow for more information.

Value

(invisibly) the full encrypted file name if writing the file, or the restored R object if reading the file.
When decrypting a general file with file=, the returned value is the full path to a temporary file
containing the decrypted data.

Author(s)

Frank Harrell

Examples

Not run:
Suppose x is a data.table or data.frame
The first time qcrypt is run with a service a password will
be requested. It will be remembered across sessions thanks to
the keyring package

https://hbiostat.org/rflow/fcreate.html#sec-fcreate-secure

qrxcenter 293

qcrypt(x, 'x') # creates x.qs.encrypted in current working directory
x <- qcrypt('x') # unencrypts x.qs.encrypted into a temporary

directory, uses qs::qread to read it, and
stores the result in x

Encrypt a general file using a different password
qcrypt(file='report.pdf', service='pdfkey')
Decrypt that file
fi <- qcrypt(file='report.pdf.encrypted', service='pdfkey')
fi contains the full unencrypted file name which is in a temporary directory
Encrypt without using a keyring
qcrypt(x, 'x', service=NA)
x <- qcrypt('x', service=NA)

pw <- 'somepassword' # run this in the console
x <- qcrypt('x', pw=pw) # interactively run this in a script

End(Not run)

qrxcenter qrxcenter

Description

Mean-center a data matrix and QR transform it

Usage

qrxcenter(x, ...)

Arguments

x a numeric matrix or vector with at least 2 rows

... passed to base::qr()

Details

For a numeric matrix x (or a numeric vector that is automatically changed to a one-column matrix),
computes column means and subtracts them from x columns, and passes this matrix to base::qr()
to orthogonalize columns. Columns of the transformed x are negated as needed so that original
directions are preserved (which are arbitrary with QR decomposition). Instead of the default qr
operation for which sums of squares of column values are 1.0, qrxcenter makes all the transformed
columns have standard deviation of 1.0.

Value

a list with components x (transformed data matrix), R (the matrix that can be used to transform raw
x and to transform regression coefficients computed on transformed x back to the original space),
Ri (transforms transformed x back to original scale except for xbar), and xbar (vector of means of
original x columns‘)

294 r2describe

Examples

set.seed(1)
age <- 1:10
country <- sample(c('Slovenia', 'Italy', 'France'), 10, TRUE)
x <- model.matrix(~ age + country)[, -1]
x
w <- qrxcenter(x)
w
Reproduce w$x
sweep(x, 2, w$xbar) %*% w$R
Reproduce x from w$x
sweep(w$x %*% w$Ri, 2, w$xbar, FUN='+')
See also https://hbiostat.org/r/examples/gtrans/gtrans#sec-splinebasis

r2describe r2describe

Description

Summarize Strength of Relationships Using R-Squared From Linear Regression

Usage

r2describe(x, nvmax = 10)

Arguments

x numeric matrix with 2 or more columns

nvmax maxmum number of columns of x to use in predicting a given column

Details

Function to use leaps::regsubsets() to briefly describe which variables more strongly predict
another variable. Variables are in a numeric matrix and are assumed to be transformed so that
relationships are linear (e.g., using redun() or transcan().)

Value

nothing

Author(s)

Frank Harrell

R2Measures 295

Examples

Not run:
r <- redun(...)
r2describe(r$scores)

End(Not run)

R2Measures R2Measures

Description

Generalized R^2 Measures

Usage

R2Measures(lr, p, n, ess = NULL, padj = 1)

Arguments

lr likelihoood ratio chi-square statistic

p number of non-intercepts in the model that achieved lr

n raw number of observations

ess if a single number, is the effective sample size. If a vector of numbers is assumed
to be the frequency tabulation of all distinct values of the outcome variable, from
which the effective sample size is computed.

padj set to 2 to use the classical adjusted R^2 penalty, 1 (the default) to subtract p
from lr

Details

Computes various generalized R^2 measures related to the Maddala-Cox-Snell (MCS) R^2 for
regression models fitted with maximum likelihood. The original MCS R^2 is labeled R2 in the
result. This measure uses the raw sample size n and does not penalize for the number of free
parameters, so it can be rewarded for overfitting. A measure adjusted for the number of fitted
regression coefficients p uses the analogy to R^2 in linear models by computing 1 - exp(- lr / n)
* (n-1)/(n-p-1) if padj=2, which is approximately 1 - exp(- (lr - p) / n), the version used if
padj=1 (the default). The latter measure is appealing because the expected value of the likelihood
ratio chi-square statistic lr is p under the global null hypothesis of no predictors being associated
with the response variable. See https://hbiostat.org/bib/r2.html for more details.

It is well known that in logistic regression the MCS R^2 cannot achieve a value of 1.0 even with a
perfect model, which prompted Nagelkerke to divide the R^2 measure by its maximum attainable
value. This is not necessarily the best recalibration of R^2 throughout its range. An alternative
is to use the formulas above but to replace the raw sample size n with the effective sample size,
which for data with many ties can be significantly lower than the number of observations. As used
in the popower() and describe() functions, in the context of a Wilcoxon test or the proportional

https://hbiostat.org/bib/r2.html

296 R2Measures

odds model, the effective sample size is n * (1 - f) where f is the sums of cubes of the proportion
of observations at each distict value of the response variable. Whitehead derived this from an
approximation to the variance of a log odds ratio in a proportional odds model. To obtain R^2
measures using the effective sample size, either provide ess as a single number specifying the
effective sample size, or specify a vector of frequencies of distinct Y values from which the effective
sample size will be computed. In the context of survival analysis, the single number effective sample
size you may wish to specify is the number of uncensored observations. This is exactly correct when
estimating the hazard rate from a simple exponential distribution or when using the Cox PH/log-
rank test. For failure time distributions with a very high early hazard, censored observations contain
enough information that the effective sample size is greater than the number of events. See Benedetti
et al, 1982.

If the effective sample size equals the raw sample size, measures involving the effective sample size
are set to NA.

Value

named vector of R2 measures. The notation for results is R^2(p, n) where the p component is
empty for unadjusted estimates and n is the sample size used (actual sample size for first measures,
effective sample size for remaining ones). For indexes that are not adjusted, only n appears.

Author(s)

Frank Harrell

References

Smith TJ and McKenna CM (2013): A comparison of logistic regression pseudo R^2 indices.
Multiple Linear Regression Viewpoints 39:17-26. https://www.glmj.org/archives/articles/
Smith_v39n2.pdf

Benedetti JK, et al (1982): Effective sample size for tests of censored survival data. Biometrika
69:343–349.

Mittlbock M, Schemper M (1996): Explained variation for logistic regression. Stat in Med 15:1987-
1997.

Date, S: R-squared, adjusted R-squared and pseudo R-squared. https://timeseriesreasoning.
com/contents/r-squared-adjusted-r-squared-pseudo-r-squared/

UCLA: What are pseudo R-squareds? https://stats.oarc.ucla.edu/other/mult-pkg/faq/
general/faq-what-are-pseudo-r-squareds/

Allison P (2013): What’s the beset R-squared for logistic regression? https://statisticalhorizons.
com/r2logistic/

Menard S (2000): Coefficients of determination for multiple logistic regression analysis. The Am
Statistician 54:17-24.

Whitehead J (1993): Sample size calculations for ordered categorical data. Stat in Med 12:2257-
2271. See errata (1994) 13:871 and letter to the editor by Julious SA, Campbell MJ (1996) 15:1065-
1066 showing that for 2-category Y the Whitehead sample size formula agrees closely with the usual
formula for comparing two proportions.

https://www.glmj.org/archives/articles/Smith_v39n2.pdf
https://www.glmj.org/archives/articles/Smith_v39n2.pdf
https://timeseriesreasoning.com/contents/r-squared-adjusted-r-squared-pseudo-r-squared/
https://timeseriesreasoning.com/contents/r-squared-adjusted-r-squared-pseudo-r-squared/
https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://statisticalhorizons.com/r2logistic/
https://statisticalhorizons.com/r2logistic/

rcorr 297

Examples

x <- c(rep(0, 50), rep(1, 50))
y <- x
f <- lrm(y ~ x)
f # Nagelkerke R^2=1.0
lr <- f$stats['Model L.R.']
1 - exp(- lr / 100) # Maddala-Cox-Snell (MCS) 0.75
lr <- 138.6267 # manually so don't need rms package

R2Measures(lr, 1, 100, c(50, 50)) # 0.84 Effective n=75
R2Measures(lr, 1, 100, 50) # 0.94
MCS requires unreasonable effective sample size = minimum outcome
frequency to get close to the 1.0 that Nagelkerke R^2 achieves

rcorr Matrix of Correlations and P-values

Description

rcorr Computes a matrix of Pearson’s r or Spearman’s rho rank correlation coefficients for all
possible pairs of columns of a matrix. Missing values are deleted in pairs rather than deleting
all rows of x having any missing variables. Ranks are computed using efficient algorithms (see
reference 2), using midranks for ties.

Usage

rcorr(x, y, type=c("pearson","spearman"))

S3 method for class 'rcorr'
print(x, ...)

Arguments

x a numeric matrix with at least 5 rows and at least 2 columns (if y is absent). For
print, x is an object produced by rcorr.

y a numeric vector or matrix which will be concatenated to x. If y is omitted for
rcorr, x must be a matrix.

type specifies the type of correlations to compute. Spearman correlations are the
Pearson linear correlations computed on the ranks of non-missing elements, us-
ing midranks for ties.

... argument for method compatiblity.

Details

Uses midranks in case of ties, as described by Hollander and Wolfe. P-values are approximated by
using the t or F distributions.

298 rcorr.cens

Value

rcorr returns a list with elements r, the matrix of correlations, n the matrix of number of obser-
vations used in analyzing each pair of variables, P, the asymptotic P-values, and type. Pairs with
fewer than 2 non-missing values have the r values set to NA. The diagonals of n are the number of
non-NAs for the single variable corresponding to that row and column.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Hollander M. and Wolfe D.A. (1973). Nonparametric Statistical Methods. New York: Wiley.

Press WH, Flannery BP, Teukolsky SA, Vetterling, WT (1988): Numerical Recipes in C. Cam-
bridge: Cambridge University Press.

See Also

hoeffd, cor, combine.levels, varclus, dotchart3, impute, chisq.test, cut2.

Examples

x <- c(-2, -1, 0, 1, 2)
y <- c(4, 1, 0, 1, 4)
z <- c(1, 2, 3, 4, NA)
v <- c(1, 2, 3, 4, 5)
rcorr(cbind(x,y,z,v))

rcorr.cens Rank Correlation for Censored Data

Description

Computes the c index and the corresponding generalization of Somers’ Dxy rank correlation for a
censored response variable. Also works for uncensored and binary responses, although its use of
all possible pairings makes it slow for this purpose. Dxy and c are related by Dxy = 2(c− 0.5).

rcorr.cens handles one predictor variable. rcorrcens computes rank correlation measures sep-
arately by a series of predictors. In addition, rcorrcens has a rough way of handling categorical
predictors. If a categorical (factor) predictor has two levels, it is coverted to a numeric having values
1 and 2. If it has more than 2 levels, an indicator variable is formed for the most frequently level vs.
all others, and another indicator for the second most frequent level and all others. The correlation
is taken as the maximum of the two (in absolute value).

rcorr.cens 299

Usage

rcorr.cens(x, S, outx=FALSE)

S3 method for class 'formula'
rcorrcens(formula, data=NULL, subset=NULL,

na.action=na.retain, exclude.imputed=TRUE, outx=FALSE,
...)

Arguments

x a numeric predictor variable
S an Surv object or a vector. If a vector, assumes that every observation is uncen-

sored.
outx set to TRUE to not count pairs of observations tied on x as a relevant pair. This

results in a Goodman–Kruskal gamma type rank correlation.
formula a formula with a Surv object or a numeric vector on the left-hand side
data, subset, na.action

the usual options for models. Default for na.action is to retain all values, NA
or not, so that NAs can be deleted in only a pairwise fashion.

exclude.imputed

set to FALSE to include imputed values (created by impute) in the calculations.
... extra arguments passed to biVar.

Value

rcorr.cens returns a vector with the following named elements: C Index, Dxy, S.D., n, missing,
uncensored, Relevant Pairs, Concordant, and Uncertain

n number of observations not missing on any input variables
missing number of observations missing on x or S
relevant number of pairs of non-missing observations for which S could be ordered
concordant number of relevant pairs for which x and S are concordant.
uncertain number of pairs of non-missing observations for which censoring prevents clas-

sification of concordance of x and S.

rcorrcens.formula returns an object of class biVar which is documented with the biVar function.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Newson R: Confidence intervals for rank statistics: Somers’ D and extensions. Stata Journal 6:309-
334; 2006.

300 rcorr.cens

See Also

concordance, somers2, biVar, rcorrp.cens

Examples

set.seed(1)
x <- round(rnorm(200))
y <- rnorm(200)
rcorr.cens(x, y, outx=TRUE) # can correlate non-censored variables
library(survival)
age <- rnorm(400, 50, 10)
bp <- rnorm(400,120, 15)
bp[1] <- NA
d.time <- rexp(400)
cens <- runif(400,.5,2)
death <- d.time <= cens
d.time <- pmin(d.time, cens)
rcorr.cens(age, Surv(d.time, death))
r <- rcorrcens(Surv(d.time, death) ~ age + bp)
r
plot(r)

Show typical 0.95 confidence limits for ROC areas for a sample size
with 24 events and 62 non-events, for varying population ROC areas
Repeat for 138 events and 102 non-events
set.seed(8)
par(mfrow=c(2,1))
for(i in 1:2) {
n1 <- c(24,138)[i]
n0 <- c(62,102)[i]
y <- c(rep(0,n0), rep(1,n1))
deltas <- seq(-3, 3, by=.25)
C <- se <- deltas
j <- 0
for(d in deltas) {
j <- j + 1
x <- c(rnorm(n0, 0), rnorm(n1, d))
w <- rcorr.cens(x, y)
C[j] <- w['C Index']
se[j] <- w['S.D.']/2
}
low <- C-1.96*se; hi <- C+1.96*se
print(cbind(C, low, hi))
errbar(deltas, C, C+1.96*se, C-1.96*se,

xlab='True Difference in Mean X',
ylab='ROC Area and Approx. 0.95 CI')

title(paste('n1=',n1,' n0=',n0,sep=''))
abline(h=.5, v=0, col='gray')
true <- 1 - pnorm(0, deltas, sqrt(2))
lines(deltas, true, col='blue')
}
par(mfrow=c(1,1))

rcorrp.cens 301

rcorrp.cens Rank Correlation for Paired Predictors with a Possibly Censored Re-
sponse, and Integrated Discrimination Index

Description

Computes U-statistics to test for whether predictor X1 is more concordant than predictor X2, ex-
tending rcorr.cens. For method=1, estimates the fraction of pairs for which the x1 difference is
more impressive than the x2 difference. For method=2, estimates the fraction of pairs for which x1
is concordant with S but x2 is not.

For binary responses the function improveProb provides several assessments of whether one set of
predicted probabilities is better than another, using the methods describe in Pencina et al (2007).
This involves NRI and IDI to test for whether predictions from model x1 are significantly different
from those obtained from predictions from model x2. This is a distinct improvement over comparing
ROC areas, sensitivity, or specificity.

Usage

rcorrp.cens(x1, x2, S, outx=FALSE, method=1)

improveProb(x1, x2, y)

S3 method for class 'improveProb'
print(x, digits=3, conf.int=.95, ...)

Arguments

x1 first predictor (a probability, for improveProb)

x2 second predictor (a probability, for improveProb)

S a possibly right-censored Surv object. If S is a vector instead, it is converted to
a Surv object and it is assumed that no observations are censored.

outx set to TRUE to exclude pairs tied on x1 or x2 from consideration

method see above

y a binary 0/1 outcome variable

x the result from improveProb

digits number of significant digits for use in printing the result of improveProb

conf.int level for confidence limits

... unused

302 rcorrp.cens

Details

If x1,x2 represent predictions from models, these functions assume either that you are using a
separate sample from the one used to build the model, or that the amount of overfitting in x1 equals
the amount of overfitting in x2. An example of the latter is giving both models equal opportunity to
be complex so that both models have the same number of effective degrees of freedom, whether a
predictor was included in the model or was screened out by a variable selection scheme.

Note that in the first part of their paper, Pencina et al. presented measures that required binning the
predicted probabilities. Those measures were then replaced with better continuous measures that
are implementedhere.

Value

a vector of statistics for rcorrp.cens, or a list with class improveProb of statistics for improveProb:

n number of cases

na number of events

nb number of non-events

pup.ev mean of pairwise differences in probabilities for those with events and a pairwise
difference of probabilities > 0

pup.ne mean of pairwise differences in probabilities for those without events and a pair-
wise difference of probabilities > 0

pdown.ev mean of pairwise differences in probabilities for those with events and a pairwise
difference of probabilities > 0

pdown.ne mean of pairwise differences in probabilities for those without events and a pair-
wise difference of probabilities > 0

nri Net Reclassification Index = (pup.ev − pdown.ev)− (pup.ne− pdown.ne)

se.nri standard error of NRI

z.nri Z score for NRI

nri.ev Net Reclassification Index = pup.ev − pdown.ev

se.nri.ev SE of NRI of events

z.nri.ev Z score for NRI of events

nri.ne Net Reclassification Index = pup.ne− pdown.ne

se.nri.ne SE of NRI of non-events

z.nri.ne Z score for NRI of non-events

improveSens improvement in sensitivity

improveSpec improvement in specificity

idi Integrated Discrimination Index

se.idi SE of IDI

z.idi Z score of IDI

rcorrp.cens 303

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

Scott Williams
Division of Radiation Oncology
Peter MacCallum Cancer Centre, Melbourne, Australia
<scott.williams@petermac.org>

References

Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS (2008): Evaluating the added predic-
tive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat in
Med 27:157-172. DOI: 10.1002/sim.2929

Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS: Rejoinder: Comments on Integrated
discrimination and net reclassification improvements-Practical advice. Stat in Med 2007; DOI:
10.1002/sim.3106

Pencina MJ, D’Agostino RB, Steyerberg EW (2011): Extensions of net reclassification improve-
ment calculations to measure usefulness of new biomarkers. Stat in Med 30:11-21; DOI: 10.1002/sim.4085

See Also

rcorr.cens, somers2, Surv, val.prob, concordance

Examples

set.seed(1)
library(survival)

x1 <- rnorm(400)
x2 <- x1 + rnorm(400)
d.time <- rexp(400) + (x1 - min(x1))
cens <- runif(400,.5,2)
death <- d.time <= cens
d.time <- pmin(d.time, cens)
rcorrp.cens(x1, x2, Surv(d.time, death))
#rcorrp.cens(x1, x2, y) ## no censoring

set.seed(1)
x1 <- runif(1000)
x2 <- runif(1000)
y <- sample(0:1, 1000, TRUE)
rcorrp.cens(x1, x2, y)
improveProb(x1, x2, y)

304 rcspline.eval

rcspline.eval Restricted Cubic Spline Design Matrix

Description

Computes matrix that expands a single variable into the terms needed to fit a restricted cubic spline
(natural spline) function using the truncated power basis. Two normalization options are given
for somewhat reducing problems of ill-conditioning. The antiderivative function can be optionally
created. If knot locations are not given, they will be estimated from the marginal distribution of x.

Usage

rcspline.eval(x, knots, nk=5, inclx=FALSE, knots.only=FALSE,
type="ordinary", norm=2, rpm=NULL, pc=FALSE,
fractied=0.05)

Arguments

x a vector representing a predictor variable
knots knot locations. If not given, knots will be estimated using default quantiles of x.

For 3 knots, the outer quantiles used are 0.10 and 0.90. For 4-6 knots, the outer
quantiles used are 0.05 and 0.95. For nk > 6, the outer quantiles are 0.025 and
0.975. The knots are equally spaced between these on the quantile scale. For
fewer than 100 non-missing values of x, the outer knots are the 5th smallest and
largest x.

nk number of knots. Default is 5. The minimum value is 3.
inclx set to TRUE to add x as the first column of the returned matrix
knots.only return the estimated knot locations but not the expanded matrix
type ‘"ordinary"’ to fit the function, ‘"integral"’ to fit its anti-derivative.
norm ‘0’ to use the terms as originally given by Devlin and Weeks (1986), ‘1’ to nor-

malize non-linear terms by the cube of the spacing between the last two knots,
‘2’ to normalize by the square of the spacing between the first and last knots
(the default). norm=2 has the advantage of making all nonlinear terms beon the
x-scale.

rpm If given, any NAs in x will be replaced with the value rpm after estimating any
knot locations.

pc Set to TRUE to replace the design matrix with orthogonal (uncorrelated) principal
components computed on the scaled, centered design matrix

fractied If the fraction of observations tied at the lowest and/or highest values of x is
greater than or equal to fractied, the algorithm attempts to use a different
algorithm for knot finding based on quantiles of x after excluding the one or
two values with excessive ties. And if the number of unique x values excluding
these values is small, the unique values will be used as the knots. If the number
of knots to use other than these exterior values is only one, that knot will be
at the median of the non-extreme x. This algorithm is not used if any interior
values of x also have a proportion of ties equal to or exceeding fractied.

rcspline.plot 305

Value

If knots.only=TRUE, returns a vector of knot locations. Otherwise returns a matrix with x (if
inclx=TRUE) followed by nk − 2 nonlinear terms. The matrix has an attribute knots which is the
vector of knots used. When pc is TRUE, an additional attribute is stored: pcparms, which contains
the center and scale vectors and the rotation matrix.

References

Devlin TF and Weeks BJ (1986): Spline functions for logistic regression modeling. Proc 11th
Annual SAS Users Group Intnl Conf, p. 646–651. Cary NC: SAS Institute, Inc.

See Also

ns, rcspline.restate, rcs

Examples

x <- 1:100
rcspline.eval(x, nk=4, inclx=TRUE)
#lrm.fit(rcspline.eval(age,nk=4,inclx=TRUE), death)
x <- 1:1000
attributes(rcspline.eval(x))
x <- c(rep(0, 744),rep(1,6), rep(2,4), rep(3,10),rep(4,2),rep(6,6),

rep(7,3),rep(8,2),rep(9,4),rep(10,2),rep(11,9),rep(12,10),rep(13,13),
rep(14,5),rep(15,5),rep(16,10),rep(17,6),rep(18,3),rep(19,11),rep(20,16),
rep(21,6),rep(22,16),rep(23,17), 24, rep(25,8), rep(26,6),rep(27,3),
rep(28,7),rep(29,9),rep(30,10),rep(31,4),rep(32,4),rep(33,6),rep(34,6),
rep(35,4), rep(36,5), rep(38,6), 39, 39, 40, 40, 40, 41, 43, 44, 45)

attributes(rcspline.eval(x, nk=3))
attributes(rcspline.eval(x, nk=5))
u <- c(rep(0,30), 1:4, rep(5,30))
attributes(rcspline.eval(u))

rcspline.plot Plot Restricted Cubic Spline Function

Description

Provides plots of the estimated restricted cubic spline function relating a single predictor to the re-
sponse for a logistic or Cox model. The rcspline.plot function does not allow for interactions
as do lrm and cph, but it can provide detailed output for checking spline fits. This function uses
the rcspline.eval, lrm.fit, and Therneau’s coxph.fit functions and plots the estimated spline
regression and confidence limits, placing summary statistics on the graph. If there are no adjust-
ment variables, rcspline.plot can also plot two alternative estimates of the regression function
when model="logistic": proportions or logit proportions on grouped data, and a nonparametric
estimate. The nonparametric regression estimate is based on smoothing the binary responses and
taking the logit transformation of the smoothed estimates, if desired. The smoothing uses supsmu.

306 rcspline.plot

Usage

rcspline.plot(x,y,model=c("logistic", "cox", "ols"), xrange, event, nk=5,
knots=NULL, show=c("xbeta","prob"), adj=NULL, xlab, ylab,
ylim, plim=c(0,1), plotcl=TRUE, showknots=TRUE, add=FALSE,
subset, lty=1, noprint=FALSE, m, smooth=FALSE, bass=1,
main="auto", statloc)

Arguments

x a numeric predictor

y a numeric response. For binary logistic regression, y should be either 0 or 1.

model "logistic" or "cox". For "cox", uses the coxph.fit function with method="efron"
arguement set.

xrange range for evaluating x, default is f and 1−f quantiles of x, where f = 10
max (n,200)

event event/censoring indicator if model="cox". If event is present, model is as-
sumed to be "cox"

nk number of knots

knots knot locations, default based on quantiles of x (by rcspline.eval)

show "xbeta" or "prob" - what is plotted on y-axis

adj optional matrix of adjustment variables
xlab x-axis label, default is the “label” attribute of x
ylab y-axis label, default is the “label” attribute of y
ylim y-axis limits for logit or log hazard
plim y-axis limits for probability scale

plotcl plot confidence limits

showknots show knot locations with arrows

add add this plot to an already existing plot

subset subset of observations to process, e.g. sex == "male"

lty line type for plotting estimated spline function

noprint suppress printing regression coefficients and standard errors

m for model="logistic", plot grouped estimates with triangles. Each group con-
tains m ordered observations on x.

smooth plot nonparametric estimate if model="logistic" and adj is not specified

bass smoothing parameter (see supsmu)

main main title, default is "Estimated Spline Transformation"

statloc location of summary statistics. Default positioning by clicking left mouse button
where upper left corner of statistics should appear. Alternative is "ll" to place
below the graph on the lower left, or the actual x and y coordinates. Use "none"
to suppress statistics.

rcspline.restate 307

Value

list with components (‘knots’, ‘x’, ‘xbeta’, ‘lower’, ‘upper’) which are respectively the knot
locations, design matrix, linear predictor, and lower and upper confidence limits

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

See Also

lrm, cph, rcspline.eval, plot, supsmu, coxph.fit, lrm.fit

Examples

#rcspline.plot(cad.dur, tvdlm, m=150)
#rcspline.plot(log10(cad.dur+1), tvdlm, m=150)

rcspline.restate Re-state Restricted Cubic Spline Function

Description

This function re-states a restricted cubic spline function in the un-linearly-restricted form. Coeffi-
cients for that form are returned, along with an R functional representation of this function and a
LaTeX character representation of the function. rcsplineFunction is a fast function that creates
a function to compute a restricted cubic spline function with given coefficients and knots, without
reformatting the function to be pretty (i.e., into unrestricted form).

Usage

rcspline.restate(knots, coef,
type=c("ordinary","integral"),
x="X", lx=nchar(x),
norm=2, columns=65, before="& &", after="\\",
begin="", nbegin=0, digits=max(8, .Options$digits))

rcsplineFunction(knots, coef, norm=2, type=c('ordinary', 'integral'))

Arguments

knots vector of knots used in the regression fit

coef vector of coefficients from the fit. If the length of coef is k − 1, where k is
equal to the length(knots), the first coefficient must be for the linear term
and remaining k − 2 coefficients must be for the constructed terms (e.g., from
rcspline.eval). If the length of coef is k, an intercept is assumed to be in the
first element (or a zero is prepended to coef for rcsplineFunction).

308 rcspline.restate

type The default is to represent the cubic spline function corresponding to the coeffi-
cients and knots. Set type = "integral" to instead represent its anti-derivative.

x a character string to use as the variable name in the LaTeX expression for the
formula.

lx length of x to count with respect to columns. Default is length of character
string contained by x. You may want to set lx smaller than this if it includes
non-printable LaTeX commands.

norm normalization that was used in deriving the original nonlinear terms used in the
fit. See rcspline.eval for definitions.

columns maximum number of symbols in the LaTeX expression to allow before inserting
a newline (‘\\’) command. Set to a very large number to keep text all on one
line.

before text to place before each line of LaTeX output. Use ‘"& &"’ for an equation array
environment in LaTeX where you want to have a left-hand prefix e.g. ‘"f(X) &
= &"’ or using ‘"\lefteqn"’.

after text to place at the end of each line of output.

begin text with which to start the first line of output. Useful when adding LaTeX
output to part of an existing formula

nbegin number of columns of printable text in begin

digits number of significant digits to write for coefficients and knots

Value

rcspline.restate returns a vector of coefficients. The coefficients are un-normalized and two
coefficients are added that are linearly dependent on the other coefficients and knots. The vector of
coefficients has four attributes. knots is a vector of knots, latex is a vector of text strings with the
LaTeX representation of the formula. columns.used is the number of columns used in the output
string since the last newline command. function is an R function, which is also return in character
string format as the text attribute. rcsplineFunction returns an R function with arguments x (a
user-supplied numeric vector at which to evaluate the function), and some automatically-supplied
other arguments.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

See Also

rcspline.eval, ns, rcs, latex, Function.transcan

Examples

set.seed(1)
x <- 1:100
y <- (x - 50)^2 + rnorm(100, 0, 50)

redun 309

plot(x, y)
xx <- rcspline.eval(x, inclx=TRUE, nk=4)
knots <- attr(xx, "knots")
coef <- lsfit(xx, y)$coef
options(digits=4)
rcspline.restate must ignore intercept
w <- rcspline.restate(knots, coef[-1], x="{\\rm BP}")
could also have used coef instead of coef[-1], to include intercept
cat(attr(w,"latex"), sep="\n")

xtrans <- eval(attr(w, "function"))
This is an S function of a single argument
lines(x, coef[1] + xtrans(x), type="l")
Plots fitted transformation

xtrans <- rcsplineFunction(knots, coef)
xtrans
lines(x, xtrans(x), col='blue')

#x <- blood.pressure
xx.simple <- cbind(x, pmax(x-knots[1],0)^3, pmax(x-knots[2],0)^3,

pmax(x-knots[3],0)^3, pmax(x-knots[4],0)^3)
pred.value <- coef[1] + xx.simple %*% w
plot(x, pred.value, type='l') # same as above

redun Redundancy Analysis

Description

Uses flexible parametric additive models (see areg and its use of regression splines), or alternatively
to run a regular regression after replacing continuous variables with ranks, to determine how well
each variable can be predicted from the remaining variables. Variables are dropped in a stepwise
fashion, removing the most predictable variable at each step. The remaining variables are used to
predict. The process continues until no variable still in the list of predictors can be predicted with
an R2 or adjusted R2 of at least r2 or until dropping the variable with the highest R2 (adjusted or
ordinary) would cause a variable that was dropped earlier to no longer be predicted at least at the
r2 level from the now smaller list of predictors.

There is also an option qrank to expand each variable into two columns containing the rank and
square of the rank. Whenever ranks are used, they are computed as fractional ranks for numerical
reasons.

Usage

redun(formula, data=NULL, subset=NULL, r2 = 0.9,
type = c("ordinary", "adjusted"), nk = 3, tlinear = TRUE,
rank=qrank, qrank=FALSE,

310 redun

allcat=FALSE, minfreq=0, iterms=FALSE, pc=FALSE, pr = FALSE, ...)
S3 method for class 'redun'
print(x, digits=3, long=TRUE, ...)

Arguments

formula a formula. Enclose a variable in I() to force linearity. Alternately, can be a
numeric matrix, in which case the data are not run through dataframeReduce.
This is useful when running the data through transcan first for nonlinearly
transforming the data.

data a data frame, which must be omitted if formula is a matrix

subset usual subsetting expression

r2 ordinary or adjusted R2 cutoff for redundancy

type specify "adjusted" to use adjusted R2

nk number of knots to use for continuous variables. Use nk=0 to force linearity for
all variables.

tlinear set to FALSE to allow a variable to be automatically nonlinearly transformed (see
areg) while being predicted. By default, only continuous variables on the right
hand side (i.e., while they are being predictors) are automatically transformed,
using regression splines. Estimating transformations for target (dependent) vari-
ables causes more overfitting than doing so for predictors.

rank set to TRUE to replace non-categorical varibles with ranks before running the
analysis. This causes nk to be set to zero.

qrank set to TRUE to also include squares of ranks to allow for non-monotonic trans-
formations

allcat set to TRUE to ensure that all categories of categorical variables having more than
two categories are redundant (see details below)

minfreq For a binary or categorical variable, there must be at least two categories with
at least minfreq observations or the variable will be dropped and not checked
for redundancy against other variables. minfreq also specifies the minimum
frequency of a category or its complement before that category is considered
when allcat=TRUE.

iterms set to TRUE to consider derived terms (dummy variables and nonlinear spline
components) as separate variables. This will perform a redundancy analysis on
pieces of the variables.

pc if iterms=TRUE you can set pc to TRUE to replace the submatrix of terms cor-
responding to each variable with the orthogonal principal components before
doing the redundancy analysis. The components are based on the correlation
matrix.

pr set to TRUE to monitor progress of the stepwise algorithm

... arguments to pass to dataframeReduce to remove "difficult" variables from
data if formula is ~. to use all variables in data (data must be specified when
these arguments are used). Ignored for print.

x an object created by redun

redun 311

digits number of digits to which to round R2 values when printing

long set to FALSE to prevent the print method from printing the R2 history and the
original R2 with which each variable can be predicted from ALL other variables.

Details

A categorical variable is deemed redundant if a linear combination of dummy variables representing
it can be predicted from a linear combination of other variables. For example, if there were 4 cities
in the data and each city’s rainfall was also present as a variable, with virtually the same rainfall
reported for all observations for a city, city would be redundant given rainfall (or vice-versa; the one
declared redundant would be the first one in the formula). If two cities had the same rainfall, city
might be declared redundant even though tied cities might be deemed non-redundant in another
setting. To ensure that all categories may be predicted well from other variables, use the allcat
option. To ignore categories that are too infrequent or too frequent, set minfreq to a nonzero
integer. When the number of observations in the category is below this number or the number of
observations not in the category is below this number, no attempt is made to predict observations
being in that category individually for the purpose of redundancy detection.

Value

an object of class "redun" including an element "scores", a numeric matrix with all transformed
values when each variable was the dependent variable and the first canonical variate was computed

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

areg, dataframeReduce, transcan, varclus, r2describe, subselect::genetic

Examples

set.seed(1)
n <- 100
x1 <- runif(n)
x2 <- runif(n)
x3 <- x1 + x2 + runif(n)/10
x4 <- x1 + x2 + x3 + runif(n)/10
x5 <- factor(sample(c('a','b','c'),n,replace=TRUE))
x6 <- 1*(x5=='a' | x5=='c')
redun(~x1+x2+x3+x4+x5+x6, r2=.8)
redun(~x1+x2+x3+x4+x5+x6, r2=.8, minfreq=40)
redun(~x1+x2+x3+x4+x5+x6, r2=.8, allcat=TRUE)
x5 is no longer redundant but x6 is
redun(~x1+x2+x3+x4+x5+x6, r2=.8, rank=TRUE)
redun(~x1+x2+x3+x4+x5+x6, r2=.8, qrank=TRUE)

312 reShape

To help decode which variables made a particular variable redundant:
r <- redun(...)
r2describe(r$scores)

reShape Reshape Matrices and Serial Data

Description

If the first argument is a matrix, reShape strings out its values and creates row and column vectors
specifying the row and column each element came from. This is useful for sending matrices to
Trellis functions, for analyzing or plotting results of table or crosstabs, or for reformatting serial
data stored in a matrix (with rows representing multiple time points) into vectors. The number
of observations in the new variables will be the product of the number of rows and number of
columns in the input matrix. If the first argument is a vector, the id and colvar variables are used
to restructure it into a matrix, with NAs for elements that corresponded to combinations of id and
colvar values that did not exist in the data. When more than one vector is given, multiple matrices
are created. This is useful for restructuring irregular serial data into regular matrices. It is also useful
for converting data produced by expand.grid into a matrix (see the last example). The number of
rows of the new matrices equals the number of unique values of id, and the number of columns
equals the number of unique values of colvar.

When the first argument is a vector and the id is a data frame (even with only one variable), reShape
will produce a data frame, and the unique groups are identified by combinations of the values of all
variables in id. If a data frame constant is specified, the variables in this data frame are assumed
to be constant within combinations of id variables (if not, an arbitrary observation in constant will
be selected for each group). A row of constant corresponding to the target id combination is then
carried along when creating the data frame result.

A different behavior of reShape is achieved when base and reps are specified. In that case x
must be a list or data frame, and those data are assumed to contain one or more non-repeating
measurements (e.g., baseline measurements) and one or more repeated measurements represented
by variables named by pasting together the character strings in the vector base with the integers 1,
2, . . . , reps. The input data are rearranged by repeating each value of the baseline variables reps
times and by transposing each observation’s values of one of the set of repeated measurements as
reps observations under the variable whose name does not have an integer pasted to the end. if x
has a row.names attribute, those observation identifiers are each repeated reps times in the output
object. See the last example.

Usage

reShape(x, ..., id, colvar, base, reps, times=1:reps,
timevar='seqno', constant=NULL)

Arguments

x a matrix or vector, or, when base is specified, a list or data frame

... other optional vectors, if x is a vector

reShape 313

id A numeric, character, category, or factor variable containing subject identifiers,
or a data frame of such variables that in combination form groups of interest.
Required if x is a vector, ignored otherwise.

colvar A numeric, character, category, or factor variable containing column identifiers.
colvar is using a "time of data collection" variable. Required if x is a vector,
ignored otherwise.

base vector of character strings containing base names of repeated measurements

reps number of times variables named in base are repeated. This must be a constant.

times when base is given, times is the vector of times to create if you do not want to
use consecutive integers beginning with 1.

timevar specifies the name of the time variable to create if times is given, if you do not
want to use seqno

constant a data frame with the same number of rows in id and x, containing auxiliary
information to be merged into the resulting data frame. Logically, the rows of
constant within each group should have the same value of all of its variables.

Details

In converting dimnames to vectors, the resulting variables are numeric if all elements of the ma-
trix dimnames can be converted to numeric, otherwise the corresponding row or column variable
remains character. When the dimnames if x have a names attribute, those two names become the
new variable names. If x is a vector and another vector is also given (in ...), the matrices in the
resulting list are named the same as the input vector calling arguments. You can specify customized
names for these on-the-fly by using e.g. reShape(X=x, Y=y, id= , colvar=). The new names
will then be X and Y instead of x and y. A new variable named seqnno is also added to the resulting
object. seqno indicates the sequential repeated measurement number. When base and times are
specified, this new variable is named the character value of timevar and the values are given by a
table lookup into the vector times.

Value

If x is a matrix, returns a list containing the row variable, the column variable, and the as.vector(x)
vector, named the same as the calling argument was called for x. If x is a vector and no other vectors
were specified as ..., the result is a matrix. If at least one vector was given to ..., the result is a
list containing k matrices, where k one plus the number of vectors in If x is a list or data frame,
the same type of object is returned. If x is a vector and id is a data frame, a data frame will be the
result.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

See Also

reshape, as.vector, matrix, dimnames, outer, table

314 reShape

Examples

set.seed(1)
Solder <- factor(sample(c('Thin','Thick'),200,TRUE),c('Thin','Thick'))
Opening <- factor(sample(c('S','M','L'), 200,TRUE),c('S','M','L'))

tab <- table(Opening, Solder)
tab
reShape(tab)
attach(tab) # do further processing

An example where a matrix is created from irregular vectors
follow <- data.frame(id=c('a','a','b','b','b','d'),

month=c(1, 2, 1, 2, 3, 2),
cholesterol=c(225,226, 320,319,318, 270))

follow
attach(follow)
reShape(cholesterol, id=id, colvar=month)
detach('follow')
Could have done :
reShape(cholesterol, triglyceride=trig, id=id, colvar=month)

Create a data frame, reshaping a long dataset in which groups are
formed not just by subject id but by combinations of subject id and
visit number. Also carry forward a variable that is supposed to be
constant within subject-visit number combinations. In this example,
it is not constant, so an arbitrary visit number will be selected.
w <- data.frame(id=c('a','a','a','a','b','b','b','d','d','d'),

visit=c(1, 1, 2, 2, 1, 1, 2, 2, 2, 2),
k=c('A','A','B','B','C','C','D','E','F','G'),

var=c('x','y','x','y','x','y','y','x','y','z'),
val=1:10)

with(w,
reShape(val, id=data.frame(id,visit),

constant=data.frame(k), colvar=var))

Get predictions from a regression model for 2 systematically
varying predictors. Convert the predictions into a matrix, with
rows corresponding to the predictor having the most values, and
columns corresponding to the other predictor
d <- expand.grid(x2=0:1, x1=1:100)
pred <- predict(fit, d)
reShape(pred, id=d$x1, colvar=d$x2) # makes 100 x 2 matrix

Reshape a wide data frame containing multiple variables representing
repeated measurements (3 repeats on 2 variables; 4 subjects)
set.seed(33)
n <- 4
w <- data.frame(age=rnorm(n, 40, 10),

sex=sample(c('female','male'), n,TRUE),
sbp1=rnorm(n, 120, 15),
sbp2=rnorm(n, 120, 15),

rlegend 315

sbp3=rnorm(n, 120, 15),
dbp1=rnorm(n, 80, 15),
dbp2=rnorm(n, 80, 15),
dbp3=rnorm(n, 80, 15), row.names=letters[1:n])

options(digits=3)
w

u <- reShape(w, base=c('sbp','dbp'), reps=3)
u
reShape(w, base=c('sbp','dbp'), reps=3, timevar='week', times=c(0,3,12))

rlegend Special Version of legend for R

Description

rlegend is a version of legend for R that implements plot=FALSE, adds grid=TRUE, and defaults
lty, lwd, pch to NULL and checks for length>0 rather than missing(), so it’s easier to deal with
non-applicable parameters. But when grid is in effect, the preferred function to use is rlegendg,
which calls the lattice draw.key function.

Usage

rlegend(x, y, legend, fill, col = "black", lty = NULL, lwd = NULL,
pch = NULL, angle = NULL, density = NULL, bty = "o",
bg = par("bg"), pt.bg = NA, cex = 1, xjust = 0, yjust = 1,
x.intersp = 1, y.intersp = 1, adj = 0, text.width = NULL,
merge = do.lines && has.pch, trace = FALSE, ncol = 1,
horiz = FALSE, plot = TRUE, grid = FALSE, ...)

rlegendg(x, y, legend, col=pr$col[1], lty=NULL,
lwd=NULL, pch=NULL, cex=pr$cex[1], other=NULL)

Arguments

x, y, legend, fill, col, lty, lwd, pch, angle, density, bty, bg, pt.bg, cex,
xjust, yjust, x.intersp, y.intersp, adj, text.width, merge, trace, ncol,
horiz

see legend

plot set to FALSE to suppress drawing the legend. This is used the compute the size
needed for when the legend is drawn with a later call to rlegend.

grid set to TRUE if the grid package is in effect

... see legend

other a list containing other arguments to pass to draw.key. See the help file for
xyplot.

316 rm.boot

Value

a list with elements rect and text. rect has elements w, h, left, top with size/position infor-
mation.

Author(s)

Frank Harrell and R-Core

See Also

legend, draw.key, xyplot

rm.boot Bootstrap Repeated Measurements Model

Description

For a dataset containing a time variable, a scalar response variable, and an optional subject iden-
tification variable, obtains least squares estimates of the coefficients of a restricted cubic spline
function or a linear regression in time after adjusting for subject effects through the use of subject
dummy variables. Then the fit is bootstrapped B times, either by treating time and subject ID as fixed
(i.e., conditioning the analysis on them) or as random variables. For the former, the residuals from
the original model fit are used as the basis of the bootstrap distribution. For the latter, samples are
taken jointly from the time, subject ID, and response vectors to obtain unconditional distributions.

If a subject id variable is given, the bootstrap sampling will be based on samples with replace-
ment from subjects rather than from individual data points. In other words, either none or all of
a given subject’s data will appear in a bootstrap sample. This cluster sampling takes into account
any correlation structure that might exist within subjects, so that confidence limits are corrected
for within-subject correlation. Assuming that ordinary least squares estimates, which ignore the
correlation structure, are consistent (which is almost always true) and efficient (which would not be
true for certain correlation structures or for datasets in which the number of observation times vary
greatly from subject to subject), the resulting analysis will be a robust, efficient repeated measures
analysis for the one-sample problem.

Predicted values of the fitted models are evaluated by default at a grid of 100 equally spaced time
points ranging from the minimum to maximum observed time points. Predictions are for the av-
erage subject effect. Pointwise confidence intervals are optionally computed separately for each
of the points on the time grid. However, simultaneous confidence regions that control the level of
confidence for the entire regression curve lying within a band are often more appropriate, as they
allow the analyst to draw conclusions about nuances in the mean time response profile that were not
stated apriori. The method of Tibshirani (1997) is used to easily obtain simultaneous confidence
sets for the set of coefficients of the spline or linear regression function as well as the average in-
tercept parameter (over subjects). Here one computes the objective criterion (here both the -2 log
likelihood evaluated at the bootstrap estimate of beta but with respect to the original design matrix
and response vector, and the sum of squared errors in predicting the original response vector) for the
original fit as well as for all of the bootstrap fits. The confidence set of the regression coefficients
is the set of all coefficients that are associated with objective function values that are less than or

rm.boot 317

equal to say the 0.95 quantile of the vector of B + 1 objective function values. For the coefficients
satisfying this condition, predicted curves are computed at the time grid, and minima and maxima of
these curves are computed separately at each time point toderive the final simultaneous confidence
band.

By default, the log likelihoods that are computed for obtaining the simultaneous confidence band
assume independence within subject. This will cause problems unless such log likelihoods have
very high rank correlation with the log likelihood allowing for dependence. To allow for correlation
or to estimate the correlation function, see the cor.pattern argument below.

Usage

rm.boot(time, y, id=seq(along=time), subset,
plot.individual=FALSE,
bootstrap.type=c('x fixed','x random'),
nk=6, knots, B=500, smoother=supsmu,
xlab, xlim, ylim=range(y),
times=seq(min(time), max(time), length=100),
absorb.subject.effects=FALSE,
rho=0, cor.pattern=c('independent','estimate'), ncor=10000,
...)

S3 method for class 'rm.boot'
plot(x, obj2, conf.int=.95,

xlab=x$xlab, ylab=x$ylab,
xlim, ylim=x$ylim,
individual.boot=FALSE,
pointwise.band=FALSE,
curves.in.simultaneous.band=FALSE,
col.pointwise.band=2,
objective=c('-2 log L','sse','dep -2 log L'), add=FALSE, ncurves,
multi=FALSE, multi.method=c('color','density'),
multi.conf =c(.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,.99),
multi.density=c(-1,90,80,70,60,50,40,30,20,10, 7, 4),
multi.col =c(1, 8,20, 5, 2, 7,15,13,10,11, 9, 14),
subtitles=TRUE, ...)

Arguments

time numeric time vector

y continuous numeric response vector of length the same as time. Subjects having
multiple measurements have the measurements strung out.

x an object returned from rm.boot

id subject ID variable. If omitted, it is assumed that each time-response pair is
measured on a different subject.

subset subset of observations to process if not all the data

318 rm.boot

plot.individual

set to TRUE to plot nonparametrically smoothed time-response curves for each
subject

bootstrap.type specifies whether to treat the time and subject ID variables as fixed or random

nk number of knots in the restricted cubic spline function fit. The number of knots
may be 0 (denoting linear regression) or an integer greater than 2 in which k
knots results in k−1 regression coefficients excluding the intercept. The default
is 6 knots.

knots vector of knot locations. May be specified if nk is omitted.

B number of bootstrap repetitions. Default is 500.

smoother a smoothing function that is used if plot.individual=TRUE. Default is supsmu.

xlab label for x-axis. Default is "units" attribute of the original time variable, or
"Time" if no such attribute was defined using the units function.

xlim specifies x-axis plotting limits. Default is to use range of times specified to
rm.boot.

ylim for rm.boot this is a vector of y-axis limits used if plot.individual=TRUE. It
is also passed along for later use by plot.rm.boot. For plot.rm.boot, ylim
can be specified, to override the value stored in the object stored by rm.boot.
The default is the actual range of y in the input data.

times a sequence of times at which to evaluated fitted values and confidence limits.
Default is 100 equally spaced points in the observed range of time.

absorb.subject.effects

If TRUE, adjusts the response vector y before re-sampling so that the subject-
specific effects in the initial model fit are all zero. Then in re-sampling, subject
effects are not used in the models. This will downplay one of the sources of
variation. This option is used mainly for checking for consistency of results, as
the re-sampling analyses are simpler when absort.subject.effects=TRUE.

rho The log-likelihood function that is used as the basis of simultaneous confidence
bands assumes normality with independence within subject. To check the ro-
bustness of this assumption, if rho is not zero, the log-likelihood under mul-
tivariate normality within subject, with constant correlation rho between any
two time points, is also computed. If the two log-likelihoods have the same
ranks across re-samples, alllowing the correlation structure does not matter. The
agreement in ranks is quantified using the Spearman rank correlation coefficient.
The plot method allows the non-zero intra-subject correlation log-likelihood to
be used in deriving the simultaneous confidence band. Note that this approach
does assume homoscedasticity.

cor.pattern More generally than using an equal-correlation structure, you can specify a func-
tion of two time vectors that generates as many correlations as the length of these
vectors. For example, cor.pattern=function(time1,time2) 0.2^(abs(time1-time2)/10)
would specify a dampening serial correlation pattern. cor.pattern can also be
a list containing vectors x (a vector of absolute time differences) and y (a corre-
sponding vector of correlations). To estimate the correlation function as a func-
tion of absolute time differences within subjects, specify cor.pattern="estimate".
The products of all possible pairs of residuals (or at least up to ncor of them)

rm.boot 319

within subjects will be related to the absolute time difference. The correlation
function is estimated by computing the sample mean of the products of stan-
dardized residuals, stratified by absolute time difference. The correlation for a
zero time difference is set to 1 regardless of the lowess estimate. NOTE: This
approach fails in the presence of large subject effects; correcting for such effects
removes too much of the correlation structure in the residuals.

ncor the maximum number of pairs of time values used in estimating the correlation
function if cor.pattern="estimate"

... other arguments to pass to smoother if plot.individual=TRUE

obj2 a second object created by rm.boot that can also be passed to plot.rm.boot.
This is used for two-sample problems for which the time profiles are allowed
to differ between the two groups. The bootstrapped predicted y values for the
second fit are subtracted from the fitted values for the first fit so that the predicted
mean response for group 1 minus the predicted mean response for group 2 is
what is plotted. The confidence bands that are plotted are also for this difference.
For the simultaneous confidence band, the objective criterion is taken to be the
sum of the objective criteria (-2 log L or sum of squared errors) for the separate
fits for the two groups. The times vectors must have been identical for both
calls to rm.boot, although NAs can be inserted by the user of one or both of
the time vectors in the rm.boot objects so as to suppress certain sections of the
difference curve from being plotted.

conf.int the confidence level to use in constructing simultaneous, and optionally point-
wise, bands. Default is 0.95.

ylab label for y-axis. Default is the "label" attribute of the original y variable, or
"y" if no label was assigned to y (using the label function, for example).

individual.boot

set to TRUE to plot the first 100 bootstrap regression fits

pointwise.band set to TRUE to draw a pointwise confidence band in addition to the simultaneous
band

curves.in.simultaneous.band

set to TRUE to draw all bootstrap regression fits that had a sum of squared errors
(obtained by predicting the original y vector from the original time vector and
id vector) that was less that or equal to the conf.int quantile of all bootstrapped
models (plus the original model). This will show how the point by point max
and min were computed to form the simultaneous confidence band.

col.pointwise.band

color for the pointwise confidence band. Default is ‘2’, which defaults to red for
default Windows S-PLUS setups.

objective the default is to use the -2 times log of the Gaussian likelihood for computing the
simultaneous confidence region. If neither cor.pattern nor rho was specified
to rm.boot, the independent homoscedastic Gaussian likelihood is used. Other-
wise the dependent homoscedastic likelihood is used according to the specified
or estimated correlation pattern. Specify objective="sse" to instead use the
sum of squared errors.

add set to TRUE to add curves to an existing plot. If you do this, titles and subtitles
are omitted.

320 rm.boot

ncurves when using individual.boot=TRUE or curves.in.simultaneous.band=TRUE,
you can plot a random sample of ncurves of the fitted curves instead of plotting
up to B of them.

multi set to TRUE to draw multiple simultaneous confidence bands shaded with differ-
ent colors. Confidence levels vary over the values in the multi.conf vector.

multi.method specifies the method of shading when multi=TRUE. Default is to use colors,
with the default colors chosen so that when the graph is printed under S-Plus
for Windows 4.0 to an HP LaserJet printer, the confidence regions are naturally
ordered by darkness of gray-scale. Regions closer to the point estimates (i.e., the
center) are darker. Specify multi.method="density" to instead use densities
of lines drawn per inch in the confidence regions, with all regions drawn with
the default color. The polygon function is used to shade the regions.

multi.conf vector of confidence levels, in ascending order. Default is to use 12 confidence
levels ranging from 0.05 to 0.99.

multi.density vector of densities in lines per inch corresponding to multi.conf. As is the
convention in the polygon function, a density of -1 indicates a solid region.

multi.col vector of colors corresponding to multi.conf. See multi.method for rationale.

subtitles set to FALSE to suppress drawing subtitles for the plot

Details

Observations having missing time or y are excluded from the analysis.

As most repeated measurement studies consider the times as design points, the fixed covariable case
is the default. Bootstrapping the residuals from the initial fit assumes that the model is correctly
specified. Even if the covariables are fixed, doing an unconditional bootstrap is still appropriate, and
for large sample sizes unconditional confidence intervals are only slightly wider than conditional
ones. For moderate to small sample sizes, the bootstrap.type="x random" method can be fairly
conservative.

If not all subjects have the same number of observations (after deleting observations containing
missing values) and if bootstrap.type="x fixed", bootstrapped residual vectors may have a
length m that is different from the number of original observations n. If m > n for a bootstrap
repetition, the first n elements of the randomly drawn residuals are used. If m < n, the residual
vector is appended with a random sample with replacement of length n−m from itself. A warning
message is issued if this happens. If the number of time points per subject varies, the bootstrap
results for bootstrap.type="x fixed" can still be invalid, as this method assumes that a vector
(over subjects) of all residuals can be added to the original yhats, and varying number of points will
cause mis-alignment.

For bootstrap.type="x random" in the presence of significant subject effects, the analysis is ap-
proximate as the subjects used in any one bootstrap fit will not be the entire list of subjects. The
average (over subjects used in the bootstrap sample) intercept is used from that bootstrap sample as
a predictor of average subject effects in the overall sample.

Once the bootstrap coefficient matrix is stored by rm.boot, plot.rm.boot can be run multiple
times with different options (e.g, different confidence levels).

See bootcov in the rms library for a general approach to handling repeated measurement data for
ordinary linear models, binary and ordinal models, and survival models, using the unconditional
bootstrap. bootcov does not handle bootstrapping residuals.

rm.boot 321

Value

an object of class rm.boot is returned by rm.boot. The principal object stored in the returned object
is a matrix of regression coefficients for the original fit and all of the bootstrap repetitions (object
Coef), along with vectors of the corresponding -2 log likelihoods are sums of squared errors. The
original fit object from lm.fit.qr is stored in fit. For this fit, a cell means model is used for the
id effects.

plot.rm.boot returns a list containing the vector of times used for plotting along with the overall
fitted values, lower and upper simultaneous confidence limits, and optionally the pointwise confi-
dence limits.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Feng Z, McLerran D, Grizzle J (1996): A comparison of statistical methods for clustered data
analysis with Gaussian error. Stat in Med 15:1793–1806.

Tibshirani R, Knight K (1997):Model search and inference by bootstrap "bumping". Technical
Report, Department of Statistics, University of Toronto.
https://www.jstor.org/stable/1390820. Presented at the Joint Statistical Meetings, Chicago,
August 1996.

Efron B, Tibshirani R (1993): An Introduction to the Bootstrap. New York: Chapman and Hall.

Diggle PJ, Verbyla AP (1998): Nonparametric estimation of covariance structure in logitudinal
data. Biometrics 54:401–415.

Chapman IM, Hartman ML, et al (1997): Effect of aging on the sensitivity of growth hormone
secretion to insulin-like growth factor-I negative feedback. J Clin Endocrinol Metab 82:2996–3004.

Li Y, Wang YG (2008): Smooth bootstrap methods for analysis of longitudinal data. Stat in Med
27:937-953. (potential improvements to cluster bootstrap; not implemented here)

See Also

rcspline.eval, lm, lowess, supsmu, bootcov, units, label, polygon, reShape

Examples

Generate multivariate normal responses with equal correlations (.7)
within subjects and no correlation between subjects
Simulate realizations from a piecewise linear population time-response
profile with large subject effects, and fit using a 6-knot spline
Estimate the correlation structure from the residuals, as a function
of the absolute time difference

Function to generate n p-variate normal variates with mean vector u and

https://www.jstor.org/stable/1390820

322 rm.boot

covariance matrix S
Slight modification of function written by Bill Venables
See also the built-in function rmvnorm
mvrnorm <- function(n, p = 1, u = rep(0, p), S = diag(p)) {

Z <- matrix(rnorm(n * p), p, n)
t(u + t(chol(S)) %*% Z)

}

n <- 20 # Number of subjects
sub <- .5*(1:n) # Subject effects

Specify functional form for time trend and compute non-stochastic component
times <- seq(0, 1, by=.1)
g <- function(times) 5*pmax(abs(times-.5),.3)
ey <- g(times)

Generate multivariate normal errors for 20 subjects at 11 times
Assume equal correlations of rho=.7, independent subjects

nt <- length(times)
rho <- .7

set.seed(19)
errors <- mvrnorm(n, p=nt, S=diag(rep(1-rho,nt))+rho)
Note: first random number seed used gave rise to mean(errors)=0.24!

Add E[Y], error components, and subject effects
y <- matrix(rep(ey,n), ncol=nt, byrow=TRUE) + errors +

matrix(rep(sub,nt), ncol=nt)

String out data into long vectors for times, responses, and subject ID
y <- as.vector(t(y))
times <- rep(times, n)
id <- sort(rep(1:n, nt))

Show lowess estimates of time profiles for individual subjects
f <- rm.boot(times, y, id, plot.individual=TRUE, B=25, cor.pattern='estimate',

smoother=lowess, bootstrap.type='x fixed', nk=6)
In practice use B=400 or 500
This will compute a dependent-structure log-likelihood in addition
to one assuming independence. By default, the dep. structure
objective will be used by the plot method (could have specified rho=.7)
NOTE: Estimating the correlation pattern from the residual does not
work in cases such as this one where there are large subject effects

rm.boot 323

Plot fits for a random sample of 10 of the 25 bootstrap fits
plot(f, individual.boot=TRUE, ncurves=10, ylim=c(6,8.5))

Plot pointwise and simultaneous confidence regions
plot(f, pointwise.band=TRUE, col.pointwise=1, ylim=c(6,8.5))

Plot population response curve at average subject effect
ts <- seq(0, 1, length=100)
lines(ts, g(ts)+mean(sub), lwd=3)

Not run:
#
Handle a 2-sample problem in which curves are fitted
separately for males and females and we wish to estimate the
difference in the time-response curves for the two sexes.
The objective criterion will be taken by plot.rm.boot as the
total of the two sums of squared errors for the two models
#
knots <- rcspline.eval(c(time.f,time.m), nk=6, knots.only=TRUE)
Use same knots for both sexes, and use a times vector that
uses a range of times that is included in the measurement
times for both sexes
#
tm <- seq(max(min(time.f),min(time.m)),

min(max(time.f),max(time.m)),length=100)

f.female <- rm.boot(time.f, bp.f, id.f, knots=knots, times=tm)
f.male <- rm.boot(time.m, bp.m, id.m, knots=knots, times=tm)
plot(f.female)
plot(f.male)
The following plots female minus male response, with
a sequence of shaded confidence band for the difference
plot(f.female,f.male,multi=TRUE)

Do 1000 simulated analyses to check simultaneous coverage
probability. Use a null regression model with Gaussian errors

n.per.pt <- 30
n.pt <- 10

null.in.region <- 0

for(i in 1:1000) {

324 rmClose

y <- rnorm(n.pt*n.per.pt)
time <- rep(1:n.per.pt, n.pt)

Add the following line and add ,id=id to rm.boot to use clustering
id <- sort(rep(1:n.pt, n.per.pt))
Because we are ignoring patient id, this simulation is effectively
using 1 point from each of 300 patients, with times 1,2,3,,,30

f <- rm.boot(time, y, B=500, nk=5, bootstrap.type='x fixed')
g <- plot(f, ylim=c(-1,1), pointwise=FALSE)
null.in.region <- null.in.region + all(g$lower<=0 & g$upper>=0)
prn(c(i=i,null.in.region=null.in.region))

}

Simulation Results: 905/1000 simultaneous confidence bands
fully contained the horizontal line at zero

End(Not run)

rmClose rmClose

Description

Remove close values from a numeric vector that are not at the outer limtis. This is useful for
removing axis breaks that overlap when plotting.

Usage

rmClose(x, minfrac = 0.05)

Arguments

x a numeric vector with no NAs

minfrac minimum allowed spacing between consecutive ordered x, as a fraction of the
range of x

Value

a sorted numeric vector of non-close values of x

Author(s)

Frank Harrell

Examples

rmClose(c(1, 2, 4, 47, 48, 49, 50), minfrac=0.07)

rMultinom 325

rMultinom Generate Multinomial Random Variables with Varying Probabilities

Description

Given a matrix of multinomial probabilities where rows correspond to observations and columns
to categories (and each row sums to 1), generates a matrix with the same number of rows as has
probs and with m columns. The columns represent multinomial cell numbers, and within a row the
columns are all samples from the same multinomial distribution. The code is a modification of that
in the impute.polyreg function in the MICE package.

Usage

rMultinom(probs, m)

Arguments

probs matrix of probabilities

m number of samples for each row of probs

Value

an integer matrix having m columns

See Also

rbinom

Examples

set.seed(1)
w <- rMultinom(rbind(c(.1,.2,.3,.4),c(.4,.3,.2,.1)),200)
t(apply(w, 1, table)/200)

runifChanged runifChanged

Description

Re-run Code if an Input Changed

Usage

runifChanged(fun, ..., file = NULL, .print. = TRUE, .inclfun. = TRUE)

326 runifChanged

Arguments

fun the (usually slow) function to run

... input objects the result of running the function is dependent on

file file in which to store the result of fun augmented by attributes containing hash
digests

.print. set to TRUE to list which objects changed that neessitated re-running f

.inclfun. set to FALSE to not include fun in the hash digest, i.e., to not require re-running
fun if only fun itself has changed

Details

Uses hashCheck to run a function and save the results if specified inputs have changed, otherwise to
retrieve results from a file. This makes it easy to see if any objects changed that require re-running
a long simulation, and reports on any changes. The file name is taken as the chunk name appended
with .rds unless it is given as file=. fun has no arguments. Set .inclfun.=FALSE to not include
fun in the hash check (for legacy uses). The typical workflow is as follows.

f <- function() {
. . . do the real work with multiple function calls ...
}
seed <- 3
set.seed(seed)
w <- runifChanged(f, seed, obj1, obj2,)

seed, obj1, obj2, ... are all the objects that f() uses that if changed would give a different result
of f(). This can include functions such as those in a package, and f will be re-run if any of the
function’s code changes. f is also re-run if the code inside f changes. The result of f is stored
with saveRDS by default in file named xxx.rds where xxx is the label for the current chunk. To
control this use instead file=xxx.rds add the file argument to runifChanged(...). If nothing
has changed and the file already exists, the file is read to create the result object (e.g., w above). If
f() needs to be run, the hashed input objects are stored as attributes for the result then the enhanced
result is written to the file.

See here for examples.

Value

the result of running fun

Author(s)

Frank Harrell

https://hbiostat.org/rflow/caching.html

runParallel 327

runParallel runParallel

Description

parallel Package Easy Front-End

Usage

runParallel(
onecore,
reps,
seed = round(runif(1, 0, 10000)),
cores = max(1, parallel::detectCores() - 1),
simplify = TRUE,
along

)

Arguments

onecore function to run the analysis on one core

reps total number of repetitions

seed species the base random number seed. The seed used for core i will be seed +
i.

cores number of cores to use, defaulting to one less than the number available

simplify set to FALSE to not create an outer list if a onecore result has only one element

along see Details

Details

Given a function onecore that runs the needed set of simulations on one CPU core, and given a
total number of repetitions reps, determines the number of available cores and by default uses one
less than that. By default the number of cores is one less than the number available on your ma-
chine. reps is divided as evenly as possible over these cores, and batches are run on the cores using
the parallel package mclapply function. The current per-core repetition number is continually
updated in your system’s temporary directory (/tmp for Linux and Mac, TEMP for Windows) in a
file name progressX.log where X is the core number. The random number seed is set for each core
and is equal to the scalar seed - core number + 1. The default seed is a random number between 0
and 10000 but it’s best if the user provides the seed so the simulation is reproducible. The total run
time is computed and printed onefile must create a named list of all the results created during that
one simulation batch. Elements of this list must be data frames, vectors, matrices, or arrays. Upon
completion of all batches, all the results are rbind’d and saved in a single list.

onecore must have an argument reps that will tell the function how many simulations to run for one
batch, another argument showprogress which is a function to be called inside onecore to write to
the progress file for the current core and repetition, and an argument core which informs onecore

328 samplesize.bin

which sequential core number (batch number) it is processing. When calling showprogress inside
onecore, the arguments, in order, must be the integer value of the repetition to be noted, the number
of reps, core, an optional 4th argument other that can contain a single character string to add
to the output, and an optional 5th argument pr. You can set pr=FALSE to suppress printing and
have showprogress return the file name for holding progress information if you want to customize
printing.

If any of the objects appearing as list elements produced by onecore are multi-dimensional arrays,
you must specify an integer value for along. This specifies to the abind package abind function
the dimension along which to bind the arrays. For example, if the first dimension of the array cor-
responding to repetitions, you would specify along=1. All arrays present must use the same along
unless along is a named vector and the names match elements of the simulation result object. Set
simplify=FALSE if you don’t want the result simplified if onecore produces only one list element.
The default returns the first (and only) list element rather than the list if there is only one element.

When onecore returns a data.table, runParallel simplifies all this and merely rbinds all the
per-core data tables into one large data table. In that case when you have onecore include a column
containing a simulation number, it is wise to prepend that number with the core number so that you
will have unique simulation IDs when all the cores’ results are combined.

See here for examples.

Value

result from combining all the parallel runs, formatting as similar to the result produced from one
run as possible

Author(s)

Frank Harrell

samplesize.bin Sample Size for 2-sample Binomial

Description

Computes sample size(s) for 2-sample binomial problem given vector or scalar probabilities in the
two groups.

Usage

samplesize.bin(alpha, beta, pit, pic, rho=0.5)

Arguments

alpha scalar ONE-SIDED test size, or two-sided size/2
beta scalar or vector of powers
pit hypothesized treatment probability of success
pic hypothesized control probability of success
rho proportion of the sample devoted to treated group (0 < rho < 1)

https://hbiostat.org/rflow/parallel.html

sas.get 329

Value

TOTAL sample size(s)

AUTHOR

Rick Chappell
Dept. of Statistics and Human Oncology
University of Wisconsin at Madison
<chappell@stat.wisc.edu>

Examples

alpha <- .05
beta <- c(.70,.80,.90,.95)

N1 is a matrix of total sample sizes whose
rows vary by hypothesized treatment success probability and
columns vary by power
See Meinert's book for formulae.

N1 <- samplesize.bin(alpha, beta, pit=.55, pic=.5)
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.60, pic=.5))
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.65, pic=.5))
N1 <- rbind(N1, samplesize.bin(alpha, beta, pit=.70, pic=.5))
attr(N1,"dimnames") <- NULL

#Accounting for 5% noncompliance in the treated group
inflation <- (1/.95)**2
print(round(N1*inflation+.5,0))

sas.get Convert a SAS Dataset to an S Data Frame

Description

Converts a SAS dataset into an S data frame. You may choose to extract only a subset of variables
or a subset of observations in the SAS dataset. You may have the function automatically convert

PROC FORMAT

-coded variables to factor objects. The original SAS codes are stored in an attribute called sas.codes
and these may be added back to the levels of a factor variable using the code.levels function.
Information about special missing values may be captured in an attribute of each variable having
special missing values. This attribute is called special.miss, and such variables are given class
special.miss. There are print, [], format, and is.special.miss methods for such variables.

330 sas.get

The chron function is used to set up date, time, and date-time variables. If using S-Plus 5 or 6 or
later, the timeDate function is used instead. Under R, Dates is used for dates and chron for date-
times. For times without dates, these still need to be stored in date-time format in POSIX. Such
SAS time variables are given a major class of POSIXt and a format.POSIXt function so that the
date portion (which will always be 1/1/1970) will not print by default. If a date variable represents
a partial date (0.5 added if month missing, 0.25 added if day missing, 0.75 if both), an attribute
partial.date is added to the variable, and the variable also becomes a class imputed variable.
The describe function uses information about partial dates and special missing values. There is an
option to automatically uncompress (or gunzip) compressed SAS datasets.

Usage

sas.get(libraryName, member, variables=character(0), ifs=character(0),
format.library=libraryName, id,
dates.=c("sas","yymmdd","yearfrac","yearfrac2"),
keep.log=TRUE, log.file="_temp_.log", macro=sas.get.macro,
data.frame.out=existsFunction("data.frame"), clean.up=FALSE, quiet=FALSE,
temp=tempfile("SaS"), formats=TRUE, recode=formats,
special.miss=FALSE, sasprog="sas",
as.is=.5, check.unique.id=TRUE, force.single=FALSE,
pos, uncompress=FALSE, defaultencoding="latin1", var.case="lower")

is.special.miss(x, code)

S3 method for class 'special.miss'
x[..., drop=FALSE]

S3 method for class 'special.miss'
print(x, ...)

S3 method for class 'special.miss'
format(x, ...)

sas.codes(object)

code.levels(object)

Arguments

libraryName character string naming the directory in which the dataset is kept.

drop logical. If TRUE the result is coerced to the lowest possible dimension.

member character string giving the second part of the two part SAS dataset name. (The
first part is irrelevant here - it is mapped to the UNIX directory name.)

x a variable that may have been created by sas.get with special.miss=T or with
recode in effect.

variables vector of character strings naming the variables in the SAS dataset. The S dataset
will contain only those variables from the SAS dataset. To get all of the variables
(the default), an empty string may be given. It is a fatal error if any one of

sas.get 331

the variables is not in the SAS dataset. You can use sas.contents to get the
variables in the SAS dataset. If you have retrieved a subset of the variables in the
SAS dataset and which to retrieve the same list of variables from another dataset,
you can program the value of variables - see one of the last examples.

ifs a vector of character strings, each containing one SAS “subsetting if” statement.
These will be used to extract a subset of the observations in the SAS dataset.

format.library The UNIX directory containing the file ‘formats.sct’, which contains the def-
initions of the user defined formats used in this dataset. By default, we look for
the formats in the same directory as the data. The user defined formats must be
available (so SAS can read the data).

formats Set formats to FALSE to keep sas.get from telling the SAS macro to retrieve
value label formats from format.library. When you do not specify formats
or recode, sas.get will set format to TRUE if a SAS format catalog (‘.sct’ or
‘.sc2’) file exists in format.library. Value label formats if present are stored
as the formats attribute of the returned object (see below). A format is used if
it is referred to by one or more variables in the dataset, if it contains no ranges
of values (i.e., it identifies value labels for single values), and if it is a character
format or a numeric format that is not used just to label missing values. If you
set recode to TRUE, 1, or 2, formats defaults to TRUE. To fetch the values and
labels for variable x in the dataset d you could type:
f <- attr(d\$x, "format")
formats <- attr(d, "formats")
formats\$f\$values; formats\$f\$labels

recode This parameter defaults to TRUE if formats is TRUE. If it is TRUE, variables that
have an appropriate format (see above) are recoded as factor objects, which
map the values to the value labels for the format. Alternatively, set recode
to 1 to use labels of the form value:label, e.g. 1:good 2:better 3:best. Set
recode to 2 to use labels such as good(1) better(2) best(3). Since sas.codes
and code.levels add flexibility, the usual choice for recode is TRUE.

special.miss For numeric variables, any missing values are stored as NA in S. You can re-
cover special missing values by setting special.miss to TRUE. This will cause
the special.miss attribute and the special.miss class to be added to each
variable that has at least one special missing value. Suppose that variable y was
.E in observation 3 and .G in observation 544. The special.miss attribute for
y then has the value
list(codes=c("E","G"),obs=c(3,544))
To fetch this information for variable y you would say for example
s <- attr(y, "special.miss")
s\$codes; s\$obs
or use is.special.miss(x) or the print.special.miss method, which will
replace NA values for the variable with ‘E’ or ‘G’ if they correspond to special
missing values. The describe function uses this information in printing a data
summary.

id The name of the variable to be used as the row names of the S dataset. The id
variable becomes the row.names attribute of a data frame, but the id variable
is still retained as a variable in the data frame. (if data.frame.out is FALSE,
this will be the attribute ‘id’ of the R dataset.) You can also specify a vector of

332 sas.get

variable names as the id parameter. After fetching the data from SAS, all these
variables will be converted to character format and concatenated (with a space
as a separator) to form a (hopefully) unique identification variable.

dates. specifies the format for storing SAS dates in the resulting data frame

as.is IF data.frame.out = TRUE, SAS character variables are converted to S factor
objects if as.is = FALSE or if as.is is a number between 0 and 1 inclusive and
the number of unique values of the variable is less than the number of obser-
vations (n) times as.is. The default if as.is is 0.5, so character variables are
converted to factors only if they have fewer than n/2 unique values. The primary
purpose of this is to keep unique identification variables as character values in
the data frame instead of using more space to store both the integer factor codes
and the factor labels.

check.unique.id

If id is specified, the row names are checked for uniqueness if check.unique.id
= TRUE. If any are duplicated, a warning is printed. Note that if a data frame is be-
ing created with duplicate row names, statements such as my.data.frame["B23",]
will retrieve only the first row with a row name of

B23

.

force.single By default, SAS numeric variables having LENGTH > 4 are stored as S dou-
ble precision numerics, which allow for the same precision as a SAS

LENGTH

8 variable. Set force.single = TRUE to store every numeric variable in single
precision (7 digits of precision). This option is useful when the creator of the
SAS dataset has failed to use a

LENGTH

statement. R does not have single precision, so no attempt is made to convert to
single if running R.

dates One of the character strings "sas", "yearfrac", "yearfrac2", "yymmdd". If a
SAS variable has a date format (one of "DATE", "MMDDYY", "YYMMDD", "DDMMYY",
"YYQ", "MONYY", "JULIAN"), it will be converted to the format specified by
dates before being given to S. "sas" gives days from 1/1/1960 (from 1/1/1970
if using chron), "yearfrac" gives days from 1/1/1900 divided by 365.25, "yearfrac2"
gives year plus fraction of current year, and "yymmdd" gives a 6 digit number

YYMMDD

(year%%100, month, day). Note that R will store these as numbers, not as
character strings. If dates="sas" and a variable has one of the SAS date formats
listed above, the variable will be given a class of ‘date’ to work with Terry
Therneau’s implementation of the ‘date’ class in S. If the chron package or
timeDate function is available, these are used instead.

keep.log logical flag: if FALSE, delete the SAS log file upon completion.

log.file the name of the SAS log file.

sas.get 333

macro the name of an S object in the current search path that contains the text of the
SAS macro called by R. The R object is a character vector that can be edited
using for example sas.get.macro <- editor(sas.get.macro).

data.frame.out logical flag: if TRUE, the return value will be an S data frame, otherwise it will
be a list.

clean.up logical flag: if TRUE, remove all temporary files when finished. You may want
to keep these while debugging the SAS macro. Not needed for R.

quiet logical flag: if FALSE, print the contents of the SAS log file if there has been an
error.

temp the prefix to use for the temporary files. Two characters will be added to this,
the resulting name must fit on your file system.

sasprog the name of the system command to invoke SAS

uncompress set to TRUE to automatically invoke the UNIX gunzip command (if ‘member.ssd01.gz’
exists) or the uncompress command (if ‘member.ssd01.Z’ exists) to uncom-
press the SAS dataset before proceeding. This assumes you have the file permis-
sions to allow uncompressing in place. If the file is already uncompressed, this
option is ignored.

pos by default, a list or data frame which contains all the variables is returned. If
you specify pos, each individual variable is placed into a separate object (whose
name is the name of the variable) using the assign function with the pos ar-
gument. For example, you can put each variable in its own file in a directory,
which in some cases may save memory over attaching a data frame.

code a special missing value code (‘A’ through ‘Z’ or ‘_’) to check against. If code
is omitted, is.special.miss will return a TRUE for each observation that has
any special missing value.

defaultencoding

encoding to assume if the SAS dataset does not specify one. Defaults to "latin1".

var.case default is to change case of SAS variable names to lower case. Specify alterna-
tively "upper" or "preserve".

object a variable in a data frame created by sas.get

... ignored

Details

If you specify special.miss = TRUE and there are no special missing values in the data SAS dataset,
the SAS step will bomb.

For variables having a

PROC FORMAT VALUE

format with some of the levels undefined, sas.get will interpret those values as NA if you are using
recode.

The SAS macro ‘sas_get’ uses record lengths of up to 4096 in two places. If you are exporting
records that are very long (because of a large number of variables and/or long character variables),
you may want to edit these

334 sas.get

LRECL

s to quadruple them, for example.

Value

if data.frame.out is TRUE, the output will be a data frame resembling the SAS dataset. If id was
specified, that column of the data frame will be used as the row names of the data frame. Each
variable in the data frame or vector in the list will have the attributes label and format containing
SAS labels and formats. Underscores in formats are converted to periods. Formats for character
variables have \$ placed in front of their names. If formats is TRUE and there are any appropriate
format definitions in format.library, the returned object will have attribute formats containing
lists named the same as the format names (with periods substituted for underscores and character
formats prefixed by \$). Each of these lists has a vector called values and one called labels with
the

PROC FORMAT; VALUE ...

definitions.

If data.frame.out is FALSE, the output will be a list of vectors, each containing a variable from
the SAS dataset. If id was specified, that element of the list will be used as the id attribute of the
entire list.

Side Effects

if a SAS error occurs and quiet is FALSE, then the SAS log file will be printed under the control of
the less pager.

BACKGROUND

The references cited below explain the structure of SAS datasets and how they are stored under
UNIX. See SAS Language for a discussion of the “subsetting if” statement.

Note

You must be able to run SAS (by typing sas) on your system. If the S command !sas does not start
SAS, then this function cannot work.

If you are reading time or date-time variables, you will need to execute the command library(chron)
to print those variables or the data frame if the timeDate function is not available.

Author(s)

Terry Therneau, Mayo Clinic
Frank Harrell, Vanderbilt University
Bill Dunlap, University of Washington and Insightful Corporation
Michael W. Kattan, Cleveland Clinic Foundation
Reinhold Koch (encoding)

sas.get 335

References

SAS Institute Inc. (1990). SAS Language: Reference, Version 6. First Edition. SAS Institute Inc.,
Cary, North Carolina.

SAS Institute Inc. (1988). SAS Technical Report P-176, Using the SAS System, Release 6.03, under
UNIX Operating Systems and Derivatives. SAS Institute Inc., Cary, North Carolina.

SAS Institute Inc. (1985). SAS Introductory Guide. Third Edition. SAS Institute Inc., Cary, North
Carolina.

See Also

data.frame, describe, label, upData, cleanup.import

Examples

Not run:
sas.contents("saslib", "mice")
[1] "dose" "ld50" "strain" "lab_no"
attr(, "n"):
[1] 117
mice <- sas.get("saslib", mem="mice", var=c("dose", "strain", "ld50"))
plot(mice$dose, mice$ld50)

nude.mice <- sas.get(lib=unix("echo $HOME/saslib"), mem="mice",
ifs="if strain='nude'")

nude.mice.dl <- sas.get(lib=unix("echo $HOME/saslib"), mem="mice",
var=c("dose", "ld50"), ifs="if strain='nude'")

Get a dataset from current directory, recode PROC FORMAT; VALUE \dots
variables into factors with labels of the form "good(1)" "better(2)",
get special missing values, recode missing codes .D and .R into new
factor levels "Don't know" and "Refused to answer" for variable q1
d <- sas.get(".", "mydata", recode=2, special.miss=TRUE)
attach(d)
nl <- length(levels(q1))
lev <- c(levels(q1), "Don't know", "Refused")
q1.new <- as.integer(q1)
q1.new[is.special.miss(q1,"D")] <- nl+1
q1.new[is.special.miss(q1,"R")] <- nl+2
q1.new <- factor(q1.new, 1:(nl+2), lev)
Note: would like to use factor() in place of as.integer \dots but
factor in this case adds "NA" as a category level

d <- sas.get(".", "mydata")
sas.codes(d$x) # for PROC FORMATted variables returns original data codes
d$x <- code.levels(d$x) # or attach(d); x <- code.levels(x)
This makes levels such as "good" "better" "best" into e.g.

336 sasxport.get

"1:good" "2:better" "3:best", if the original SAS values were 1,2,3

Retrieve the same variables from another dataset (or an update of
the original dataset)
mydata2 <- sas.get('mydata2', var=names(d))
This only works if none of the original SAS variable names contained _
mydata2 <- cleanup.import(mydata2) # will make true integer variables

Code from Don MacQueen to generate SAS dataset to test import of
date, time, date-time variables
data ssd.test;
d1='3mar2002'd ;
dt1='3mar2002 9:31:02'dt;
t1='11:13:45't;
output;
#
d1='3jun2002'd ;
dt1='3jun2002 9:42:07'dt;
t1='11:14:13't;
output;
format d1 mmddyy10. dt1 datetime. t1 time.;
run;

End(Not run)

sasxport.get Enhanced Importing of SAS Transport Files using read.xport

Description

Uses the read.xport and lookup.xport functions in the foreign library to import SAS datasets.
SAS date, time, and date/time variables are converted respectively to Date, POSIX, or POSIXct
objects in R, variable names are converted to lower case, SAS labels are associated with variables,
and (by default) integer-valued variables are converted from storage mode double to integer. If
the user ran PROC FORMAT CNTLOUT= in SAS and included the resulting dataset in the SAS version
5 transport file, variables having customized formats that do not include any ranges (i.e., variables
having standard PROC FORMAT; VALUE label formats) will have their format labels looked up, and
these variables are converted to S factors.

For those users having access to SAS, method='csv' is preferred when importing several SAS
datasets. Run SAS macro exportlib.sas available from https://github.com/harrelfe/Hmisc/
blob/master/src/sas/exportlib.sas to convert all SAS datasets in a SAS data library (from
any engine supported by your system) into CSV files. If any customized formats are used, it is as-
sumed that the PROC FORMAT CNTLOUT= dataset is in the data library as a regular SAS dataset, as
above.

SASdsLabels reads a file containing PROC CONTENTS printed output to parse dataset labels, assuming
that PROC CONTENTS was run on an entire library.

https://github.com/harrelfe/Hmisc/blob/master/src/sas/exportlib.sas
https://github.com/harrelfe/Hmisc/blob/master/src/sas/exportlib.sas

sasxport.get 337

Usage

sasxport.get(file, lowernames=TRUE, force.single = TRUE,
method=c('read.xport','dataload','csv'), formats=NULL, allow=NULL,
out=NULL, keep=NULL, drop=NULL, as.is=0.5, FUN=NULL)

sasdsLabels(file)

Arguments

file name of a file containing the SAS transport file. file may be a URL beginning
with https://. For sasdsLabels, file is the name of a file containing a PROC
CONTENTS output listing. For method='csv', file is the name of the directory
containing all the CSV files created by running the exportlib SAS macro.

lowernames set to FALSE to keep from converting SAS variable names to lower case
force.single set to FALSE to keep integer-valued variables not exceeding 231 − 1 in value

from being converted to integer storage mode
method set to "dataload" if you have the dataload executable installed and want to

use it instead of read.xport. This seems to correct some errors in which rarely
some factor variables are always missing when read by read.xport when in
fact they have some non-missing values.

formats a data frame or list (like that created by read.xport) containing PROC FORMAT
output, if such output is not stored in the main transport file.

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

out a character string specifying a directory in which to write separate R save files
(.rda files) for each regular dataset. Each file and the data frame inside it is
named with the SAS dataset name translated to lower case and with underscores
changed to periods. The default NULL value of out results in a data frame or a
list of data frames being returned. When out is given, sasxport.get returns
only metadata (see below), invisibly. out only works with methods='csv'. out
should not have a trailing slash.

keep a vector of names of SAS datasets to process (original SAS upper case names).
Must include PROC FORMAT dataset if it exists, and if the kept datasets use any of
its value label formats.

drop a vector of names of SAS datasets to ignore (original SAS upper case names)
as.is SAS character variables are converted to S factor objects if as.is=FALSE or if

as.is is a number between 0 and 1 inclusive and the number of unique values of
the variable is less than the number of observations (n) times as.is. The default
if as.is is .5, so character variables are converted to factors only if they have
fewer than n/2 unique values. The primary purpose of this is to keep unique
identification variables as character values in the data frame instead of using
more space to store both the integer factor codes and the factor labels.

FUN an optional function that will be run on each data frame created, when method='csv'
and out are specified. The result of all the FUN calls is made into a list corre-
sponding to the SAS datasets that are read. This list is the FUN attribute of the
result returned by sasxport.get.

338 sasxport.get

Details

See contents.list for a way to print the directory of SAS datasets when more than one was
imported.

Value

If there is more than one dataset in the transport file other than the PROC FORMAT file, the result is a
list of data frames containing all the non-PROC FORMAT datasets. Otherwise the result is the single
data frame. There is an exception if out is specified; that causes separate R save files to be written
and the returned value to be a list corresponding to the SAS datasets, with key PROC CONTENTS
information in a data frame making up each part of the list. sasdsLabels returns a named vector
of dataset labels, with names equal to the dataset names.

Author(s)

Frank E Harrell Jr

See Also

read.xport,label,sas.get, Dates,DateTimeClasses, lookup.xport,contents,describe

Examples

Not run:
SAS code to generate test dataset:
libname y SASV5XPT "test2.xpt";
#
PROC FORMAT; VALUE race 1=green 2=blue 3=purple; RUN;
PROC FORMAT CNTLOUT=format;RUN; * Name, e.g. 'format', unimportant;
data test;
LENGTH race 3 age 4;
age=30; label age="Age at Beginning of Study";
race=2;
d1='3mar2002'd ;
dt1='3mar2002 9:31:02'dt;
t1='11:13:45't;
output;
#
age=31;
race=4;
d1='3jun2002'd ;
dt1='3jun2002 9:42:07'dt;
t1='11:14:13't;
output;
format d1 mmddyy10. dt1 datetime. t1 time. race race.;
run;
data z; LENGTH x3 3 x4 4 x5 5 x6 6 x7 7 x8 8;
DO i=1 TO 100;
x3=ranuni(3);
x4=ranuni(5);
x5=ranuni(7);

Save 339

x6=ranuni(9);
x7=ranuni(11);
x8=ranuni(13);
output;
END;
DROP i;
RUN;
PROC MEANS; RUN;
PROC COPY IN=work OUT=y;SELECT test format z;RUN; *Creates test2.xpt;
w <- sasxport.get('test2.xpt')
To use an existing copy of test2.xpt available on the web:
w <- sasxport.get('https://github.com/harrelfe/Hmisc/raw/master/inst/tests/test2.xpt')

describe(w$test) # see labels, format names for dataset test
Note: if only one dataset (other than format) had been exported,
just do describe(w) as sasxport.get would not create a list for that
lapply(w, describe)# see descriptive stats for both datasets
contents(w$test) # another way to see variable attributes
lapply(w, contents)# show contents of both datasets
options(digits=7) # compare the following matrix with PROC MEANS output
t(sapply(w$z, function(x)
c(Mean=mean(x),SD=sqrt(var(x)),Min=min(x),Max=max(x))))

End(Not run)

Save Faciliate Use of save and load to Remote Directories

Description

These functions are slightly enhanced versions of save and load that allow a target directory to be
specified using options(LoadPath="pathname"). If the LoadPath option is not set, the current
working directory is used.

Usage

options(LoadPath='mypath')
Save(object, name=deparse(substitute(object)), compress=TRUE)
Load(object)

Arguments

object the name of an object, usually a data frame. It must not be quoted.

name an optional name to assign to the object and file name prefix, if the argument
name is not used

compress see save. Default is TRUE which corresponds to gzip.

340 scat1d

Details

Save creates a temporary version of the object under the name given by the user, so that save will
internalize this name. Then subsequent Load or load will cause an object of the original name to
be created in the global environment. The name of the R data file is assumed to be the name of the
object (or the value of name) appended with ".rda".

Author(s)

Frank Harrell

See Also

save, load

Examples

Not run:
d <- data.frame(x=1:3, y=11:13)
options(LoadPath='../data/rda')
Save(d) # creates ../data/rda/d.rda
Load(d) # reads ../data/rda/d.rda
Save(d, 'D') # creates object D and saves it in .../D.rda

End(Not run)

scat1d One-Dimensional Scatter Diagram, Spike Histogram, or Density

Description

scat1d adds tick marks (bar codes. rug plot) on any of the four sides of an existing plot, corre-
sponding with non-missing values of a vector x. This is used to show the data density. Can also
place the tick marks along a curve by specifying y-coordinates to go along with the x values.

If any two values of x are within eps ∗ w of each other, where eps defaults to .001 and w is
the span of the intended axis, values of x are jittered by adding a value uniformly distributed in
[−jitfrac∗w, jitfrac∗w], where jitfrac defaults to .008. Specifying preserve=TRUE invokes
jitter2 with a different logic of jittering. Allows plotting random sub-segments to handle very
large x vectors (seetfrac).

jitter2 is a generic method for jittering, which does not add random noise. It retains unique
values and ranks, and randomly spreads duplicate values at equidistant positions within limits of
enclosing values. jitter2 is especially useful for numeric variables with discrete values, like
rating scales. Missing values are allowed and are returned. Currently implemented methods are
jitter2.default for vectors and jitter2.data.frame which returns a data.frame with each nu-
meric column jittered.

datadensity is a generic method used to show data densities in more complex situations. Here,
another datadensity method is defined for data frames. Depending on the which argument, some

scat1d 341

or all of the variables in a data frame will be displayed, with scat1d used to display continuous
variables and, by default, bars used to display frequencies of categorical, character, or discrete
numeric variables. For such variables, when the total length of value labels exceeds 200, only the
first few characters from each level are used. By default, datadensity.data.frame will construct
one axis (i.e., one strip) per variable in the data frame. Variable names appear to the left of the axes,
and the number of missing values (if greater than zero) appear to the right of the axes. An optional
group variable can be used for stratification, where the different strata are depicted using different
colors. If the q vector is specified, the desired quantiles (over all groups) are displayed with solid
triangles below each axis.

When the sample size exceeds 2000 (this value may be modified using the nhistSpike argument,
datadensity calls histSpike instead of scat1d to show the data density for numeric variables.
This results in a histogram-like display that makes the resulting graphics file much smaller. In this
case, datadensity uses the minf argument (see below) so that very infrequent data values will not
be lost on the variable’s axis, although this will slightly distortthe histogram.

histSpike is another method for showing a high-resolution data distribution that is particularly
good for very large datasets (say n > 1000). By default, histSpike bins the continuous x variable
into 100 equal-width bins and then computes the frequency counts within bins (if n does not exceed
10, no binning is done). If add=FALSE (the default), the function displays either proportions or
frequencies as in a vertical histogram. Instead of bars, spikes are used to depict the frequencies. If
add=FALSE, the function assumes you are adding small density displays that are intended to take
up a small amount of space in the margins of the overall plot. The frac argument is used as with
scat1d to determine the relative length of the whole plot that is used to represent the maximum
frequency. No jittering is done by histSpike.

histSpike can also graph a kernel density estimate for x, or add a small density curve to any of 4
sides of an existing plot. When y or curve is specified, the density or spikes are drawn with respect
to the curve rather than the x-axis.

histSpikeg is similar to histSpike but is for adding layers to a ggplot2 graphics object or traces
to a plotly object. histSpikeg can also add lowess curves to the plot.

ecdfpM makes a plotly graph or series of graphs showing possibly superposed empirical cumula-
tive distribution functions.

Usage

scat1d(x, side=3, frac=0.02, jitfrac=0.008, tfrac,
eps=ifelse(preserve,0,.001),
lwd=0.1, col=par("col"),
y=NULL, curve=NULL,
bottom.align=FALSE,
preserve=FALSE, fill=1/3, limit=TRUE, nhistSpike=2000, nint=100,
type=c('proportion','count','density'), grid=FALSE, ...)

jitter2(x, ...)

Default S3 method:
jitter2(x, fill=1/3, limit=TRUE, eps=0,

presorted=FALSE, ...)

342 scat1d

S3 method for class 'data.frame'
jitter2(x, ...)

datadensity(object, ...)

S3 method for class 'data.frame'
datadensity(object, group,

which=c("all","continuous","categorical"),
method.cat=c("bar","freq"),
col.group=1:10,
n.unique=10, show.na=TRUE, nint=1, naxes,
q, bottom.align=nint>1,
cex.axis=sc(.5,.3), cex.var=sc(.8,.3),
lmgp=NULL, tck=sc(-.009,-.002),
ranges=NULL, labels=NULL, ...)

sc(a,b) means default to a if number of axes <= 3, b if >=50, use
linear interpolation within 3-50

histSpike(x, side=1, nint=100, bins=NULL, frac=.05, minf=NULL, mult.width=1,
type=c('proportion','count','density'),
xlim=range(x), ylim=c(0,max(f)), xlab=deparse(substitute(x)),
ylab=switch(type,proportion='Proportion',

count ='Frequency',
density ='Density'),

y=NULL, curve=NULL, add=FALSE, minimal=FALSE,
bottom.align=type=='density', col=par('col'), lwd=par('lwd'),
grid=FALSE, ...)

histSpikeg(formula=NULL, predictions=NULL, data, plotly=NULL,
lowess=FALSE, xlim=NULL, ylim=NULL,
side=1, nint=100,
frac=function(f) 0.01 + 0.02*sqrt(f-1)/sqrt(max(f,2)-1),
span=3/4, histcol='black', showlegend=TRUE)

ecdfpM(x, group=NULL, what=c('F','1-F','f','1-f'), q=NULL,
extra=c(0.025, 0.025), xlab=NULL, ylab=NULL, height=NULL, width=NULL,
colors=NULL, nrows=NULL, ncols=NULL, ...)

Arguments

x a vector of numeric data, or a data frame (for jitter2 or ecdfpM)

object a data frame or list (even with unequal number of observations per variable, as
long as group is notspecified)

side axis side to use (1=bottom (default for histSpike), 2=left, 3=top (default for
scat1d), 4=right)

frac fraction of smaller of vertical and horizontal axes for tick mark lengths. Can
be negative to move tick marks outside of plot. For histSpike, this is the rela-
tive y-direction length to be used for the largest frequency. When scat1d calls

scat1d 343

histSpike, it multiplies its frac argument by 2.5. For histSpikeg, frac is
a function of f, the vector of all frequencies. The default function scales tick
marks so that they are between 0.01 and 0.03 of the y range, linearly scaled in
the square root of the frequency less one.

jitfrac fraction of axis for jittering. If jitfrac ≤ 0, no jittering is done. If preserve=TRUE,
the amount of jittering is independent of jitfrac.

tfrac Fraction of tick mark to actually draw. If tfrac < 1, will draw a random
fraction tfrac of the line segment at each point. This is useful for very large
samples or ones with some very dense points. The default value is 1 if the
number of non-missing observations n is less than 125, and max (.1, 125/n)
otherwise.

eps fraction of axis for determining overlapping points in x. For preserve=TRUE the
default is 0 and original unique values are retained, bigger values of eps tends to
bias observations from dense to sparse regions, but ranks are still preserved.

lwd line width for tick marks, passed to segments

col color for tick marks, passed to segments

y specify a vector the same length as x to draw tick marks along a curve instead of
by one of the axes. The y values are often predicted values from a model. The
side argument is ignored when y is given. If the curve is already represented as
a table look-up, you may specify it using the curve argument instead. y may be
a scalar to use a constant verticalplacement.

curve a list containing elements x and y for which linear interpolation is used to derive
y values corresponding to values of x. This results in tick marks being drawn
along the curve. For histSpike, interpolated y values are derived for binmid-
points.

minimal for histSpike set minimal=TRUE to draw a minimalist spike histogram with no
y-axis. This works best when produce graphics images that are short, e.g., have
a height of two inches. add is forced to be FALSE in this case so that a standalone
graph is produced. Only base graphics are used.

bottom.align set to TRUE to have the bottoms of tick marks (for side=1 or side=3) aligned
at the y-coordinate. The default behavior is to center the tick marks. For
datadensity.data.frame, bottom.align defaults to TRUE if nint>1. In other
words, if you are only labeling the first and last axis tick mark, the scat1d tick
marks are centered on the variable’s axis.

preserve set to TRUE to invoke jitter2

fill maximum fraction of the axis filled by jittered values. If d are duplicated values
between a lower value l and upper value u, then d will be spread within ±fill∗
min (u− d, d− l)/2.

limit specifies a limit for maximum shift in jittered values. Duplicate values will be
spread within ±fill ∗min (u− d, d− l)/2. The default TRUE restricts jittering
to the smallest min (u− d, d− l)/2 observed and results in equal amount of jit-
tering for all d. Setting to FALSE allows for locally different amount of jittering,
using maximum space available.

nhistSpike If the number of observations exceeds or equals nhistSpike, scat1d will au-
tomatically call histSpike to draw the data density, to prevent the graphics file
from being too large.

344 scat1d

type used by or passed to histSpike. Set to "count" to display frequency counts
rather than relative frequencies, or "density" to display a kernel density esti-
mate computed using the density function.

grid set to TRUE if the R grid package is in effect for the current plot

nint number of intervals to divide each continuous variable’s axis for datadensity.
For histSpike, is the number of equal-width intervals for which to bin x, and if
instead nint is a character string (e.g.,nint="all"), the frequency tabulation is
done with no binning. In other words, frequencies for all unique values of x are
derived and plotted. For histSpikeg, if x has no more than nint unique values,
all observed values are used, otherwise the data are rounded before tabulation
so that there are no more than nint intervals. For histSpike, nint is ignored
if bins is given.

bins for histSpike specifies the actual cutpoints to use for binning x. The default is
to use nint in conjunction with xlim.

... optional arguments passed to scat1d from datadensity or to histSpike from
scat1d. For histSpikep are passed to the lines list to add_trace. For ecdfpM
these arguments are passed to add_lines.

presorted set to TRUE to prevent from sorting for determining the order l < d < u. This is
usefull if an existing meaningfull local order would be destroyed by sorting, as
in sin (π ∗ sort(round(runif(1000, 0, 10), 1))).

group an optional stratification variable, which is converted to a factor vector if it is
not one already

which set which="continuous" to only plot continuous variables, or which="categorical"
to only plot categorical, character, or discrete numeric ones. By default, all types
of variables are depicted.

method.cat set method.cat="freq" to depict frequencies of categorical variables with dig-
its representing the cell frequencies, with size proportional to the square root of
the frequency. By default, vertical bars are used.

col.group colors representing the group strata. The vector of colors is recycled to be the
same length as the levels of group.

n.unique number of unique values a numeric variable must have before it is considered to
be a continuous variable

show.na set to FALSE to suppress drawing the number of NAs to the right of each axis

naxes number of axes to draw on each page before starting a new plot. You can set
naxes larger than the number of variables in the data frame if you want to com-
press the plot vertically.

q a vector of quantiles to display. By default, quantiles are not shown.

extra a two-vector specifying the fraction of the x range to add on the left and the
fraction to add on the right

cex.axis character size for draw labels for axis tick marks

cex.var character size for variable names and frequence of NAs

lmgp spacing between numeric axis labels and axis (see par for mgp)

tck see tck under par

scat1d 345

ranges a list containing ranges for some or all of the numeric variables. If ranges is not
given or if a certain variable is not found in the list, the empirical range, modified
by pretty, is used. Example: ranges=list(age=c(10,100), pressure=c(50,150)).

labels a vector of labels to use in labeling the axes for datadensity.data.frame.
Default is to use the names of the variable in the input data frame. Note: margin
widths computed for setting aside names of variables use the names, and not
these labels.

minf For histSpike, if minf is specified low bin frequencies are set to a minimum
value of minf times the maximum bin frequency, so that rare data points will
remain visible. A good choice of minf is 0.075. datadensity.data.frame
passes minf=0.075 to scat1d to pass to histSpike. Note that specifying minf
will cause the shape of the histogram to be distorted somewhat.

mult.width multiplier for the smoothing window width computed by histSpike when type="density"

xlim a 2-vector specifying the outer limits of x for binning (and plotting, if add=FALSE
and nint is a number). For histSpikeg, observations outside the xlim range
are ignored.

ylim y-axis range for plotting (if add=FALSE). Often needed for histSpikeg to help
scale the tick mark line segments.

xlab x-axis label (add=FALSE or for ecdfpM); default is name of input argument, or
for ecdfpM comes from label and units attributes of the analysis variable. For
ecdfpM xlab may be a vector if there is more than one analysis variable.

ylab y-axis label (add=FALSE or for ecdfpM)

add set to TRUE to add the spike-histogram to an existing plot, to show marginal data
densities

formula a formula of the form y ~ x1 or y ~ x1 + ... where y is the name of the y-axis
variable being plotted with ggplot, x1 is the name of the x-axis variable, and
optional . . . are variables used by ggplot to produce multiple curves on a panel
and/or facets.

predictions the data frame being plotted by ggplot, containing x and y coordinates of
curves. If omitted, spike histograms are drawn at the bottom (default) or top
of the plot according to side.

data for histSpikeg is a mandatory data frame containing raw data whose frequency
distribution is to be summarized, using variables in formula.

plotly an existing plotly object. If not NULL, histSpikeg uses plotly instead of
ggplot.

lowess set to TRUE to have histSpikeg add a geom_line layer to the ggplot2 graphic,
containing lowess() nonparametric smoothers. This causes the returned value
of histSpikeg to be a list with two components: "hist" and "lowess" each
containing a layer. Fortunately, ggplot2 plots both layers automatically. If the
dependent variable is binary, iter=0 is passed to lowess so that outlier detection
is turned off; otherwise iter=3 is passed.

span passed to lowess as the f argument

histcol color of line segments (tick marks) for histSpikeg. Default is black. Set to any
color or to "default" to use the prevailing colors for the graphic.

346 scat1d

showlegend set to FALSE too have the added plotly traces not have entries in the plot legend

what set to "1-F" to plot 1 minus the ECDF instead of the ECDF, "f" to plot cumu-
lative frequency, or "1-f" to plot the inverse cumulative frequency

height, width passed to plot_ly

colors a vector of colors to pas to add_lines

nrows, ncols passed to plotly::subplot

Details

For scat1d the length of line segments used is frac*min(par()$pin)/par()$uin[opp] data
units, where opp is the index of the opposite axis and frac defaults to .02. Assumes that plot
has already been called. Current par("usr") is used to determine the range of data for the axis of
the current plot. This range is used in jittering and in constructing line segments.

Value

histSpike returns the actual range of x used in its binning. histSpikeg returns a list of ggplot2
layers that ggplot2 will easily add with +.

Side Effects

scat1d adds line segments to plot. datadensity.data.frame draws a complete plot. histSpike
draws a complete plot or adds to an existing plot.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
Nashville TN, USA
<fh@fharrell.com>

Martin Maechler (improved scat1d)
Seminar fuer Statistik
ETH Zurich SWITZERLAND
<maechler@stat.math.ethz.ch>

Jens Oehlschlaegel-Akiyoshi (wrote jitter2)
Center for Psychotherapy Research
Christian-Belser-Strasse 79a
D-70597 Stuttgart Germany
<oehl@psyres-stuttgart.de>

See Also

segments, jitter, rug, plsmo, lowess, stripplot, hist.data.frame,Ecdf, hist, histogram,
table, density, stat_plsmo, histboxp

scat1d 347

Examples

plot(x <- rnorm(50), y <- 3*x + rnorm(50)/2)
scat1d(x) # density bars on top of graph
scat1d(y, 4) # density bars at right
histSpike(x, add=TRUE) # histogram instead, 100 bins
histSpike(y, 4, add=TRUE)
histSpike(x, type='density', add=TRUE) # smooth density at bottom
histSpike(y, 4, type='density', add=TRUE)

smooth <- lowess(x, y) # add nonparametric regression curve
lines(smooth) # Note: plsmo() does this
scat1d(x, y=approx(smooth, xout=x)$y) # data density on curve
scat1d(x, curve=smooth) # same effect as previous command
histSpike(x, curve=smooth, add=TRUE) # same as previous but with histogram
histSpike(x, curve=smooth, type='density', add=TRUE)
same but smooth density over curve

plot(x <- rnorm(250), y <- 3*x + rnorm(250)/2)
scat1d(x, tfrac=0) # dots randomly spaced from axis
scat1d(y, 4, frac=-.03) # bars outside axis
scat1d(y, 2, tfrac=.2) # same bars with smaller random fraction

x <- c(0:3,rep(4,3),5,rep(7,10),9)
plot(x, jitter2(x)) # original versus jittered values
abline(0,1) # unique values unjittered on abline
points(x+0.1, jitter2(x, limit=FALSE), col=2)

allow locally maximum jittering
points(x+0.2, jitter2(x, fill=1), col=3); abline(h=seq(0.5,9,1), lty=2)

fill 3/3 instead of 1/3
x <- rnorm(200,0,2)+1; y <- x^2
x2 <- round((x+rnorm(200))/2)*2
x3 <- round((x+rnorm(200))/4)*4
dfram <- data.frame(y,x,x2,x3)
plot(dfram$x2, dfram$y) # jitter2 via scat1d
scat1d(dfram$x2, y=dfram$y, preserve=TRUE, col=2)
scat1d(dfram$x2, preserve=TRUE, frac=-0.02, col=2)
scat1d(dfram$y, 4, preserve=TRUE, frac=-0.02, col=2)

pairs(jitter2(dfram)) # pairs for jittered data.frame
This gets reasonable pairwise scatter plots for all combinations of
variables where
#
- continuous variables (with unique values) are not jittered at all, thus
all relations between continuous variables are shown as they are,
extreme values have exact positions.
#
- discrete variables get a reasonable amount of jittering, whether they
have 2, 3, 5, 10, 20 \dots levels

348 score.binary

#
- different from adding noise, jitter2() will use the available space
optimally and no value will randomly mask another
#
If you want a scatterplot with lowess smooths on the *exact* values and
the point clouds shown jittered, you just need
#
pairs(dfram ,panel=function(x,y) { points(jitter2(x),jitter2(y))

lines(lowess(x,y)) })

datadensity(dfram) # graphical snapshot of entire data frame
datadensity(dfram, group=cut2(dfram$x2,g=3))

stratify points and frequencies by
x2 tertiles and use 3 colors

datadensity.data.frame(split(x, grouping.variable))
need to explicitly invoke datadensity.data.frame when the
first argument is a list

Not run:
require(rms)
require(ggplot2)
f <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),

data=d)
p <- Predict(f, cholesterol, sex)
g <- ggplot(p, aes(x=cholesterol, y=yhat, color=sex)) + geom_line() +

xlab(xl2) + ylim(-1, 1)
g <- g + geom_ribbon(data=p, aes(ymin=lower, ymax=upper), alpha=0.2,

linetype=0, show_guide=FALSE)
g + histSpikeg(yhat ~ cholesterol + sex, p, d)

colors <- c('red', 'blue')
p <- plot_ly(x=x, y=y, color=g, colors=colors, mode='markers')
histSpikep(p, x, y, z, color=g, colors=colors)

w <- data.frame(x1=rnorm(100), x2=exp(rnorm(100)))
g <- c(rep('a', 50), rep('b', 50))
ecdfpM(w, group=g, ncols=2)

End(Not run)

score.binary Score a Series of Binary Variables

score.binary 349

Description

Creates a new variable from a series of logical conditions. The new variable can be a hierarchical
category or score derived from considering the rightmost TRUE value among the input variables,
an additive point score, a union, or any of several others by specifying a function using the fun
argument.

Usage

score.binary(..., fun=max, points=1:p,
na.rm=funtext == "max", retfactor=TRUE)

Arguments

... a list of variables or expressions which are considered to be binary or logical

fun a function to compute on each row of the matrix represented by a specific obser-
vation of all the variables in ...

points points to assign to successive elements of The default is 1, 2, ..., p,
where p is the number of elements. If you specify one number for points, that
number will be duplicated (i.e., equal weights are assumed).

na.rm set to TRUE to remove NAs from consideration when processing each row of
the matrix of variables in For fun=max, na.rm=TRUE is the default since
score.binary assumes that a hierarchical scale is based on available informa-
tion. Otherwise, na.rm=FALSE is assumed. For fun=mean you may want to
specify na.rm=TRUE.

retfactor applies if fun=max, in which case retfactor=TRUE makes score.binary return
a factor object since a hierarchical scale implies a unique choice.

Value

a factor object if retfactor=TRUE and fun=max or a numeric vector otherwise. Will not contain
NAs if na.rm=TRUE unless every variable in a row is NA. If a factor object is returned, it has levels
"none" followed by character string versions of the arguments given in

See Also

any, sum, max, factor

Examples

set.seed(1)
age <- rnorm(25, 70, 15)
previous.disease <- sample(0:1, 25, TRUE)
#Hierarchical scale, highest of 1:age>70 2:previous.disease
score.binary(age>70, previous.disease, retfactor=FALSE)
#Same as above but return factor variable with levels "none" "age>70"
"previous.disease"
score.binary(age>70, previous.disease)

350 sedit

#Additive scale with weights 1:age>70 2:previous.disease
score.binary(age>70, previous.disease, fun=sum)
#Additive scale, equal weights
score.binary(age>70, previous.disease, fun=sum, points=c(1,1))
#Same as saying points=1

#Union of variables, to create a new binary variable
score.binary(age>70, previous.disease, fun=any)

sedit Character String Editing and Miscellaneous Character Handling
Functions

Description

This suite of functions was written to implement many of the features of the UNIX sed program
entirely within S (function sedit). The substring.location function returns the first and last
position numbers that a sub-string occupies in a larger string. The substring2<- function does
the opposite of the builtin function substring. It is named substring2 because for S-Plus there
is a built-in function substring, but it does not handle multiple replacements in a single string.
replace.substring.wild edits character strings in the fashion of "change xxxxANYTHINGyyyy
to aaaaANYTHINGbbbb", if the "ANYTHING" passes an optional user-specified test function.
Here, the "yyyy" string is searched for from right to left to handle balancing parentheses, etc.
numeric.string and all.digits are two examples of test functions, to check, respectively if
each of a vector of strings is a legal numeric or if it contains only the digits 0-9. For the case
where old="*$" or "^*", or for replace.substring.wild with the same values of old or with
front=TRUE or back=TRUE, sedit (if wild.literal=FALSE) and replace.substring.wild will
edit the largest substring satisfying test.

substring2 is just a copy of substring so that substring2<- will work.

Usage

sedit(text, from, to, test, wild.literal=FALSE)
substring.location(text, string, restrict)
substring(text, first, last) <- setto # S-Plus only
replace.substring.wild(text, old, new, test, front=FALSE, back=FALSE)
numeric.string(string)
all.digits(string)
substring2(text, first, last)
substring2(text, first, last) <- value

Arguments

text a vector of character strings for sedit, substring2, substring2<- or a single
character string for substring.location, replace.substring.wild.

sedit 351

from a vector of character strings to translate from, for sedit. A single asterisk wild
card, meaning allow any sequence of characters (subject to the test function, if
any) in place of the "*". An element of from may begin with "^" to force the
match to begin at the beginning of text, and an element of from can end with
"$" to force the match to end at the end of text.

to a vector of character strings to translate to, for sedit. If a corresponding ele-
ment in from had an "*", the element in to may also have an "*". Only single
asterisks are allowed. If to is not the same length as from, the rep function is
used to make it the same length.

string a single character string, for substring.location, numeric.string, all.digits

first a vector of integers specifying the first position to replace for substring2<-.
first may also be a vector of character strings that are passed to sedit to use
as patterns for replacing substrings with setto. See one of the last examples
below.

last a vector of integers specifying the ending positions of the character substrings
to be replaced. The default is to go to the end of the string. When first is
character, last must be omitted.

setto a character string or vector of character strings used as replacements, in substring2<-

old a character string to translate from for replace.substring.wild. May be "*$"
or "^*" or any string containing a single "*" but not beginning with "^" or
ending with "$".

new a character string to translate to for replace.substring.wild

test a function of a vector of character strings returning a logical vector whose ele-
ments are TRUE or FALSE according to whether that string element qualifies as
the wild card string for sedit, replace.substring.wild

wild.literal set to TRUE to not treat asterisks as wild cards and to not look for "^" or "$" in
old

restrict a vector of two integers for substring.location which specifies a range to
which the search for matches should be restricted

front specifying front = TRUE and old = "*" is the same as specifying old = "^*"

back specifying back = TRUE and old = "*" is the same as specifying old = "*$"

value a character vector

Value

sedit returns a vector of character strings the same length as text. substring.location re-
turns a list with components named first and last, each specifying a vector of character po-
sitions corresponding to matches. replace.substring.wild returns a single character string.
numeric.string and all.digits return a single logical value.

Side Effects

substring2<- modifies its first argument

352 sedit

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

See Also

grep, substring

Examples

x <- 'this string'
substring2(x, 3, 4) <- 'IS'
x
substring2(x, 7) <- ''
x

substring.location('abcdefgabc', 'ab')
substring.location('abcdefgabc', 'ab', restrict=c(3,999))

replace.substring.wild('this is a cat','this*cat','that*dog')
replace.substring.wild('there is a cat','is a*', 'is not a*')
replace.substring.wild('this is a cat','is a*', 'Z')

qualify <- function(x) x==' 1.5 ' | x==' 2.5 '
replace.substring.wild('He won 1.5 million $','won*million',

'lost*million', test=qualify)
replace.substring.wild('He won 1 million $','won*million',

'lost*million', test=qualify)
replace.substring.wild('He won 1.2 million $','won*million',

'lost*million', test=numeric.string)

x <- c('a = b','c < d','hello')
sedit(x, c('=','he*o'),c('==','he*'))

sedit('x23', '*$', '[*]', test=numeric.string)
sedit('23xx', '^*', 'Y_{*} ', test=all.digits)

replace.substring.wild("abcdefabcdef", "d*f", "xy")

x <- "abcd"
substring2(x, "bc") <- "BCX"
x
substring2(x, "B*d") <- "B*D"

seqFreq 353

x

seqFreq seqFreq

Description

Find Sequential Exclusions Due to NAs

Usage

seqFreq(..., labels = NULL, noneNA = FALSE)

Arguments

... any number of variables

labels if specified variable labels will be used in place of variable names

noneNA set to TRUE to not include ’none’ as a level in the result

Details

Finds the variable with the highest number of NAs. From the non-NAs on that variable find the
next variable from those remaining with the highest number of NAs. Proceed in like fashion. The
resulting variable summarizes sequential exclusions in a hierarchical fashion. See this for more
information.

Value

factor variable with obs.per.numcond attribute

Author(s)

Frank Harrell

show.pch Display Colors, Plotting Symbols, and Symbol Numeric Equivalents

Description

show.pch plots the definitions of the pch parameters. show.col plots definitions of integer-valued
colors. character.table draws numeric equivalents of all latin characters; the character on line
xy and column z of the table has numeric code "xyz", which you would surround in quotes and
preceed by a backslash.

https://hbiostat.org/rflow/doverview.html#sec-doverview-filter

354 showPsfrag

Usage

show.pch(object = par("font"))
show.col(object=NULL)
character.table(font=1)

Arguments

object font for show.pch, ignored for show.col.

font font

Author(s)

Pierre Joyet <pierre.joyet@bluewin.ch>, Frank Harrell

See Also

points, text

Examples

Not run:
show.pch()
show.col()
character.table()

End(Not run)

showPsfrag Display image from psfrag LaTeX strings

Description

showPsfrag is used to display (using ghostview) a postscript image that contained psfrag LaTeX
strings, by building a small LaTeX script and running latex and dvips.

Usage

showPsfrag(filename)

Arguments

filename name or character string or character vector specifying file prefix.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

simMarkovOrd 355

References

Grant MC, Carlisle (1998): The PSfrag System, Version 3. Full documentation is obtained by
searching www.ctan.org for ‘pfgguide.ps’.

See Also

postscript, par, ps.options, mgp.axis.labels, pdf, trellis.device, setTrellis

simMarkovOrd simMarkovOrd

Description

Simulate Ordinal Markov Process

Usage

simMarkovOrd(
n = 1,
y,
times,
initial,
X = NULL,
absorb = NULL,
intercepts,
g,
carry = FALSE,
rdsample = NULL,
...

)

Arguments

n number of subjects to simulate

y vector of possible y values in order (numeric, character, factor)

times vector of measurement times

initial initial value of y (baseline state; numeric, character, or factor matching y). If
length 1 this value is used for all subjects, otherwise it is a vector of length n.

X an optional vector of matrix of baseline covariate values passed to g. If a vector,
X represents a set of single values for all the covariates and those values are used
for every subject. Otherwise X is a matrix with rows corresponding to subjects
and columns corresponding to covariates which g must know how to handle. g
only sees one row of X at a time.

absorb vector of absorbing states, a subset of y (numeric, character, or factor matching
y). The default is no absorbing states. Observations are truncated when an
absorbing state is simulated.

356 simMarkovOrd

intercepts vector of intercepts in the proportional odds model. There must be one fewer of
these than the length of y.

g a user-specified function of three or more arguments which in order are yprev
- the value of y at the previous time, the current time t, the gap between the
previous time and the current time, an optional (usually named) covariate vec-
tor X, and optional arguments such as a regression coefficient value to simulate
from. The function needs to allow yprev to be a vector and yprev must not
include any absorbing states. The g function returns the linear predictor for the
proportional odds model aside from intercepts. The returned value must be a
matrix with row names taken from yprev. If the model is a proportional odds
model, the returned value must be one column. If it is a partial proportional
odds model, the value must have one column for each distinct value of the re-
sponse variable Y after the first one, with the levels of Y used as optional column
names. So columns correspond to intercepts. The different columns are used
for y-specific contributions to the linear predictor (aside from intercepts) for
a partial or constrained partial proportional odds model. Parameters for partial
proportional odds effects may be included in the ... arguments.

carry set to TRUE to carry absorbing state forward after it is first hit; the default is to
end records for the subject once the absorbing state is hit

rdsample an optional function to do response-dependent sampling. It is a function of these
arguments, which are vectors that stop at any absorbing state: times (ascending
measurement times for one subject), y (vector of ordinal outcomes at these times
for one subject. The function returns NULL if no observations are to be dropped,
returns the vector of new times to sample.

... additional arguments to pass to g such as a regresson coefficient

Details

Simulates longitudinal data for subjects following a first-order Markov process under a proportional
odds model. Optionally, response-dependent sampling can be done, e.g., if a subject hits a specified
state at time t, measurements are removed for times t+1, t+3, t+5, ... This is applicable when for
example a study of hospitalized patients samples every day, Y=1 denotes patient discharge to home,
and sampling is less frequent outside the hospital. This example assumes that arriving home is not
an absorbing state, i.e., a patient could return to the hospital.

Value

data frame with one row per subject per time, and columns id, time, gap, yprev, y

Author(s)

Frank Harrell

See Also

https://hbiostat.org/R/Hmisc/markov/

https://hbiostat.org/R/Hmisc/markov/

simplifyDims 357

simplifyDims List Simplification

Description

Takes a list where each element is a group of rows that have been spanned by a multirow row and
combines it into one large matrix.

Usage

simplifyDims(x)

Arguments

x list of spanned rows

Details

All rows must have the same number of columns. This is used to format the list for printing.

Value

a matrix that contains all of the spanned rows.

Author(s)

Charles Dupont

See Also

rbind

Examples

a <- list(a = matrix(1:25, ncol=5), b = matrix(1:10, ncol=5), c = 1:5)

simplifyDims(a)

358 simRegOrd

simRegOrd Simulate Power for Adjusted Ordinal Regression Two-Sample Test

Description

This function simulates the power of a two-sample test from a proportional odds ordinal logistic
model for a continuous response variable- a generalization of the Wilcoxon test. The continuous
data model is normal with equal variance. Nonlinear covariate adjustment is allowed, and the user
can optionally specify discrete ordinal level overrides to the continuous response. For example, if
the main response is systolic blood pressure, one can add two ordinal categories higher than the
highest observed blood pressure to capture heart attack or death.

Usage

simRegOrd(n, nsim=1000, delta=0, odds.ratio=1, sigma,
p=NULL, x=NULL, X=x, Eyx, alpha=0.05, pr=FALSE)

Arguments

n combined sample size (both groups combined)

nsim number of simulations to run

delta difference in means to detect, for continuous portion of response variable

odds.ratio odds ratio to detect for ordinal overrides of continuous portion

sigma standard deviation for continuous portion of response

p a vector of marginal cell probabilities which must add up to one. The ith ele-
ment specifies the probability that a patient will be in response level i for the
control arm for the discrete ordinal overrides.

x optional covariate to adjust for - a vector of length n

X a design matrix for the adjustment covariate x if present. This could represent
for example x and x^2 or cubic spline components.

Eyx a function of x that provides the mean response for the control arm treatment

alpha type I error

pr set to TRUE to see iteration progress

Value

a list containing n, delta, sigma, power, betas, se, pvals where power is the estimated power
(scalar), and betas, se,pvals are nsim-vectors containing, respectively, the ordinal model treat-
ment effect estimate, standard errors, and 2-tailed p-values. When a model fit failed, the corre-
sponding entries in betas, se, pvals are NA and power is the proportion of non-failed iterations
for which the treatment p-value is significant at the alpha level.

simRegOrd 359

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

See Also

popower

Examples

Not run:
First use no ordinal high-end category overrides, and compare power
to t-test when there is no covariate

n <- 100
delta <- .5
sd <- 1
require(pwr)
power.t.test(n = n / 2, delta=delta, sd=sd, type='two.sample') # 0.70
set.seed(1)
w <- simRegOrd(n, delta=delta, sigma=sd, pr=TRUE) # 0.686

Now do ANCOVA with a quadratic effect of a covariate
n <- 100
x <- rnorm(n)
w <- simRegOrd(n, nsim=400, delta=delta, sigma=sd, x=x,

X=cbind(x, x^2),
Eyx=function(x) x + x^2, pr=TRUE)

w$power # 0.68

Fit a cubic spline to some simulated pilot data and use the fitted
function as the true equation in the power simulation
require(rms)
N <- 1000
set.seed(2)
x <- rnorm(N)
y <- x + x^2 + rnorm(N, 0, sd=sd)
f <- ols(y ~ rcs(x, 4), x=TRUE)

n <- 100
j <- sample(1 : N, n, replace=n > N)
x <- x[j]
X <- f$x[j,]
w <- simRegOrd(n, nsim=400, delta=delta, sigma=sd, x=x,

X=X,
Eyx=Function(f), pr=TRUE)

w$power ## 0.70

Finally, add discrete ordinal category overrides and high end of y
Start with no effect of treatment on these ordinal event levels (OR=1.0)

360 smean.sd

w <- simRegOrd(n, nsim=400, delta=delta, odds.ratio=1, sigma=sd,
x=x, X=X, Eyx=Function(f),
p=c(.98, .01, .01),
pr=TRUE)

w$power ## 0.61 (0.3 if p=.8 .1 .1, 0.37 for .9 .05 .05, 0.50 for .95 .025 .025)

Now assume that odds ratio for treatment is 2.5
First compute power for clinical endpoint portion of Y alone
or <- 2.5
p <- c(.9, .05, .05)
popower(p, odds.ratio=or, n=100) # 0.275
Compute power of t-test on continuous part of Y alone
power.t.test(n = 100 / 2, delta=delta, sd=sd, type='two.sample') # 0.70
Note this is the same as the p.o. model power from simulation above
Solve for OR that gives the same power estimate from popower
popower(rep(.01, 100), odds.ratio=2.4, n=100) # 0.706
Compute power for continuous Y with ordinal override
w <- simRegOrd(n, nsim=400, delta=delta, odds.ratio=or, sigma=sd,

x=x, X=X, Eyx=Function(f),
p=c(.9, .05, .05),
pr=TRUE)

w$power ## 0.72

End(Not run)

smean.sd Compute Summary Statistics on a Vector

Description

A number of statistical summary functions is provided for use with summary.formula and summarize
(as well as tapply and by themselves). smean.cl.normal computes 3 summary variables: the
sample mean and lower and upper Gaussian confidence limits based on the t-distribution. smean.sd
computes the mean and standard deviation. smean.sdl computes the mean plus or minus a constant
times the standard deviation. smean.cl.boot is a very fast implementation of the basic nonpara-
metric bootstrap for obtaining confidence limits for the population mean without assuming normal-
ity. These functions all delete NAs automatically. smedian.hilow computes the sample median
and a selected pair of outer quantiles having equal tail areas.

Usage

smean.cl.normal(x, mult=qt((1+conf.int)/2,n-1), conf.int=.95, na.rm=TRUE)

smean.sd(x, na.rm=TRUE)

smean.sdl(x, mult=2, na.rm=TRUE)

smean.cl.boot(x, conf.int=.95, B=1000, na.rm=TRUE, reps=FALSE)

smean.sd 361

smedian.hilow(x, conf.int=.95, na.rm=TRUE)

Arguments

x for summary functions smean.*, smedian.hilow, a numeric vector from which
NAs will be removed automatically

na.rm defaults to TRUE unlike built-in functions, so that by default NAs are automati-
cally removed

mult for smean.cl.normal is the multiplier of the standard error of the mean to use
in obtaining confidence limits of the population mean (default is appropriate
quantile of the t distribution). For smean.sdl, mult is the multiplier of the
standard deviation used in obtaining a coverage interval about the sample mean.
The default is mult=2 to use plus or minus 2 standard deviations.

conf.int for smean.cl.normal and smean.cl.boot specifies the confidence level (0-1)
for interval estimation of the population mean. For smedian.hilow, conf.int
is the coverage probability the outer quantiles should target. When the default,
0.95, is used, the lower and upper quantiles computed are 0.025 and 0.975.

B number of bootstrap resamples for smean.cl.boot

reps set to TRUE to have smean.cl.boot return the vector of bootstrapped means as
the reps attribute of the returned object

Value

a vector of summary statistics

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

summarize, summary.formula

Examples

set.seed(1)
x <- rnorm(100)
smean.sd(x)
smean.sdl(x)
smean.cl.normal(x)
smean.cl.boot(x)
smedian.hilow(x, conf.int=.5) # 25th and 75th percentiles

Function to compute 0.95 confidence interval for the difference in two means
g is grouping variable

362 somers2

bootdif <- function(y, g) {
g <- as.factor(g)
a <- attr(smean.cl.boot(y[g==levels(g)[1]], B=2000, reps=TRUE),'reps')
b <- attr(smean.cl.boot(y[g==levels(g)[2]], B=2000, reps=TRUE),'reps')
meandif <- diff(tapply(y, g, mean, na.rm=TRUE))
a.b <- quantile(b-a, c(.025,.975))
res <- c(meandif, a.b)
names(res) <- c('Mean Difference','.025','.975')
res

}

solvet solve Function with tol argument

Description

A slightly modified version of solve that allows a tolerance argument for singularity (tol) which
is passed to qr.

Usage

solvet(a, b, tol=1e-09)

Arguments

a a square numeric matrix

b a numeric vector or matrix

tol tolerance for detecting linear dependencies in columns of a

See Also

solve

somers2 Somers’ Dxy Rank Correlation

Description

Computes Somers’ Dxy rank correlation between a variable x and a binary (0-1) variable y, and the
corresponding receiver operating characteristic curve area c. Note that Dxy = 2(c-0.5). somers
allows for a weights variable, which specifies frequencies to associate with each observation.

Usage

somers2(x, y, weights=NULL, normwt=FALSE, na.rm=TRUE)

somers2 363

Arguments

x typically a predictor variable. NAs are allowed.

y a numeric outcome variable coded 0-1. NAs are allowed.

weights a numeric vector of observation weights (usually frequencies). Omit or specify
a zero-length vector to do an unweighted analysis.

normwt set to TRUE to make weights sum to the actual number of non-missing observa-
tions.

na.rm set to FALSE to suppress checking for NAs.

Details

The rcorr.cens function, which although slower than somers2 for large sample sizes, can also be
used to obtain Dxy for non-censored binary y, and it has the advantage of computing the standard
deviation of the correlation index.

Value

a vector with the named elements C, Dxy, n (number of non-missing pairs), and Missing. Uses the
formula C = (mean(rank(x)[y == 1]) - (n1 + 1)/2)/(n - n1), where n1 is the frequency of y=1.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

See Also

concordance, rcorr.cens, rank, wtd.rank,

Examples

set.seed(1)
predicted <- runif(200)
dead <- sample(0:1, 200, TRUE)
roc.area <- somers2(predicted, dead)["C"]

Check weights
x <- 1:6
y <- c(0,0,1,0,1,1)
f <- c(3,2,2,3,2,1)
somers2(x, y)
somers2(rep(x, f), rep(y, f))
somers2(x, y, f)

364 soprobMarkovOrd

soprobMarkovOrd soprobMarkovOrd

Description

State Occupancy Probabilities for First-Order Markov Ordinal Model

Usage

soprobMarkovOrd(y, times, initial, absorb = NULL, intercepts, g, ...)

Arguments

y a vector of possible y values in order (numeric, character, factor)

times vector of measurement times

initial initial value of y (baseline state; numeric, character, factr)

absorb vector of absorbing states, a subset of y. The default is no absorbing states.
(numeric, character, factor)

intercepts vector of intercepts in the proportional odds model, with length one less than the
length of y

g a user-specified function of three or more arguments which in order are yprev
- the value of y at the previous time, the current time t, the gap between the
previous time and the current time, an optional (usually named) covariate vec-
tor X, and optional arguments such as a regression coefficient value to simulate
from. The function needs to allow yprev to be a vector and yprev must not
include any absorbing states. The g function returns the linear predictor for the
proportional odds model aside from intercepts. The returned value must be a
matrix with row names taken from yprev. If the model is a proportional odds
model, the returned value must be one column. If it is a partial proportional
odds model, the value must have one column for each distinct value of the re-
sponse variable Y after the first one, with the levels of Y used as optional column
names. So columns correspond to intercepts. The different columns are used
for y-specific contributions to the linear predictor (aside from intercepts) for
a partial or constrained partial proportional odds model. Parameters for partial
proportional odds effects may be included in the ... arguments.

... additional arguments to pass to g such as covariate settings

Value

matrix with rows corresponding to times and columns corresponding to states, with values equal to
exact state occupancy probabilities

Author(s)

Frank Harrell

soprobMarkovOrdm 365

See Also

https://hbiostat.org/R/Hmisc/markov/

soprobMarkovOrdm soprobMarkovOrdm

Description

State Occupancy Probabilities for First-Order Markov Ordinal Model from a Model Fit

Usage

soprobMarkovOrdm(
object,
data,
times,
ylevels,
absorb = NULL,
tvarname = "time",
pvarname = "yprev",
gap = NULL

)

Arguments

object a fit object created by blrm, lrm, orm, VGAM::vglm(), or VGAM::vgam()

data a single observation list or data frame with covariate settings, including the ini-
tial state for Y

times vector of measurement times

ylevels a vector of ordered levels of the outcome variable (numeric or character)

absorb vector of absorbing states, a subset of ylevels. The default is no absorbing
states. (numeric, character, factor)

tvarname name of time variable, defaulting to time

pvarname name of previous state variable, defaulting to yprev

gap name of time gap variable, defaults assuming that gap time is not in the model

Details

Computes state occupancy probabilities for a single setting of baseline covariates. If the model
fit was from rms::blrm(), these probabilities are from all the posterior draws of the basic model
parameters. Otherwise they are maximum likelihood point estimates.

https://hbiostat.org/R/Hmisc/markov/

366 spikecomp

Value

if object was not a Bayesian model, a matrix with rows corresponding to times and columns
corresponding to states, with values equal to exact state occupancy probabilities. If object was
created by blrm, the result is a 3-dimensional array with the posterior draws as the first dimension.

Author(s)

Frank Harrell

See Also

https://hbiostat.org/R/Hmisc/markov/

spikecomp spikecomp

Description

Compute Elements of a Spike Histogram

Usage

spikecomp(
x,
method = c("tryactual", "simple", "grid"),
lumptails = 0.01,
normalize = TRUE,
y,
trans = NULL,
tresult = c("list", "segments", "roundeddata")

)

Arguments

x a numeric variable
method specifies the binning and output method. The default is 'tryactual' and is

intended to be used for spike histograms plotted in a way that allows for ran-
dom x-coordinates and data gaps. No binning is done if there are less than 100
distinct values and the closest distinct x values are distinguishable (not with
1/500th of the data range of each other). Binning uses pretty. When trans is
specified to transform x to reduce long tails due to outliers, pretty rounding is
not done, and lumptails is ignored. method='grid' is intended for sparkline
spike histograms drawn with bar charts, where plotting is done in a way that
x-coordinates must be equally spaced. For this method, extensive binning infor-
mation is returned. For either 'tryactual' or 'grid', the default if trans is
omitted is to put all values beyond the 0.01 or 0.99 quantiles into a single bin so
that outliers will not create long nearly empty tails. When y is specified, method
is ignored.

https://hbiostat.org/R/Hmisc/markov/

spikecomp 367

lumptails the quantile to use for lumping values into a single left and a single right bin
for two of the methods. When outer quantiles using lumptails equal outer
quantiles using 2*lumptails, lumptails is ignored as this indicates a large
number of ties in the tails of the distribution.

normalize set to FALSE to not divide frequencies by maximum frequency

y a vector of frequencies corresponding to x if you want the (x, y) pairs to be
taken as a possibly irregular-spaced frequency tabulation for which you want
to convert to a regularly-spaced tabulation like count='tabulate' produces.
If there is a constant gap between x values, the original pairs are return, with
possible removal of NAs.

trans a list with three elements: the name of a transformation to make on x, the trans-
formation function, and the inverse transformation function. The latter is used
for method='grid'. When trans is given lumptails is ignored. trans applies
only to method='tryactual'.

tresult applies only to method='tryactual'. The default 'list' returns a list with
elements x, y, and roundedTo. method='segments' returns a list suitable for
drawing line segments, with elements x, y1, y2. method='roundeddata'
returns a list with elements x (non-tabulated rounded data vector after excluding
NAs) and vector roundedTo.

Details

Derives the line segment coordinates need to draw a spike histogram. This is useful for adding
elements to ggplot2 plots and for the describe function to construct spike histograms. Date/time
variables are handled by doing calculations on the underlying numeric scale then converting back
to the original class. For them the left endpoint of the first bin is taken as the minimal data value
instead of rounded using pretty().

Value

when y is specified, a list with elements x and y. When method='tryactual' the returned value de-
pends on tresult. For method='grid', a list with elements x and y and scalar element roundedTo
containing the typical bin width. Here x is a character string.

Author(s)

Frank Harrell

Examples

spikecomp(1:1000)
spikecomp(1:1000, method='grid')
Not run:
On a data.table d use ggplot2 to make spike histograms by country and sex groups
s <- d[, spikecomp(x, tresult='segments'), by=.(country, sex)]
ggplot(s) + geom_segment(aes(x=x, y=y1, xend=x, yend=y2, alpha=I(0.3))) +

scale_y_continuous(breaks=NULL, labels=NULL) + ylab('') +
facet_grid(country ~ sex)

368 spower

End(Not run)

spower Simulate Power of 2-Sample Test for Survival under Complex Condi-
tions

Description

Given functions to generate random variables for survival times and censoring times, spower sim-
ulates the power of a user-given 2-sample test for censored data. By default, the logrank (Cox
2-sample) test is used, and a logrank function for comparing 2 groups is provided. Optionally a
Cox model is fitted for each each simulated dataset and the log hazard ratios are saved (this requires
the survival package). A print method prints various measures from these. For composing R
functions to generate random survival times under complex conditions, the Quantile2 function
allows the user to specify the intervention:control hazard ratio as a function of time, the probabil-
ity of a control subject actually receiving the intervention (dropin) as a function of time, and the
probability that an intervention subject receives only the control agent as a function of time (non-
compliance, dropout). Quantile2 returns a function that generates either control or intervention
uncensored survival times subject to non-constant treatment effect, dropin, and dropout. There is
a plot method for plotting the results of Quantile2, which will aid in understanding the effects
of the two types of non-compliance and non-constant treatment effects. Quantile2 assumes that
the hazard function for either treatment group is a mixture of the control and intervention hazard
functions, with mixing proportions defined by the dropin and dropout probabilities. It computes
hazards and survival distributions by numerical differentiation and integration using a grid of (by
default) 7500 equally-spaced time points.

The logrank function is intended to be used with spower but it can be used by itself. It returns the 1
degree of freedom chi-square statistic, with the associated Pike hazard ratio estimate as an attribute.

The Weibull2 function accepts as input two vectors, one containing two times and one containing
two survival probabilities, and it solves for the scale and shape parameters of the Weibull distribu-
tion (S(t) = e−αtγ) which will yield those estimates. It creates an R function to evaluate survival
probabilities from this Weibull distribution. Weibull2 is useful in creating functions to pass as the
first argument to Quantile2.

The Lognorm2 and Gompertz2 functions are similar to Weibull2 except that they produce survival
functions for the log-normal and Gompertz distributions.

When cox=TRUE is specified to spower, the analyst may wish to extract the two margins of error by
using the print method for spower objects (see example below) and take the maximum of the two.

Usage

spower(rcontrol, rinterv, rcens, nc, ni,
test=logrank, cox=FALSE, nsim=500, alpha=0.05, pr=TRUE)

S3 method for class 'spower'
print(x, conf.int=.95, ...)

Quantile2(scontrol, hratio,

spower 369

dropin=function(times)0, dropout=function(times)0,
m=7500, tmax, qtmax=.001, mplot=200, pr=TRUE, ...)

S3 method for class 'Quantile2'
print(x, ...)

S3 method for class 'Quantile2'
plot(x,

what=c("survival", "hazard", "both", "drop", "hratio", "all"),
dropsep=FALSE, lty=1:4, col=1, xlim, ylim=NULL,
label.curves=NULL, ...)

logrank(S, group)

Gompertz2(times, surv)
Lognorm2(times, surv)
Weibull2(times, surv)

Arguments

rcontrol a function of n which returns n random uncensored failure times for the con-
trol group. spower assumes that non-compliance (dropin) has been taken into
account by this function.

rinterv similar to rcontrol but for the intervention group

rcens a function of n which returns n random censoring times. It is assumed that both
treatment groups have the same censoring distribution.

nc number of subjects in the control group

ni number in the intervention group

scontrol a function of a time vector which returns the survival probabilities for the control
group at those times assuming that all patients are compliant.

hratio a function of time which specifies the intervention:control hazard ratio (treat-
ment effect)

x an object of class “Quantile2” created by Quantile2, or of class “spower” cre-
ated by spower

conf.int confidence level for determining fold-change margins of error in estimating the
hazard ratio

S a Surv object or other two-column matrix for right-censored survival times

group group indicators have length equal to the number of rows in S argument.

times a vector of two times

surv a vector of two survival probabilities

test any function of a Surv object and a grouping variable which computes a chi-
square for a two-sample censored data test. The default is logrank.

cox If true TRUE the two margins of error are available by using the print method
for spower objects (see example below) and taking the maximum of the two.

370 spower

nsim number of simulations to perform (default=500)

alpha type I error (default=.05)

pr If FALSE prevents spower from printing progress notes for simulations. If FALSE
prevents Quantile2 from printing tmax when it calculates tmax.

dropin a function of time specifying the probability that a control subject actually is
treated with the new intervention at the corresponding time

dropout a function of time specifying the probability of an intervention subject dropping
out to control conditions. As a function of time, dropout specifies the prob-
ability that a patient is treated with the control therapy at time t. dropin and
dropout form mixing proportions for control and intervention hazard functions.

m number of time points used for approximating functions (default is 7500)

tmax maximum time point to use in the grid of m times. Default is the time such that
scontrol(time) is qtmax.

qtmax survival probability corresponding to the last time point used for approximating
survival and hazard functions. Default is 0.001. For qtmax of the time for which
a simulated time is needed which corresponds to a survival probability of less
than qtmax, the simulated value will be tmax.

mplot number of points used for approximating functions for use in plotting (default is
200 equally spaced points)

... optional arguments passed to the scontrol function when it’s evaluated by
Quantile2. Unused for print.spower.

what a single character constant (may be abbreviated) specifying which functions to
plot. The default is ‘"both"’ meaning both survival and hazard functions. Spec-
ify what="drop" to just plot the dropin and dropout functions, what="hratio"
to plot the hazard ratio functions, or ‘"all"’ to make 4 separate plots showing
all functions (6 plots if dropsep=TRUE).

dropsep If TRUE makes plot.Quantile2 separate pure and contaminated functions onto
separate plots

lty vector of line types

col vector of colors

xlim optional x-axis limits

ylim optional y-axis limits

label.curves optional list which is passed as the opts argument to labcurve.

Value

spower returns the power estimate (fraction of simulated chi-squares greater than the alpha-critical
value). If cox=TRUE, spower returns an object of class “spower” containing the power and various
other quantities.

Quantile2 returns an R function of class “Quantile2” with attributes that drive the plot method.
The major attribute is a list containing several lists. Each of these sub-lists contains a Time vector
along with one of the following: survival probabilities for either treatment group and with or without
contamination caused by non-compliance, hazard rates in a similar way, intervention:control hazard
ratio function with and without contamination, and dropin and dropout functions.

spower 371

logrank returns a single chi-square statistic and an attribute hr which is the Pike hazard ratio
estimate.

Weibull2, Lognorm2 and Gompertz2 return an R function with three arguments, only the first of
which (the vector of times) is intended to be specified by the user.

Side Effects

spower prints the interation number every 10 iterations if pr=TRUE.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Lakatos E (1988): Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics
44:229–241 (Correction 44:923).

Cuzick J, Edwards R, Segnan N (1997): Adjusting for non-compliance and contamination in ran-
domized clinical trials. Stat in Med 16:1017–1029.

Cook, T (2003): Methods for mid-course corrections in clinical trials with survival outcomes. Stat
in Med 22:3431–3447.

Barthel FMS, Babiker A et al (2006): Evaluation of sample size and power for multi-arm survival
trials allowing for non-uniform accrual, non-proportional hazards, loss to follow-up and cross-over.
Stat in Med 25:2521–2542.

See Also

cpower, ciapower, bpower, cph, coxph, labcurve

Examples

Simulate a simple 2-arm clinical trial with exponential survival so
we can compare power simulations of logrank-Cox test with cpower()
Hazard ratio is constant and patients enter the study uniformly
with follow-up ranging from 1 to 3 years
Drop-in probability is constant at .1 and drop-out probability is
constant at .175. Two-year survival of control patients in absence
of drop-in is .8 (mortality=.2). Note that hazard rate is -log(.8)/2
Total sample size (both groups combined) is 1000
% mortality reduction by intervention (if no dropin or dropout) is 25
This corresponds to a hazard ratio of 0.7283 (computed by cpower)

cpower(2, 1000, .2, 25, accrual=2, tmin=1,
noncomp.c=10, noncomp.i=17.5)

372 spower

ranfun <- Quantile2(function(x)exp(log(.8)/2*x),
hratio=function(x)0.7283156,
dropin=function(x).1,
dropout=function(x).175)

rcontrol <- function(n) ranfun(n, what='control')
rinterv <- function(n) ranfun(n, what='int')
rcens <- function(n) runif(n, 1, 3)

set.seed(11) # So can reproduce results
spower(rcontrol, rinterv, rcens, nc=500, ni=500,

test=logrank, nsim=50) # normally use nsim=500 or 1000

Not run:
Run the same simulation but fit the Cox model for each one to
get log hazard ratios for the purpose of assessing the tightness
confidence intervals that are likely to result

set.seed(11)
u <- spower(rcontrol, rinterv, rcens, nc=500, ni=500,

test=logrank, nsim=50, cox=TRUE)
u
v <- print(u)
v[c('MOElower','MOEupper','SE')]

End(Not run)

Simulate a 2-arm 5-year follow-up study for which the control group's
survival distribution is Weibull with 1-year survival of .95 and
3-year survival of .7. All subjects are followed at least one year,
and patients enter the study with linearly increasing probability after that
Assume there is no chance of dropin for the first 6 months, then the
probability increases linearly up to .15 at 5 years
Assume there is a linearly increasing chance of dropout up to .3 at 5 years
Assume that the treatment has no effect for the first 9 months, then
it has a constant effect (hazard ratio of .75)

First find the right Weibull distribution for compliant control patients
sc <- Weibull2(c(1,3), c(.95,.7))
sc

Inverse cumulative distribution for case where all subjects are followed
at least a years and then between a and b years the density rises
as (time - a) ^ d is a + (b-a) * u ^ (1/(d+1))

rcens <- function(n) 1 + (5-1) * (runif(n) ^ .5)
To check this, type hist(rcens(10000), nclass=50)

spower 373

Put it all together

f <- Quantile2(sc,
hratio=function(x)ifelse(x<=.75, 1, .75),
dropin=function(x)ifelse(x<=.5, 0, .15*(x-.5)/(5-.5)),
dropout=function(x).3*x/5)

par(mfrow=c(2,2))
par(mfrow=c(1,1)) to make legends fit
plot(f, 'all', label.curves=list(keys='lines'))

rcontrol <- function(n) f(n, 'control')
rinterv <- function(n) f(n, 'intervention')

set.seed(211)
spower(rcontrol, rinterv, rcens, nc=350, ni=350,

test=logrank, nsim=50) # normally nsim=500 or more
par(mfrow=c(1,1))

Compose a censoring time generator function such that at 1 year
5% of subjects are accrued, at 3 years 70% are accured, and at 10
years 100% are accrued. The trial proceeds two years past the last
accrual for a total of 12 years of follow-up for the first subject.
Use linear interporation between these 3 points

rcens <- function(n)
{

times <- c(0,1,3,10)
accrued <- c(0,.05,.7,1)
Compute inverse of accrued function at U(0,1) random variables
accrual.times <- approx(accrued, times, xout=runif(n))$y
censor.times <- 12 - accrual.times
censor.times

}

censor.times <- rcens(500)
hist(censor.times, nclass=20)
accrual.times <- 12 - censor.times
Ecdf(accrual.times)
lines(c(0,1,3,10), c(0,.05,.7,1), col='red')
spower(..., rcens=rcens, ...)

Not run:
To define a control survival curve from a fitted survival curve
with coordinates (tt, surv) with tt[1]=0, surv[1]=1:

Scontrol <- function(times, tt, surv) approx(tt, surv, xout=times)$y
tt <- 0:6

374 spss.get

surv <- c(1, .9, .8, .75, .7, .65, .64)
formals(Scontrol) <- list(times=NULL, tt=tt, surv=surv)

To use a mixture of two survival curves, with e.g. mixing proportions
of .2 and .8, use the following as a guide:
#
Scontrol <- function(times, t1, s1, t2, s2)
.2*approx(t1, s1, xout=times)$y + .8*approx(t2, s2, xout=times)$y
t1 <- ...; s1 <- ...; t2 <- ...; s2 <- ...;
formals(Scontrol) <- list(times=NULL, t1=t1, s1=s1, t2=t2, s2=s2)

Check that spower can detect a situation where generated censoring times
are later than all failure times

rcens <- function(n) runif(n, 0, 7)
f <- Quantile2(scontrol=Scontrol, hratio=function(x).8, tmax=6)
cont <- function(n) f(n, what='control')
int <- function(n) f(n, what='intervention')
spower(rcontrol=cont, rinterv=int, rcens=rcens, nc=300, ni=300, nsim=20)

Do an unstratified logrank test
library(survival)
From SAS/STAT PROC LIFETEST manual, p. 1801
days <- c(179,256,262,256,255,224,225,287,319,264,237,156,270,257,242,

157,249,180,226,268,378,355,319,256,171,325,325,217,255,256,
291,323,253,206,206,237,211,229,234,209)

status <- c(1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,0,
0,rep(1,19))

treatment <- c(rep(1,10), rep(2,10), rep(1,10), rep(2,10))
sex <- Cs(F,F,M,F,M,F,F,M,M,M,F,F,M,M,M,F,M,F,F,M,

M,M,M,M,F,M,M,F,F,F,M,M,M,F,F,M,F,F,F,F)
data.frame(days, status, treatment, sex)
table(treatment, status)
logrank(Surv(days, status), treatment) # agrees with p. 1807
For stratified tests the picture is puzzling.
survdiff(Surv(days,status) ~ treatment + strata(sex))$chisq
is 7.246562, which does not agree with SAS (7.1609)
But summary(coxph(Surv(days,status) ~ treatment + strata(sex)))
yields 7.16 whereas summary(coxph(Surv(days,status) ~ treatment))
yields 5.21 as the score test, not agreeing with SAS or logrank() (5.6485)

End(Not run)

spss.get Enhanced Importing of SPSS Files

Description

spss.get invokes the read.spss function in the foreign package to read an SPSS file, with a
default output format of "data.frame". The label function is used to attach labels to individual

spss.get 375

variables instead of to the data frame as done by read.spss. By default, integer-valued variables are
converted to a storage mode of integer unless force.single=FALSE. Date variables are converted
to R Date variables. By default, underscores in names are converted to periods.

Usage

spss.get(file, lowernames=FALSE, datevars = NULL,
use.value.labels = TRUE, to.data.frame = TRUE,
max.value.labels = Inf, force.single=TRUE,
allow=NULL, charfactor=FALSE, reencode = NA)

Arguments

file input SPSS save file. May be a file on the WWW, indicated by file starting
with 'http://' or 'https://'.

lowernames set to TRUE to convert variable names to lower case
datevars vector of variable names containing dates to be converted to R internal format
use.value.labels

see read.spss

to.data.frame see read.spss; default is TRUE for spss.get
max.value.labels

see read.spss

force.single set to FALSE to prevent integer-valued variables from being converted from stor-
age mode double to integer

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

charfactor set to TRUE to change character variables to factors if they have fewer than n/2
unique values. Blanks and null strings are converted to NAs.

reencode see read.spss

Value

a data frame or list

Author(s)

Frank Harrell

See Also

read.spss,cleanup.import,sas.get

Examples

Not run:
w <- spss.get('/tmp/my.sav', datevars=c('birthdate','deathdate'))

End(Not run)

376 src

src Source a File from the Current Working Directory

Description

src concatenates ".s" to its argument, quotes the result, and sources in the file. It sets options(last.source)
to this file name so that src() can be issued to re-source the file when it is edited.

Usage

src(x)

Arguments

x an unquoted file name aside from ".s". This base file name must be a legal S
name.

Side Effects

Sets system option last.source

Author(s)

Frank Harrell

See Also

source

Examples

Not run:
src(myfile) # source("myfile.s")
src() # re-source myfile.s

End(Not run)

stata.get 377

stata.get Enhanced Importing of STATA Files

Description

Reads a file in Stata version 5-11 binary format format into a data frame.

Usage

stata.get(file, lowernames = FALSE, convert.dates = TRUE,
convert.factors = TRUE, missing.type = FALSE,
convert.underscore = TRUE, warn.missing.labels = TRUE,
force.single = TRUE, allow=NULL, charfactor=FALSE, ...)

Arguments

file input SPSS save file. May be a file on the WWW, indicated by file starting with
‘'https://'’.

lowernames set to TRUE to convert variable names to lower case

convert.dates see read.dta

convert.factors

see read.dta

missing.type see read.dta

convert.underscore

see read.dta
warn.missing.labels

see read.dta

force.single set to FALSE to prevent integer-valued variables from being converted from stor-
age mode double to integer

allow a vector of characters allowed by R that should not be converted to periods
in variable names. By default, underscores in variable names are converted to
periods as with R before version 1.9.

charfactor set to TRUE to change character variables to factors if they have fewer than n/2
unique values. Blanks and null strings are converted to NAs.

... arguments passed to read.dta.

Details

stata.get invokes the read.dta function in the foreign package to read an STATA file, with a
default output format of data.frame. The label function is used to attach labels to individual
variables instead of to the data frame as done by read.dta. By default, integer-valued variables are
converted to a storage mode of integer unless force.single=FALSE. Date variables are converted
to R Date variables. By default, underscores in names are converted to periods.

378 stat_plsmo

Value

A data frame

Author(s)

Charles Dupont

See Also

read.dta,cleanup.import,label,data.frame,Date

Examples

Not run:
w <- stata.get('/tmp/my.dta')

End(Not run)

stat_plsmo Add a lowess smoother without counfidence bands.

Description

Automatically selects iter=0 for lowess if y is binary, otherwise uses iter=3.

Usage

stat_plsmo(
mapping = NULL,
data = NULL,
geom = "smooth",
position = "identity",
n = 80,
fullrange = FALSE,
span = 2/3,
fun = function(x) x,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

stat_plsmo 379

Arguments

mapping, data, geom, position, show.legend, inherit.aes
see ggplot2 documentation

n number of points to evaluate smoother at

fullrange should the fit span the full range of the plot, or just the data

span see f argument to lowess

fun a function to transform smoothed y

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

... other arguments are passed to smoothing function

Value

a data.frame with additional columns

y predicted value

See Also

lowess for loess smoother.

Examples

require(ggplot2)
c <- ggplot(mtcars, aes(qsec, wt))
c + stat_plsmo()
c + stat_plsmo() + geom_point()

c + stat_plsmo(span = 0.1) + geom_point()

Smoothers for subsets
c <- ggplot(mtcars, aes(y=wt, x=mpg)) + facet_grid(. ~ cyl)
c + stat_plsmo() + geom_point()
c + stat_plsmo(fullrange = TRUE) + geom_point()

Geoms and stats are automatically split by aesthetics that are factors
c <- ggplot(mtcars, aes(y=wt, x=mpg, colour=factor(cyl)))
c + stat_plsmo() + geom_point()
c + stat_plsmo(aes(fill = factor(cyl))) + geom_point()
c + stat_plsmo(fullrange=TRUE) + geom_point()

Example with logistic regression
data("kyphosis", package="rpart")
qplot(Age, as.numeric(Kyphosis) - 1, data = kyphosis) + stat_plsmo()

380 string.break.line

string.bounding.box Determine Dimensions of Strings

Description

This determines the number of rows and maximum number of columns of each string in a vector.

Usage

string.bounding.box(string, type = c("chars", "width"))

Arguments

string vector of strings

type character: whether to count characters or screen columns

Value

rows vector containing the number of character rows in each string

columns vector containing the maximum number of character columns in each string

Author(s)

Charles Dupont

See Also

nchar, stringDims

Examples

a <- c("this is a single line string", "This is a\nmulti-line string")
stringDims(a)

string.break.line Break a String into Many Lines at Newlines

Description

Takes a string and breaks it into seperate substrings where there are newline characters.

Usage

string.break.line(string)

stringDims 381

Arguments

string character vector to be separated into many lines.

Value

Returns a list that is the same length of as the string argument.

Each list element is a character vector.

Each character vectors elements are the split lines of the corresponding element in the string
argument vector.

Author(s)

Charles Dupont

See Also

strsplit

Examples

a <- c('', 'this is a single line string',
'This is a\nmulti-line string.')

b <- string.break.line(a)

stringDims String Dimentions

Description

Finds the height and width of all the string in a character vector.

Usage

stringDims(string)

Arguments

string vector of strings

Details

stringDims finds the number of characters in width and number of lines in height for each string
in the string argument.

382 subplot

Value

height a vector of the number of lines in each string.

width a vector with the number of character columns in the longest line.

Author(s)

Charles Dupont

See Also

string.bounding.box, nchar

Examples

a <- c("this is a single line string", "This is a\nmulty line string")
stringDims(a)

subplot Embed a new plot within an existing plot

Description

Subplot will embed a new plot within an existing plot at the coordinates specified (in user units of
the existing plot).

Usage

subplot(fun, x, y, size=c(1,1), vadj=0.5, hadj=0.5, pars=NULL)

Arguments

fun an expression or function defining the new plot to be embedded.

x x-coordinate(s) of the new plot (in user coordinates of the existing plot).

y y-coordinate(s) of the new plot, x and y can be specified in any of the ways
understood by xy.coords.

size The size of the embedded plot in inches if x and y have length 1.

vadj vertical adjustment of the plot when y is a scalar, the default is to center verti-
cally, 0 means place the bottom of the plot at y, 1 places the top of the plot at
y.

hadj horizontal adjustment of the plot when x is a scalar, the default is to center
horizontally, 0 means place the left edge of the plot at x, and 1 means place the
right edge of the plot at x.

pars a list of parameters to be passed to par before running fun.

subplot 383

Details

The coordinates x and y can be scalars or vectors of length 2. If vectors of length 2 then they
determine the opposite corners of the rectangle for the embedded plot (and the parameters size,
vadj, and hadj are all ignored.

If x and y are given as scalars then the plot position relative to the point and the size of the plot will
be determined by the arguments size, vadj, and hadj. The default is to center a 1 inch by 1 inch
plot at x,y. Setting vadj and hadj to (0,0) will position the lower left corner of the plot at (x,y).

The rectangle defined by x, y, size, vadj, and hadj will be used as the plotting area of the new
plot. Any tick marks, axis labels, main and sub titles will be outside of this rectangle.

Any graphical parameter settings that you would like to be in place before fun is evaluated can be
specified in the pars argument (warning: specifying layout parameters here (plt, mfrow, etc.) may
cause unexpected results).

After the function completes the graphical parameters will have been reset to what they were before
calling the function (so you can continue to augment the original plot).

Value

An invisible list with the graphical parameters that were in effect when the subplot was created.
Passing this list to par will enable you to augment the embedded plot.

Author(s)

Greg Snow <greg.snow@imail.org>

See Also

cnvrt.coords, par, symbols

Examples

make an original plot
plot(11:20, sample(51:60))

add some histograms

subplot(hist(rnorm(100)), 15, 55)
subplot(hist(runif(100),main='',xlab='',ylab=''), 11, 51, hadj=0, vadj=0)
subplot(hist(rexp(100, 1/3)), 20, 60, hadj=1, vadj=1, size=c(0.5,2))
subplot(hist(rt(100,3)), c(12,16), c(57,59), pars=list(lwd=3,ask=FALSE))

tmp <- rnorm(25)
qqnorm(tmp)
qqline(tmp)
tmp2 <- subplot(hist(tmp,xlab='',ylab='',main=''),
cnvrt.coords(0.1,0.9,'plt')$usr, vadj=1, hadj=0)
abline(v=0, col='red') # wrong way to add a reference line to histogram

right way to add a reference line to histogram
op <- par(no.readonly=TRUE)

384 summarize

par(tmp2)
abline(v=0, col='green')
par(op)

summarize Summarize Scalars or Matrices by Cross-Classification

Description

summarize is a fast version of summary.formula(formula,method="cross",overall=FALSE)
for producing stratified summary statistics and storing them in a data frame for plotting (especially
with trellis xyplot and dotplot and Hmisc xYplot). Unlike aggregate, summarize accepts a ma-
trix as its first argument and a multi-valued FUN argument and summarize also labels the variables
in the new data frame using their original names. Unlike methods based on tapply, summarize
stores the values of the stratification variables using their original types, e.g., a numeric by vari-
able will remain a numeric variable in the collapsed data frame. summarize also retains "label"
attributes for variables. summarize works especially well with the Hmisc xYplot function for dis-
playing multiple summaries of a single variable on each panel, such as means and upper and lower
confidence limits.

asNumericMatrix converts a data frame into a numeric matrix, saving attributes to reverse the pro-
cess by matrix2dataframe. It saves attributes that are commonly preserved across row subsetting
(i.e., it does not save dim, dimnames, or names attributes).

matrix2dataFrame converts a numeric matrix back into a data frame if it was created by asNumericMatrix.

Usage

summarize(X, by, FUN, ...,
stat.name=deparse(substitute(X)),
type=c('variables','matrix'), subset=TRUE,
keepcolnames=FALSE)

asNumericMatrix(x)

matrix2dataFrame(x, at=attr(x, 'origAttributes'), restoreAll=TRUE)

Arguments

X a vector or matrix capable of being operated on by the function specified as the
FUN argument

by one or more stratification variables. If a single variable, by may be a vector, oth-
erwise it should be a list. Using the Hmisc llist function instead of list will
result in individual variable names being accessible to summarize. For example,
you can specify llist(age.group,sex) or llist(Age=age.group,sex). The
latter gives age.group a new temporary name, Age.

summarize 385

FUN a function of a single vector argument, used to create the statistical summaries
for summarize. FUN may compute any number of statistics.

... extra arguments are passed to FUN

stat.name the name to use when creating the main summary variable. By default, the
name of the X argument is used. Set stat.name to NULL to suppress this name
replacement.

type Specify type="matrix" to store the summary variables (if there are more than
one) in a matrix.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

keepcolnames by default when type="matrix", the first column of the computed matrix is the
name of the first argument to summarize. Set keepcolnames=TRUE to retain the
name of the first column created by FUN

x a data frame (for asNumericMatrix) or a numeric matrix (for matrix2dataFrame).

at List containing attributes of original data frame that survive subsetting. De-
faults to attribute "origAttributes" of the object x, created by the call to
asNumericMatrix

restoreAll set to FALSE to only restore attributes label, units, and levels instead of all
attributes

Value

For summarize, a data frame containing the by variables and the statistical summaries (the first of
which is named the same as the X variable unless stat.name is given). If type="matrix", the
summaries are stored in a single variable in the data frame, and this variable is a matrix.

asNumericMatrix returns a numeric matrix and stores an object origAttributes as an attribute
of the returned object, with original attributes of component variables, the storage.mode.

matrix2dataFrame returns a data frame.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

label, cut2, llist, by

Examples

Not run:
s <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,

stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)

386 summarize

End(Not run)

set.seed(1)
temperature <- rnorm(300, 70, 10)
month <- sample(1:12, 300, TRUE)
year <- sample(2000:2001, 300, TRUE)
g <- function(x)c(Mean=mean(x,na.rm=TRUE),Median=median(x,na.rm=TRUE))
summarize(temperature, month, g)
mApply(temperature, month, g)

mApply(temperature, month, mean, na.rm=TRUE)
w <- summarize(temperature, month, mean, na.rm=TRUE)
library(lattice)
xyplot(temperature ~ month, data=w) # plot mean temperature by month

w <- summarize(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE, type='matrix')

xYplot(Cbind(temperature[,1],temperature[,-1]) ~ month | year, data=w)
mApply(temperature, llist(year,month),

quantile, probs=c(.5,.25,.75), na.rm=TRUE)

Compute the median and outer quartiles. The outer quartiles are
displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
attach(dfr)
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
s
mApply(y, llist(month,year), smedian.hilow, conf.int=.5)

xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,
keys='lines', method='alt')

Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s, keys='lines')
To display means and bootstrapped nonparametric confidence intervals
use for example:
s <- summarize(y, llist(month,year), smean.cl.boot)
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s)

For each subject use the trapezoidal rule to compute the area under
the (time,response) curve using the Hmisc trap.rule function
x <- cbind(time=c(1,2,4,7, 1,3,5,10),response=c(1,3,2,4, 1,3,2,4))
subject <- c(rep(1,4),rep(2,4))
trap.rule(x[1:4,1],x[1:4,2])
summarize(x, subject, function(y) trap.rule(y[,1],y[,2]))

Not run:
Another approach would be to properly re-shape the mm array below
This assumes no missing cells. There are many other approaches.
mApply will do this well while allowing for missing cells.

summarize 387

m <- tapply(y, list(year,month), quantile, probs=c(.25,.5,.75))
mm <- array(unlist(m), dim=c(3,2,12),

dimnames=list(c('lower','median','upper'),c('1997','1998'),
as.character(1:12)))

aggregate will help but it only allows you to compute one quantile
at a time; see also the Hmisc mApply function
dframe <- aggregate(y, list(Year=year,Month=month), quantile, probs=.5)

Compute expected life length by race assuming an exponential
distribution - can also use summarize
g <- function(y) { # computations for one race group

futime <- y[,1]; event <- y[,2]
sum(futime)/sum(event) # assume event=1 for death, 0=alive

}
mApply(cbind(followup.time, death), race, g)

To run mApply on a data frame:
xn <- asNumericMatrix(x)
m <- mApply(xn, race, h)
Here assume h is a function that returns a matrix similar to x
matrix2dataFrame(m)

Get stratified weighted means
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(sex,race), g, stat.name='y')
mApply(cbind(y,wts), llist(sex,race), g)

Compare speed of mApply vs. by for computing
d <- data.frame(sex=sample(c('female','male'),100000,TRUE),

country=sample(letters,100000,TRUE),
y1=runif(100000), y2=runif(100000))

g <- function(x) {
y <- c(median(x[,'y1']-x[,'y2']),

med.sum =median(x[,'y1']+x[,'y2']))
names(y) <- c('med.diff','med.sum')
y

}

system.time(by(d, llist(sex=d$sex,country=d$country), g))
system.time({

x <- asNumericMatrix(d)
a <- subsAttr(d)
m <- mApply(x, llist(sex=d$sex,country=d$country), g)
})

system.time({
x <- asNumericMatrix(d)
summarize(x, llist(sex=d$sex, country=d$country), g)
})

An example where each subject has one record per diagnosis but sex of
subject is duplicated for all the rows a subject has. Get the cross-
classified frequencies of diagnosis (dx) by sex and plot the results

388 summary.formula

with a dot plot

count <- rep(1,length(dx))
d <- summarize(count, llist(dx,sex), sum)
Dotplot(dx ~ count | sex, data=d)

End(Not run)
d <- list(x=1:10, a=factor(rep(c('a','b'), 5)),

b=structure(letters[1:10], label='label for b'),
d=c(rep(TRUE,9), FALSE), f=pi*(1 : 10))

x <- asNumericMatrix(d)
attr(x, 'origAttributes')
matrix2dataFrame(x)

detach('dfr')

Run summarize on a matrix to get column means
x <- c(1:19,NA)
y <- 101:120
z <- cbind(x, y)
g <- c(rep(1, 10), rep(2, 10))
summarize(z, g, colMeans, na.rm=TRUE, stat.name='x')
Also works on an all numeric data frame
summarize(as.data.frame(z), g, colMeans, na.rm=TRUE, stat.name='x')

summary.formula Summarize Data for Making Tables and Plots

Description

summary.formula summarizes the variables listed in an S formula, computing descriptive statistics
(including ones in a user-specified function). The summary statistics may be passed to print meth-
ods, plot methods for making annotated dot charts, and latex methods for typesetting tables using
LaTeX. summary.formula has three methods for computing descriptive statistics on univariate or
multivariate responses, subsetted by categories of other variables. The method of summarization is
specified in the parameter method (see details below). For the response and cross methods, the
statistics used to summarize the data may be specified in a very flexible way (e.g., the geometric
mean, 33rd percentile, Kaplan-Meier 2-year survival estimate, mixtures of several statistics). The
default summary statistic for these methods is the mean (the proportion of positive responses for a
binary response variable). The cross method is useful for creating data frames which contain sum-
mary statistics that are passed to trellis as raw data (to make multi-panel dot charts, for example).
The print methods use the print.char.matrix function to print boxed tables.

The right hand side of formula may contain mChoice (“multiple choice”) variables. When test=TRUE
each choice is tested separately as a binary categorical response.

The plot method for method="reverse" creates a temporary function Key in frame 0 as is done
by the xYplot and Ecdf.formula functions. After plot runs, you can type Key() to put a legend
in a default location, or e.g. Key(locator(1)) to draw a legend where you click the left mouse
button. This key is for categorical variables, so to have the opportunity to put the key on the graph

summary.formula 389

you will probably want to use the command plot(object, which="categorical"). A second
function Key2 is created if continuous variables are being plotted. It is used the same as Key. If the
which argument is not specified to plot, two pages of plots will be produced. If you don’t define
par(mfrow=) yourself, plot.summary.formula.reverse will try to lay out a multi-panel graph
to best fit all the individual dot charts for continuous variables.

There is a subscripting method for objects created with method="response". This can be used to
print or plot selected variables or summary statistics where there would otherwise be too many on
one page.

cumcategory is a utility function useful when summarizing an ordinal response variable. It converts
such a variable having k levels to a matrix with k-1 columns, where column i is a vector of zeros
and ones indicating that the categorical response is in level i+1 or greater. When the left hand side
of formula is cumcategory(y), the default fun will summarize it by computing all of the relevant
cumulative proportions.

Functions conTestkw, catTestchisq, ordTestpo are the default statistical test functions for summary.formula.
These defaults are: Wilcoxon-Kruskal-Wallis test for continuous variables, Pearson chi-square test
for categorical variables, and the likelihood ratio chi-square test from the proportional odds model
for ordinal variables. These three functions serve also as templates for the user to create her own
testing functions that are self-defining in terms of how the results are printed or rendered in LaTeX,
or plotted.

Usage

S3 method for class 'formula'
summary(formula, data=NULL, subset=NULL,

na.action=NULL, fun = NULL,
method = c("response", "reverse", "cross"),
overall = method == "response" | method == "cross",
continuous = 10, na.rm = TRUE, na.include = method != "reverse",
g = 4, quant = c(0.025, 0.05, 0.125, 0.25, 0.375, 0.5, 0.625,

0.75, 0.875, 0.95, 0.975),
nmin = if (method == "reverse") 100

else 0,
test = FALSE, conTest = conTestkw, catTest = catTestchisq,
ordTest = ordTestpo, ...)

S3 method for class 'summary.formula.response'
x[i, j, drop=FALSE]

S3 method for class 'summary.formula.response'
print(x, vnames=c('labels','names'), prUnits=TRUE,

abbreviate.dimnames=FALSE,
prefix.width, min.colwidth, formatArgs=NULL, markdown=FALSE, ...)

S3 method for class 'summary.formula.response'
plot(x, which = 1, vnames = c('labels','names'), xlim, xlab,

pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), superposeStrata = TRUE,
dotfont = 1, add = FALSE, reset.par = TRUE, main, subtitles = TRUE,
...)

390 summary.formula

S3 method for class 'summary.formula.response'
latex(object, title = first.word(deparse(substitute(object))), caption,

trios, vnames = c('labels', 'names'), prn = TRUE, prUnits = TRUE,
rowlabel = '', cdec = 2, ncaption = TRUE, ...)

S3 method for class 'summary.formula.reverse'
print(x, digits, prn = any(n != N), pctdig = 0,

what=c('%', 'proportion'),
npct = c('numerator', 'both', 'denominator', 'none'),
exclude1 = TRUE, vnames = c('labels', 'names'), prUnits = TRUE,
sep = '/', abbreviate.dimnames = FALSE,
prefix.width = max(nchar(lab)), min.colwidth, formatArgs=NULL, round=NULL,
prtest = c('P','stat','df','name'), prmsd = FALSE, long = FALSE,
pdig = 3, eps = 0.001, ...)

S3 method for class 'summary.formula.reverse'
plot(x, vnames = c('labels', 'names'), what = c('proportion', '%'),

which = c('both', 'categorical', 'continuous'),
xlim = if(what == 'proportion') c(0,1)

else c(0,100),
xlab = if(what=='proportion') 'Proportion'

else 'Percentage',
pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), exclude1 = TRUE,
dotfont = 1, main,
prtest = c('P', 'stat', 'df', 'name'), pdig = 3, eps = 0.001,
conType = c('dot', 'bp', 'raw'), cex.means = 0.5, ...)

S3 method for class 'summary.formula.reverse'
latex(object, title = first.word(deparse(substitute(object))), digits,

prn = any(n != N), pctdig = 0, what=c('%', 'proportion'),
npct = c("numerator", "both", "denominator", "slash", "none"),
npct.size = 'scriptsize', Nsize = "scriptsize", exclude1 = TRUE,
vnames=c("labels", "names"), prUnits = TRUE, middle.bold = FALSE,
outer.size = "scriptsize", caption, rowlabel = "",
insert.bottom = TRUE, dcolumn = FALSE, formatArgs=NULL, round = NULL,
prtest = c('P', 'stat', 'df', 'name'), prmsd = FALSE,
msdsize = NULL, long = dotchart, pdig = 3, eps = 0.001,
auxCol = NULL, dotchart=FALSE, ...)

S3 method for class 'summary.formula.cross'
print(x, twoway = nvar == 2, prnmiss = any(stats$Missing > 0), prn = TRUE,

abbreviate.dimnames = FALSE, prefix.width = max(nchar(v)),
min.colwidth, formatArgs = NULL, ...)

S3 method for class 'summary.formula.cross'
latex(object, title = first.word(deparse(substitute(object))),

twoway = nvar == 2, prnmiss = TRUE, prn = TRUE,

summary.formula 391

caption=attr(object, "heading"), vnames=c("labels", "names"),
rowlabel="", ...)

stratify(..., na.group = FALSE, shortlabel = TRUE)

S3 method for class 'summary.formula.cross'
formula(x, ...)

cumcategory(y)

conTestkw(group, x)
catTestchisq(tab)
ordTestpo(group, x)

Arguments

formula An R formula with additive effects. For method="response" or "cross",
the dependent variable has the usual connotation. For method="reverse", the
dependent variable is what is usually thought of as an independent variable,
and it is one that is used to stratify all of the right hand side variables. For
method="response" (only), the formula may contain one or more invocations
of the stratify function whose arguments are defined below. This causes the
entire analysis to be stratified by cross-classifications of the combined list of
stratification factors. This stratification will be reflected as major column group-
ings in the resulting table, or as more response columns for plotting. If formula
has no dependent variable method="reverse" is the only legal value and so
method defaults to "reverse" in this case.

x an object created by summary.formula. For conTestkw a numeric vector, and
for ordTestpo, a numeric or factor variable that can be considered ordered

y a numeric, character, category, or factor vector for cumcategory. Is converted
to a categorical variable is needed.

drop logical. If TRUE the result is coerced to the lowest possible dimension.

data name or number of a data frame. Default is the current frame.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

na.action function for handling missing data in the input data. The default is a function
defined here called na.retain, which keeps all observations for processing,
with missing variables or not.

fun function for summarizing data in each cell. Default is to take the mean of
each column of the possibly multivariate response variable. You can specify
fun="%" to compute percentages (100 times the mean of a series of logical or
binary variables). User–specified functions can also return a matrix. For ex-
ample, you might compute quartiles on a bivariate response. Does not apply to
method="reverse".

method The default is "response", in which case the response variable may be mul-
tivariate and any number of statistics may be used to summarize them. Here

392 summary.formula

the responses are summarized separately for each of any number of independent
variables. Continuous independent variables (see the continuous parameter
below) are automatically stratified into g (see below) quantile groups (if you
want to control the discretization for selected variables, use the cut2 function
on them). Otherwise, the data are subsetted by all levels of discrete right hand
side variables. For multivariate responses, subjects are considered to be missing
if any of the columns is missing.

The method="reverse" option is typically used to make baseline characteristic
tables, for example. The single left hand side variable must be categorical (e.g.,
treatment), and the right hand side variables are broken down one at a time by
the "dependent" variable. Continuous variables are described by three quantiles
(quartiles by default) along with outer quantiles (used only for scaling x-axes
when plotting quartiles; all are used when plotting box-percentile plots), and
categorical ones are described by counts and percentages. If there is no left
hand side variable, summary assumes that there is only one group in the data, so
that only one column of summaries will appear. If there is no dependent variable
in formula, method defaults to "reverse" automatically.

The method="cross" option allows for a multivariate dependent variable and
for up to three independents. Continuous independent variables (those with
at least continuous unique values) are automatically divided into g quantile
groups. The independents are cross-classified, and marginal statistics may op-
tionally be computed. The output of summary.formula in this case is a data
frame containing the independent variable combinations (with levels of "All"
corresponding to marginals) and the corresponding summary statistics in the
matrix S. The output data frame is suitable for direct use in trellis. The print
and latex typesetting methods for this method allows for a special two-way
format if there are two right hand variables.

overall For method="reverse", setting overall=TRUE makes a new column with over-
all statistics for the whole sample. For method="cross", overall=TRUE (the
default) results in all marginal statistics being computed. For trellis displays
(usually multi-panel dot plots), these marginals just form other categories. For
"response", the default is overall=TRUE, causing a final row of global sum-
mary statistics to appear in tables and dot charts. If test=TRUE these marginal
statistics are ignored in doing statistical tests.

continuous specifies the threshold for when a variable is considered to be continuous (when
there are at least continuous unique values). factor variables are always con-
sidered to be categorical no matter how many levels they have.

na.rm TRUE (the default) to exclude NAs before passing data to fun to compute statis-
tics, FALSE otherwise. na.rm=FALSE is useful if the response variable is a ma-
trix and you do not wish to exclude a row of the matrix if any of the columns
in that row are NA. na.rm also applies to summary statistic functions such as
smean.cl.normal. For these na.rm defaults to TRUE unlike built-in functions.

na.include for method="response", set na.include=FALSE to exclude missing values from
being counted as their own category when subsetting the response(s) by levels
of a categorical variable. For method="reverse" set na.include=TRUE to keep
missing values of categorical variables from being excluded from the table.

summary.formula 393

g number of quantile groups to use when variables are automatically categorized
with method="response" or "cross" using cut2

nmin if fewer than nmin observations exist in a category for "response" (over all
strata combined), that category will be ignored. For "reverse", for categories
of the response variable in which there are less than or equal to nmin non-
missing observations, the raw data are retained for later plotting in place of box
plots.

test applies if method="reverse". Set to TRUE to compute test statistics using tests
specified in conTest and catTest.

conTest a function of two arguments (grouping variable and a continuous variable) that
returns a list with components P (the computed P-value), stat (the test statis-
tic, either chi-square or F), df (degrees of freedom), testname (test name),
statname (statistic name), namefun ("chisq", "fstat"), an optional compo-
nent latexstat (LaTeX representation of statname), an optional component
plotmathstat (for R - the plotmath representation of statname, as a charac-
ter string), and an optional component note that contains a character string note
about the test (e.g., "test not done because n < 5"). conTest is applied to
continuous variables on the right-hand-side of the formula when method="reverse".
The default uses the spearman2 function to run the Wilcoxon or Kruskal-Wallis
test using the F distribution.

catTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Pearson chi-square
test is done, without continuity correction (the continuity correction would make
the test conservative like the Fisher exact test).

ordTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Proportional odds
likelihood ratio test is done.

... for summary.formula these are optional arguments for cut2 when variables
are automatically categorized. For plot methods these arguments are passed
to dotchart2. For Key and Key2 these arguments are passed to key, text, or
mtitle. For print methods these are optional arguments to print.char.matrix.
For latex methods these are passed to latex.default. One of the most im-
portant of these is file. Specifying file="" will cause LaTeX code to just be
printed to standard output rather than be stored in a permanent file.

object an object created by summary.formula

quant vector of quantiles to use for summarizing data with method="reverse". This
must be numbers between 0 and 1 inclusive and must include the numbers 0.5,
0.25, and 0.75 which are used for printing and for plotting quantile intervals.
The outer quantiles are used for scaling the x-axes for such plots. Specify outer
quantiles as 0 and 1 to scale the x-axes using the whole observed data ranges
instead of the default (a 0.95 quantile interval). Box-percentile plots are drawn
using all but the outer quantiles.

vnames By default, tables and plots are usually labeled with variable labels (see the
label and sas.get functions). To use the shorter variable names, specify
vnames="name".

394 summary.formula

pch vector of plotting characters to represent different groups, in order of group lev-
els. For method="response" the characters correspond to levels of the stratify
variable if superposeStrata=TRUE, and if no strata are used or if superposeStrata=FALSE,
the pch vector corresponds to the which argument for method="response".

superposeStrata

If stratify was used, set superposeStrata=FALSE to make separate dot charts
for each level of the stratification variable, for method='response'. The
default is to superposition all strata on one dot chart.

dotfont font for plotting points

reset.par set to FALSE to suppress the restoring of the old par values in plot.summary.formula.response

abbreviate.dimnames

see print.char.matrix

prefix.width see print.char.matrix

min.colwidth minimum column width to use for boxes printed with print.char.matrix. The
default is the maximum of the minimum column label length and the minimum
length of entries in the data cells.

formatArgs a list containing other arguments to pass to format.default such as scientific,
e.g., formatArgs=list(scientific=c(-5,5)). For print.summary.formula.reverse
and format.summary.formula.reverse, formatArgs applies only to statistics
computed on continuous variables, not to percents, numerators, and denomina-
tors. The round argument may be preferred.

markdown for print.summary.formula.response set to TRUE to use knitr::kable to
produce the table in markdown format rather than using raw text output created
by print.char.matrix

digits number of significant digits to print. Default is to use the current value of the
digits system option.

prn set to TRUE to print the number of non-missing observations on the current (row)
variable. The default is to print these only if any of the counts of non-missing
values differs from the total number of non-missing values of the left-hand-side
variable. For method="cross" the default is to always print N.

prnmiss set to FALSE to suppress printing counts of missing values for "cross"

what for method="reverse" specifies whether proportions or percentages are to be
plotted

pctdig number of digits to the right of the decimal place for printing percentages. The
default is zero, so percents will be rounded to the nearest percent.

npct specifies which counts are to be printed to the right of percentages. The default is
to print the frequency (numerator of the percent) in parentheses. You can specify
"both" to print both numerator and denominator, "denominator", "slash" to
typeset horizontally using a forward slash, or "none".

npct.size the size for typesetting npct information which appears after percents. The
default is "scriptsize".

Nsize When a second row of column headings is added showing sample sizes, Nsize
specifies the LaTeX size for these subheadings. Default is "scriptsize".

summary.formula 395

exclude1 by default, method="reverse" objects will be printed, plotted, or typeset by
removing redundant entries from percentage tables for categorical variables. For
example, if you print the percent of females, you don’t need to print the percent
of males. To override this, set exclude1=FALSE.

prUnits set to FALSE to suppress printing or latexing units attributes of variables, when
method='reverse' or 'response'

sep character to use to separate quantiles when printing method="reverse" tables

prtest a vector of test statistic components to print if test=TRUE was in effect when
summary.formula was called. Defaults to printing all components. Specify
prtest=FALSE or prtest="none" to not print any tests. This applies to print,
latex, and plot methods for method='reverse'.

round for print.summary.formula.reverse and latex.summary.formula.reverse
specify round to round the quantiles and optional mean and standard deviation
to round digits after the decimal point

prmsd set to TRUE to print mean and SD after the three quantiles, for continuous vari-
ables with method="reverse"

msdsize defaults to NULL to use the current font size for the mean and standard deviation
if prmsd is TRUE. Set to a character string to specify an alternate LaTeX font
size.

long set to TRUE to print the results for the first category on its own line, not on the
same line with the variable label (for method="reverse" with print and latex
methods)

pdig number of digits to the right of the decimal place for printing P-values. Default
is 3. This is passed to format.pval.

eps P-values less than eps will be printed as < eps. See format.pval.

auxCol an optional auxiliary column of information, right justified, to add in front of
statistics typeset by latex.summary.formula.reverse. This argument is a
list with a single element that has a name specifying the column heading. If
this name includes a newline character, the portions of the string before and
after the newline form respectively the main heading and the subheading (typ-
ically set in smaller font), respectively. See the extracolheads argument to
latex.default. auxCol is filled with blanks when a variable being summa-
rized takes up more than one row in the output. This happens with categorical
variables.

twoway for method="cross" with two right hand side variables, twoway controls whether
the resulting table will be printed in enumeration format or as a two-way table
(the default)

which For method="response" specifies the sequential number or a vector of sub-
scripts of statistics to plot. If you had any stratify variables, these are counted
as if more statistics were computed. For method="reverse" specifies whether
to plot results for categorical variables, continuous variables, or both (the de-
fault).

conType For plotting method="reverse" plots for continuous variables, dot plots show-
ing quartiles are drawn by default. Specify conType='bp' to draw box-percentile
plots using all the quantiles in quant except the outermost ones. Means are

396 summary.formula

drawn with a solid dot and vertical reference lines are placed at the three quar-
tiles. Specify conType='raw' to make a strip chart showing the raw data. This
can only be used if the sample size for each left-hand-side group is less than or
equal to nmin.

cex.means character size for means in box-percentile plots; default is .5

xlim vector of length two specifying x-axis limits. For method="reverse", this is
only used for plotting categorical variables. Limits for continuous variables are
determined by the outer quantiles specified in quant.

xlab x-axis label

add set to TRUE to add to an existing plot

main a main title. For method="reverse" this applies only to the plot for categorical
variables.

subtitles set to FALSE to suppress automatic subtitles

caption character string containing LaTeX table captions.

title name of resulting LaTeX file omitting the .tex suffix. Default is the name of
the summary object. If caption is specied, title is also used for the table’s
symbolic reference label.

trios If for method="response" you summarized the response(s) by using three quan-
tiles, specify trios=TRUE or trios=v to group each set of three statistics into
one column for latex output, using the format a B c, where the outer quantiles
are in smaller font (scriptsize). For trios=TRUE, the overall column names
are taken from the column names of the original data matrix. To give new col-
umn names, specify trios=v, where v is a vector of column names, of length
m/3, where m is the original number of columns of summary statistics.

rowlabel see latex.default (under the help file latex)

cdec number of decimal places to the right of the decimal point for latex. This value
should be a scalar (which will be properly replicated), or a vector with length
equal to the number of columns in the table. For "response" tables, this length
does not count the column for N.

ncaption set to FALSE to not have latex.summary.formula.response put sample sizes
in captions

i a vector of integers, or character strings containing variable names to subset
on. Note that each row subsetted on in an summary.formula.reverse object
subsets on all the levels that make up the corresponding variable (automatically).

j a vector of integers representing column numbers

middle.bold set to TRUE to have LaTeX use bold face for the middle quantile for method="reverse"

outer.size the font size for outer quantiles for "reverse" tables

insert.bottom set to FALSE to suppress inclusion of definitions placed at the bottom of LaTeX
tables for method="reverse"

dcolumn see latex

na.group set to TRUE to have missing stratification variables given their own category (NA)

shortlabel set to FALSE to include stratification variable names and equal signs in labels for
strata levels

summary.formula 397

dotchart set to TRUE to output a dotchart in the latex table being generated.

group for conTest and ordTest, a numeric or factor variable with length the same as
x

tab for catTest, a frequency table such as that created by table()

Value

summary.formula returns a data frame or list depending on method. plot.summary.formula.reverse
returns the number of pages of plots that were made.

Side Effects

plot.summary.formula.reverse creates a function Key and Key2 in frame 0 that will draw leg-
ends.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Harrell FE (2007): Statistical tables and plots using S and LaTeX. Document available from https:
//hbiostat.org/R/Hmisc/summary.pdf.

See Also

mChoice, smean.sd, summarize, label, strata, dotchart2, print.char.matrix, update, formula,
cut2, llist, format.default, latex, latexTranslate bpplt, summaryM, summary

Examples

options(digits=3)
set.seed(173)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
treatment <- factor(sample(c("Drug","Placebo"), 500, rep=TRUE))

Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',

'Muscle Ache','Depressed')
symptom1 <- sample(symp, 500,TRUE)
symptom2 <- sample(symp, 500,TRUE)
symptom3 <- sample(symp, 500,TRUE)
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
table(Symptoms)

Note: In this example, some subjects have the same symptom checked
multiple times; in practice these redundant selections would be NAs

https://hbiostat.org/R/Hmisc/summary.pdf
https://hbiostat.org/R/Hmisc/summary.pdf

398 summary.formula

mChoice will ignore these redundant selections

#Frequency table sex*treatment, sex*Symptoms
summary(sex ~ treatment + Symptoms, fun=table)
could also do summary(sex ~ treatment +
mChoice(symptom1,symptom2,symptom3), fun=table)

#Compute mean age, separately by 3 variables
summary(age ~ sex + treatment + Symptoms)

f <- summary(treatment ~ age + sex + Symptoms, method="reverse", test=TRUE)
f
trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)
plot(f)
plot(f, conType='bp', prtest='P')
bpplt() # annotated example showing layout of bp plot

#Compute predicted probability from a logistic regression model
#For different stratifications compute receiver operating
#characteristic curve areas (C-indexes)
predicted <- plogis(.4*(sex=="m")+.15*(age-50))
positive.diagnosis <- ifelse(runif(500)<=predicted, 1, 0)
roc <- function(z) {

x <- z[,1];
y <- z[,2];
n <- length(x);
if(n<2)return(c(ROC=NA));
n1 <- sum(y==1);
c(ROC= (mean(rank(x)[y==1])-(n1+1)/2)/(n-n1));

}
y <- cbind(predicted, positive.diagnosis)
options(digits=2)
summary(y ~ age + sex, fun=roc)

options(digits=3)
summary(y ~ age + sex, fun=roc, method="cross")

#Use stratify() to produce a table in which time intervals go down the
#page and going across 3 continuous variables are summarized using
#quartiles, and are stratified by two treatments

set.seed(1)
d <- expand.grid(visit=1:5, treat=c('A','B'), reps=1:100)
d$sysbp <- rnorm(100*5*2, 120, 10)
label(d$sysbp) <- 'Systolic BP'
d$diasbp <- rnorm(100*5*2, 80, 7)
d$diasbp[1] <- NA
d$age <- rnorm(100*5*2, 50, 12)
g <- function(y) {

summary.formula 399

N <- apply(y, 2, function(w) sum(!is.na(w)))
h <- function(x) {

qu <- quantile(x, c(.25,.5,.75), na.rm=TRUE)
names(qu) <- c('Q1','Q2','Q3')
c(N=sum(!is.na(x)), qu)

}
w <- as.vector(apply(y, 2, h))
names(w) <- as.vector(outer(c('N','Q1','Q2','Q3'), dimnames(y)[[2]],

function(x,y) paste(y,x)))
w

}
#Use na.rm=FALSE to count NAs separately by column
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),

na.rm=FALSE, fun=g, data=d)
#The result is very wide. Re-do, putting treatment vertically
x <- with(d, factor(paste('Visit', visit, treat)))
summary(cbind(age,sysbp,diasbp) ~ x, na.rm=FALSE, fun=g, data=d)

#Compose LaTeX code directly
g <- function(y) {

h <- function(x) {
qu <- format(round(quantile(x, c(.25,.5,.75), na.rm=TRUE),1),nsmall=1)
paste('{\\scriptsize(',sum(!is.na(x)),

')} \\hfill{\\scriptsize ', qu[1], '} \\textbf{', qu[2],
'} {\\scriptsize ', qu[3],'}', sep='')

}
apply(y, 2, h)

}
s <- summary(cbind(age,sysbp,diasbp) ~ visit + stratify(treat),

na.rm=FALSE, fun=g, data=d)
latex(s, prn=FALSE)
need option in latex to not print n
#Put treatment vertically
s <- summary(cbind(age,sysbp,diasbp) ~ x, fun=g, data=d, na.rm=FALSE)
latex(s, prn=FALSE)

#Plot estimated mean life length (assuming an exponential distribution)
#separately by levels of 4 other variables. Repeat the analysis
#by levels of a stratification variable, drug. Automatically break
#continuous variables into tertiles.
#We are using the default, method='response'
Not run:
life.expect <- function(y) c(Years=sum(y[,1])/sum(y[,2]))
attach(pbc)
require(survival)
S <- Surv(follow.up.time, death)
s2 <- summary(S ~ age + albumin + ascites + edema + stratify(drug),

fun=life.expect, g=3)

#Note: You can summarize other response variables using the same
#independent variables using e.g. update(s2, response~.), or you
#can change the list of independent variables using e.g.

400 summary.formula

#update(s2, response ~.- ascites) or update(s2, .~.-ascites)
#You can also print, typeset, or plot subsets of s2, e.g.
#plot(s2[c('age','albumin'),]) or plot(s2[1:2,])

s2 # invokes print.summary.formula.response

#Plot results as a separate dot chart for each of the 3 strata levels
par(mfrow=c(2,2))
plot(s2, cex.labels=.6, xlim=c(0,40), superposeStrata=FALSE)

#Typeset table, creating s2.tex
w <- latex(s2, cdec=1)
#Typeset table but just print LaTeX code
latex(s2, file="") # useful for Sweave

#Take control of groups used for age. Compute 3 quartiles for
#both cholesterol and bilirubin (excluding observations that are missing
#on EITHER ONE)

age.groups <- cut2(age, c(45,60))
g <- function(y) apply(y, 2, quantile, c(.25,.5,.75))
y <- cbind(Chol=chol,Bili=bili)
label(y) <- 'Cholesterol and Bilirubin'
#You can give new column names that are not legal S names
#by enclosing them in quotes, e.g. 'Chol (mg/dl)'=chol

s <- summary(y ~ age.groups + ascites, fun=g)

par(mfrow=c(1,2), oma=c(3,0,3,0)) # allow outer margins for overall
for(ivar in 1:2) { # title

isub <- (1:3)+(ivar-1)*3 # *3=number of quantiles/var.
plot(s3, which=isub, main='',

xlab=c('Cholesterol','Bilirubin')[ivar],
pch=c(91,16,93)) # [, closed circle,]

}
mtext(paste('Quartiles of', label(y)), adj=.5, outer=TRUE, cex=1.75)
#Overall (outer) title

prlatex(latex(s3, trios=TRUE))
trios -> collapse 3 quartiles

#Summarize only bilirubin, but do it with two statistics:
#the mean and the median. Make separate tables for the two randomized
#groups and make plots for the active arm.

summary.formula 401

g <- function(y) c(Mean=mean(y), Median=median(y))

for(sub in c("D-penicillamine", "placebo")) {
ss <- summary(bili ~ age.groups + ascites + chol, fun=g,

subset=drug==sub)
cat('\n',sub,'\n\n')
print(ss)

if(sub=='D-penicillamine') {
par(mfrow=c(1,1))
plot(s4, which=1:2, dotfont=c(1,-1), subtitles=FALSE, main='')
#1=mean, 2=median -1 font = open circle
title(sub='Closed circle: mean; Open circle: median', adj=0)
title(sub=sub, adj=1)

}

w <- latex(ss, append=TRUE, fi='my.tex',
label=if(sub=='placebo') 's4b' else 's4a',
caption=paste(label(bili),' {\\em (',sub,')}', sep=''))

#Note symbolic labels for tables for two subsets: s4a, s4b
prlatex(w)

}

#Now consider examples in 'reverse' format, where the lone dependent
#variable tells the summary function how to stratify all the
#'independent' variables. This is typically used to make tables
#comparing baseline variables by treatment group, for example.

s5 <- summary(drug ~ bili + albumin + stage + protime + sex +
age + spiders,

method='reverse')
#To summarize all variables, use summary(drug ~., data=pbc)
#To summarize all variables with no stratification, use
#summary(~a+b+c) or summary(~.,data=\dots)

options(digits=1)
print(s5, npct='both')
#npct='both' : print both numerators and denominators
plot(s5, which='categorical')
Key(locator(1)) # draw legend at mouse click
par(oma=c(3,0,0,0)) # leave outer margin at bottom
plot(s5, which='continuous')
Key2() # draw legend at lower left corner of plot

oma= above makes this default key fit the page better

402 summary.formula

options(digits=3)
w <- latex(s5, npct='both', here=TRUE)
creates s5.tex

#Turn to a different dataset and do cross-classifications on possibly
#more than one independent variable. The summary function with
#method='cross' produces a data frame containing the cross-
#classifications. This data frame is suitable for multi-panel
#trellis displays, although `summarize' works better for that.

attach(prostate)
size.quartile <- cut2(sz, g=4)
bone <- factor(bm,labels=c("no mets","bone mets"))

s7 <- summary(ap>1 ~ size.quartile + bone, method='cross')
#In this case, quartiles are the default so could have said sz + bone

options(digits=3)
print(s7, twoway=FALSE)
s7 # same as print(s7)
w <- latex(s7, here=TRUE) # Make s7.tex

library(trellis,TRUE)
invisible(ps.options(reset=TRUE))
trellis.device(postscript, file='demo2.ps')

dotplot(S ~ size.quartile|bone, data=s7, #s7 is name of summary stats
xlab="Fraction ap>1", ylab="Quartile of Tumor Size")

#Can do this more quickly with summarize:
s7 <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,
stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)

summary(age ~ stage, method='cross')
summary(age ~ stage, fun=quantile, method='cross')
summary(age ~ stage, fun=smean.sd, method='cross')
summary(age ~ stage, fun=smedian.hilow, method='cross')
summary(age ~ stage, fun=function(x) c(Mean=mean(x), Median=median(x)),

method='cross')
#The next statements print real two-way tables
summary(cbind(age,ap) ~ stage + bone,

fun=function(y) apply(y, 2, quantile, c(.25,.75)),
method='cross')

options(digits=2)
summary(log(ap) ~ sz + bone,

summaryM 403

fun=function(y) c(Mean=mean(y), quantile(y)),
method='cross')

#Summarize an ordered categorical response by all of the needed
#cumulative proportions
summary(cumcategory(disease.severity) ~ age + sex)

End(Not run)

summaryM Summarize Mixed Data Types vs. Groups

Description

summaryM summarizes the variables listed in an S formula, computing descriptive statistics and op-
tionally statistical tests for group differences. This function is typically used when there are multiple
left-hand-side variables that are independently against by groups marked by a single right-hand-side
variable. The summary statistics may be passed to print methods, plot methods for making anno-
tated dot charts and extended box plots, and latex methods for typesetting tables using LaTeX. The
html method uses htmlTable::htmlTable to typeset the table in html, by passing information to
the latex method with html=TRUE. This is for use with Quarto/RMarkdown. The print methods
use the print.char.matrix function to print boxed tables when options(prType=) has not been
given or when prType='plain'. For plain tables, print calls the internal function printsummaryM.
When prType='latex' the latex method is invoked, and when prType='html' html is rendered.
In Quarto/RMarkdown, proper rendering will result even if results='asis' does not appear in the
chunk header. When rendering in html at the console due to having options(prType='html') the
table will be rendered in a viewer.

The plot method creates plotly graphics if options(grType='plotly'), otherwise base graph-
ics are used. plotly graphics provide extra information such as which quantile is being displayed
when hovering the mouse. Test statistics are displayed by hovering over the mean.

Continuous variables are described by three quantiles (quartiles by default) when printing, or by the
following quantiles when plotting expended box plots using the bpplt function: 0.05, 0.125, 0.25,
0.375, 0.5, 0.625, 0.75, 0.875, 0.95. The box plots are scaled to the 0.025 and 0.975 quantiles of each
continuous left-hand-side variable. Categorical variables are described by counts and percentages.

The left hand side of formula may contain mChoice ("multiple choice") variables. When test=TRUE
each choice is tested separately as a binary categorical response.

The plot method for method="reverse" creates a temporary function Key as is done by the xYplot
and Ecdf.formula functions. After plot runs, you can type Key() to put a legend in a default
location, or e.g. Key(locator(1)) to draw a legend where you click the left mouse button. This key
is for categorical variables, so to have the opportunity to put the key on the graph you will probably
want to use the command plot(object, which="categorical"). A second function Key2 is
created if continuous variables are being plotted. It is used the same as Key. If the which argument
is not specified to plot, two pages of plots will be produced. If you don’t define par(mfrow=)
yourself, plot.summaryM will try to lay out a multi-panel graph to best fit all the individual charts
for continuous variables.

404 summaryM

Usage

summaryM(formula, groups=NULL, data=NULL, subset, na.action=na.retain,
overall=FALSE, continuous=10, na.include=FALSE,
quant=c(0.025, 0.05, 0.125, 0.25, 0.375, 0.5, 0.625,

0.75, 0.875, 0.95, 0.975),
nmin=100, test=FALSE,
conTest=conTestkw, catTest=catTestchisq,
ordTest=ordTestpo)

S3 method for class 'summaryM'
print(...)

printsummaryM(x, digits, prn = any(n != N),
what=c('proportion', '%'), pctdig = if(what == '%') 0 else 2,
npct = c('numerator', 'both', 'denominator', 'none'),
exclude1 = TRUE, vnames = c('labels', 'names'), prUnits = TRUE,
sep = '/', abbreviate.dimnames = FALSE,
prefix.width = max(nchar(lab)), min.colwidth, formatArgs=NULL, round=NULL,
prtest = c('P','stat','df','name'), prmsd = FALSE, long = FALSE,
pdig = 3, eps = 0.001, prob = c(0.25, 0.5, 0.75), prN = FALSE, ...)

S3 method for class 'summaryM'
plot(x, vnames = c('labels', 'names'),

which = c('both', 'categorical', 'continuous'), vars=NULL,
xlim = c(0,1),
xlab = 'Proportion',
pch = c(16, 1, 2, 17, 15, 3, 4, 5, 0), exclude1 = TRUE,
main, ncols=2,
prtest = c('P', 'stat', 'df', 'name'), pdig = 3, eps = 0.001,
conType = c('bp', 'dot', 'raw'), cex.means = 0.5, cex=par('cex'),
height='auto', width=700, ...)

S3 method for class 'summaryM'
latex(object, title =

first.word(deparse(substitute(object))),
file=paste(title, 'tex', sep='.'), append=FALSE, digits,
prn = any(n != N), what=c('proportion', '%'),
pctdig = if(what == '%') 0 else 2,
npct = c('numerator', 'both', 'denominator', 'slash', 'none'),
npct.size = if(html) mspecs$html$smaller else 'scriptsize',
Nsize = if(html) mspecs$html$smaller else 'scriptsize',
exclude1 = TRUE,
vnames=c("labels", "names"), prUnits = TRUE, middle.bold = FALSE,
outer.size = if(html) mspecs$html$smaller else "scriptsize",
caption, rowlabel = "", rowsep=html,
insert.bottom = TRUE, dcolumn = FALSE, formatArgs=NULL, round=NULL,
prtest = c('P', 'stat', 'df', 'name'), prmsd = FALSE,
msdsize = if(html) function(x) x else NULL, brmsd=FALSE,

summaryM 405

long = FALSE, pdig = 3, eps = 0.001,
auxCol = NULL, table.env=TRUE, tabenv1=FALSE, prob=c(0.25, 0.5, 0.75),
prN=FALSE, legend.bottom=FALSE, html=FALSE,
mspecs=markupSpecs, ...)

S3 method for class 'summaryM'
html(object, ...)

Arguments

formula An S formula with additive effects. There may be several variables on the right
hand side separated by "+", or the numeral 1, indicating that there is no group-
ing variable so that only margin summaries are produced. The right hand side
variable, if present, must be a discrete variable producing a limited number of
groups. On the left hand side there may be any number of variables, separated by
"+", and these may be of mixed types. These variables are analyzed separately
by the grouping variable.

groups if there is more than one right-hand variable, specify groups as a character string
containing the name of the variable used to produce columns of the table. The
remaining right hand variables are combined to produce levels that cause sepa-
rate tables or plots to be produced.

x an object created by summaryM. For conTestkw a numeric vector, and for ordTestpo,
a numeric or factor variable that can be considered ordered

data name or number of a data frame. Default is the current frame.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

na.action function for handling missing data in the input data. The default is a function
defined here called na.retain, which keeps all observations for processing,
with missing variables or not.

overall Setting overall=TRUE makes a new column with overall statistics for the whole
sample. If test=TRUE these marginal statistics are ignored in doing statistical
tests.

continuous specifies the threshold for when a variable is considered to be continuous (when
there are at least continuous unique values). factor variables are always con-
sidered to be categorical no matter how many levels they have.

na.include Set na.include=TRUE to keep missing values of categorical variables from be-
ing excluded from the table.

nmin For categories of the response variable in which there are less than or equal to
nmin non-missing observations, the raw data are retained for later plotting in
place of box plots.

test Set to TRUE to compute test statistics using tests specified in conTest and catTest.

conTest a function of two arguments (grouping variable and a continuous variable) that
returns a list with components P (the computed P-value), stat (the test statis-
tic, either chi-square or F), df (degrees of freedom), testname (test name),
namefun ("chisq", "fstat"), statname (statistic name), an optional compo-
nent latexstat (LaTeX representation of statname), an optional component

406 summaryM

plotmathstat (for R - the plotmath representation of statname, as a charac-
ter string), and an optional component note that contains a character string note
about the test (e.g., "test not done because n < 5"). conTest is applied to
continuous variables on the right-hand-side of the formula when method="reverse".
The default uses the spearman2 function to run the Wilcoxon or Kruskal-Wallis
test using the F distribution.

catTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Pearson chi-square
test is done, without continuity correction (the continuity correction would make
the test conservative like the Fisher exact test).

ordTest a function of a frequency table (an integer matrix) that returns a list with the
same components as created by conTest. By default, the Proportional odds
likelihood ratio test is done.

... For Key and Key2 these arguments are passed to key, text, or mtitle. For
print methods these are optional arguments to print.char.matrix. For latex
methods these are passed to latex.default. For html the arguments are passed
the latex.summaryM, and the arguments may not include file. For print
the arguments are passed to printsummaryM or latex.summaryM depending on
options(prType=).

object an object created by summaryM

quant vector of quantiles to use for summarizing continuous variables. These must be
numbers between 0 and 1 inclusive and must include the numbers 0.5, 0.25, and
0.75 which are used for printing and for plotting quantile intervals. The outer
quantiles are used for scaling the x-axes for such plots. Specify outer quantiles
as 0 and 1 to scale the x-axes using the whole observed data ranges instead of
the default (a 0.95 quantile interval). Box-percentile plots are drawn using all
but the outer quantiles.

prob vector of quantiles to use for summarizing continuous variables. These must be
numbers between 0 and 1 inclusive and have previously been included in the
quant argument of summaryM. The vector must be of length three. By default it
contains 0.25, 0.5, and 0.75.
Warning: specifying 0 and 1 as two of the quantiles will result in computing
the minimum and maximum of the variable. As for many random variables the
minimum will continue to become smaller as the sample size grows, and the
maximum will continue to get larger. Thus the min and max are not recom-
mended as summary statistics.

vnames By default, tables and plots are usually labeled with variable labels (see the
label and sas.get functions). To use the shorter variable names, specify
vnames="name".

pch vector of plotting characters to represent different groups, in order of group
levels.

abbreviate.dimnames

see print.char.matrix

prefix.width see print.char.matrix

min.colwidth minimum column width to use for boxes printed with print.char.matrix. The
default is the maximum of the minimum column label length and the minimum
length of entries in the data cells.

summaryM 407

formatArgs a list containing other arguments to pass to format.default such as scientific,
e.g., formatArgs=list(scientific=c(-5,5)). For print.summary.formula.reverse
and format.summary.formula.reverse, formatArgs applies only to statistics
computed on continuous variables, not to percents, numerators, and denomina-
tors. The round argument may be preferred.

digits number of significant digits to print. Default is to use the current value of the
digits system option.

what specifies whether proportions or percentages are to be printed or LaTeX’d

pctdig number of digits to the right of the decimal place for printing percentages or
proportions. The default is zero if what='%', so percents will be rounded to the
nearest percent. The default is 2 for proportions.

prn set to TRUE to print the number of non-missing observations on the current (row)
variable. The default is to print these only if any of the counts of non-missing
values differs from the total number of non-missing values of the left-hand-side
variable.

prN set to TRUE to print the number of non-missing observations on rows that contain
continuous variables.

npct specifies which counts are to be printed to the right of percentages. The default is
to print the frequency (numerator of the percent) in parentheses. You can specify
"both" to print both numerator and denominator as a fraction, "denominator",
"slash" to typeset horizontally using a forward slash, or "none".

npct.size the size for typesetting npct information which appears after percents. The
default is "scriptsize".

Nsize When a second row of column headings is added showing sample sizes, Nsize
specifies the LaTeX size for these subheadings. Default is "scriptsize".

exclude1 By default, summaryM objects will be printed, plotted, or typeset by removing
redundant entries from percentage tables for categorical variables. For example,
if you print the percent of females, you don’t need to print the percent of males.
To override this, set exclude1=FALSE.

prUnits set to FALSE to suppress printing or latexing units attributes of variables, when
method='reverse' or 'response'

sep character to use to separate quantiles when printing tables

prtest a vector of test statistic components to print if test=TRUE was in effect when
summaryM was called. Defaults to printing all components. Specify prtest=FALSE
or prtest="none" to not print any tests. This applies to print, latex, and plot
methods.

round Specify round to round the quantiles and optional mean and standard deviation
to round digits after the decimal point. Set round='auto' to try an automatic
choice.

prmsd set to TRUE to print mean and SD after the three quantiles, for continuous vari-
ables

msdsize defaults to NULL to use the current font size for the mean and standard deviation
if prmsd is TRUE. Set to a character string or function to specify an alternate
LaTeX font size.

408 summaryM

brmsd set to TRUE to put the mean and standard deviation on a separate line, for html

long set to TRUE to print the results for the first category on its own line, not on the
same line with the variable label

pdig number of digits to the right of the decimal place for printing P-values. Default
is 3. This is passed to format.pval.

eps P-values less than eps will be printed as < eps. See format.pval.

auxCol an optional auxiliary column of information, right justified, to add in front of
statistics typeset by latex.summaryM. This argument is a list with a single el-
ement that has a name specifying the column heading. If this name includes a
newline character, the portions of the string before and after the newline form
respectively the main heading and the subheading (typically set in smaller font),
respectively. See the extracolheads argument to latex.default. auxCol is
filled with blanks when a variable being summarized takes up more than one
row in the output. This happens with categorical variables.

table.env set to FALSE to use tabular environment with no caption

tabenv1 set to TRUE in the case of stratification when you want only the first stratum’s
table to be in a table environment. This is useful when using hyperref.

which Specifies whether to plot results for categorical variables, continuous variables,
or both (the default).

vars Subscripts (indexes) of variables to plot for plotly graphics. Default is to plot
all variables of each type (categorical or continuous).

conType For drawing plots for continuous variables, extended box plots (box-percentile-
type plots) are drawn by default, using all quantiles in quant except for the
outermost ones which are using for scaling the overall plot based on the non-
stratified marginal distribution of the current response variable. Specify conType='dot'
to draw dot plots showing the three quartiles instead. For extended box plots,
means are drawn with a solid dot and vertical reference lines are placed at the
three quartiles. Specify conType='raw' to make a strip chart showing the raw
data. This can only be used if the sample size for each right-hand-side group is
less than or equal to nmin.

cex.means character size for means in box-percentile plots; default is .5

cex character size for other plotted items

height, width dimensions in pixels for the plotly subplot object containing all the extended
box plots. If height="auto", plot.summaryM will set height based on the
number of continuous variables and ncols or for dot charts it will use Hmisc::plotlyHeightDotchart.
At present height is ignored for extended box plots due to vertical spacing prob-
lem with plotly graphics.

xlim vector of length two specifying x-axis limits. This is only used for plotting
categorical variables. Limits for continuous variables are determined by the
outer quantiles specified in quant.

xlab x-axis label

main a main title. This applies only to the plot for categorical variables.

ncols number of columns for plotly graphics for extended box plots. Defaults to 2.
Recommendation is for 1-2.

summaryM 409

caption character string containing LaTeX table captions.
title name of resulting LaTeX file omitting the .tex suffix. Default is the name of

the summary object. If caption is specied, title is also used for the table’s
symbolic reference label.

file name of file to write LaTeX code to. Specifying file="" will cause LaTeX code
to just be printed to standard output rather than be stored in a permanent file.

append specify TRUE to add code to an existing file
rowlabel see latex.default (under the help file latex)
rowsep if html is TRUE, instructs the function to use a horizontal line to separate vari-

ables from one another. Recommended if brmsd is TRUE. Ignored for LaTeX.
middle.bold set to TRUE to have LaTeX use bold face for the middle quantile
outer.size the font size for outer quantiles
insert.bottom set to FALSE to suppress inclusion of definitions placed at the bottom of LaTeX

tables. You can also specify a character string containing other text that over-
rides the automatic text. At present such text always appears in the main caption
for LaTeX.

legend.bottom set to TRUE to separate the table caption and legend. This will place table legends
at the bottom of LaTeX tables.

html set to TRUE to typeset with html
mspecs list defining markup syntax for various languages, defaults to Hmisc markupSpecs

which the user can use as a starting point for editing
dcolumn see latex

Value

a list. plot.summaryM returns the number of pages of plots that were made if using base graphics,
or plotly objects created by plotly::subplot otherwise. If both categorical and continuous
variables were plotted, the returned object is a list with two named elements Categorical and
Continuous each containing plotly objects. Otherwise a plotly object is returned. The latex
method returns attributes legend and nstrata.

Side Effects

plot.summaryM creates a function Key and Key2 in frame 0 that will draw legends, if base graphics
are being used.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Harrell FE (2004): Statistical tables and plots using S and LaTeX. Document available from https:
//hbiostat.org/R/Hmisc/summary.pdf.

https://hbiostat.org/R/Hmisc/summary.pdf
https://hbiostat.org/R/Hmisc/summary.pdf

410 summaryM

See Also

mChoice, label, dotchart3, print.char.matrix, update, formula, format.default, latex,
latexTranslate, bpplt, tabulr, bpplotM, summaryP

Examples

options(digits=3)
set.seed(173)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
country <- factor(sample(c('US', 'Canada'), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
sbp <- rnorm(500, 120, 12)
label(sbp) <- 'Systolic BP'
units(sbp) <- 'mmHg'
treatment <- factor(sample(c("Drug","Placebo"), 500, rep=TRUE))
treatment[1]
sbp[1] <- NA

Generate a 3-choice variable; each of 3 variables has 5 possible levels
symp <- c('Headache','Stomach Ache','Hangnail',

'Muscle Ache','Depressed')
symptom1 <- sample(symp, 500,TRUE)
symptom2 <- sample(symp, 500,TRUE)
symptom3 <- sample(symp, 500,TRUE)
Symptoms <- mChoice(symptom1, symptom2, symptom3, label='Primary Symptoms')
table(as.character(Symptoms))

Note: In this example, some subjects have the same symptom checked
multiple times; in practice these redundant selections would be NAs
mChoice will ignore these redundant selections

f <- summaryM(age + sex + sbp + Symptoms ~ treatment, test=TRUE)
f
trio of numbers represent 25th, 50th, 75th percentile
print(f, long=TRUE)
plot(f) # first specify options(grType='plotly') to use plotly
plot(f, conType='dot', prtest='P')
bpplt() # annotated example showing layout of bp plot

Produce separate tables by country
f <- summaryM(age + sex + sbp + Symptoms ~ treatment + country,

groups='treatment', test=TRUE)
f

Not run:
getHdata(pbc)
s5 <- summaryM(bili + albumin + stage + protime + sex +

age + spiders ~ drug, data=pbc)

print(s5, npct='both')
npct='both' : print both numerators and denominators
plot(s5, which='categorical')

summaryP 411

Key(locator(1)) # draw legend at mouse click
par(oma=c(3,0,0,0)) # leave outer margin at bottom
plot(s5, which='continuous') # see also bpplotM
Key2() # draw legend at lower left corner of plot

oma= above makes this default key fit the page better

options(digits=3)
w <- latex(s5, npct='both', here=TRUE, file='')

options(grType='plotly')
pbc <- upData(pbc, moveUnits = TRUE)
s <- summaryM(bili + albumin + alk.phos + copper + spiders + sex ~

drug, data=pbc, test=TRUE)
Render html
options(prType='html')
s # invokes print.summaryM
a <- plot(s)
a$Categorical
a$Continuous
plot(s, which='con')

End(Not run)

summaryP Multi-way Summary of Proportions

Description

summaryP produces a tall and thin data frame containing numerators (freq) and denominators
(denom) after stratifying the data by a series of variables. A special capability to group a series
of related yes/no variables is included through the use of the ynbind function, for which the user
specials a final argument label used to label the panel created for that group of related variables.

If options(grType='plotly') is not in effect, the plot method for summaryP displays propor-
tions as a multi-panel dot chart using the lattice package’s dotplot function with a special panel
function. Numerators and denominators of proportions are also included as text, in the same col-
ors as used by an optional groups variable. The formula argument used in the dotplot call is
constructed, but the user can easily reorder the variables by specifying formula, with elements
named val (category levels), var (classification variable name), freq (calculated result) plus the
overall cross-classification variables excluding groups. If options(grType='plotly') is in ef-
fect, the plot method makes an entirely different display using Hmisc::dotchartpl with plotly
if marginVal is specified, whereby a stratification variable causes more finely stratified estimates
to be shown slightly below the lines, with smaller and translucent symbols if data has been run
through addMarginal. The marginal summaries are shown as the main estimates and the user can
turn off display of the stratified estimates, or view their details with hover text.

The ggplot method for summaryP does not draw numerators and denominators but the chart is more
compact than using the plot method with base graphics because ggplot2 does not repeat category
names the same way as lattice does. Variable names that are too long to fit in panel strips are
renamed (1), (2), etc. and an attribute "fnvar" is added to the result; this attribute is a character

412 summaryP

string defining the abbreviations, useful in a figure caption. The ggplot2 object has labels for
points plotted, used by plotly::ggplotly as hover text (see example).

The latex method produces one or more LaTeX tabulars containing a table representation of the
result, with optional side-by-side display if groups is specified. Multiple tabulars result from the
presence of non-group stratification factors.

Usage

summaryP(formula, data = NULL, subset = NULL,
na.action = na.retain, sort=TRUE,
asna = c("unknown", "unspecified"), ...)

S3 method for class 'summaryP'
plot(x, formula=NULL, groups=NULL,

marginVal=NULL, marginLabel=marginVal,
refgroup=NULL, exclude1=TRUE, xlim = c(-.05, 1.05),
text.at=NULL, cex.values = 0.5,
key = list(columns = length(groupslevels), x = 0.75,

y = -0.04, cex = 0.9,
col = lattice::trellis.par.get('superpose.symbol')$col,
corner=c(0,1)),

outerlabels=TRUE, autoarrange=TRUE,
col=colorspace::rainbow_hcl, ...)

S3 method for class 'summaryP'
ggplot(data, mapping, groups=NULL, exclude1=TRUE,

xlim=c(0, 1), col=NULL, shape=NULL, size=function(n) n ^ (1/4),
sizerange=NULL, abblen=5, autoarrange=TRUE, addlayer=NULL,
..., environment)

S3 method for class 'summaryP'
latex(object, groups=NULL, exclude1=TRUE, file='', round=3,

size=NULL, append=TRUE, ...)

Arguments

formula a formula with the variables for whose levels proportions are computed on the
left hand side, and major classification variables on the right. The formula need
to include any variable later used as groups, as the data summarization does
not distinguish between superpositioning and paneling. For the plot method,
formula can provide an overall to the default formula for dotplot().

data an optional data frame. For ggplot.summaryP data is the result of summaryP.

subset an optional subsetting expression or vector

na.action function specifying how to handle NAs. The default is to keep all NAs in the
analysis frame.

sort set to FALSE to not sort category levels in descending order of global proportions

asna character vector specifying level names to consider the same as NA. Set asna=NULL
to not consider any.

x an object produced by summaryP

summaryP 413

groups a character string containing the name of a superpositioning variable for obtain-
ing further stratification within a horizontal line in the dot chart.

marginVal if options(grType='plotly') is in effect and the data given to summaryP were
run through addMarginal, specifies the category name that represents marginal
summaries (usually "All").

marginLabel specifies a different character string to use than the value of marginVal. For ex-
ample, if marginal proportions were computed over all regions, one may spec-
ify marginVal="All", marginLabel="All Regions". marginLabel is only
used for formatting graphical output.

refgroup used when doing a plotly chart and a two-level group variable was used, result-
ing in the half-width confidence interval for the difference in two proportions to
be shown, and the actual confidence limits and the difference added to hover
text. See dotchartpl for more details.

exclude1 By default, ggplot, plot, and latex methods for summaryP remove redundant
entries from tables for variables with only two levels. For example, if you print
the proportion of females, you don’t need to print the proportion of males. To
override this, set exclude1=FALSE.

xlim x-axis limits. Default is c(0,1).

text.at specify to leave unused space to the right of each panel to prevent numerators
and denominators from touching data points. text.at is the upper limit for
scaling panels’ x-axes but tick marks are only labeled up to max(xlim).

cex.values character size to use for plotting numerators and denominators

key a list to pass to the auto.key argument of dotplot. To place a key above the
entire chart use auto.key=list(columns=2) for example.

outerlabels by default if there are two conditioning variables besides groups, the latticeExtra
package’s useOuterStrips function is used to put strip labels in the margins,
usually resulting in a much prettier chart. Set to FALSE to prevent usage of
useOuterStrips.

autoarrange If TRUE, the formula is re-arranged so that if there are two conditioning (panel-
ing) variables, the variable with the most levels is taken as the vertical condition.

col a vector of colors to use to override defaults in ggplot. When options(grType='plotly'),
see dotchartpl.

shape a vector of plotting symbols to override ggplot defaults
mapping, environment

not used; needed because of rules for generics

size for ggplot, a function that transforms denominators into metrics used for the
size aesthetic. Default is the fourth root function so that the area of symbols is
proportional to the square root of sample size. Specify NULL to not vary point
sizes. size=sqrt is a reasonable alternative. Set size to an integer to catego-
rize the denominators into size quantile groups using cut2. Unless size is an
integer, the legend for sizes uses the minimum and maximum denominators and
6-tiles using quantile(..., type=1) so that actually occurring sample sizes
are used as labels. size is overridden to NULL if the range in denominators is
less than 10 or the ratio of the maximum to the minimum is less than 1.2. For
latex, size is an optional font size such as "small"

414 summaryP

sizerange a 2-vector specifying the range argument to the ggplot2 scale_size_...
function, which is the range of sizes allowed for the points according to the
denominator. The default is sizerange=c(.7, 3.25) but the lower limit is in-
creased according to the ratio of maximum to minimum sample sizes.

abblen labels of variables having only one level and having their name longer than
abblen characters are abbreviated and documented in fnvar (described else-
where here). The default abblen=5 is good for labels plotted vertically. If labels
are rotated using theme a better value would be 12.

... used only for plotly graphics and these arguments are passed to dotchartpl

object an object produced by summaryP

file file name, defaults to writing to console

round number of digits to the right of the decimal place for proportions

append set to FALSE to start output over

addlayer a ggplot layer to add to the plot object

Value

summaryP produces a data frame of class "summaryP". The plot method produces a lattice object
of class "trellis". The latex method produces an object of class "latex" with an additional
attribute ngrouplevels specifying the number of levels of any groups variable and an attribute
nstrata specifying the number of strata.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

bpplotM, summaryM, ynbind, pBlock, ggplot, colorFacet

Examples

n <- 100
f <- function(na=FALSE) {

x <- sample(c('N', 'Y'), n, TRUE)
if(na) x[runif(100) < .1] <- NA
x

}
set.seed(1)
d <- data.frame(x1=f(), x2=f(), x3=f(), x4=f(), x5=f(), x6=f(), x7=f(TRUE),

age=rnorm(n, 50, 10),
race=sample(c('Asian', 'Black/AA', 'White'), n, TRUE),
sex=sample(c('Female', 'Male'), n, TRUE),
treat=sample(c('A', 'B'), n, TRUE),
region=sample(c('North America','Europe'), n, TRUE))

summaryP 415

d <- upData(d, labels=c(x1='MI', x2='Stroke', x3='AKI', x4='Migraines',
x5='Pregnant', x6='Other event', x7='MD withdrawal',
race='Race', sex='Sex'))

dasna <- subset(d, region=='North America')
with(dasna, table(race, treat))
s <- summaryP(race + sex + ynbind(x1, x2, x3, x4, x5, x6, x7, label='Exclusions') ~

region + treat, data=d)
add exclude1=FALSE below to include female category
plot(s, groups='treat')
require(ggplot2)
ggplot(s, groups='treat')

plot(s, val ~ freq | region * var, groups='treat', outerlabels=FALSE)
Much better looking if omit outerlabels=FALSE; see output at
https://hbiostat.org/R/Hmisc/summaryFuns.pdf
See more examples under bpplotM

For plotly interactive graphic that does not handle variable size
panels well:
require(plotly)
g <- ggplot(s, groups='treat')
ggplotly(g, tooltip='text')

For nice plotly interactive graphic:
options(grType='plotly')
s <- summaryP(race + sex + ynbind(x1, x2, x3, x4, x5, x6, x7,
label='Exclusions') ~
treat, data=subset(d, region='Europe'))
##
plot(s, groups='treat', refgroup='A') # refgroup='A' does B-A differences

Make a chart where there is a block of variables that
are only analyzed for males. Keep redundant sex in block for demo.
Leave extra space for numerators, denominators
sb <- summaryP(race + sex +

pBlock(race, sex, label='Race: Males', subset=sex=='Male') ~
region, data=d)

plot(sb, text.at=1.3)
plot(sb, groups='region', layout=c(1,3), key=list(space='top'),

text.at=1.15)
ggplot(sb, groups='region')
Not run:
plot(s, groups='treat')
plot(s, groups='treat', outerlabels=FALSE) for standard lattice output
plot(s, groups='region', key=list(columns=2, space='bottom'))
require(ggplot2)
colorFacet(ggplot(s))

plot(summaryP(race + sex ~ region, data=d), exclude1=FALSE, col='green')

require(lattice)
Make your own plot using data frame created by summaryP

416 summaryRc

useOuterStrips(dotplot(val ~ freq | region * var, groups=treat, data=s,
xlim=c(0,1), scales=list(y='free', rot=0), xlab='Fraction',
panel=function(x, y, subscripts, ...) {

denom <- s$denom[subscripts]
x <- x / denom
panel.dotplot(x=x, y=y, subscripts=subscripts, ...) }))

Show marginal summary for all regions combined
s <- summaryP(race + sex ~ region, data=addMarginal(d, region))
plot(s, groups='region', key=list(space='top'), layout=c(1,2))

Show marginal summaries for both race and sex
s <- summaryP(ynbind(x1, x2, x3, x4, label='Exclusions', sort=FALSE) ~

race + sex, data=addMarginal(d, race, sex))
plot(s, val ~ freq | sex*race)

End(Not run)

summaryRc Graphical Summarization of Continuous Variables Against a Re-
sponse

Description

summaryRc is a continuous version of summary.formula with method='response'. It uses the
plsmo function to compute the possibly stratified lowess nonparametric regression estimates, and
plots them along with the data density, with selected quantiles of the overall distribution (over strata)
of each x shown as arrows on top of the graph. All the x variables must be numeric and continuous
or nearly continuous.

Usage

summaryRc(formula, data=NULL, subset=NULL,
na.action=NULL, fun = function(x) x,
na.rm = TRUE, ylab=NULL, ylim=NULL, xlim=NULL,
nloc=NULL, datadensity=NULL,
quant = c(0.05, 0.1, 0.25, 0.5, 0.75,

0.90, 0.95), quantloc=c('top','bottom'),
cex.quant=.6, srt.quant=0,
bpplot = c('none', 'top', 'top outside', 'top inside', 'bottom'),
height.bpplot=0.08,
trim=NULL, test = FALSE, vnames = c('labels', 'names'), ...)

Arguments

formula An R formula with additive effects. The formula may contain one or more in-
vocations of the stratify function whose arguments are defined below. This
causes the entire analysis to be stratified by cross-classifications of the com-
bined list of stratification factors. This stratification will be reflected as separate
lowess curves.

summaryRc 417

data name or number of a data frame. Default is the current frame.

subset a logical vector or integer vector of subscripts used to specify the subset of data
to use in the analysis. The default is to use all observations in the data frame.

na.action function for handling missing data in the input data. The default is a function
defined here called na.retain, which keeps all observations for processing,
with missing variables or not.

fun function for transforming lowess estimates. Default is the identity function.

na.rm TRUE (the default) to exclude NAs before passing data to fun to compute statis-
tics, FALSE otherwise.

ylab y-axis label. Default is label attribute of y variable, or its name.

ylim y-axis limits. By default each graph is scaled on its own.

xlim a list with elements named as the variable names appearing on the x-axis, with
each element being a 2-vector specifying lower and upper limits. Any variable
not appearing in the list will have its limits computed and possibly trimmed.

nloc location for sample size. Specify nloc=FALSE to suppress, or nloc=list(x=,y=)
where x,y are relative coordinates in the data window. Default position is in the
largest empty space.

datadensity see plsmo. Defaults to TRUE if there is a stratify variable, FALSE otherwise.

quant vector of quantiles to use for summarizing the marginal distribution of each x.
This must be numbers between 0 and 1 inclusive. Use NULL to omit quantiles.

quantloc specify quantloc='bottom' to place at the bottom of each plot rather than the
default

cex.quant character size for writing which quantiles are represented. Set to 0 to suppress
quantile labels.

srt.quant angle for text for quantile labels

bpplot if not 'none' will draw extended box plot at location given by bpplot, and
quantiles discussed above will be suppressed. Specifying bpplot='top' is the
same as specifying bpplot='top inside'.

height.bpplot height in inches of the horizontal extended box plot

trim The default is to plot from the 10th smallest to the 10th largest x if the number
of non-NAs exceeds 200, otherwise to use the entire range of x. Specify another
quantile to use other limits, e.g., trim=0.01 will use the first and last percentiles

test Set to TRUE to plot test statistics (not yet implemented).

vnames By default, plots are usually labeled with variable labels (see the label and
sas.get functions). To use the shorter variable names, specify vnames="names".

... arguments passed to plsmo

Value

no value is returned

418 summaryS

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

plsmo, stratify, label, formula, panel.bpplot

Examples

options(digits=3)
set.seed(177)
sex <- factor(sample(c("m","f"), 500, rep=TRUE))
age <- rnorm(500, 50, 5)
bp <- rnorm(500, 120, 7)
units(age) <- 'Years'; units(bp) <- 'mmHg'
label(bp) <- 'Systolic Blood Pressure'
L <- .5*(sex == 'm') + 0.1 * (age - 50)
y <- rbinom(500, 1, plogis(L))
par(mfrow=c(1,2))
summaryRc(y ~ age + bp)
For x limits use 1st and 99th percentiles to frame extended box plots
summaryRc(y ~ age + bp, bpplot='top', datadensity=FALSE, trim=.01)
summaryRc(y ~ age + bp + stratify(sex),

label.curves=list(keys='lines'), nloc=list(x=.1, y=.05))
y2 <- rbinom(500, 1, plogis(L + .5))
Y <- cbind(y, y2)
summaryRc(Y ~ age + bp + stratify(sex),

label.curves=list(keys='lines'), nloc=list(x=.1, y=.05))

summaryS Summarize Multiple Response Variables and Make Multipanel Scatter
or Dot Plot

Description

Multiple left-hand formula variables along with right-hand side conditioning variables are reshaped
into a "tall and thin" data frame if fun is not specified. The resulting raw data can be plotted with
the plot method using user-specified panel functions for lattice graphics, typically to make a
scatterplot or loess smooths, or both. The Hmisc panel.plsmo function is handy in this context.
Instead, if fun is specified, this function takes individual response variables (which may be matrices,
as in Surv objects) and creates one or more summary statistics that will be computed while the
resulting data frame is being collapsed to one row per condition. The plot method in this case
plots a multi-panel dot chart using the lattice dotplot function if panel is not specified to plot.
There is an option to print selected statistics as text on the panels. summaryS pays special attention
to Hmisc variable annotations: label, units. When panel is specified in addition to fun, a special

summaryS 419

x-y plot is made that assumes that the x-axis variable (typically time) is discrete. This is used for
example to plot multiple quantile intervals as vertical lines next to the main point. A special panel
function mvarclPanel is provided for this purpose.

The plotp method produces corresponding plotly graphics.

When fun is given and panel is omitted, and the result of fun is a vector of more than one statistic,
the first statistic is taken as the main one. Any columns with names not in textonly will figure
into the calculation of axis limits. Those in textonly will be printed right under the dot lines in
the dot chart. Statistics with names in textplot will figure into limits, be plotted, and printed.
pch.stats can be used to specify symbols for statistics after the first column. When fun computed
three columns that are plotted, columns two and three are taken as confidence limits for which
horizontal "error bars" are drawn. Two levels with different thicknesses are drawn if there are four
plotted summary statistics beyond the first.

mbarclPanel is used to draw multiple vertical lines around the main points, such as a series of
quantile intervals stratified by x and paneling variables. If mbarclPanel finds a column of an aru-
ment yother that is named "se", and if there are exactly two levels to a superpositioning variable,
the half-height of the approximate 0.95 confidence interval for the difference between two point
estimates is shown, positioned at the midpoint of the two point estimates at an x value. This assume
normality of point estimates, and the standard error of the difference is the square root of the sum of
squares of the two standard errors. By positioning the intervals in this fashion, a failure of the two
point estimates to touch the half-confidence interval is consistent with rejecting the null hypothesis
of no difference at the 0.05 level.

mbarclpl is the sfun function corresponding to mbarclPanel for plotp, and medvpl is the sfun
replacement for medvPanel.

medvPanel takes raw data and plots median y vs. x, along with confidence intervals and half-
interval for the difference in medians as with mbarclPanel. Quantile intervals are optional. Very
transparent vertical violin plots are added by default. Unlike panel.violin, only half of the violin
is plotted, and when there are two superpose groups they are side-by-side in different colors.

For plotp, the function corresponding to medvPanel is medvpl, which draws back-to-back spike
histograms, optional Gini mean difference, optional SD, quantiles (thin line version of box plot with
0.05 0.25 0.5 0.75 0.95 quantiles), and half-width confidence interval for differences in medians.
For quantiles, the Harrell-Davis estimator is used.

Usage

summaryS(formula, fun = NULL, data = NULL, subset = NULL,
na.action = na.retain, continuous=10, ...)

S3 method for class 'summaryS'
plot(x, formula=NULL, groups=NULL, panel=NULL,

paneldoesgroups=FALSE, datadensity=NULL, ylab='',
funlabel=NULL, textonly='n', textplot=NULL,
digits=3, custom=NULL,
xlim=NULL, ylim=NULL, cex.strip=1, cex.values=0.5, pch.stats=NULL,
key=list(columns=length(groupslevels),
x=.75, y=-.04, cex=.9,
col=lattice::trellis.par.get('superpose.symbol')$col,
corner=c(0,1)),

420 summaryS

outerlabels=TRUE, autoarrange=TRUE, scat1d.opts=NULL, ...)

S3 method for class 'summaryS'
plotp(data, formula=NULL, groups=NULL, sfun=NULL,

fitter=NULL, showpts=! length(fitter), funlabel=NULL,
digits=5, xlim=NULL, ylim=NULL,
shareX=TRUE, shareY=FALSE, autoarrange=TRUE, ...)

mbarclPanel(x, y, subscripts, groups=NULL, yother, ...)

medvPanel(x, y, subscripts, groups=NULL, violin=TRUE, quantiles=FALSE, ...)

mbarclpl(x, y, groups=NULL, yother, yvar=NULL, maintracename='y',
xlim=NULL, ylim=NULL, xname='x', alphaSegments=0.45, ...)

medvpl(x, y, groups=NULL, yvar=NULL, maintracename='y',
xlim=NULL, ylim=NULL, xlab=xname, ylab=NULL, xname='x',
zeroline=FALSE, yother=NULL, alphaSegments=0.45,
dhistboxp.opts=NULL, ...)

Arguments

formula a formula with possibly multiple left and right-side variables separated by +.
Analysis (response) variables are on the left and are typically numeric. For plot,
formula is optional and overrides the default formula inferred for the reshaped
data frame.

fun an optional summarization function, e.g., smean.sd

data optional input data frame. For plotp is the object produced by summaryS.

subset optional subsetting criteria

na.action function for dealing with NAs when constructing the model data frame

continuous minimum number of unique values for a numeric variable to have to be consid-
ered continuous

... ignored for summaryS and mbarclPanel, passed to strip and panel for plot.
Passed to the density function by medvPanel. For plotp, are passed to plotlyM
and sfun. For mbarclpl, passed to plotlyM.

x an object created by summaryS. For mbarclPanel is an x-axis argument pro-
vided by lattice

groups a character string or factor specifying that one of the conditioning variables is
used for superpositioning and not paneling

panel optional lattice panel function
paneldoesgroups

set to TRUE if, like panel.plsmo, the paneling function internally handles super-
positioning for groups

datadensity set to TRUE to add rug plots etc. using scat1d

ylab optional y-axis label

summaryS 421

funlabel optional axis label for when fun is given
textonly names of statistics to print and not plot. By default, any statistic named "n" is

only printed.
textplot names of statistics to print and plot
digits used if any statistics are printed as text (including plotly hovertext), to specify

the number of significant digits to render
custom a function that customizes formatting of statistics that are printed as text. This is

useful for generating plotmath notation. See the example in the tests directory.
xlim optional x-axis limits
ylim optional y-axis limits
cex.strip size of strip labels
cex.values size of statistics printed as text
pch.stats symbols to use for statistics (not included the one one in columne one) that are

plotted. This is a named vectors, with names exactly matching those created by
fun. When a column does not have an entry in pch.stats, no point is drawn
for that column.

key lattice key specification
outerlabels set to FALSE to not pass two-way charts through useOuterStrips

autoarrange set to FALSE to prevent plot from trying to optimize which conditioning variable
is vertical

scat1d.opts a list of options to specify to scat1d

y, subscripts provided by lattice

yother passed to the panel function from the plot method based on multiple statistics
computed

violin controls whether violin plots are included
quantiles controls whether quantile intervals are included
sfun a function called by plotp.summaryS to compute and plot user-specified sum-

mary measures. Two functions for doing this are provided here: mbarclpl,
medvpl.

fitter a fitting function such as loess to smooth points. The smoothed values over a
systematic grid will be evaluated and plotted as curves.

showpts set to TRUE to show raw data points in additon to smoothed curves
shareX TRUE to cause plotly to share a single x-axis when graphs are aligned vertically
shareY TRUE to cause plotly to share a single y-axis when graphs are aligned horizon-

tally
yvar a character or factor variable used to stratify the analysis into multiple y-variables
maintracename a default trace name when it can’t be inferred
xname x-axis variable name for hover text when it can’t be inferred
xlab x-axis label when it can’t be inferred
alphaSegments alpha saturation to draw line segments for plotly
dhistboxp.opts list of options to pass to dhistboxp

zeroline set to FALSE to suppress plotly zero line at x=0

422 summaryS

Value

a data frame with added attributes for summaryS or a lattice object ready to render for plot

Author(s)

Frank Harrell

See Also

summary, summarize

Examples

See tests directory file summaryS.r for more examples, and summarySp.r
for plotp examples
require(survival)
n <- 100
set.seed(1)
d <- data.frame(sbp=rnorm(n, 120, 10),

dbp=rnorm(n, 80, 10),
age=rnorm(n, 50, 10),
days=sample(1:n, n, TRUE),
S1=Surv(2*runif(n)), S2=Surv(runif(n)),
race=sample(c('Asian', 'Black/AA', 'White'), n, TRUE),
sex=sample(c('Female', 'Male'), n, TRUE),
treat=sample(c('A', 'B'), n, TRUE),
region=sample(c('North America','Europe'), n, TRUE),
meda=sample(0:1, n, TRUE), medb=sample(0:1, n, TRUE))

d <- upData(d, labels=c(sbp='Systolic BP', dbp='Diastolic BP',
race='Race', sex='Sex', treat='Treatment',
days='Time Since Randomization',
S1='Hospitalization', S2='Re-Operation',
meda='Medication A', medb='Medication B'),
units=c(sbp='mmHg', dbp='mmHg', age='Year', days='Days'))

s <- summaryS(age + sbp + dbp ~ days + region + treat, data=d)
plot(s) # 3 pages
plot(s, groups='treat', datadensity=TRUE,

scat1d.opts=list(lwd=.5, nhistSpike=0))
plot(s, groups='treat', panel=lattice::panel.loess,

key=list(space='bottom', columns=2),
datadensity=TRUE, scat1d.opts=list(lwd=.5))

To make a plotly graph when the stratification variable region is not
present, run the following (showpts adds raw data points):
plotp(s, groups='treat', fitter=loess, showpts=TRUE)

Make your own plot using data frame created by summaryP
xyplot(y ~ days | yvar * region, groups=treat, data=s,
scales=list(y='free', rot=0))

summaryS 423

Use loess to estimate the probability of two different types of events as
a function of time
s <- summaryS(meda + medb ~ days + treat + region, data=d)
pan <- function(...)

panel.plsmo(..., type='l', label.curves=max(which.packet()) == 1,
datadensity=TRUE)

plot(s, groups='treat', panel=pan, paneldoesgroups=TRUE,
scat1d.opts=list(lwd=.7), cex.strip=.8)

Repeat using intervals instead of nonparametric smoother
pan <- function(...) # really need mobs > 96 to est. proportion

panel.plsmo(..., type='l', label.curves=max(which.packet()) == 1,
method='intervals', mobs=5)

plot(s, groups='treat', panel=pan, paneldoesgroups=TRUE, xlim=c(0, 150))

Demonstrate dot charts of summary statistics
s <- summaryS(age + sbp + dbp ~ region + treat, data=d, fun=mean)
plot(s)
plot(s, groups='treat', funlabel=expression(bar(X)))
Compute parametric confidence limits for mean, and include sample
sizes by naming a column "n"

f <- function(x) {
x <- x[! is.na(x)]
c(smean.cl.normal(x, na.rm=FALSE), n=length(x))

}
s <- summaryS(age + sbp + dbp ~ region + treat, data=d, fun=f)
plot(s, funlabel=expression(bar(X) %+-% t[0.975] %*% s))
plot(s, groups='treat', cex.values=.65,

key=list(space='bottom', columns=2,
text=c('Treatment A:','Treatment B:')))

For discrete time, plot Harrell-Davis quantiles of y variables across
time using different line characteristics to distinguish quantiles
d <- upData(d, days=round(days / 30) * 30)
g <- function(y) {

probs <- c(0.05, 0.125, 0.25, 0.375)
probs <- sort(c(probs, 1 - probs))
y <- y[! is.na(y)]
w <- hdquantile(y, probs)
m <- hdquantile(y, 0.5, se=TRUE)
se <- as.numeric(attr(m, 'se'))
c(Median=as.numeric(m), w, se=se, n=length(y))

}
s <- summaryS(sbp + dbp ~ days + region, fun=g, data=d)
plot(s, panel=mbarclPanel)
plot(s, groups='region', panel=mbarclPanel, paneldoesgroups=TRUE)

For discrete time, plot median y vs x along with CL for difference,
using Harrell-Davis median estimator and its s.e., and use violin
plots

424 symbol.freq

s <- summaryS(sbp + dbp ~ days + region, data=d)
plot(s, groups='region', panel=medvPanel, paneldoesgroups=TRUE)

Proportions and Wilson confidence limits, plus approx. Gaussian
based half/width confidence limits for difference in probabilities
g <- function(y) {

y <- y[!is.na(y)]
n <- length(y)
p <- mean(y)
se <- sqrt(p * (1. - p) / n)
structure(c(binconf(sum(y), n), se=se, n=n),

names=c('Proportion', 'Lower', 'Upper', 'se', 'n'))
}
s <- summaryS(meda + medb ~ days + region, fun=g, data=d)
plot(s, groups='region', panel=mbarclPanel, paneldoesgroups=TRUE)

symbol.freq Graphic Representation of a Frequency Table

Description

This function can be used to represent contingency tables graphically. Frequency counts are repre-
sented as the heights of "thermometers" by default; you can also specify symbol='circle' to the
function. There is an option to include marginal frequencies, which are plotted on a halved scale
so as to not overwhelm the plot. If you do not ask for marginal frequencies to be plotted using
marginals=T, symbol.freq will ask you to click the mouse where a reference symbol is to be
drawn to assist in reading the scale of the frequencies.

label attributes, if present, are used for x- and y-axis labels. Otherwise, names of calling arguments
are used.

Usage

symbol.freq(x, y, symbol = c("thermometer", "circle"),
marginals = FALSE, orig.scale = FALSE,
inches = 0.25, width = 0.15, subset, srtx = 0, ...)

Arguments

x first variable to cross-classify

y second variable

symbol specify "thermometer" (the default) or "circle"

marginals set to TRUE to add marginal frequencies (scaled by half) to the plot

orig.scale set to TRUE when the first two arguments are numeric variables; this uses their
original values for x and y coordinates)

inches see symbols

sys 425

width see thermometers option in symbols

subset the usual subsetting vector

srtx rotation angle for x-axis labels

... other arguments to pass to symbols

Author(s)

Frank Harrell

See Also

symbols

Examples

Not run:
getHdata(titanic)
attach(titanic)
age.tertile <- cut2(titanic$age, g=3)
symbol.freq(age.tertile, pclass, marginals=T, srtx=45)
detach(2)

End(Not run)

sys Run Unix or Dos Depending on System

Description

Runs unix or dos depending on the current operating system. For R, just runs system with optional
concatenation of first two arguments which are assumed named command and text.

Usage

sys(command, text=NULL, output=TRUE)
S-Plus: sys(\dots, minimized=FALSE)

Arguments

command system command to execute

text text to concatenate to system command, if any (typically options or file names
or both)

output set to FALSE to not return output of command as a character vector

Value

see unix or dos

426 t.test.cluster

Side Effects

executes system commands

See Also

unix, system

t.test.cluster t-test for Clustered Data

Description

Does a 2-sample t-test for clustered data.

Usage

t.test.cluster(y, cluster, group, conf.int = 0.95)
S3 method for class 't.test.cluster'
print(x, digits, ...)

Arguments

y normally distributed response variable to test

cluster cluster identifiers, e.g. subject ID

group grouping variable with two values

conf.int confidence coefficient to use for confidence limits

x an object created by t.test.cluster

digits number of significant digits to print

... unused

Value

a matrix of statistics of class t.test.cluster

Author(s)

Frank Harrell

References

Donner A, Birkett N, Buck C, Am J Epi 114:906-914, 1981.

Donner A, Klar N, J Clin Epi 49:435-439, 1996.

Hsieh FY, Stat in Med 8:1195-1201, 1988.

tabulr 427

See Also

t.test

Examples

set.seed(1)
y <- rnorm(800)
group <- sample(1:2, 800, TRUE)
cluster <- sample(1:40, 800, TRUE)
table(cluster,group)
t.test(y ~ group) # R only
t.test.cluster(y, cluster, group)
Note: negate estimates of differences from t.test to
compare with t.test.cluster

tabulr Interface to Tabular Function

Description

tabulr is a front-end to the tables package’s tabular function so that the user can take advantage
of variable annotations used by the Hmisc package, particular those created by the label, units,
and upData functions. When a variable appears in a tabular function, the variable x is found in
the data argument or in the parent environment, and the labelLatex function is used to create a
LaTeX label. By default any units of measurement are right justified in the current LaTeX tabular
field using hfill; use nofill to list variables for which units are not right-justified with hfill.
Once the label is constructed, the variable name is preceeded by Heading("LaTeX label")*x in
the formula before it is passed to tabular. nolabel can be used to specify variables for which
labels are ignored.

tabulr also replaces trio with table_trio, N with table_N, and freq with table_freq in the
formula.

table_trio is a function that takes a numeric vector and computes the three quartiles and option-
ally the mean and standard deviation, and outputs a LaTeX-formatted character string representing
the results. By default, calculated statistics are formatted with 3 digits to the left and 1 digit to
the right of the decimal point. Running table_options(left=l, right=r) will use l and r dig-
its instead. Other options that can be given to table_options are prmsd=TRUE to add mean +/-
standard deviation to the result, pn=TRUE to add the sample size, bold=TRUE to set the median in
bold face, showfreq='all','low', 'high' used by the table_freq function, pctdec, specify-
ing the number of places to the right of the decimal point for percentages (default is zero), and
npct='both','numerator','denominator','none' used by table_formatpct to control what
appears after the percent. Option pnformat may be specified to control the formatting for pn. The
default is "(n=..)". Specify pnformat="non" to suppress "n=". pnwhen specifies when to print
the number of observations. The default is "always". Specify pnwhen="ifna" to include n only if
there are missing values in the vector being processed.

tabulr substitutes table_N for N in the formula. This is used to create column headings for the
number of observations, without a row label.

428 tabulr

table_freq analyzes a character variable to compute, for a single output cell, the percents, numer-
ator, and denominator for each category, or optimally just the maximum or minimum, as specified
by table_options(showfreq).

table_formatpct is a function that formats percents depending on settings of options in table_options.

nFm is a function that calls sprintf to format numeric values to have a specific number of digits to
the left and to the right of the point.

table_latexdefs writes (by default) to the console a set of LaTeX definitions that can be invoked
at any point thereafter in a knitr or sweave document by naming the macro, preceeded by a single
slash. The blfootnote macro is called with a single LaTeX argument which will appear as a
footnote without a number. keytrio invokes blfootnote to define the output of table_trio if
mean and SD are not included. If mean and SD are included, use keytriomsd.

Usage

tabulr(formula, data = NULL, nolabel=NULL, nofill=NULL, ...)
table_trio(x)
table_freq(x)
table_formatpct(num, den)
nFm(x, left, right, neg=FALSE, pad=FALSE, html=FALSE)
table_latexdefs(file='')

Arguments

formula a formula suitable for tabular except for the addition of .(variable name),
.n(), trio.

data a data frame or list. If omitted, the parent environment is assumed to contain the
variables.

nolabel a formula such as ~ x1 + x2 containing the list of variables for which labels are
to be ignored, forcing use of the variable name

nofill a formula such as ~ x1 + x2 contaning the list of variables for which units of
measurement are not to be right-justified in the field using the LaTeX hfill
directive

... other arguments to tabular

x a numeric vector

num a single numerator or vector of numerators

den a single denominator

left, right number of places to the left and right of the decimal point, respectively

neg set to TRUE if negative x values are allowed, to add one more space to the left of
the decimal place

pad set to TRUE to replace blanks with the LaTeX tilde placeholder

html set to TRUE to make pad use an HTML space character instead of a LaTeX tilde
space

file location of output of table_latexdefs

tabulr 429

Value

tabulr returns an object of class "tabular"

Author(s)

Frank Harrell

See Also

tabular, label, latex, summaryM

Examples

Not run:
n <- 400
set.seed(1)
d <- data.frame(country=factor(sample(c('US','Canada','Mexico'), n, TRUE)),

sex=factor(sample(c('Female','Male'), n, TRUE)),
age=rnorm(n, 50, 10),
sbp=rnorm(n, 120, 8))

d <- upData(d,
preghx=ifelse(sex=='Female', sample(c('No','Yes'), n, TRUE), NA),
labels=c(sbp='Systolic BP', age='Age', preghx='Pregnancy History'),
units=c(sbp='mmHg', age='years'))

contents(d)
require(tables)
invisible(booktabs()) # use booktabs LaTeX style for tabular
g <- function(x) {

x <- x[!is.na(x)]
if(length(x) == 0) return('')
paste(latexNumeric(nFm(mean(x), 3, 1)),

' \hfill{\smaller[2](', length(x), ')}', sep='')
}
tab <- tabulr((age + Heading('Females')*(sex == 'Female')*sbp)*

Heading()*g + (age + sbp)*Heading()*trio ~
Heading()*country*Heading()*sex, data=d)

Formula after interpretation by tabulr:
(Heading('Age\hfill {\smaller[2] years}') * age + Heading("Females")
* (sex == "Female") * Heading('Systolic BP {\smaller[2] mmHg}') * sbp)
* Heading() * g + (age + sbp) * Heading() * table_trio ~ Heading()
* country * Heading() * sex
cat('\begin{landscape}\n')
cat('\begin{minipage}{\textwidth}\n')
cat('\keytrio\n')
latex(tab)
cat('\end{minipage}\end{landscape}\n')

getHdata(pbc)
pbc <- upData(pbc, moveUnits=TRUE)
Convert to character to prevent tabular from stratifying
for(x in c('sex', 'stage', 'spiders')) {

pbc[[x]] <- as.character(pbc[[x]])

430 testCharDateTime

label(pbc[[x]]) <- paste(toupper(substring(x, 1, 1)), substring(x, 2), sep='')
}
table_options(pn=TRUE, showfreq='all')
tab <- tabulr((bili + albumin + protime + age) *

Heading()*trio +
(sex + stage + spiders)*Heading()*freq ~ drug, data=pbc)

latex(tab)

End(Not run)

testCharDateTime testCharDateTime

Description

Test Character Variables for Dates and Times

Usage

testCharDateTime(x, p = 0.5, m = 0, convert = FALSE, existing = FALSE)

Arguments

x input vector of any type, but interesting cases are for character x

p minimum proportion of non-missing non-blank values of x for which the format
is one of the formats described before considering x to be of that type

m if greater than 0, a test is applied: the number of distinct illegal values of x
(values containing a letter or underscore) must not exceed m, or type character
will be returned. p is set to 1.0 when m > 0.

convert set to TRUE to convert the variable under the dominant format. If all values are
NA, type will be set to 'character'.

existing set to TRUE to return a character string with the current type of variable without
examining pattern matches

Details

For a vector x, if it is already a date-time, date, or time variable, the type is returned if convert=FALSE,
or a list with that type, the original vector, and numna=0 is returned. Otherwise if x is not a
character vector, a type of notcharacter is returned, or a list that includes the original x and
type='notcharacter'. When x is character, the main logic is applied. The default logic (when
m=0) is to consider x a date-time variable when its format is YYYY-MM-DD HH:MM:SS (:SS is
optional) in more than 1/2 of the non-missing observations. It is considered to be a date if its format
is YYYY-MM-DD or MM/DD/YYYY or DD-MMM-YYYY in more than 1/2 of the non-missing
observations (MMM=3-letter month). A time variable has the format HH:MM:SS or HH:MM.
Blank values of x (after trimming) are set to NA before proceeding.

tex 431

Value

if convert=FALSE, a single character string with the type of x: "character", "datetime", "date", "time".
If convert=TRUE, a list with components named type, x (converted to POSIXct, Date, or chron
times format), and numna, the number of originally non-NA values of x that could not be converted
to the predominant format. If there were any non-covertible dates/times, the returned vector is
given an additional class special.miss and an attribute special.miss which is a list with original
character values (codes) and observation numbers (obs). These are summarized by describe().

Author(s)

Frank Harrell

Examples

for(conv in c(FALSE, TRUE)) {
print(testCharDateTime(c('2023-03-11', '2023-04-11', 'a', 'b', 'c'), convert=conv))
print(testCharDateTime(c('2023-03-11', '2023-04-11', 'a', 'b'), convert=conv))
print(testCharDateTime(c('2023-03-11 11:12:13', '2023-04-11 11:13:14', 'a', 'b'), convert=conv))
print(testCharDateTime(c('2023-03-11 11:12', '2023-04-11 11:13', 'a', 'b'), convert=conv))
print(testCharDateTime(c('3/11/2023', '4/11/2023', 'a', 'b'), convert=conv))

}
x <- c(paste0('2023-03-0', 1:9), 'a', 'a', 'a', 'b')
y <- testCharDateTime(x, convert=TRUE)$x
describe(y) # note counts of special missing values a, b

tex function for use in graphs that are used with the psfrag package in
LaTeX

Description

tex is a little function to save typing when including TeX commands in graphs that are used with the
psfrag package in LaTeX to typeset any LaTeX text inside a postscript graphic. tex surrounds the
input character string with ‘\tex[options]{}’. This is especially useful for getting Greek letters
and math symbols in postscript graphs. By default tex returns a string with psfrag commands
specifying that the string be centered, not rotated, and not specially enlarged or shrunk.

Usage

tex(string, lref='c', psref='c', scale=1, srt=0)

Arguments

string a character string to be processed by psfrag in LaTeX.
lref LaTeX reference point for string. See the psfrag documentation referenced

below. Default is "c" for centered (this is also the default for psref).
psref PostScript reference point.
scale scall factor, default is 1
srt rotation for string in degrees (default is zero)

432 transace

Value

tex returns a modified character string.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Grant MC, Carlisle (1998): The PSfrag System, Version 3. Full documentation is obtained by
searching www.ctan.org for ‘pfgguide.ps’.

See Also

postscript, par, ps.options, mgp.axis.labels, pdf, trellis.device, setTrellis

Examples

Not run:
pdf('test.pdf')
x <- seq(0,15,length=100)
plot(x, dchisq(x, 5), xlab=tex('x'),

ylab=tex('$f(x)$'), type='l')
title(tex('Density Function of the χ_{5}^{2} Distribution'))
dev.off()
To process this file in LaTeX do something like
#\documentclass{article}
#\usepackage[scanall]{psfrag}
#\begin{document}
#\begin{figure}
#\includegraphics{test.ps}
#\caption{This is an example}
#\end{figure}
#\end{document}

End(Not run)

transace Additive Regression and Transformations using ace or avas

transace 433

Description

transace is ace packaged for easily automatically transforming all variables in a formula without a
left-hand side. transace is a fast one-iteration version of transcan without imputation of NAs. The
ggplot method makes nice transformation plots using ggplot2. Binary variables are automatically
kept linear, and character or factor variables are automatically treated as categorical.

areg.boot uses areg or avas to fit additive regression models allowing all variables in the model
(including the left-hand-side) to be transformed, with transformations chosen so as to optimize
certain criteria. The default method uses areg whose goal it is to maximize R2. method="avas"
explicity tries to transform the response variable so as to stabilize the variance of the residuals.
All-variables-transformed models tend to inflate R^2 and it can be difficult to get confidence limits
for each transformation. areg.boot solves both of these problems using the bootstrap. As with the
validate function in the rms library, the Efron bootstrap is used to estimate the optimism in the
apparent R2, and this optimism is subtracted from the apparent R2 to optain a bias-corrected R2.
This is done however on the transformed response variable scale.

Tests with 3 predictors show that the avas and ace estimates are unstable unless the sample size
exceeds 350. Apparent R2 with low sample sizes can be very inflated, and bootstrap estimates
of R2 can be even more unstable in such cases, resulting in optimism-corrected R2 that are much
lower even than the actual R2. The situation can be improved a little by restricting predictor trans-
formations to be monotonic. On the other hand, the areg approach allows one to control overfitting
by specifying the number of knots to use for each continuous variable in a restricted cubic spline
function.

For method="avas" the response transformation is restricted to be monotonic. You can specify
restrictions for transformations of predictors (and linearity for the response). When the first ar-
gument is a formula, the function automatically determines which variables are categorical (i.e.,
factor, category, or character vectors). Specify linear transformations by enclosing variables by
the identify function (I()), and specify monotonicity by using monotone(variable). Monotonic-
ity restrictions are not allowed with method="areg".

The summary method for areg.boot computes bootstrap estimates of standard errors of differences
in predicted responses (usually on the original scale) for selected levels of each predictor against
the lowest level of the predictor. The smearing estimator (see below) can be used here to estimate
differences in predicted means, medians, or many other statistics. By default, quartiles are used
for continuous predictors and all levels are used for categorical ones. See Details below. There
is also a plot method for plotting transformation estimates, transformations for individual boot-
strap re-samples, and pointwise confidence limits for transformations. Unless you already have a
par(mfrow=) in effect with more than one row or column, plot will try to fit the plots on one page.
A predict method computes predicted values on the original or transformed response scale, or a
matrix of transformed predictors. There is a Function method for producing a list of R functions
that perform the final fitted transformations. There is also a print method for areg.boot objects.

When estimated means (or medians or other statistical parameters) are requested for models fitted
with areg.boot (by summary.areg.boot or predict.areg.boot), the “smearing” estimator of
Duan (1983) is used. Here we estimate the mean of the untransformed response by computing the
arithmetic mean of ginverse(lp + residuals), where ginverse is the inverse of the nonparametric
transformation of the response (obtained by reverse linear interpolation), lp is the linear predictor
for an individual observation on the transformed scale, and residuals is the entire vector of residuals
estimated from the fitted model, on the transformed scales (n residuals for n original observations).
The smearingEst function computes the general smearing estimate. For efficiency smearingEst

434 transace

recognizes that quantiles are transformation-preserving, i.e., when one wishes to estimate a quan-
tile of the untransformed distribution one just needs to compute the inverse transformation of the
transformed estimate after the chosen quantile of the vector of residuals is added to it. When the
median is desired, the estimate is ginverse(lp+median(residuals)). See the last example for how
smearingEst can be used outside of areg.boot.

Mean is a generic function that returns an R function to compute the estimate of the mean of a
variable. Its input is typically some kind of model fit object. Likewise, Quantile is a generic quan-
tile function-producing function. Mean.areg.boot and Quantile.areg.boot create functions of
a vector of linear predictors that transform them into the smearing estimates of the mean or quan-
tile of the response variable, respectively. Quantile.areg.boot produces exactly the same value
as predict.areg.boot or smearingEst. Mean approximates the mapping of linear predictors to
means over an evenly spaced grid of by default 200 points. Linear interpolation is used between
these points. This approximate method is much faster than the full smearing estimator once Mean
creates the function. These functions are especially useful in nomogram (see the example on hypo-
thetical data).

Usage

transace(formula, trim=0.01, data=environment(formula))

S3 method for class 'transace'
print(x, ...)

S3 method for class 'transace'
ggplot(data, mapping, ..., environment, nrow=NULL)

areg.boot(x, data, weights, subset, na.action=na.delete,
B=100, method=c("areg","avas"), nk=4, evaluation=100, valrsq=TRUE,
probs=c(.25,.5,.75), tolerance=NULL)

S3 method for class 'areg.boot'
print(x, ...)

S3 method for class 'areg.boot'
plot(x, ylim, boot=TRUE, col.boot=2, lwd.boot=.15,

conf.int=.95, ...)

smearingEst(transEst, inverseTrans, res,
statistic=c('median','quantile','mean','fitted','lp'),
q)

S3 method for class 'areg.boot'
summary(object, conf.int=.95, values, adj.to,

statistic='median', q, ...)

S3 method for class 'summary.areg.boot'
print(x, ...)

transace 435

S3 method for class 'areg.boot'
predict(object, newdata,

statistic=c("lp", "median",
"quantile", "mean", "fitted", "terms"),

q=NULL, ...)

S3 method for class 'areg.boot'
Function(object, type=c('list','individual'),

ytype=c('transformed','inverse'),
prefix='.', suffix='', pos=-1, ...)

Mean(object, ...)

Quantile(object, ...)

S3 method for class 'areg.boot'
Mean(object, evaluation=200, ...)

S3 method for class 'areg.boot'
Quantile(object, q=.5, ...)

Arguments

formula a formula without a left-hand-side variable. Variables may be enclosed in monotone(),
linear(), categorical() to make certain assumptions about transformations.
categorical and linear need not be specified if they can be summized from
the variable values.

x for areg.boot x is a formula. For print or plot, an object created by areg.boot
or transace. For print.summary.areg.boot, and object created by summary.areg.boot.
For ggplot is the result of transace.

object an object created by areg.boot, or a model fit object suitable for Mean or
Quantile.

transEst a vector of transformed values. In log-normal regression these could be pre-
dicted log(Y) for example.

inverseTrans a function specifying the inverse transformation needed to change transEst to
the original untransformed scale. inverseTrans may also be a 2-element list
defining a mapping from the transformed values to untransformed values. Linear
interpolation is used in this case to obtain untransform values.

trim quantile to which to trim original and transformed values for continuous vari-
ables for purposes of plotting the transformations with ggplot.transace

nrow the number of rows to graph for transace transformations, with the default
chosen by ggplot2

data data frame to use if x is a formula and variables are not already in the search list.
For ggplot is a transace object.

environment, mapping
ignored

436 transace

weights a numeric vector of observation weights. By default, all observations are weighted
equally.

subset an expression to subset data if x is a formula

na.action a function specifying how to handle NAs. Default is na.delete.

B number of bootstrap samples (default=100)

method "areg" (the default) or "avas"

nk number of knots for continuous variables not restricted to be linear. Default is
4. One or two is not allowed. nk=0 forces linearity for all continuous variables.

evaluation number of equally-spaced points at which to evaluate (and save) the nonparamet-
ric transformations derived by avas or ace. Default is 100. For Mean.areg.boot,
evaluation is the number of points at which to evaluate exact smearing esti-
mates, to approximate them using linear interpolation (default is 200).

valrsq set to TRUE to more quickly do bootstrapping without validating R2

probs vector probabilities denoting the quantiles of continuous predictors to use in
estimating effects of those predictors

tolerance singularity criterion; list source code for the lm.fit.qr.bare function.

res a vector of residuals from the transformed model. Not required when statistic="lp"
or statistic="fitted".

statistic statistic to estimate with the smearing estimator. For smearingEst, the de-
fault results in computation of the sample median of the model residuals, then
smearingEst adds the median residual and back-transforms to get estimated
median responses on the original scale. statistic="lp" causes predicted trans-
formed responses to be computed. For smearingEst, the result (for statistic="lp")
is the input argument transEst. statistic="fitted" gives predicted untrans-
formed responses, i.e., ginverse(lp), where ginverse is the inverse of the esti-
mated response transformation, estimated by reverse linear interpolation on the
tabulated nonparametric response transformation or by using an explicit analytic
function. statistic="quantile" generalizes "median" to any single quantile
q which must be specified. "mean" causes the population mean response to be
estimated. For predict.areg.boot, statistic="terms" returns a matrix of
transformed predictors. statistic can also be any R function that computes
a single value on a vector of values, such as statistic=var. Note that in this
case the function name is not quoted.

q a single quantile of the original response scale to estimate, when statistic="quantile",
or for Quantile.areg.boot.

ylim 2-vector of y-axis limits

boot set to FALSE to not plot any bootstrapped transformations. Set it to an integer k
to plot the first k bootstrap estimates.

col.boot color for bootstrapped transformations

lwd.boot line width for bootstrapped transformations

conf.int confidence level (0-1) for pointwise bootstrap confidence limits and for esti-
mated effects of predictors in summary.areg.boot. The latter assumes normal-
ity of the estimated effects.

transace 437

values a list of vectors of settings of the predictors, for predictors for which you want to
overide settings determined from probs. The list must have named components,
with names corresponding to the predictors. Example: values=list(x1=c(2,4,6,8),
x2=c(-1,0,1)) specifies that summary is to estimate the effect on y of changing
x1 from 2 to 4, 2 to 6, 2 to 8, and separately, of changing x2 from -1 to 0 and -1
to 1.

adj.to a named vector of adjustment constants, for setting all other predictors when
examining the effect of a single predictor in summary. The more nonlinear is the
transformation of y the more the adjustment settings will matter. Default values
are the medians of the values defined by values or probs. You only need to
name the predictors for which you are overriding the default settings. Example:
adj.to=c(x2=0,x5=10) will set x2 to 0 and x5 to 10 when assessing the impact
of variation in the other predictors.

newdata a data frame or list containing the same number of values of all of the predictors
used in the fit. For factor predictors the ‘levels’ attribute do not need to be
in the same order as those used in the original fit, and not all levels need to be
represented. If newdata is omitted, you can still obtain linear predictors (on the
transformed response scale) and fitted values (on the original response scale),
but not "terms".

type specifies how Function is to return the series of functions that define the trans-
formations of all variables. By default a list is created, with the names of the list
elements being the names of the variables. Specify type="individual" to have
separate functions created in the current environment (pos=-1, the default) or in
location defined by pos if where is specified. For the latter method, the names
of the objects created are the names of the corresponding variables, prefixed by
prefix and with suffix appended to the end. If any of pos, prefix, or suffix
is specified, type is automatically set to "individual".

ytype By default the first function created by Function is the y-transformation. Spec-
ify ytype="inverse" to instead create the inverse of the transformation, to be
able to obtain originally scaled y-values.

prefix character string defining the prefix for function names created when type="individual".
By default, the function specifying the transformation for variable x will be
named .x.

suffix character string defining the suffix for the function names

pos See assign.

... arguments passed to other functions. Ignored for print.transace and ggplot.transace.

Details

As transace only does one iteration over the predictors, it may not find optimal transformations
and it will be dependent on the order of the predictors in x.

ace and avas standardize transformed variables to have mean zero and variance one for each boot-
strap sample, so if a predictor is not important it will still consistently have a positive regression
coefficient. Therefore using the bootstrap to estimate standard errors of the additive least squares
regression coefficients would not help in drawing inferences about the importance of the predic-
tors. To do this, summary.areg.boot computes estimates of, e.g., the inter-quartile range effects

438 transace

of predictors in predicting the response variable (after untransforming it). As an example, at each
bootstrap repetition the estimated transformed value of one of the predictors is computed at the
lower quartile, median, and upper quartile of the raw value of the predictor. These transformed x
values are then multipled by the least squares estimate of the partial regression coefficient for that
transformed predictor in predicting transformed y. Then these weighted transformed x values have
the weighted transformed x value corresponding to the lower quartile subtracted from them, to esti-
mate an x effect accounting for nonlinearity. The last difference computed is then the standardized
effect of raising x from its lowest to its highest quartile. Before computing differences, predicted
values are back-transformed to be on the original y scale in a way depending on statistic and
q. The sample standard deviation of these effects (differences) is taken over the bootstrap samples,
and this is used to compute approximate confidence intervals for effects andapproximate P-values,
both assuming normality.

predict does not re-insert NAs corresponding to observations that were dropped before the fit, when
newdata is omitted.

statistic="fitted" estimates the same quantity as statistic="median" if the residuals on the
transformed response have a symmetric distribution. The two provide identical estimates when the
sample median of the residuals is exactly zero. The sample mean of the residuals is constrained to
be exactly zero although this does not simplify anything.

Value

transace returns a list of class transace containing these elements: n (number of non-missing
observations used), transformed (a matrix containing transformed values), rsq (vector of R2 with
which each variable can be predicted from the others), omitted (row numbers of data that were
deleted due to NAs), trantab (compact transformation lookups), levels (original levels of character
and factor varibles if the input was a data frame), trim (value of trim passed to transace), limits
(the limits for plotting raw and transformed variables, computed from trim), and type (a vector of
transformation types used for the variables).

areg.boot returns a list of class ‘areg.boot’ containing many elements, including (if valrsq is
TRUE) rsquare.app and rsquare.val. summary.areg.boot returns a list of class ‘summary.areg.boot’
containing a matrix of results for each predictor and a vector of adjust-to settings. It also contains
the call and a ‘label’ for the statistic that was computed. A print method for these objects handles
the printing. predict.areg.boot returns a vector unless statistic="terms", in which case it re-
turns a matrix. Function.areg.boot returns by default a list of functions whose argument is one
of the variables (on the original scale) and whose returned values are the corresponding transformed
values. The names of the list of functions correspond to the names of the original variables. When
type="individual", Function.areg.boot invisibly returns the vector of names of the created
function objects. Mean.areg.boot and Quantile.areg.boot also return functions.

smearingEst returns a vector of estimates of distribution parameters of class ‘labelled’ so that
print.labelled wil print a label documenting the estimate that was used (see label). This label
can be retrieved for other purposes by using e.g. label(obj), where obj was the vector returned by
smearingEst.

Author(s)

Frank Harrell
Department of Biostatistics

transace 439

Vanderbilt University School of Medicine
<fh@fharrell.com>

References

Harrell FE, Lee KL, Mark DB (1996): Stat in Med 15:361–387.

Duan N (1983): Smearing estimate: A nonparametric retransformation method. JASA 78:605–610.

Wang N, Ruppert D (1995): Nonparametric estimation of the transformation in the transform-both-
sides regression model. JASA 90:522–534.

See avas, ace for primary references.

See Also

avas, ace, ols, validate, predab.resample, label, nomogram

Examples

xtrans <- transace(~ monotone(age) + sex + blood.pressure + categorical(race.code))
print(xtrans) # show R^2s and a few other things
ggplot(xtrans) # show transformations

Generate random data from the model y = exp(x1 + epsilon/3) where
x1 and epsilon are Gaussian(0,1)
set.seed(171) # to be able to reproduce example
x1 <- rnorm(200)
x2 <- runif(200) # a variable that is really unrelated to y]
x3 <- factor(sample(c('cat','dog','cow'), 200,TRUE)) # also unrelated to y
y <- exp(x1 + rnorm(200)/3)
f <- areg.boot(y ~ x1 + x2 + x3, B=40)
f
plot(f)
Note that the fitted transformation of y is very nearly log(y)
(the appropriate one), the transformation of x1 is nearly linear,
and the transformations of x2 and x3 are essentially flat
(specifying monotone(x2) if method='avas' would have resulted
in a smaller confidence band for x2)

summary(f)

use summary(f, values=list(x2=c(.2,.5,.8))) for example if you
want to use nice round values for judging effects

Plot Y hat vs. Y (this doesn't work if there were NAs)
plot(fitted(f), y) # or: plot(predict(f,statistic='fitted'), y)

Show fit of model by varying x1 on the x-axis and creating separate
panels for x2 and x3. For x2 using only a few discrete values

440 transace

newdat <- expand.grid(x1=seq(-2,2,length=100),x2=c(.25,.75),
x3=c('cat','dog','cow'))

yhat <- predict(f, newdat, statistic='fitted')
statistic='mean' to get estimated mean rather than simple inverse trans.
xYplot(yhat ~ x1 | x2, groups=x3, type='l', data=newdat)

Not run:
Another example, on hypothetical data
f <- areg.boot(response ~ I(age) + monotone(blood.pressure) + race)
use I(response) to not transform the response variable
plot(f, conf.int=.9)
Check distribution of residuals
plot(fitted(f), resid(f))
qqnorm(resid(f))
Refit this model using ols so that we can draw a nomogram of it.
The nomogram will show the linear predictor, median, mean.
The last two are smearing estimators.
Function(f, type='individual') # create transformation functions
f.ols <- ols(.response(response) ~ age +

.blood.pressure(blood.pressure) + .race(race))
Note: This model is almost exactly the same as f but there
will be very small differences due to interpolation of
transformations
meanr <- Mean(f) # create function of lp computing mean response
medr <- Quantile(f) # default quantile is .5
nomogram(f.ols, fun=list(Mean=meanr,Median=medr))

Create S functions that will do the transformations
This is a table look-up with linear interpolation
g <- Function(f)
plot(blood.pressure, g$blood.pressure(blood.pressure))
produces the central curve in the last plot done by plot(f)

End(Not run)

Another simulated example, where y has a log-normal distribution
with mean x and variance 1. Untransformed y thus has median
exp(x) and mean exp(x + .5sigma^2) = exp(x + .5)
First generate data from the model y = exp(x + epsilon),
epsilon ~ Gaussian(0, 1)

set.seed(139)
n <- 1000
x <- rnorm(n)
y <- exp(x + rnorm(n))
f <- areg.boot(y ~ x, B=20)
plot(f) # note log shape for y, linear for x. Good!
xs <- c(-2, 0, 2)
d <- data.frame(x=xs)

transcan 441

predict(f, d, 'fitted')
predict(f, d, 'median') # almost same; median residual=-.001
exp(xs) # population medians
predict(f, d, 'mean')
exp(xs + .5) # population means

Show how smearingEst works
res <- c(-1,0,1) # define residuals
y <- 1:5
ytrans <- log(y)
ys <- seq(.1,15,length=50)
trans.approx <- list(x=log(ys), y=ys)
options(digits=4)
smearingEst(ytrans, exp, res, 'fitted') # ignores res
smearingEst(ytrans, trans.approx, res, 'fitted') # ignores res
smearingEst(ytrans, exp, res, 'median') # median res=0
smearingEst(ytrans, exp, res+.1, 'median') # median res=.1
smearingEst(ytrans, trans.approx, res, 'median')
smearingEst(ytrans, exp, res, 'mean')
mean(exp(ytrans[2] + res)) # should equal 2nd # above
smearingEst(ytrans, trans.approx, res, 'mean')
smearingEst(ytrans, trans.approx, res, mean)
Last argument can be any statistical function operating
on a vector that returns a single value

transcan Transformations/Imputations using Canonical Variates

Description

transcan is a nonlinear additive transformation and imputation function, and there are several
functions for using and operating on its results. transcan automatically transforms continuous and
categorical variables to have maximum correlation with the best linear combination of the other
variables. There is also an option to use a substitute criterion - maximum correlation with the
first principal component of the other variables. Continuous variables are expanded as restricted
cubic splines and categorical variables are expanded as contrasts (e.g., dummy variables). By de-
fault, the first canonical variate is used to find optimum linear combinations of component columns.
This function is similar to ace except that transformations for continuous variables are fitted using
restricted cubic splines, monotonicity restrictions are not allowed, and NAs are allowed. When a
variable has any NAs, transformed scores for that variable are imputed using least squares multiple
regression incorporating optimum transformations, or NAs are optionally set to constants. Shrinkage
can be used to safeguard against overfitting when imputing. Optionally, imputed values on the orig-
inal scale are also computed and returned. For this purpose, recursive partitioning or multinomial
logistic models can optionally be used to impute categorical variables, using what is predicted to be
the most probable category.

By default, transcan imputes NAs with “best guess” expected values of transformed variables, back
transformed to the original scale. Values thus imputed are most like conditional medians assuming

442 transcan

the transformations make variables’ distributions symmetric (imputed values are similar to condi-
tionl modes for categorical variables). By instead specifying n.impute, transcan does approxi-
mate multiple imputation from the distribution of each variable conditional on all other variables.
This is done by sampling n.impute residuals from the transformed variable, with replacement (a
la bootstrapping), or by default, using Rubin’s approximate Bayesian bootstrap, where a sample of
size n with replacement is selected from the residuals on n non-missing values of the target variable,
and then a sample of size m with replacement is chosen from this sample, where m is the number of
missing values needing imputation for the current multiple imputation repetition. Neither of these
bootstrap procedures assume normality or even symmetry of residuals. For sometimes-missing cat-
egorical variables, optimal scores are computed by adding the “best guess” predicted mean score
to random residuals off this score. Then categories having scores closest to these predicted scores
are taken as the random multiple imputations (impcat = "rpart" is not currently allowed with
n.impute). The literature recommends using n.impute = 5 or greater. transcan provides only
an approximation to multiple imputation, especially since it “freezes” the imputation model before
drawing the multiple imputations rather than using different estimates of regression coefficients
for each imputation. For multiple imputation, the aregImpute function provides a much better
approximation to the full Bayesian approach while still not requiring linearity assumptions.

When you specify n.impute to transcan you can use fit.mult.impute to re-fit any model
n.impute times based on n.impute completed datasets (if there are any sometimes missing vari-
ables not specified to transcan, some observations will still be dropped from these fits). Af-
ter fitting n.impute models, fit.mult.impute will return the fit object from the last imputa-
tion, with coefficients replaced by the average of the n.impute coefficient vectors and with
a component var equal to the imputation-corrected variance-covariance matrix using Rubin’s rule.
fit.mult.impute can also use the object created by the mice function in the mice library to draw
the multiple imputations, as well as objects created by aregImpute. The following components
of fit objects are also replaced with averages over the n.impute model fits: linear.predictors,
fitted.values, stats, means, icoef, scale, center, y.imputed.

By specifying fun to fit.mult.impute you can run any function on the fit objects from completed
datasets, with the results saved in an element named funresults. This facilitates running bootstrap
or cross-validation separately on each completed dataset and storing all these results in a list for
later processing, e.g., with the rms package processMI function. Note that for rms-type validation
you will need to specify fitargs=list(x=TRUE,y=TRUE) to fit.mult.impute and to use special
names for fun result components, such as validate and calibrate so that the result can be pro-
cessed with processMI. When simultaneously running multiple imputation and resampling model
validation you may not need values for n.impute or B (number of bootstraps) as high as usual, as
the total number of repetitions will be n.impute * B.

fit.mult.impute can incorporate robust sandwich variance estimates into Rubin’s rule if robust=TRUE.

For ols models fitted by fit.mult.impute with stacking, the R2 measure in the stacked model fit
is OK, and print.ols computes adjusted R2 using the real sample size so it is also OK because
fit.mult.compute corrects the stacked error degrees of freedom in the stacked fit object to reflect
the real sample size.

The summary method for transcan prints the function call, R2 achieved in transforming each vari-
able, and for each variable the coefficients of all other transformed variables that are used to estimate
the transformation of the initial variable. If imputed=TRUE was used in the call to transcan, also uses
the describe function to print a summary of imputed values. If long = TRUE, also prints all imputed
values with observation identifiers. There is also a simple function print.transcan which merely
prints the transformation matrix and the function call. It has an optional argument long, which if

transcan 443

set to TRUE causes detailed parameters to be printed. Instead of plotting while transcan is running,
you can plot the final transformations after the fact using plot.transcan or ggplot.transcan, if
the option trantab = TRUE was specified to transcan. If in addition the option imputed = TRUE
was specified to transcan, plot and ggplot will show the location of imputed values (including
multiples) along the axes. For ggplot, imputed values are shown as red plus signs.

impute method for transcan does imputations for a selected original data variable, on the original
scale (if imputed=TRUE was given to transcan). If you do not specify a variable to impute, it
will do imputations for all variables given to transcan which had at least one missing value. This
assumes that the original variables are accessible (i.e., they have been attached) and that you want
the imputed variables to have the same names are the original variables. If n.impute was specified
to transcan you must tell impute which imputation to use. Results are stored in .GlobalEnv
when list.out is not specified (it is recommended to use list.out=TRUE).

The predict method for transcan computes predicted variables and imputed values from a matrix
of new data. This matrix should have the same column variables as the original matrix used with
transcan, and in the same order (unless a formula was used with transcan).

The Function function is a generic function generator. Function.transcan creates R functions
to transform variables using transformations created by transcan. These functions are useful for
getting predicted values with predictors set to values on the original scale.

The vcov methods are defined here so that imputation-corrected variance-covariance matrices are
readily extracted from fit.mult.impute objects, and so that fit.mult.impute can easily com-
pute traditional covariance matrices for individual completed datasets.

The subscript method for transcan preserves attributes.

The invertTabulated function does either inverse linear interpolation or uses sampling to sample
qualifying x-values having y-values near the desired values. The latter is used to get inverse values
having a reasonable distribution (e.g., no floor or ceiling effects) when the transformation has a flat
or nearly flat segment, resulting in a many-to-one transformation in that region. Sampling weights
are a combination of the frequency of occurrence of x-values that are within tolInverse times the
range of y and the squared distance between the associated y-values and the target y-value (aty).

Usage

transcan(x, method=c("canonical","pc"),
categorical=NULL, asis=NULL, nk, imputed=FALSE, n.impute,
boot.method=c('approximate bayesian', 'simple'),
trantab=FALSE, transformed=FALSE,
impcat=c("score", "multinom", "rpart"),
mincut=40,
inverse=c('linearInterp','sample'), tolInverse=.05,
pr=TRUE, pl=TRUE, allpl=FALSE, show.na=TRUE,
imputed.actual=c('none','datadensity','hist','qq','ecdf'),
iter.max=50, eps=.1, curtail=TRUE,
imp.con=FALSE, shrink=FALSE, init.cat="mode",
nres=if(boot.method=='simple')200 else 400,
data, subset, na.action, treeinfo=FALSE,
rhsImp=c('mean','random'), details.impcat='', ...)

S3 method for class 'transcan'

444 transcan

summary(object, long=FALSE, digits=6, ...)

S3 method for class 'transcan'
print(x, long=FALSE, ...)

S3 method for class 'transcan'
plot(x, ...)

S3 method for class 'transcan'
ggplot(data, mapping, scale=FALSE, ..., environment)

S3 method for class 'transcan'
impute(x, var, imputation, name, pos.in, data,

list.out=FALSE, pr=TRUE, check=TRUE, ...)

fit.mult.impute(formula, fitter, xtrans, data, n.impute, fit.reps=FALSE,
dtrans, derived, fun, vcovOpts=NULL,
robust=FALSE, cluster, robmethod=c('huber', 'efron'),
method=c('ordinary', 'stack', 'only stack'),
funstack=TRUE, lrt=FALSE,
pr=TRUE, subset, fitargs)

S3 method for class 'transcan'
predict(object, newdata, iter.max=50, eps=0.01, curtail=TRUE,

type=c("transformed","original"),
inverse, tolInverse, check=FALSE, ...)

Function(object, ...)

S3 method for class 'transcan'
Function(object, prefix=".", suffix="", pos=-1, ...)

invertTabulated(x, y, freq=rep(1,length(x)),
aty, name='value',
inverse=c('linearInterp','sample'),
tolInverse=0.05, rule=2)

Default S3 method:
vcov(object, regcoef.only=FALSE, ...)

S3 method for class 'fit.mult.impute'
vcov(object, regcoef.only=TRUE,

intercepts='mid', ...)

Arguments

x a matrix containing continuous variable values and codes for categorical vari-
ables. The matrix must have column names (dimnames). If row names are

transcan 445

present, they are used in forming the names attribute of imputed values if imputed
= TRUE. x may also be a formula, in which case the model matrix is created au-
tomatically, using data in the calling frame. Advantages of using a formula are
that categorical variables can be determined automatically by a variable be-
ing a factor variable, and variables with two unique levels are modeled asis.
Variables with 3 unique values are considered to be categorical if a formula
is specified. For a formula you may also specify that a variable is to remain un-
transformed by enclosing its name with the identify function, e.g. I(x3). The
user may add other variable names to the asis and categorical vectors. For
invertTabulated, x is a vector or a list with three components: the x vector,
the corresponding vector of transformed values, and the corresponding vector of
frequencies of the pair of original and transformed variables. For print, plot,
ggplot, impute, and predict, x is an object created by transcan.

formula any R model formula
fitter any R, rms, modeling function (not in quotes) that computes a vector of coefficients

and for which vcov will return a variance-covariance matrix. E.g., fitter = lm,
glm, ols. At present models involving non-regression parameters (e.g., scale
parameters in parametric survival models) are not handled fully.

xtrans an object created by transcan, aregImpute, or mice
method use method="canonical" or any abbreviation thereof, to use canonical vari-

ates (the default). method="pc" transforms a variable instead so as to maximize
the correlation with the first principal component of the other variables. For
fit.mult.impute, method specifies whether to use standard multiple imputa-
tion (the default method='ordinary') or whether to get final coefficients from
stacking all completed datasets and fitting one model. Stacking is required if
likelihood ratio tests accounting for imputation are to be done. method='stack'
means to do regular MI and stacking, which results in more valid standard er-
rors of coefficient estimates. method='only stack' means that model fits are
not done on individual completed datasets, and standard errors will not be very
accurate.

categorical a character vector of names of variables in x which are categorical, for which
the ordering of re-scored values is not necessarily preserved. If categorical is
omitted, it is assumed that all variables are continuous (or binary). Set categorical="*"
to treat all variables as categorical.

asis a character vector of names of variables that are not to be transformed. For
these variables, the guts of lm.fit method="qr" is used to impute missing val-
ues. You may want to treat binary variables asis (this is automatic if using a
formula). If imputed = TRUE, you may want to use ‘"categorical"’ for bi-
nary variables if you want to force imputed values to be one of the original data
values. Set asis="*" to treat all variables asis.

nk number of knots to use in expanding each continuous variable (not listed in
asis) in a restricted cubic spline function. Default is 3 (yielding 2 parameters
for a variable) if n < 30, 4 if 30 <= n < 100, and 5 if n ≥ 100 (4 parameters).

imputed Set to TRUE to return a list containing imputed values on the original scale. If the
transformation for a variable is non-monotonic, imputed values are not unique.
transcan uses the approx function, which returns the highest value of the vari-
able with the transformed score equalling the imputed score. imputed=TRUE

446 transcan

also causes original-scale imputed values to be shown as tick marks on the top
margin of each graph when show.na=TRUE (for the final iteration only). For cat-
egorical predictors, these imputed values are passed through the jitter function
so that their frequencies can be visualized. When n.impute is used, each NA will
have n.impute tick marks.

n.impute number of multiple imputations. If omitted, single predicted expected value
imputation is used. n.impute=5 is frequently recommended.

boot.method default is to use the approximate Bayesian bootstrap (sample with replacement
from sample with replacement of the vector of residuals). You can also spec-
ify boot.method="simple" to use the usual bootstrap one-stage sampling with
replacement.

trantab Set to TRUE to add an attribute trantab to the returned matrix. This contains a
vector of lists each with components x and y containing the unique values and
corresponding transformed values for the columns of x. This is set up to be used
easily with the approx function. You must specify trantab=TRUE if you want
to later use the predict.transcan function with type = "original".

transformed set to TRUE to cause transcan to return an object transformed containing the
matrix of transformed variables

impcat This argument tells how to impute categorical variables on the original scale.
The default is impcat="score" to impute the category whose canonical variate
score is closest to the predicted score. Use impcat="rpart" to impute categor-
ical variables using the values of all other transformed predictors in conjunc-
tion with the rpart function. A better but somewhat slower approach is to use
impcat="multinom" to fit a multinomial logistic model to the categorical vari-
able, at the last iteraction of the transcan algorithm. This uses the multinom
function in the nnet library of the MASS package (which is assumed to have
been installed by the user) to fit a polytomous logistic model to the current work-
ing transformations of all the other variables (using conditional mean imputation
for missing predictors). Multiple imputations are made by drawing multinomial
values from the vector of predicted probabilities of category membership for the
missing categorical values.

mincut If imputed=TRUE, there are categorical variables, and impcat = "rpart", mincut
specifies the lowest node size that will be allowed to be split. The default is 40.

inverse By default, imputed values are back-solved on the original scale using inverse
linear interpolation on the fitted tabulated transformed values. This will cause
distorted distributions of imputed values (e.g., floor and ceiling effects) when
the estimated transformation has a flat or nearly flat section. To instead use
the invertTabulated function (see above) with the "sample" option, specify
inverse="sample".

tolInverse the multiplyer of the range of transformed values, weighted by freq and by the
distance measure, for determining the set of x values having y values within
a tolerance of the value of aty in invertTabulated. For predict.transcan,
inverse and tolInverse are obtained from options that were specified to transcan
by default. Otherwise, if not specified by the user, these default to the defaults
used to invertTabulated.

transcan 447

pr For transcan, set to FALSE to suppress printing R2 and shrinkage factors. Set
impute.transcan=FALSE to suppress messages concerning the number of NA
values imputed. Set fit.mult.impute=FALSE to suppress printing variance in-
flation factors accounting for imputation, rate of missing information, and de-
grees of freedom.

pl Set to FALSE to suppress plotting the final transformations with distribution of
scores for imputed values (if show.na=TRUE).

allpl Set to TRUE to plot transformations for intermediate iterations.

show.na Set to FALSE to suppress the distribution of scores assigned to missing values (as
tick marks on the right margin of each graph). See also imputed.

imputed.actual The default is ‘"none"’ to suppress plotting of actual vs. imputed values for
all variables having any NA values. Other choices are ‘"datadensity"’ to use
datadensity to make a single plot, ‘"hist"’ to make a series of back-to-back
histograms, ‘"qq"’ to make a series of q-q plots, or ‘"ecdf"’ to make a series
of empirical cdfs. For imputed.actual="datadensity" for example you get
a rug plot of the non-missing values for the variable with beneath it a rug plot
of the imputed values. When imputed.actual is not ‘"none"’, imputed is
automatically set to TRUE.

iter.max maximum number of iterations to perform for transcan or predict. For predict,
only one iteration is used if there are no NA values in the data or if imp.con was
used.

eps convergence criterion for transcan and predict. eps is the maximum change
in transformed values from one iteration to the next. If for a given iteration all
new transformations of variables differ by less than eps (with or without negat-
ing the transformation to allow for “flipping”) from the transformations in the
previous iteration, one more iteration is done for transcan. During this last
iteration, individual transformations are not updated but coefficients of transfor-
mations are. This improves stability of coefficients of canonical variates on the
right-hand-side. eps is ignored when rhsImp="random".

curtail for transcan, causes imputed values on the transformed scale to be truncated so
that their ranges are within the ranges of non-imputed transformed values. For
predict, curtail defaults to TRUE to truncate predicted transformed values to
their ranges in the original fit (xt).

imp.con for transcan, set to TRUE to impute NA values on the original scales with con-
stants (medians or most frequent category codes). Set to a vector of constants
to instead always use these constants for imputation. These imputed values are
ignored when fitting the current working transformation for asingle variable.

shrink default is FALSE to use ordinary least squares or canonical variate estimates.
For the purposes of imputing NAs, you may want to set shrink=TRUE to avoid
overfitting when developing a prediction equation to predict each variables from
all the others (see details below).

init.cat method for initializing scorings of categorical variables. Default is ‘"mode"’ to
use a dummy variable set to 1 if the value is the most frequent value (this is the
default). Use ‘"random"’ to use a random 0-1 variable. Set to ‘"asis"’ to use
the original integer codes asstarting scores.

448 transcan

nres number of residuals to store if n.impute is specified. If the dataset has fewer
than nres observations, all residuals are saved. Otherwise a random sample of
the residuals of length nres without replacement is saved. The default for nres
is higher if boot.method="approximate bayesian".

data Data frame used to fill the formula. For ggplot is the result of transcan with
trantab=TRUE.

subset an integer or logical vector specifying the subset of observations to fit

na.action These may be used if x is a formula. The default na.action is na.retain
(defined by transcan) which keeps all observations with any NA values. For
impute.transcan, data is a data frame to use as the source of variables to be
imputed, rather than using pos.in. For fit.mult.impute, data is mandatory
and is a data frame containing the data to be used in fitting the model but be-
fore imputations are applied. Variables omitted from data are assumed to be
available from frame1 and do not need to be imputed.

treeinfo Set to TRUE to get additional information printed when impcat="rpart", such
as the predicted probabilities of category membership.

rhsImp Set to ‘"random"’ to use random draw imputation when a sometimes missing
variable is moved to be a predictor of other sometimes missing variables. De-
fault is rhsImp="mean", which uses conditional mean imputation on the trans-
formed scale. Residuals used are residuals from the transformed scale. When
‘"random"’ is used, transcan runs 5 iterations and ignores eps.

details.impcat set to a character scalar that is the name of a category variable to include in
the resulting transcan object an element details.impcat containing details
of how the categorical variable was multiply imputed.

... arguments passed to scat1d. For ggplot.transcan, these arguments are passed
to facet_wrap, e.g. ncol=2.

long for summary, set to TRUE to print all imputed values. For print, set to TRUE to
print details of transformations/imputations.

digits number of significant digits for printing values by summary

scale for ggplot.transcan set scale=TRUE to scale transformed values to [0,1] be-
fore plotting.

mapping, environment
not used; needed because of rules about generics

var For impute, is a variable that was originally a column in x, for which imputated
values are to be filled in. imputed=TRUE must have been used in transcan.
Omit var to impute all variables, creating new variables in position pos (see
assign).

imputation specifies which of the multiple imputations to use for filling in NA values

name name of variable to impute, for impute function. Default is character string ver-
sion of the second argument (var) in the call to impute. For invertTabulated,
is the name of variable being transformed (used only for warning messages).

pos.in location as defined by assign to find variables that need to be imputed, when
all variables are to be imputed automatically by impute.transcan (i.e., when
no input variable name is specified). Default is position that contains the first
variable to be imputed.

transcan 449

list.out If var is not specified, you can set list.out=TRUE to have impute.transcan
return a list containing variables with needed values imputed. This list will
contain a single imputation. Variables not needing imputation are copied to the
list as-is. You can use this list for analysis just like a data frame.

check set to FALSE to suppress certain warning messages

newdata a new data matrix for which to compute transformed variables. Categorical
variables must use the same integer codes as were used in the call to transcan.
If a formula was originally specified to transcan (instead of a data matrix),
newdata is optional and if given must be a data frame; a model frame is gener-
ated automatically from the previous formula. The na.action is handled auto-
matically, and the levels for factor variables must be the same and in the same
order as were used in the original variables specified in the formula given to
transcan.

fit.reps set to TRUE to save all fit objects from the fit for each imputation in fit.mult.impute.
Then the object returned will have a component fits which is a list whose i’th
element is the i’th fit object.

dtrans provides an approach to creating derived variables from a single filled-in dataset.
The function specified as dtrans can even reshape the imputed dataset. An ex-
ample of such usage is fitting time-dependent covariates in a Cox model that are
created by “start,stop” intervals. Imputations may be done on a one record per
subject data frame that is converted by dtrans to multiple records per subject.
The imputation can enforce consistency of certain variables across records so
that for example a missing value of sex will not be imputed as ‘male’ for one of
the subject’s records and ‘female’ as another. An example of how dtrans might
be specified is dtrans=function(w) {w$age <- w$years + w$months/12; w}
where months might havebeen imputed but years was never missing. An out-
line for using ‘dtrans‘ to impute missing baseline variables in a longitudinal
analysis appears in Details below.

derived an expression containing R expressions for computing derived variables that are
used in the model formula. This is useful when multiple imputations are done for
component variables but the actual model uses combinations of these (e.g., ratios
or other derivations). For a single derived variable you can specify for example
derived=expression(ratio <- weight/height). For multiple derived vari-
ables use the form derived=expression({ratio <- weight/height; product
<- weight*height}) or put the expression on separate input lines. To monitor
the multiply-imputed derived variables you can add to the expression a com-
mand such as print(describe(ratio)). See the example below. Note that
derived is not yet implemented.

fun a function of a fit made on one of the completed datasets. Typical uses are
bootstrap model validations. The result of fun for imputation i is placed in the
ith element of a list that is returned in the fit.mult.impute object element
named funresults. See the rms processMI function for help in processing
these results for the cases of validate and calibrate.

vcovOpts a list of named additional arguments to pass to the vcov method for fitter.
Useful for orm models for retaining all intercepts (vcovOpts=list(intercepts='all'))
instead of just the middle one.

450 transcan

robust set to TRUE to have fit.mult.impute call the rms package robcov function on
each fit on a completed dataset. When cluster is given, robust is forced to
TRUE.

cluster a vector of cluster IDs that is the same length of the number of rows in the
dataset being analyzed. When specified, robust is assumed to be TRUE, and
the rms robcov function is called with the cluster vector given as its second
argument.

robmethod see the robcov function’s method argument

funstack set to FALSE to not run fun on the stacked dataset, making an n.impute+1 ele-
ment of funresults

lrt set to TRUE to have method, fun, fitargs set appropriately automatically so
that processMI can be used to get likelihood ratio tests. When doing this, fun
may not be specified by the user.

fitargs a list of extra arguments to pass to fitter, used especially with fun. When
robust=TRUE the arguments x=TRUE, y=TRUE are automatically added to fitargs.

type By default, the matrix of transformed variables is returned, with imputed val-
ues on the transformed scale. If you had specified trantab=TRUE to transcan,
specifying type="original" does the table look-ups with linear interpolation
to return the input matrix x but with imputed values on the original scale in-
serted for NA values. For categorical variables, the method used here is to select
the category code having a corresponding scaled value closest to the predicted
transformed value. This corresponds to the default impcat. Note: imputed val-
ues thus returned when type="original" are single expected value imputations
even in n.impute is given.

object an object created by transcan, or an object to be converted to R function code,
typically a model fit object of some sort

prefix, suffix When creating separate R functions for each variable in x, the name of the new
function will be prefix placed in front of the variable name, and suffix placed
in back of the name. The default is to use names of the form ‘.varname’, where
varname is the variable name.

pos position as in assign at which to store new functions (for Function). Default
is pos=-1.

y a vector corresponding to x for invertTabulated, if its first argument x is not
a list

freq a vector of frequencies corresponding to cross-classified x and y if x is not a list.
Default is a vector of ones.

aty vector of transformed values at which inverses are desired

rule see approx. transcan assumes rule is always 2.

regcoef.only set to TRUE to make vcov.default delete positions in the covariance matrix for
any non-regression coefficients (e.g., log scale parameter from psm or survreg)

intercepts this is primarily for orm objects. Set to "none" to discard all intercepts from
the covariance matrix, or to "all" or "mid" to keep all elements generated by
orm (orm only outputs the covariance matrix for the intercept corresponding to
the median). You can also set intercepts to a vector of subscripts for selecting
particular intercepts in a multi-intercept model.

transcan 451

Details

The starting approximation to the transformation for each variable is taken to be the original coding
of the variable. The initial approximation for each missing value is taken to be the median of
the non-missing values for the variable (for continuous ones) or the most frequent category (for
categorical ones). Instead, if imp.con is a vector, its values are used for imputing NA values. When
using each variable as a dependent variable, NA values on that variable cause all observations to be
temporarily deleted. Once a new working transformation is found for the variable, along with a
model to predict that transformation from all the other variables, that latter model is used to impute
NA values in the selected dependent variable if imp.con is not specified.

When that variable is used to predict a new dependent variable, the current working imputed values
are inserted. Transformations are updated after each variable becomes a dependent variable, so the
order of variables on x could conceivably make a difference in the final estimates. For obtaining
out-of-sample predictions/transformations, predict uses the same iterative procedure as transcan
for imputation, with the same starting values for fill-ins as were used by transcan. It also (by
default) uses a conservative approach of curtailing transformed variables to be within the range of
the original ones. Even when method = "pc" is specified, canonical variables are used for imputing
missing values.

Note that fitted transformations, when evaluated at imputed variable values (on the original scale),
will not precisely match the transformed imputed values returned in xt. This is because transcan
uses an approximate method based on linear interpolation to back-solve for imputed values on the
original scale.

Shrinkage uses the method of Van Houwelingen and Le Cessie (1990) (similar to Copas, 1983).
The shrinkage factor is

1− (1−R2)(n−1)
n−k−1

R2

where R2 is the apparent R2d for predicting the variable, n is the number of non-missing values,
and k is the effective number of degrees of freedom (aside from intercepts). A heuristic estimate is
used for k: A - 1 + sum(max(0,Bi - 1))/m + m, where A is the number of d.f. required to represent
the variable being predicted, the Bi are the number of columns required to represent all the other
variables, and m is the number of all other variables. Division by m is done because the transforma-
tions for the other variables are fixed at their current transformations the last time they were being
predicted. The +m term comes from the number of coefficients estimated on the right hand side,
whether by least squares or canonical variates. If a shrinkage factor is negative, it is set to 0. The
shrinkage factor is the ratio of the adjusted R2d to the ordinary R2d. The adjusted R2d is

1− (1−R2)(n− 1)

n− k − 1

which is also set to zero if it is negative. If shrink=FALSE and the adjusted R2s are much smaller
than the ordinary R2s, you may want to run transcan with shrink=TRUE.

Canonical variates are scaled to have variance of 1.0, by multiplying canonical coefficients from
cancor by

√
n− 1.

When specifying a non-rms library fitting function to fit.mult.impute (e.g., lm, glm), running the
result of fit.mult.impute through that fit’s summary method will not use the imputation-adjusted
variances. You may obtain the new variances using fit$var or vcov(fit).

When you specify a rms function to fit.mult.impute (e.g. lrm, ols, cph, psm, bj, Rq, Gls, Glm),
automatically computed transformation parameters (e.g., knot locations for rcs) that are estimated

452 transcan

for the first imputation are used for all other imputations. This ensures that knot locations will not
vary, which would change the meaning of the regression coefficients.

Warning: even though fit.mult.impute takes imputation into account when estimating vari-
ances of regression coefficient, it does not take into account the variation that results from estima-
tion of the shapes and regression coefficients of the customized imputation equations. Specifying
shrink=TRUE solves a small part of this problem. To fully account for all sources of variation you
should consider putting the transcan invocation inside a bootstrap or loop, if execution time al-
lows. Better still, use aregImpute or a package such as as mice that uses real Bayesian posterior
realizations to multiply impute missing values correctly.

It is strongly recommended that you use the Hmisc naclus function to determine is there is a good
basis for imputation. naclus will tell you, for example, if systolic blood pressure is missing when-
ever diastolic blood pressure is missing. If the only variable that is well correlated with diastolic bp
is systolic bp, there is no basis for imputing diastolic bp in this case.

At present, predict does not work with multiple imputation.

When calling fit.mult.impute with glm as the fitter argument, if you need to pass a family
argument to glm do it by quoting the family, e.g., family="binomial".

fit.mult.impute will not work with proportional odds models when regression imputation was
used (as opposed to predictive mean matching). That’s because regression imputation will create
values of the response variable that did not exist in the dataset, altering the intercept terms in the
model.

You should be able to use a variable in the formula given to fit.mult.impute as a numeric variable
in the regression model even though it was a factor variable in the invocation of transcan. Use for
example fit.mult.impute(y ~ codes(x), lrm, trans) (thanks to Trevor Thompson <trevor@hp5.eushc.org>).

Here is an outline of the steps necessary to impute baseline variables using the dtrans argument,
when the analysis to be repeated by fit.mult.impute is a longitudinal analysis (using e.g. Gls).

1. Create a one row per subject data frame containing baseline variables plus follow-up variables
that are assigned to windows. For example, you may have dozens of repeated measurements
over years but you capture the measurements at the times measured closest to 1, 2, and 3 years
after study entry

2. Make sure the dataset contains the subject ID

3. This dataset becomes the one passed to aregImpute as data=. You will be imputing missing
baseline variables from follow-up measurements defined at fixed times.

4. Have another dataset with all the non-missing follow-up values on it, one record per mea-
surement time per subject. This dataset should not have the baseline variables on it, and the
follow-up measurements should not be named the same as the baseline variable(s); the subject
ID must also appear

5. Add the dtrans argument to fit.mult.impute to define a function with one argument rep-
resenting the one record per subject dataset with missing values filled it from the current
imputation. This function merges the above 2 datasets; the returned value of this function is
the merged data frame.

6. This merged-on-the-fly dataset is the one handed by fit.mult.impute to your fitting func-
tion, so variable names in the formula given to fit.mult.impute must matched the names
created by the merge

transcan 453

Value

For transcan, a list of class ‘transcan’ with elements

call (with the function call)
iter (number of iterations done)
rsq, rsq.adj containing the R2s and adjusted R2s achieved in predicting each variable from

all the others
categorical the values supplied for categorical
asis the values supplied for asis
coef the within-variable coefficients used to compute the first canonical variate
xcoef the (possibly shrunk) across-variables coefficients of the first canonical variate

that predicts each variable in-turn.
parms the parameters of the transformation (knots for splines, contrast matrix for cate-

gorical variables)
fillin the initial estimates for missing values (NA if variable never missing)
ranges the matrix of ranges of the transformed variables (min and max in first and sec-

ondrow)
scale a vector of scales used to determine convergence for a transformation.
formula the formula (if x was a formula)

, and optionally a vector of shrinkage factors used for predicting each variable from the others. For
asis variables, the scale is the average absolute difference about the median. For other variables it
is unity, since canonical variables are standardized. For xcoef, row i has the coefficients to predict
transformed variable i, with the column for the coefficient of variable i set to NA. If imputed=TRUE
was given, an optional element imputed also appears. This is a list with the vector of imputed
values (on the original scale) for each variable containing NAs. Matrices rather than vectors are
returned if n.impute is given. If trantab=TRUE, the trantab element also appears, as described
above. If n.impute > 0, transcan also returns a list residuals that can be used for future multiple
imputation.

impute returns a vector (the same length as var) of class ‘impute’ with NA values imputed.

predict returns a matrix with the same number of columns or variables as were in x.

fit.mult.impute returns a fit object that is a modification of the fit object created by fitting the
completed dataset for the final imputation. The var matrix in the fit object has the imputation-
corrected variance-covariance matrix. coefficients is the average (over imputations) of the coeffi-
cient vectors, variance.inflation.impute is a vector containing the ratios of the diagonals of the
between-imputation variance matrix to the diagonals of the average apparent (within-imputation)
variance matrix. missingInfo is Rubin’s rate of missing information and dfmi is Rubin’s degrees
of freedom for a t-statistic for testing a single parameter. The last two objects are vectors corre-
sponding to the diagonal of the variance matrix. The class "fit.mult.impute" is prepended to the
other classes produced by the fitting function.

When method is not 'ordinary', i.e., stacking is used, fit.mult.impute returns a modified fit
object that is computed on all completed datasets combined, with most all statistics that are func-
tions of the sample size corrected to the real sample size. Elements in the fit such as residuals
will have length equal to the real sample size times the number of imputations.

fit.mult.impute stores intercepts attributes in the coefficient matrix and in var for orm fits.

454 transcan

Side Effects

prints, plots, and impute.transcan creates new variables.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Kuhfeld, Warren F: The PRINQUAL Procedure. SAS/STAT User’s Guide, Fourth Edition, Volume
2, pp. 1265–1323, 1990.

Van Houwelingen JC, Le Cessie S: Predictive value of statistical models. Statistics in Medicine
8:1303–1325, 1990.

Copas JB: Regression, prediction and shrinkage. JRSS B 45:311–354, 1983.

He X, Shen L: Linear regression after spline transformation. Biometrika 84:474–481, 1997.

Little RJA, Rubin DB: Statistical Analysis with Missing Data. New York: Wiley, 1987.

Rubin DJ, Schenker N: Multiple imputation in health-care databases: An overview and some appli-
cations. Stat in Med 10:585–598, 1991.

Faris PD, Ghali WA, et al:Multiple imputation versus data enhancement for dealing with missing
data in observational health care outcome analyses. J Clin Epidem 55:184–191, 2002.

See Also

aregImpute, impute, naclus, naplot, ace, avas, cancor, prcomp, rcspline.eval, lsfit, approx,
datadensity, mice, ggplot, processMI

Examples

Not run:
x <- cbind(age, disease, blood.pressure, pH)
#cbind will convert factor object `disease' to integer
par(mfrow=c(2,2))
x.trans <- transcan(x, categorical="disease", asis="pH",

transformed=TRUE, imputed=TRUE)
summary(x.trans) #Summary distribution of imputed values, and R-squares
f <- lm(y ~ x.trans$transformed) #use transformed values in a regression
#Now replace NAs in original variables with imputed values, if not
#using transformations
age <- impute(x.trans, age)
disease <- impute(x.trans, disease)
blood.pressure <- impute(x.trans, blood.pressure)
pH <- impute(x.trans, pH)
#Do impute(x.trans) to impute all variables, storing new variables under
#the old names
summary(pH) #uses summary.impute to tell about imputations

transcan 455

#and summary.default to tell about pH overall
Get transformed and imputed values on some new data frame xnew
newx.trans <- predict(x.trans, xnew)
w <- predict(x.trans, xnew, type="original")
age <- w[,"age"] #inserts imputed values
blood.pressure <- w[,"blood.pressure"]
Function(x.trans) #creates .age, .disease, .blood.pressure, .pH()
#Repeat first fit using a formula
x.trans <- transcan(~ age + disease + blood.pressure + I(pH),

imputed=TRUE)
age <- impute(x.trans, age)
predict(x.trans, expand.grid(age=50, disease="pneumonia",

blood.pressure=60:260, pH=7.4))
z <- transcan(~ age + factor(disease.code), # disease.code categorical

transformed=TRUE, trantab=TRUE, imputed=TRUE, pl=FALSE)
ggplot(z, scale=TRUE)
plot(z$transformed)

End(Not run)

Multiple imputation and estimation of variances and covariances of
regression coefficient estimates accounting for imputation
set.seed(1)
x1 <- factor(sample(c('a','b','c'),100,TRUE))
x2 <- (x1=='b') + 3*(x1=='c') + rnorm(100)
y <- x2 + 1*(x1=='c') + rnorm(100)
x1[1:20] <- NA
x2[18:23] <- NA
d <- data.frame(x1,x2,y)
n <- naclus(d)
plot(n); naplot(n) # Show patterns of NAs
f <- transcan(~y + x1 + x2, n.impute=10, shrink=FALSE, data=d)
options(digits=3)
summary(f)

f <- transcan(~y + x1 + x2, n.impute=10, shrink=TRUE, data=d)
summary(f)

h <- fit.mult.impute(y ~ x1 + x2, lm, f, data=d)
Add ,fit.reps=TRUE to save all fit objects in h, then do something like:
for(i in 1:length(h$fits)) print(summary(h$fits[[i]]))

diag(vcov(h))

h.complete <- lm(y ~ x1 + x2, na.action=na.omit)
h.complete
diag(vcov(h.complete))

456 transcan

Note: had the rms ols function been used in place of lm, any
function run on h (anova, summary, etc.) would have automatically
used imputation-corrected variances and covariances

Example demonstrating how using the multinomial logistic model
to impute a categorical variable results in a frequency
distribution of imputed values that matches the distribution
of non-missing values of the categorical variable

Not run:
set.seed(11)
x1 <- factor(sample(letters[1:4], 1000,TRUE))
x1[1:200] <- NA
table(x1)/sum(table(x1))
x2 <- runif(1000)
z <- transcan(~ x1 + I(x2), n.impute=20, impcat='multinom')
table(z$imputed$x1)/sum(table(z$imputed$x1))

Here is how to create a completed dataset
d <- data.frame(x1, x2)
z <- transcan(~x1 + I(x2), n.impute=5, data=d)
imputed <- impute(z, imputation=1, data=d,

list.out=TRUE, pr=FALSE, check=FALSE)
sapply(imputed, function(x)sum(is.imputed(x)))
sapply(imputed, function(x)sum(is.na(x)))

End(Not run)

Do single imputation and create a filled-in data frame
z <- transcan(~x1 + I(x2), data=d, imputed=TRUE)
imputed <- as.data.frame(impute(z, data=d, list.out=TRUE))

Example where multiple imputations are for basic variables and
modeling is done on variables derived from these

set.seed(137)
n <- 400
x1 <- runif(n)
x2 <- runif(n)
y <- x1*x2 + x1/(1+x2) + rnorm(n)/3
x1[1:5] <- NA
d <- data.frame(x1,x2,y)
w <- transcan(~ x1 + x2 + y, n.impute=5, data=d)
Add ,show.imputed.actual for graphical diagnostics
Not run:
g <- fit.mult.impute(y ~ product + ratio, ols, w,

data=data.frame(x1,x2,y),
derived=expression({

product <- x1*x2

transcan 457

ratio <- x1/(1+x2)
print(cbind(x1,x2,x1*x2,product)[1:6,])}))

End(Not run)

Here's a method for creating a permanent data frame containing
one set of imputed values for each variable specified to transcan
that had at least one NA, and also containing all the variables
in an original data frame. The following is based on the fact
that the default output location for impute.transcan is
given by the global environment

Not run:
xt <- transcan(~. , data=mine,

imputed=TRUE, shrink=TRUE, n.impute=10, trantab=TRUE)
attach(mine, use.names=FALSE)
impute(xt, imputation=1) # use first imputation
omit imputation= if using single imputation
detach(1, 'mine2')

End(Not run)

Example of using invertTabulated outside transcan
x <- c(1,2,3,4,5,6,7,8,9,10)
y <- c(1,2,3,4,5,5,5,5,9,10)
freq <- c(1,1,1,1,1,2,3,4,1,1)
x=5,6,7,8 with prob. .1 .2 .3 .4 when y=5
Within a tolerance of .05*(10-1) all y's match exactly
so the distance measure does not play a role
set.seed(1) # so can reproduce
for(inverse in c('linearInterp','sample'))
print(table(invertTabulated(x, y, freq, rep(5,1000), inverse=inverse)))

Test inverse='sample' when the estimated transformation is
flat on the right. First show default imputations
set.seed(3)
x <- rnorm(1000)
y <- pmin(x, 0)
x[1:500] <- NA
for(inverse in c('linearInterp','sample')) {
par(mfrow=c(2,2))

w <- transcan(~ x + y, imputed.actual='hist',
inverse=inverse, curtail=FALSE,
data=data.frame(x,y))

if(inverse=='sample') next
cat('Click mouse on graph to proceed\n')
locator(1)
}

458 translate

Not run:
While running multiple imputation for a logistic regression model
Run the rms package validate and calibrate functions and save the
results in w$funresults
a <- aregImpute(~ x1 + x2 + y, data=d, n.impute=10)
require(rms)
g <- function(fit)

list(validate=validate(fit, B=50), calibrate=calibrate(fit, B=75))
w <- fit.mult.impute(y ~ x1 + x2, lrm, a, data=d, fun=g,

fitargs=list(x=TRUE, y=TRUE))
Get all validate results in it's own list of length 10
r <- w$funresults
val <- lapply(r, function(x) x$validate)
cal <- lapply(r, function(x) x$calibrate)
See rms processMI and https://hbiostat.org/rmsc/validate.html#sec-val-mival

End(Not run)

Not run:
Account for within-subject correlation using the robust cluster sandwich
covariance estimate in conjunction with Rubin's rule for multiple imputation
rms package must be installed
a <- aregImpute(..., data=d)
f <- fit.mult.impute(y ~ x1 + x2, lrm, a, n.impute=30, data=d, cluster=d$id)
Get likelihood ratio chi-square tests accounting for missingness
a <- aregImpute(..., data=d)
h <- fit.mult.impute(y ~ x1 + x2, lrm, a, n.impute=40, data=d, lrt=TRUE)
processMI(h, which='anova') # processMI is in rms

End(Not run)

translate Translate Vector or Matrix of Text Strings

Description

Uses the UNIX tr command to translate any character in old in text to the corresponding character
in new. If multichar=T or old and new have more than one element, or each have one element
but they have different numbers of characters, uses the UNIX sed command to translate the se-
ries of characters in old to the series in new when these characters occur in text. If old or new
contain a backslash, you sometimes have to quadruple it to make the UNIX command work. If
they contain a forward slash, preceed it by two backslashes. Invokes the builtin chartr function if
multichar=FALSE.

Usage

translate(text, old, new, multichar=FALSE)

trunc.POSIXt 459

Arguments

text scalar, vector, or matrix of character strings to translate.

old vector old characters

new corresponding vector of new characters

multichar See above.

Value

an object like text but with characters translated

See Also

grep

Examples

translate(c("ABC","DEF"),"ABCDEFG", "abcdefg")
translate("23.12","[.]","\\cdot ") # change . to \cdot
translate(c("dog","cat","tiger"),c("dog","cat"),c("DOG","CAT"))
S-Plus gives [1] "DOG" "CAT" "tiger" - check discrepency
translate(c("dog","cat2","snake"),c("dog","cat"),"animal")
S-Plus gives [1] "animal" "animal2" "snake"

trunc.POSIXt Return the floor, ceiling, or rounded value of date or time to specified
unit.

Description

truncPOSIXt returns the date truncated to the specified unit. ceil.POSIXt returns next ceiling
of the date at the unit selected in units. roundPOSIXt returns the date or time value rounded to
nearest specified unit selected in digits.

truncPOSIXt and roundPOSIXt have been extended from the base package functions trunc.POSIXt
and round.POSIXt which in the future will add the other time units we need.

Usage

ceil(x, units,...)
Default S3 method:
ceil(x, units, ...)
truncPOSIXt(x, units = c("secs", "mins", "hours", "days",
"months", "years"), ...)
S3 method for class 'POSIXt'
ceil(x, units = c("secs", "mins", "hours", "days",
"months", "years"), ...)
roundPOSIXt(x, digits = c("secs", "mins", "hours", "days", "months", "years"))

460 units

Arguments

x date to be ceilinged, truncated, or rounded

units unit to that is is rounded up or down to.

digits same as units but different name to be compatible with round generic.

... further arguments to be passed to or from other methods.

Value

An object of class POSIXlt.

Author(s)

Charles Dupont

See Also

Date POSIXt POSIXlt DateTimeClasses

Examples

date <- ISOdate(1832, 7, 12)
ceil(date, units='months') # '1832-8-1'
truncPOSIXt(date, units='years') # '1832-1-1'
roundPOSIXt(date, digits='months') # '1832-7-1'

units Units Attribute of a Vector

Description

Sets or retrieves the "units" attribute of an object. For units.default replaces the builtin version,
which only works for time series objects. If the variable is also given a label, subsetting (using
[.labelled) will retain the "units" attribute. For a Surv object, units first looks for an overall
"units" attribute, then it looks for units for the time2 variable then for time1. When setting
"units", value is changed to lower case and any "s" at the end is removed.

Usage

units(x, ...)
Default S3 method:
units(x, none='', ...)
S3 method for class 'Surv'
units(x, none='', ...)
Default S3 replacement method:
units(x) <- value

upData 461

Arguments

x any object

... ignored

value the units of the object, or ""

none value to which to set result if no appropriate attribute is found

Value

the units attribute of x, if any; otherwise, the units attribute of the tspar attribute of x if any;
otherwise the value none. Handling for Surv objects is different (see above).

See Also

label

Examples

require(survival)
fail.time <- c(10,20)
units(fail.time) <- "Day"
describe(fail.time)
S <- Surv(fail.time)
units(S)

label(fail.time) <- 'Failure Time'
units(fail.time) <- 'Days'
fail.time

upData Update a Data Frame or Cleanup a Data Frame after Importing

Description

cleanup.import will correct errors and shrink the size of data frames. By default, double precision
numeric variables are changed to integer when they contain no fractional components. Infinite
values or values greater than 1e20 in absolute value are set to NA. This solves problems of importing
Excel spreadsheets that contain occasional character values for numeric columns, as S converts
these to Inf without warning. There is also an option to convert variable names to lower case
and to add labels to variables. The latter can be made easier by importing a CNTLOUT dataset
created by SAS PROC FORMAT and using the sasdict option as shown in the example below.
cleanup.import can also transform character or factor variables to dates.

upData is a function facilitating the updating of a data frame without attaching it in search position
one. New variables can be added, old variables can be modified, variables can be removed or
renamed, and "labels" and "units" attributes can be provided. Observations can be subsetted.
Various checks are made for errors and inconsistencies, with warnings issued to help the user. Levels

462 upData

of factor variables can be replaced, especially using the list notation of the standard merge.levels
function. Unless force.single is set to FALSE, upData also converts double precision vectors to
integer if no fractional values are present in a vector. upData is also used to process R workspace
objects created by StatTransfer, which puts variable and value labels as attributes on the data frame
rather than on each variable. If such attributes are present, they are used to define all the labels
and value labels (through conversion to factor variables) before any label changes take place, and
force.single is set to a default of FALSE, as StatTransfer already does conversion to integer.

Variables having labels but not classed "labelled" (e.g., data imported using the haven package)
have that class added to them by upData.

The dataframeReduce function removes variables from a data frame that are problematic for cer-
tain analyses. Variables can be removed because the fraction of missing values exceeds a threshold,
because they are character or categorical variables having too many levels, or because they are bi-
nary and have too small a prevalence in one of the two values. Categorical variables can also have
their levels combined when a level is of low prevalence. A data frame listing actions take is return
as attribute "info" to the main returned data frame.

Usage

cleanup.import(obj, labels, lowernames=FALSE,
force.single=TRUE, force.numeric=TRUE, rmnames=TRUE,
big=1e20, sasdict, print, datevars=NULL, datetimevars=NULL,
dateformat='%F',
fixdates=c('none','year'),
autodate=FALSE, autonum=FALSE, fracnn=0.3,
considerNA=NULL, charfactor=FALSE)

upData(object, ...,
subset, rename, drop, keep, labels, units, levels, force.single=TRUE,
lowernames=FALSE, caplabels=FALSE, classlab=FALSE, moveUnits=FALSE,
charfactor=FALSE, print=TRUE, html=FALSE)

dataframeReduce(data, fracmiss=1, maxlevels=NULL, minprev=0, print=TRUE)

Arguments

obj a data frame or list

object a data frame or list

data a data frame

force.single By default, double precision variables are converted to single precision (in S-
Plus only) unless force.single=FALSE. force.single=TRUE will also convert
vectors having only integer values to have a storage mode of integer, in R or
S-Plus.

force.numeric Sometimes importing will cause a numeric variable to be changed to a factor
vector. By default, cleanup.import will check each factor variable to see if
the levels contain only numeric values and "". In that case, the variable will be
converted to numeric, with "" converted to NA. Set force.numeric=FALSE to
prevent this behavior.

upData 463

rmnames set to ‘F’ to not have ‘cleanup.import’ remove ‘names’ or ‘.Names’ attributes
from variables

labels a character vector the same length as the number of variables in obj. These
character values are taken to be variable labels in the same order of variables in
obj. For upData, labels is a named list or named vector with variables in no
specific order.

lowernames set this to TRUE to change variable names to lower case. upData does this before
applying any other changes, so variable names given inside arguments to upData
need to be lower case if lowernames==TRUE.

big a value such that values larger than this in absolute value are set to missing by
cleanup.import

sasdict the name of a data frame containing a raw imported SAS PROC CONTENTS
CNTLOUT= dataset. This is used to define variable names and to add attributes
to the new data frame specifying the original SAS dataset name and label.

print set to TRUE or FALSE to force or prevent printing of the current variable number
being processed. By default, such messages are printed if the product of the
number of variables and number of observations in obj exceeds 500,000. For
dataframeReduce set print to FALSE to suppress printing information about
dropped or modified variables. Similar for upData.

datevars character vector of names (after lowernames is applied) of variables to consider
as a factor or character vector containing dates in a format matching dateformat.
The default is "%F" which uses the yyyy-mm-dd format.

datetimevars character vector of names (after lowernames is applied) of variables to consider
to be date-time variables, with date formats as described under datevars fol-
lowed by a space followed by time in hh:mm:ss format. chron is used to store
date-time variables. If all times in the variable are 00:00:00 the variable will be
converted to an ordinary date variable.

dateformat for cleanup.import is the input format (see strptime)

fixdates for any of the variables listed in datevars that have a dateformat that cleanup.import
understands, specifying fixdates allows corrections of certain formatting in-
consistencies before the fields are attempted to be converted to dates (the default
is to assume that the dateformat is followed for all observation for datevars).
Currently fixdates='year' is implemented, which will cause 2-digit or 4-digit
years to be shifted to the alternate number of digits when dateform is the de-
fault "%F" or is "%y-%m-%d", "%m/%d/%y", or "%m/%d/%Y". Two-digits years
are padded with 20 on the left. Set dateformat to the desired format, not the
exceptional format.

autodate set to TRUE to have cleanup.import determine and automatically handle fac-
tor or character vectors that mainly contain dates of the form YYYY-mm-dd,
mm/dd/YYYY, YYYY, or mm/YYYY, where the later two are imputed to, re-
spectively, July 3 and the 15th of the month. Takes effect when the fraction of
non-dates (of non-missing values) is less than fracnn to allow for some free text
such as "unknown". Attributes special.miss and imputed are created for the
vector so that describe() will inform the user. Illegal values are converted to
NAs and stored in the special.miss attribute.

464 upData

autonum set to TRUE to have cleanup.import examine (after autodate) character and
factor variables to see if they are legal numerics exact for at most a fraction of
fracnn of non-missing non-numeric values. Qualifying variables are converted
to numeric, and illegal values set to NA and stored in the special.miss attribute
to enhance describe output.

fracnn see autodate and autonum

considerNA for autodate and autonum, considers character values in the vector considerNA
to be the same as NA. Leading and trailing white space and upper/lower case are
ignored.

charfactor set to TRUE to change character variables to factors if they have fewer than n/2
unique values. Null strings and blanks are converted to NAs.

... for upData, one or more expressions of the form variable=expression, to
derive new variables or change old ones.

subset an expression that evaluates to a logical vector specifying which rows of object
should be retained. The expressions should use the original variable names, i.e.,
before any variables are renamed but after lowernames takes effect.

rename list or named vector specifying old and new names for variables. Variables are
renamed before any other operations are done. For example, to rename variables
age and sex to respectively Age and gender, specify rename=list(age="Age",
sex="gender") or rename=c(age=...).

drop a vector of variable names to remove from the data frame
keep a vector of variable names to keep, with all other variables dropped
units a named vector or list defining "units" attributes of variables, in no specific

order
levels a named list defining "levels" attributes for factor variables, in no specific

order. The values in this list may be character vectors redefining levels (in
order) or another list (see merge.levels if using S-Plus).

caplabels set to TRUE to capitalize the first letter of each word in each variable label
classlab set to TRUE (the old default behavior) to automatically have upData make vari-

ables having a "label" attribute have class of "labelled". Note that when
the labels argument to upData is given, these create labelled-class variables
as always.

moveUnits set to TRUE to look for units of measurements in variable labels and move them
to a "units" attribute. If an expression in a label is enclosed in parentheses or
brackets it is assumed to be units if moveUnits=TRUE.

html set to TRUE to print conversion information as html vertabim at 0.6 size. The user
will need to put results='asis' in a knitr chunk header to properly render
this output.

fracmiss the maximum permissable proportion of NAs for a variable to be kept. Default is
to keep all variables no matter how many NAs are present.

maxlevels the maximum number of levels of a character or categorical or factor variable
before the variable is dropped

minprev the minimum proportion of non-missing observations in a category for a binary
variable to be retained, and the minimum relative frequency of a category before
it will be combined with other small categories

upData 465

Value

a new data frame

Author(s)

Frank Harrell, Vanderbilt University

See Also

sas.get, data.frame, describe, label, read.csv, strptime, POSIXct,Date

Examples

Not run:
dat <- read.table('myfile.asc')
dat <- cleanup.import(dat)

End(Not run)
dat <- data.frame(a=1:3, d=c('01/02/2004',' 1/3/04',''))
cleanup.import(dat, datevars='d', dateformat='%m/%d/%y', fixdates='year')

dat <- data.frame(a=(1:3)/7, y=c('a','b1','b2'), z=1:3)
dat2 <- upData(dat, x=x^2, x=x-5, m=x/10,

rename=c(a='x'), drop='z',
labels=c(x='X', y='test'),
levels=list(y=list(a='a',b=c('b1','b2'))))

dat2
describe(dat2)
dat <- dat2 # copy to original name and delete dat2 if OK
rm(dat2)
dat3 <- upData(dat, X=X^2, subset = x < (3/7)^2 - 5, rename=c(x='X'))

Remove hard to analyze variables from a redundancy analysis of all
variables in the data frame
d <- dataframeReduce(dat, fracmiss=.1, minprev=.05, maxlevels=5)
Could run redun(~., data=d) at this point or include dataframeReduce
arguments in the call to redun

If you import a SAS dataset created by PROC CONTENTS CNTLOUT=x.datadict,
the LABELs from this dataset can be added to the data. Let's also
convert names to lower case for the main data file
Not run:
mydata2 <- cleanup.import(mydata2, lowernames=TRUE, sasdict=datadict)

End(Not run)

466 valueTags

upFirst Change First Letters to Upper Case

Description

Changes the first letter of each word in a string to upper case, keeping selected words in lower case.
Words containing at least 2 capital letters are kept as-is.

Usage

upFirst(txt, lower = FALSE, alllower = FALSE)

Arguments

txt a character vector
lower set to TRUE to make only the very first letter of the string upper case, and to keep

words with at least 2 capital letters in their original form
alllower set to TRUE to make every word start with lower case unless it has at least 2 caps

References

https://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles

Examples

upFirst(c('this and that','that is Beyond question'))

valueTags Store Descriptive Information About an Object

Description

Functions get or set useful information about the contents of the object for later use.

Usage

valueTags(x)
valueTags(x) <- value

valueLabel(x)
valueLabel(x) <- value

valueName(x)
valueName(x) <- value

valueUnit(x)
valueUnit(x) <- value

https://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles

valueTags 467

Arguments

x an object

value for valueTags<- a named list of value tags. a character vector of length 1, or
NULL.

Details

These functions store the a short name of for the contents, a longer label that is useful for display,
and the units of the contents that is useful for display.

valueTag is an accessor, and valueTag<- is a replacement function for all of the value’s informa-
tion.

valueName is an accessor, and valueName<- is a replacement function for the value’s name. This
name is used when a plot or a latex table needs a short name and the variable name is not useful.

valueLabel is an accessor, and valueLabel<- is a replacement function for the value’s label. The
label is used in a plots or latex tables when they need a descriptive name.

valueUnit is an accessor, and valueUnit<- is a replacement function for the value’s unit. The unit
is used to add unit information to the R output.

Value

valueTag returns NULL or a named list with each of the named values name, label, unit set if they
exists in the object.

For valueTag<- returns list

For valueName, valueLable, and valueUnit returns NULL or character vector of length 1.

For valueName<-, valueLabel<-, and valueUnit returns value

Author(s)

Charles Dupont

See Also

names, attributes

Examples

age <- c(21,65,43)
y <- 1:3
valueLabel(age) <- "Age in Years"
plot(age, y, xlab=valueLabel(age))

x1 <- 1:10
x2 <- 10:1
valueLabel(x2) <- 'Label for x2'
valueUnit(x2) <- 'mmHg'
x2

468 varclus

x2[1:5]
dframe <- data.frame(x1, x2)
Label(dframe)

##In these examples of llist, note that labels are printed after
##variable names, because of print.labelled
a <- 1:3
b <- 4:6
valueLabel(b) <- 'B Label'

varclus Variable Clustering

Description

Does a hierarchical cluster analysis on variables, using the Hoeffding D statistic, squared Pearson
or Spearman correlations, or proportion of observations for which two variables are both positive
as similarity measures. Variable clustering is used for assessing collinearity, redundancy, and for
separating variables into clusters that can be scored as a single variable, thus resulting in data re-
duction. For computing any of the three similarity measures, pairwise deletion of NAs is done. The
clustering is done by hclust(). A small function naclus is also provided which depicts similari-
ties in which observations are missing for variables in a data frame. The similarity measure is the
fraction of NAs in common between any two variables. The diagonals of this sim matrix are the
fraction of NAs in each variable by itself. naclus also computes na.per.obs, the number of miss-
ing variables in each observation, and mean.na, a vector whose ith element is the mean number of
missing variables other than variable i, for observations in which variable i is missing. The naplot
function makes several plots (see the which argument).

So as to not generate too many dummy variables for multi-valued character or categorical predictors,
varclus will automatically combine infrequent cells of such variables using combine.levels.

plotMultSim plots multiple similarity matrices, with the similarity measure being on the x-axis of
each subplot.

na.pattern prints a frequency table of all combinations of missingness for multiple variables. If
there are 3 variables, a frequency table entry labeled 110 corresponds to the number of observations
for which the first and second variables were missing but the third variable was not missing.

Usage

varclus(x, similarity=c("spearman","pearson","hoeffding","bothpos","ccbothpos"),
type=c("data.matrix","similarity.matrix"),
method="complete",
data=NULL, subset=NULL, na.action=na.retain,
trans=c("square", "abs", "none"), ...)

S3 method for class 'varclus'
print(x, abbrev=FALSE, ...)
S3 method for class 'varclus'
plot(x, ylab, abbrev=FALSE, legend.=FALSE, loc, maxlen, labels, ...)

varclus 469

naclus(df, method)
naplot(obj, which=c('all','na per var','na per obs','mean na',

'na per var vs mean na'), ...)

plotMultSim(s, x=1:dim(s)[3],
slim=range(pretty(c(0,max(s,na.rm=TRUE)))),
slimds=FALSE,
add=FALSE, lty=par('lty'), col=par('col'),
lwd=par('lwd'), vname=NULL, h=.5, w=.75, u=.05,
labelx=TRUE, xspace=.35)

na.pattern(x)

Arguments

x a formula, a numeric matrix of predictors, or a similarity matrix. If x is a for-
mula, model.matrix is used to convert it to a design matrix. If the formula
excludes an intercept (e.g., ~ a + b -1), the first categorical (factor) variable
in the formula will have dummy variables generated for all levels instead of
omitting one for the first level. For plot and print, x is an object created by
varclus. For na.pattern, x is a data table, data frame, or matrix.
For plotMultSim, is a numeric vector specifying the ordered unique values on
the x-axis, corresponding to the third dimension of s.

df a data frame
s an array of similarity matrices. The third dimension of this array corresponds to

different computations of similarities. The first two dimensions come from a sin-
gle similarity matrix. This is useful for displaying similarity matrices computed
by varclus, for example. A use for this might be to show pairwise similari-
ties of variables across time in a longitudinal study (see the example below). If
vname is not given, s must have dimnames.

similarity the default is to use squared Spearman correlation coefficients, which will detect
monotonic but nonlinear relationships. You can also specify linear correlation
or Hoeffding’s (1948) D statistic, which has the advantage of being sensitive to
many types of dependence, including highly non-monotonic relationships. For
binary data, or data to be made binary, similarity="bothpos" uses as a sim-
ilarity measure the proportion of observations for which two variables are both
positive. similarity="ccbothpos" uses a chance-corrected measure which
is the proportion of observations for which both variables are positive minus
the product of the two marginal proportions. This difference is expected to be
zero under independence. For diagonals, "ccbothpos" still uses the proportion
of positives for the single variable. So "ccbothpos" is not really a similarity
measure, and clustering is not done. This measure is useful for plotting with
plotMultSim (see the last example).

type if x is not a formula, it may be a data matrix or a similarity matrix. By default,
it is assumed to be a data matrix.

method see hclust. The default, for both varclus and naclus, is "compact" (for R it
is "complete").

470 varclus

data a data frame, data table, or list

subset a standard subsetting expression

na.action These may be specified if x is a formula. The default na.action is na.retain,
defined by varclus. This causes all observations to be kept in the model frame,
with later pairwise deletion of NAs.

trans By default, when the similarity measure is based on Pearson’s or Spearman’s
correlation coefficients, the coefficients are squared. Specify trans="abs" to
take absolute values or trans="none" to use the coefficients as they stand.

... for varclus these are optional arguments to pass to the dataframeReduce func-
tion. Otherwise, passed to plclust (or to dotchart or dotchart2 for naplot).

ylab y-axis label. Default is constructed on the basis of similarity.

legend. set to TRUE to plot a legend defining the abbreviations

loc a list with elements x and y defining coordinates of the upper left corner of the
legend. Default is locator(1).

maxlen if a legend is plotted describing abbreviations, original labels longer than maxlen
characters are truncated at maxlen.

labels a vector of character strings containing labels corresponding to columns in the
similar matrix, if the column names of that matrix are not to be used

obj an object created by naclus

which defaults to "all" meaning to have naplot make 4 separate plots. To make only
one of the plots, use which="na per var" (dot chart of fraction of NAs for each
variable), ,"na per obs" (dot chart showing frequency distribution of number of
variables having NAs in an observation), "mean na" (dot chart showing mean
number of other variables missing when the indicated variable is missing), or
"na per var vs mean na", a scatterplot showing on the x-axis the fraction of
NAs in the variable and on the y-axis the mean number of other variables that
are NA when the indicated variable is NA.

abbrev set to TRUE to abbreviate variable names for plotting or printing. Is set to TRUE
automatically if legend=TRUE.

slim 2-vector specifying the range of similarity values for scaling the y-axes. By
default this is the observed range over all of s.

slimds set to slimds to TRUE to scale diagonals and off-diagonals separately

add set to TRUE to add similarities to an existing plot (usually specifying lty or col)

lty, col, lwd line type, color, or line thickness for plotMultSim

vname optional vector of variable names, in order, used in s

h relative height for subplot

w relative width for subplot

u relative extra height and width to leave unused inside the subplot. Also used as
the space between y-axis tick mark labels and graph border.

labelx set to FALSE to suppress drawing of labels in the x direction

xspace amount of space, on a scale of 1:n where n is the number of variables, to set
aside for y-axis labels

varclus 471

Details

options(contrasts= c("contr.treatment", "contr.poly")) is issued temporarily by varclus
to make sure that ordinary dummy variables are generated for factor variables. Pass arguments
to the dataframeReduce function to remove problematic variables (especially if analyzing all vari-
ables in a data frame).

Value

for varclus or naclus, a list of class varclus with elements call (containing the calling state-
ment), sim (similarity matrix), n (sample size used if x was not a correlation matrix already - n is a
matrix), hclust, the object created by hclust, similarity, and method. naclus also returns the
two vectors listed under description, and naplot returns an invisible vector that is the frequency
table of the number of missing variables per observation. plotMultSim invisibly returns the limits
of similarities used in constructing the y-axes of each subplot. For similarity="ccbothpos" the
hclust object is NULL.

na.pattern creates an integer vector of frequencies.

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

References

Sarle, WS: The VARCLUS Procedure. SAS/STAT User’s Guide, 4th Edition, 1990. Cary NC: SAS
Institute, Inc.

Hoeffding W. (1948): A non-parametric test of independence. Ann Math Stat 19:546–57.

See Also

hclust, plclust, hoeffd, rcorr, cor, model.matrix, locator, na.pattern, cut2, combine.levels

Examples

set.seed(1)
x1 <- rnorm(200)
x2 <- rnorm(200)
x3 <- x1 + x2 + rnorm(200)
x4 <- x2 + rnorm(200)
x <- cbind(x1,x2,x3,x4)
v <- varclus(x, similarity="spear") # spearman is the default anyway
v # invokes print.varclus
print(round(v$sim,2))
plot(v)

472 varclus

Convert the dendrogram to be horizontal
v <- as.dendrogram(v$hclust)
plot(v, horiz=TRUE, axes=FALSE, xlab=expression(paste('Spearman ', rho^2)))
rh <- seq(0, 1, by=0.1) # re-label x-axis re:similarity not distance
axis(1, at=1 - rh, labels=format(rh))

plot(varclus(~ age + sys.bp + dias.bp + country - 1), abbrev=TRUE)
the -1 causes k dummies to be generated for k countries
plot(varclus(~ age + factor(disease.code) - 1))
#
#
use varclus(~., data= fracmiss= maxlevels= minprev=) to analyze all
"useful" variables - see dataframeReduce for details about arguments

df <- data.frame(a=c(1,2,3),b=c(1,2,3),c=c(1,2,NA),d=c(1,NA,3),
e=c(1,NA,3),f=c(NA,NA,NA),g=c(NA,2,3),h=c(NA,NA,3))

par(mfrow=c(2,2))
for(m in c("ward","complete","median")) {

plot(naclus(df, method=m))
title(m)

}
naplot(naclus(df))
n <- naclus(df)
plot(n); naplot(n)
na.pattern(df)

plotMultSim example: Plot proportion of observations
for which two variables are both positive (diagonals
show the proportion of observations for which the
one variable is positive). Chance-correct the
off-diagonals by subtracting the product of the
marginal proportions. On each subplot the x-axis
shows month (0, 4, 8, 12) and there is a separate
curve for females and males
d <- data.frame(sex=sample(c('female','male'),1000,TRUE),

month=sample(c(0,4,8,12),1000,TRUE),
x1=sample(0:1,1000,TRUE),
x2=sample(0:1,1000,TRUE),
x3=sample(0:1,1000,TRUE))

s <- array(NA, c(3,3,4))
opar <- par(mar=c(0,0,4.1,0)) # waste less space
for(sx in c('female','male')) {

for(i in 1:4) {
mon <- (i-1)*4
s[,,i] <- varclus(~x1 + x2 + x3, sim='ccbothpos', data=d,

subset=d$month==mon & d$sex==sx)$sim
}

plotMultSim(s, c(0,4,8,12), vname=c('x1','x2','x3'),
add=sx=='male', slimds=TRUE,
lty=1+(sx=='male'))

slimds=TRUE causes separate scaling for diagonals and

vlab 473

off-diagonals
}
par(opar)

vlab vlab

Description

Easily Retrieve Text Form of Labels/Units

Usage

vlab(x, name = NULL)

Arguments

x a single variable name, unquoted

name optional character string to use as variable name

Details

Uses the same search method as hlab returns label and units in a character string with units, if
present, in brackets

Value

character string

Author(s)

Frank Harrell

See Also

hlab()

474 wtd.stats

wtd.stats Weighted Statistical Estimates

Description

These functions compute various weighted versions of standard estimators. In most cases the
weights vector is a vector the same length of x, containing frequency counts that in effect expand x
by these counts. weights can also be sampling weights, in which setting normwt to TRUE will often
be appropriate. This results in making weights sum to the length of the non-missing elements in
x. normwt=TRUE thus reflects the fact that the true sample size is the length of the x vector and not
the sum of the original values of weights (which would be appropriate had normwt=FALSE). When
weights is all ones, the estimates are all identical to unweighted estimates (unless one of the non-
default quantile estimation options is specified to wtd.quantile). When missing data have already
been deleted for, x, weights, and (in the case of wtd.loess.noiter) y, specifying na.rm=FALSE
will save computation time. Omitting the weights argument or specifying NULL or a zero-length
vector will result in the usual unweighted estimates.

wtd.mean, wtd.var, and wtd.quantile compute weighted means, variances, and quantiles, re-
spectively. wtd.Ecdf computes a weighted empirical distribution function. wtd.table computes a
weighted frequency table (although only one stratification variable is supported at present). wtd.rank
computes weighted ranks, using mid–ranks for ties. This can be used to obtain Wilcoxon tests and
rank correlation coefficients. wtd.loess.noiter is a weighted version of loess.smooth when no
iterations for outlier rejection are desired. This results in especially good smoothing when y is bi-
nary. wtd.quantile removes any observations with zero weight at the beginning. Previously, these
were changing the quantile estimates.

num.denom.setup is a utility function that allows one to deal with observations containing numbers
of events and numbers of trials, by outputting two observations when the number of events and
non-events (trials - events) exceed zero. A vector of subscripts is generated that will do the proper
duplications of observations, and a new binary variable y is created along with usual cell frequencies
(weights) for each of the y=0, y=1 cells per observation.

Usage

wtd.mean(x, weights=NULL, normwt="ignored", na.rm=TRUE)
wtd.var(x, weights=NULL, normwt=FALSE, na.rm=TRUE,

method=c('unbiased', 'ML'))
wtd.quantile(x, weights=NULL, probs=c(0, .25, .5, .75, 1),

type=c('quantile','(i-1)/(n-1)','i/(n+1)','i/n'),
normwt=FALSE, na.rm=TRUE)

wtd.Ecdf(x, weights=NULL,
type=c('i/n','(i-1)/(n-1)','i/(n+1)'),
normwt=FALSE, na.rm=TRUE)

wtd.table(x, weights=NULL, type=c('list','table'),
normwt=FALSE, na.rm=TRUE)

wtd.rank(x, weights=NULL, normwt=FALSE, na.rm=TRUE)
wtd.loess.noiter(x, y, weights=rep(1,n),

span=2/3, degree=1, cell=.13333,

wtd.stats 475

type=c('all','ordered all','evaluate'),
evaluation=100, na.rm=TRUE)

num.denom.setup(num, denom)

Arguments

x a numeric vector (may be a character or category or factor vector for wtd.table)

num vector of numerator frequencies

denom vector of denominators (numbers of trials)

weights a numeric vector of weights

normwt specify normwt=TRUE to make weights sum to length(x) after deletion of NAs.
If weights are frequency weights, then normwt should be FALSE, and if weights
are normalization (aka reliability) weights, then normwt should be TRUE. In the
case of the former, no check is made that weights are valid frequencies.

na.rm set to FALSE to suppress checking for NAs

method determines the estimator type; if 'unbiased' (the default) then the usual unbi-
ased estimate (using Bessel’s correction) is returned, if 'ML' then it is the max-
imum likelihood estimate for a Gaussian distribution. In the case of the latter,
the normwt argument has no effect. Uses stats:cov.wt for both methods.

probs a vector of quantiles to compute. Default is 0 (min), .25, .5, .75, 1 (max).

type For wtd.quantile, type defaults to quantile to use the same interpolated or-
der statistic method as quantile. Set type to "(i-1)/(n-1)","i/(n+1)", or
"i/n" to use the inverse of the empirical distribution function, using, respec-
tively, (wt - 1)/T, wt/(T+1), or wt/T, where wt is the cumulative weight and T is
the total weight (usually total sample size). These three values of type are the
possibilities for wtd.Ecdf. For wtd.table the default type is "list", mean-
ing that the function is to return a list containing two vectors: x is the sorted
unique values of x and sum.of.weights is the sum of weights for that x. This
is the default so that you don’t have to convert the names attribute of the re-
sult that can be obtained with type="table" to a numeric variable when x was
originally numeric. type="table" for wtd.table results in an object that is
the same structure as those returned from table. For wtd.loess.noiter the
default type is "all", indicating that the function is to return a list containing
all the original values of x (including duplicates and without sorting) and the
smoothed y values corresponding to them. Set type="ordered all" to sort by
x, and type="evaluate" to evaluate the smooth only at evaluation equally
spaced points between the observed limits of x.

y a numeric vector the same length as x
span, degree, cell, evaluation

see loess.smooth. The default is linear (degree=1) and 100 points to evalua-
tion (if type="evaluate").

Details

The functions correctly combine weights of observations having duplicate values of x before com-
puting estimates.

476 wtd.stats

When normwt=FALSE the weighted variance will not equal the unweighted variance even if the
weights are identical. That is because of the subtraction of 1 from the sum of the weights in the
denominator of the variance formula. If you want the weighted variance to equal the unweighted
variance when weights do not vary, use normwt=TRUE. The articles by Gatz and Smith discuss
alternative approaches, to arrive at estimators of the standard error of a weighted mean.

wtd.rank does not handle NAs as elegantly as rank if weights is specified.

Value

wtd.mean and wtd.var return scalars. wtd.quantile returns a vector the same length as probs.
wtd.Ecdf returns a list whose elements x and Ecdf correspond to unique sorted values of x. If the
first CDF estimate is greater than zero, a point (min(x),0) is placed at the beginning of the estimates.
See above for wtd.table. wtd.rank returns a vector the same length as x (after removal of NAs,
depending on na.rm). See above for wtd.loess.noiter.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
<fh@fharrell.com>
Benjamin Tyner
<btyner@gmail.com>

References

Research Triangle Institute (1995): SUDAAN User’s Manual, Release 6.40, pp. 8-16 to 8-17.

Gatz DF, Smith L (1995): The standard error of a weighted mean concentration–I. Bootstrapping
vs other methods. Atmospheric Env 11:1185-1193.

Gatz DF, Smith L (1995): The standard error of a weighted mean concentration–II. Estimating
confidence intervals. Atmospheric Env 29:1195-1200.

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

See Also

mean, var, quantile, table, rank, loess.smooth, lowess, plsmo, Ecdf, somers2, describe

Examples

set.seed(1)
x <- runif(500)
wts <- sample(1:6, 500, TRUE)
std.dev <- sqrt(wtd.var(x, wts))
wtd.quantile(x, wts)
death <- sample(0:1, 500, TRUE)
plot(wtd.loess.noiter(x, death, wts, type='evaluate'))
describe(~x, weights=wts)
describe uses wtd.mean, wtd.quantile, wtd.table
xg <- cut2(x,g=4)

xtfrm.labelled 477

table(xg)
wtd.table(xg, wts, type='table')

Here is a method for getting stratified weighted means
y <- runif(500)
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(xg), g, stat.name='y')

Empirically determine how methods used by wtd.quantile match with
methods used by quantile, when all weights are unity
set.seed(1)
u <- eval(formals(wtd.quantile)$type)
v <- as.character(1:9)
r <- matrix(0, nrow=length(u), ncol=9, dimnames=list(u,v))

for(n in c(8, 13, 22, 29))
{
x <- rnorm(n)
for(i in 1:5) {

probs <- sort(runif(9))
for(wtype in u) {

wq <- wtd.quantile(x, type=wtype, weights=rep(1,length(x)), probs=probs)
for(qtype in 1:9) {

rq <- quantile(x, type=qtype, probs=probs)
r[wtype, qtype] <- max(r[wtype,qtype], max(abs(wq-rq)))

}
}

}
}

r

Restructure data to generate a dichotomous response variable
from records containing numbers of events and numbers of trials
num <- c(10,NA,20,0,15) # data are 10/12 NA/999 20/20 0/25 15/35
denom <- c(12,999,20,25,35)
w <- num.denom.setup(num, denom)
w
attach(my.data.frame[w$subs,])

xtfrm.labelled Auxiliary Function Method for Sorting and Ranking

Description

An auxiliary function method that is a workaround for bug in the implementation of xtfrm handles
inheritance.

478 xy.group

Usage

S3 method for class 'labelled'
xtfrm(x)

Arguments

x any object of class labelled.

See Also

xtfrm

xy.group Mean x vs. function of y in groups of x

Description

Compute mean x vs. a function of y (e.g. median) by quantile groups of x or by x grouped to have
a given minimum number of observations. Deletes NAs in x and y before doing computations.

Usage

xy.group(x, y, m=150, g, fun=mean, result="list")

Arguments

x a vector, may contain NAs

y a vector of same length as x, may contain NAs

m number of observations per group

g number of quantile groups

fun function of y such as median or mean (the default)

result "list" (the default), or "matrix"

Value

if result="list", a list with components x and y suitable for plotting. if result="matrix", matrix with
rows corresponding to x-groups and columns named n, x, and y.

See Also

cut2, cutGn, tapply

xYplot 479

Examples

Not run:
plot(xy.group(x, y, g=10)) #Plot mean y by deciles of x
xy.group(x, y, m=100, result="matrix") #Print table, 100 obs/group

End(Not run)

xYplot xyplot and dotplot with Matrix Variables to Plot Error Bars and Bands

Description

A utility function Cbind returns the first argument as a vector and combines all other arguments into
a matrix stored as an attribute called "other". The arguments can be named (e.g., Cbind(pressure=y,ylow,yhigh))
or a label attribute may be pre-attached to the first argument. In either case, the name or label of
the first argument is stored as an attribute "label" of the object returned by Cbind. Storing other
vectors as a matrix attribute facilitates plotting error bars, etc., as trellis really wants the x- and
y-variables to be vectors, not matrices. If a single argument is given to Cbind and that argument is a
matrix with column dimnames, the first column is taken as the main vector and remaining columns
are taken as "other". A subscript method for Cbind objects subscripts the other matrix along with
the main y vector.

The xYplot function is a substitute for xyplot that allows for simulated multi-column y. It uses
by default the panel.xYplot and prepanel.xYplot functions to do the actual work. The method
argument passed to panel.xYplot from xYplot allows you to make error bars, the upper-only or
lower-only portions of error bars, alternating lower-only and upper-only bars, bands, or filled bands.
panel.xYplot decides how to alternate upper and lower bars according to whether the median y
value of the current main data line is above the median y for all groups of lines or not. If the median
is above the overall median, only the upper bar is drawn. For bands (but not ’filled bands’), any
number of other columns of y will be drawn as lines having the same thickness, color, and type
as the main data line. If plotting bars, bands, or filled bands and only one additional column is
specified for the response variable, that column is taken as the half width of a precision interval for
y, and the lower and upper values are computed automatically as y plus or minus the value of the
additional column variable.

When a groups variable is present, panel.xYplot will create a function in frame 0 (.GlobalEnv in
R) called Key that when invoked will draw a key describing the groups labels, point symbols, and
colors. By default, the key is outside the graph. For S-Plus, if Key(locator(1)) is specified, the
key will appear so that its upper left corner is at the coordinates of the mouse click. For R/Lattice the
first two arguments of Key (x and y) are fractions of the page, measured from the lower left corner,
and the default placement is at x=0.05, y=0.95. For R, an optional argument to sKey, other, may
contain a list of arguments to pass to draw.key (see xyplot for a list of possible arguments, under
the key option).

When method="quantile" is specified, xYplot automatically groups the x variable into intervals
containing a target of nx observations each, and within each x group computes three quantiles of y
and plots these as three lines. The mean x within each x group is taken as the x-coordinate. This
will make a useful empirical display for large datasets in which scatterdiagrams are too busy to see
patterns of central tendency and variability. You can also specify a general function of a data vector

480 xYplot

that returns a matrix of statistics for the method argument. Arguments can be passed to that function
via a list methodArgs. The statistic in the first column should be the measure of central tendency.
Examples of useful method functions are those listed under the help file for summary.formula such
as smean.cl.normal.

xYplot can also produce bubble plots. This is done when size is specified to xYplot. When size
is used, a function sKey is generated for drawing a key to the character sizes. See the bubble plot
example. size can also specify a vector where the first character of each observation is used as the
plotting symbol, if rangeCex is set to a single cex value. An optional argument to sKey, other,
may contain a list of arguments to pass to draw.key (see xyplot for a list of possible arguments,
under the key option). See the bubble plot example.

Dotplot is a substitute for dotplot allowing for a matrix x-variable, automatic superpositioning
when groups is present, and creation of a Key function. When the x-variable (created by Cbind
to simulate a matrix) contains a total of 3 columns, the first column specifies where the dot is
positioned, and the last 2 columns specify starting and ending points for intervals. The intervals are
shown using line type, width, and color from the trellis plot.line list. By default, you will usually
see a darker line segment for the low and high values, with the dotted reference line elsewhere. A
good choice of the pch argument for such plots is 3 (plus sign) if you want to emphasize the interval
more than the point estimate. When the x-variable contains a total of 5 columns, the 2nd and 5th
columns are treated as the 2nd and 3rd are treated above, and the 3rd and 4th columns define an
inner line segment that will have twice the thickness of the outer segments. In addition, tick marks
separate the outer and inner segments. This type of display (an example of which appeared in The
Elements of Graphing Data by Cleveland) is very suitable for displaying two confidence levels
(e.g., 0.9 and 0.99) or the 0.05, 0.25, 0.75, 0.95 sample quantiles, for example. For this display, the
central point displays well with a default circle symbol.

setTrellis sets nice defaults for Trellis graphics, assuming that the graphics device has already
been opened if using postscript, etc. By default, it sets panel strips to blank and reference dot lines
to thickness 1 instead of the Trellis default of 2.

numericScale is a utility function that facilitates using xYplot to plot variables that are not consid-
ered to be numeric but which can readily be converted to numeric using as.numeric(). numericScale
by default will keep the name of the input variable as a label attribute for the new numeric variable.

Usage

Cbind(...)

xYplot(formula, data = sys.frame(sys.parent()), groups,
subset, xlab=NULL, ylab=NULL, ylim=NULL,
panel=panel.xYplot, prepanel=prepanel.xYplot, scales=NULL,
minor.ticks=NULL, sub=NULL, ...)

panel.xYplot(x, y, subscripts, groups=NULL,
type=if(is.function(method) || method=='quantiles')
'b' else 'p',

method=c("bars", "bands", "upper bars", "lower bars",
"alt bars", "quantiles", "filled bands"),

methodArgs=NULL, label.curves=TRUE, abline,
probs=c(.5,.25,.75), nx=NULL,

xYplot 481

cap=0.015, lty.bar=1,
lwd=plot.line$lwd, lty=plot.line$lty, pch=plot.symbol$pch,
cex=plot.symbol$cex, font=plot.symbol$font, col=NULL,
lwd.bands=NULL, lty.bands=NULL, col.bands=NULL,
minor.ticks=NULL, col.fill=NULL,
size=NULL, rangeCex=c(.5,3), ...)

prepanel.xYplot(x, y, ...)

Dotplot(formula, data = sys.frame(sys.parent()), groups, subset,
xlab = NULL, ylab = NULL, ylim = NULL,
panel=panel.Dotplot, prepanel=prepanel.Dotplot,
scales=NULL, xscale=NULL, ...)

prepanel.Dotplot(x, y, ...)

panel.Dotplot(x, y, groups = NULL,
pch = dot.symbol$pch,
col = dot.symbol$col, cex = dot.symbol$cex,
font = dot.symbol$font, abline, ...)

setTrellis(strip.blank=TRUE, lty.dot.line=2, lwd.dot.line=1)

numericScale(x, label=NULL, ...)

Arguments

... for Cbind ... is any number of additional numeric vectors. Unless you are
using Dotplot (which allows for either 2 or 4 "other" variables) or xYplot with
method="bands", vectors after the first two are ignored. If drawing bars and
only one extra variable is given in ..., upper and lower values are computed
as described above. If the second argument to Cbind is a matrix, that matrix is
stored in the "other" attribute and arguments after the second are ignored. For
bubble plots, name an argument cex.
Also can be other arguments to pass to labcurve.

formula a trellis formula consistent with xyplot or dotplot

x x-axis variable. For numericScale x is any vector such as as.numeric(x)
returns a numeric vector suitable for x- or y-coordinates.

y a vector, or an object created by Cbind for xYplot. y represents the main vari-
able to plot, i.e., the variable used to draw the main lines. For Dotplot the first
argument to Cbind will be the main x-axis variable.

data, subset, ylim, subscripts, groups, type, scales, panel, prepanel, xlab,
ylab

see trellis.args. xlab and ylab get default values from "label" attributes.

xscale allows one to use the default scales but specify only the x component of it for
Dotplot

482 xYplot

method defaults to "bars" to draw error-bar type plots. See meaning of other values
above. method can be a function. Specifying method=quantile, methodArgs=list(probs=c(.5,.25,.75))
is the same as specifying method="quantile" without specifying probs.

methodArgs a list containing optional arguments to be passed to the function specified in
method

label.curves set to FALSE to suppress invocation of labcurve to label primary curves where
they are most separated or to draw a legend in an empty spot on the panel.
You can also set label.curves to a list of options to pass to labcurve. These
options can also be passed as ... to xYplot. See the examples below.

abline a list of arguments to pass to panel.abline for each panel, e.g. list(a=0,
b=1, col=3) to draw the line of identity using color 3. To make multiple calls to
panel.abline, pass a list of unnamed lists as abline, e.g., abline=list(list(h=0),list(v=1)).

probs a vector of three quantiles with the quantile corresponding to the central line
listed first. By default probs=c(.5, .25, .75). You can also specify probs
through methodArgs=list(probs=...).

nx number of target observations for each x group (see cut2 m argument). nx de-
faults to the minimum of 40 and the number of points in the current stratum
divided by 4. Set nx=FALSE or nx=0 if x is already discrete and requires no
grouping.

cap the half-width of horizontal end pieces for error bars, as a fraction of the length
of the x-axis

lty.bar line type for bars
lwd, lty, pch, cex, font, col

see trellis.args. These are vectors when groups is present, and the order
of their elements corresponds to the different groups, regardless of how many
bands or bars are drawn. If you don’t specify lty.bands, for example, all band
lines within each group will have the same lty.

lty.bands, lwd.bands, col.bands
used to allow lty, lwd, col to vary across the different band lines for different
groups. These parameters are vectors or lists whose elements correspond to the
added band lines (i.e., they ignore the central line, whose line characteristics are
defined by lty, lwd, col). For example, suppose that 4 lines are drawn in ad-
dition to the central line. Specifying lwd.bands=1:4 will cause line widths of
1:4 to be used for every group, regardless of the value of lwd. To vary charac-
teristics over the groups use e.g. lwd.bands=list(rep(1,4), rep(2,4)) or
list(c(1,2,1,2), c(3,4,3,4)).

minor.ticks a list with elements at and labels specifying positions and labels for minor tick
marks to be used on the x-axis of each panel, if any.

sub an optional subtitle

col.fill used to override default colors used for the bands in method=’filled bands’.
This is a vector when groups is present, and the order of the elements corre-
sponds to the different groups, regardless of how many bands are drawn. The
default colors for ’filled bands’ are pastel colors matching the default colors
superpose.line$col (plot.line$col)

xYplot 483

size a vector the same length as x giving a variable whose values are a linear function
of the size of the symbol drawn. This is used for example for bubble plots.

rangeCex a vector of two values specifying the range in character sizes to use for the size
variable (lowest first, highest second). size values are linearly translated to
this range, based on the observed range of size when x and y coordinates are
not missing. Specify a single numeric cex value for rangeCex to use the first
character of each observations’s size as the plotting symbol.

strip.blank set to FALSE to not make the panel strip backgrounds blank

lty.dot.line line type for dot plot reference lines (default = 1 for dotted; use 2 for dotted)

lwd.dot.line line thickness for reference lines for dot plots (default = 1)

label a scalar character string to be used as a variable label after numericScale con-
verts the variable to numeric form

Details

Unlike xyplot, xYplot senses the presence of a groups variable and automatically invokes panel.superpose
instead of panel.xyplot. The same is true for Dotplot vs. dotplot.

Value

Cbind returns a matrix with attributes. Other functions return standard trellis results.

Side Effects

plots, and panel.xYplot may create temporary Key and sKey functions in the session frame.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>
Madeline Bauer
Department of Infectious Diseases
University of Southern California School of Medicine
<mbauer@usc.edu>

See Also

xyplot, panel.xyplot, summarize, label, labcurve, errbar, dotplot, reShape, cut2, panel.abline

Examples

Plot 6 smooth functions. Superpose 3, panel 2.
Label curves with p=1,2,3 where most separated
d <- expand.grid(x=seq(0,2*pi,length=150), p=1:3, shift=c(0,pi))
xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d, type='l')
Use a key instead, use 3 line widths instead of 3 colors
Put key in most empty portion of each panel

484 xYplot

xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d,
type='l', keys='lines', lwd=1:3, col=1)

Instead of implicitly using labcurve(), put a
single key outside of panels at lower left corner
xYplot(sin(x+shift)^p ~ x | shift, groups=p, data=d,

type='l', label.curves=FALSE, lwd=1:3, col=1, lty=1:3)
Key()

Bubble plots
x <- y <- 1:8
x[2] <- NA
units(x) <- 'cm^2'
z <- 101:108
p <- factor(rep(c('a','b'),4))
g <- c(rep(1,7),2)
data.frame(p, x, y, z, g)
xYplot(y ~ x | p, groups=g, size=z)
Key(other=list(title='g', cex.title=1.2)) # draw key for colors

sKey(.2,.85,other=list(title='Z Values', cex.title=1.2))
draw key for character sizes

Show the median and quartiles of height given age, stratified
by sex and race. Draws 2 sets (male, female) of 3 lines per panel.
xYplot(height ~ age | race, groups=sex, method='quantiles')

Examples of plotting raw data
dfr <- expand.grid(month=1:12, continent=c('Europe','USA'),

sex=c('female','male'))
set.seed(1)
dfr <- upData(dfr,

y=month/10 + 1*(sex=='female') + 2*(continent=='Europe') +
runif(48,-.15,.15),

lower=y - runif(48,.05,.15),
upper=y + runif(48,.05,.15))

xYplot(Cbind(y,lower,upper) ~ month,subset=sex=='male' & continent=='USA',
data=dfr)

xYplot(Cbind(y,lower,upper) ~ month|continent, subset=sex=='male',data=dfr)
xYplot(Cbind(y,lower,upper) ~ month|continent, groups=sex, data=dfr); Key()
add ,label.curves=FALSE to suppress use of labcurve to label curves where
farthest apart

xYplot(Cbind(y,lower,upper) ~ month,groups=sex,
subset=continent=='Europe', data=dfr)

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b',
subset=continent=='Europe', keys='lines',
data=dfr)

keys='lines' causes labcurve to draw a legend where the panel is most empty

xYplot 485

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b', data=dfr,
subset=continent=='Europe',method='bands')

xYplot(Cbind(y,lower,upper) ~ month,groups=sex, type='b', data=dfr,
subset=continent=='Europe',method='upper')

label(dfr$y) <- 'Quality of Life Score'
label is in Hmisc library = attr(y,'label') <- 'Quality\dots'; will be
y-axis label
can also specify Cbind('Quality of Life Score'=y,lower,upper)
xYplot(Cbind(y,lower,upper) ~ month, groups=sex,

subset=continent=='Europe', method='alt bars',
offset=grid::unit(.1,'inches'), type='b', data=dfr)

offset passed to labcurve to label .4 y units away from curve
for R (using grid/lattice), offset is specified using the grid
unit function, e.g., offset=grid::unit(.4,'native') or
offset=grid::unit(.1,'inches') or grid::unit(.05,'npc')

The following example uses the summarize function in Hmisc to
compute the median and outer quartiles. The outer quartiles are
displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
month <- dfr$month; year <- dfr$year
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,

keys='lines', method='alt', type='b')
Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),

stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s,

type='b', keys='lines')
Or:
xYplot(y ~ month, groups=year, keys='lines', nx=FALSE, method='quantile',

type='b')
nx=FALSE means to treat month as a discrete variable

To display means and bootstrapped nonparametric confidence intervals
use:
s <- summarize(y, llist(month,year), smean.cl.boot)
s
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s, type='b')
Can also use Y <- cbind(y, Lower, Upper); xYplot(Cbind(Y) ~ ...)
Or:
xYplot(y ~ month | year, nx=FALSE, method=smean.cl.boot, type='b')

This example uses the summarize function in Hmisc to
compute the median and outer quartiles. The outer quartiles are
displayed using "filled bands"

486 xYplot

s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

filled bands: default fill = pastel colors matching solid colors
in superpose.line (this works differently in R)
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, type="l")

note colors based on levels of selected subgroups, not first two colors
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, type="l",
subset=(year == 1998 | year == 2000), label.curves=FALSE)

filled bands using black lines with selected solid colors for fill
xYplot (Cbind (y, Lower, Upper) ~ month, groups=year,

method="filled bands" , data=s, label.curves=FALSE,
type="l", col=1, col.fill = 2:3)

Key(.5,.8,col = 2:3) #use fill colors in key

A good way to check for stable variance of residuals from ols
xYplot(resid(fit) ~ fitted(fit), method=smean.sdl)
smean.sdl is defined with summary.formula in Hmisc

Plot y vs. a special variable x
xYplot(y ~ numericScale(x, label='Label for X') | country)
For this example could omit label= and specify
y ~ numericScale(x) | country, xlab='Label for X'

Here is an example of using xYplot with several options
to change various Trellis parameters,
xYplot(y ~ x | z, groups=v, pch=c('1','2','3'),
layout=c(3,1), # 3 panels side by side
ylab='Y Label', xlab='X Label',
main=list('Main Title', cex=1.5),
par.strip.text=list(cex=1.2),
strip=function(\dots) strip.default(\dots, style=1),
scales=list(alternating=FALSE))

#
Dotplot examples
#

s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)

yearDays 487

setTrellis() # blank conditioning panel backgrounds
Dotplot(month ~ Cbind(y, Lower, Upper) | year, data=s)
or Cbind(\dots), groups=year, data=s

Display a 5-number (5-quantile) summary (2 intervals, dot=median)
Note that summarize produces a matrix for y, and Cbind(y) trusts the
first column to be the point estimate (here the median)
s <- summarize(y, llist(month,year), quantile,

probs=c(.5,.05,.25,.75,.95), type='matrix')
Dotplot(month ~ Cbind(y) | year, data=s)
Use factor(year) to make actual years appear in conditioning title strips

Plot proportions and their Wilson confidence limits
set.seed(3)
d <- expand.grid(continent=c('USA','Europe'), year=1999:2001,

reps=1:100)
Generate binary events from a population probability of 0.2
of the event, same for all years and continents
d$y <- ifelse(runif(6*100) <= .2, 1, 0)
s <- with(d,

summarize(y, llist(continent,year),
function(y) {
n <- sum(!is.na(y))
s <- sum(y, na.rm=TRUE)
binconf(s, n)
}, type='matrix')

)

Dotplot(year ~ Cbind(y) | continent, data=s, ylab='Year',
xlab='Probability')

Dotplot(z ~ x | g1*g2)
2-way conditioning
Dotplot(z ~ x | g1, groups=g2); Key()
Key defines symbols for g2

If the data are organized so that the mean, lower, and upper
confidence limits are in separate records, the Hmisc reShape
function is useful for assembling these 3 values as 3 variables
a single observation, e.g., assuming type has values such as
c('Mean','Lower','Upper'):
a <- reShape(y, id=month, colvar=type)
This will make a matrix with 3 columns named Mean Lower Upper
and with 1/3 as many rows as the original data

yearDays Get Number of Days in Year or Month

488 ynbind

Description

Returns the number of days in a specific year or month.

Usage

yearDays(time)

monthDays(time)

Arguments

time A POSIXt or Date object describing the month or year in question.

Author(s)

Charles Dupont

See Also

POSIXt, Date

ynbind Combine Variables in a Matrix

Description

ynbind column binds a series of related yes/no variables, allowing for a final argument label
used to label the panel created for the group. labels for individual variables are collected into
a vector attribute "labels" for the result; original variable names are used in place of labels for
those variables without labels. A positive response is taken to be y, yes,present (ignoring case)
or a logical TRUE value. By default, the columns are sorted be ascending order or the overall
proportion of positives. A subsetting method is provided for objects of class "ynbind".

pBlock creates a matrix similarly labeled, from a general set of variables (without special handling
of binaries), and sets to NA any observation not in subset so that when that block of variables is
analyzed it will be only for that subset.

Usage

ynbind(..., label = deparse(substitute(...)),
asna = c("unknown", "unspecified"), sort = TRUE)

pBlock(..., subset=NULL, label = deparse(substitute(...)))

%nin% 489

Arguments

... a series of vectors
label a label for the group, to be attached to the resulting matrix as a "label" attribute,

used by summaryP.
asna a vector of character strings specifying levels that are to be treated the same as

NA if present
sort set to FALSE to not sort the columns by their proportions
subset subset criteria - either a vector of logicals or subscripts

Value

a matrix of class "ynbind" or "pBlock" with "label" and "labels" attributes. For "pBlock",
factor input vectors will have values converted to character.

Author(s)

Frank Harrell

See Also

summaryP

Examples

x1 <- c('yEs', 'no', 'UNKNOWN', NA)
x2 <- c('y', 'n', 'no', 'present')
label(x2) <- 'X2'
X <- ynbind(x1, x2, label='x1-2')
X[1:3,]

pBlock(x1, x2, subset=2:3, label='x1-2')

%nin% Find Matching (or Non-Matching) Elements

Description

%nin% is a binary operator, which returns a logical vector indicating if there is a match or not for its
left operand. A true vector element indicates no match in left operand, false indicates a match.

Usage

x %nin% table

Arguments

x a vector (numeric, character, factor)
table a vector (numeric, character, factor), matching the mode of x

490 %nin%

Value

vector of logical values with length equal to length of x.

See Also

match %in%

Examples

c('a','b','c') %nin% c('a','b')

Index

∗ IO
csv.get, 56
getZip, 157
mdb.get, 229

∗ NA
aregImpute, 16

∗ SPSS data file
spss.get, 374

∗ STATA data file
stata.get, 377

∗ aggregation
summarize, 384
summary.formula, 388
summaryM, 403
summaryP, 411
summaryS, 418
xy.group, 478

∗ algebra
solvet, 362

∗ aplot
cnvrt.coords, 40
labcurve, 189
minor.tick, 237
pstamp, 290
rlegend, 315
scat1d, 340
show.pch, 353
subplot, 382

∗ apply for matrix
mApply, 223

∗ apply for vector
mApply, 223

∗ arith
approxExtrap, 11

∗ array
print.char.matrix, 285
reShape, 312
solvet, 362

∗ attribute

label, 199
valueTags, 466

∗ bootstrap
areg, 12
aregImpute, 16
bootkm, 30
find.matches, 134
rm.boot, 316
smean.sd, 360
transace, 432
transcan, 441

∗ case-control
find.matches, 134

∗ categorization
cut2, 63
ggfreqScatter, 158

∗ category
binconf, 26
biVar, 27
bpower, 32
bystats, 36
cut2, 63
dataRep, 74
describe, 78
mApply, 223
mChoice, 225
mhgr, 234
popower, 278
rcorr, 297
samplesize.bin, 328
simRegOrd, 358
summarize, 384
summary.formula, 388
summaryM, 403
summaryP, 411
summaryS, 418
varclus, 468
wtd.stats, 474
xy.group, 478

491

492 INDEX

∗ character
%nin%, 489
all.is.numeric, 10
capitalize, 38
Cs, 55
escapeRegex, 107
first.word, 138
format.df, 139
html, 180
latex, 206
latexTabular, 218
latexTherm, 219
makeNstr, 223
nstr, 254
rcspline.restate, 307
sedit, 350
string.break.line, 380
translate, 458

∗ chron
trunc.POSIXt, 459
yearDays, 487

∗ cluster sampling
deff, 77

∗ cluster
dataRep, 74
varclus, 468

∗ compressed file
getZip, 157

∗ concat
makeNstr, 223

∗ cross-classification
summarize, 384
summary.formula, 388
summaryP, 411

∗ data reduction
redun, 309

∗ datasets
dataRep, 74

∗ data
contents, 50
data.frame.create.modify.check, 65
getHdata, 154
Save, 339
upData, 461

∗ descriptive statistics
curveRep, 58

∗ device
showPsfrag, 354

tex, 431
∗ discretization

cut2, 63
ggfreqScatter, 158
xy.group, 478

∗ distribution
describe, 78
Ecdf, 99
hist.data.frame, 166
histbackback, 167
panel.bpplot, 259
rMultinom, 325
scat1d, 340
wtd.stats, 474

∗ documentation
list.tree, 221

∗ dplot
approxExtrap, 11
cnvrt.coords, 40
hist.data.frame, 166
histbackback, 167
labcurve, 189
mgp.axis, 233
scat1d, 340
subplot, 382

∗ environment
mgp.axis, 233

∗ epidemiology
find.matches, 134
mhgr, 234

∗ exploratory data analysis
curveRep, 58

∗ file
csv.get, 56
format.df, 139
getZip, 157
html, 180
latex, 206
latexTabular, 218
latexTherm, 219
mdb.get, 229
Save, 339
spss.get, 374
src, 376
stata.get, 377

∗ grouping
bystats, 36
cut2, 63

INDEX 493

ggfreqScatter, 158
summarize, 384
summary.formula, 388
summaryM, 403
summaryP, 411
summaryS, 418
wtd.stats, 474
xy.group, 478

∗ hplot
bpplot, 34
colorFacet, 43
curveRep, 58
describe, 78
dotchart2, 87
dotchart3, 89
dotchartpl, 93
Ecdf, 99
errbar, 106
event.chart, 114
event.convert, 124
ggfreqScatter, 158
hist.data.frame, 166
histbackback, 167
histboxp, 168
labcurve, 189
latexDotchart, 216
minor.tick, 237
mtitle, 247
multLines, 248
panel.bpplot, 259
plsmo, 273
rm.boot, 316
scat1d, 340
showPsfrag, 354
summary.formula, 388
summaryM, 403
summaryP, 411
summaryRc, 416
summaryS, 418
symbol.freq, 424
tex, 431
xYplot, 479

∗ htest
binconf, 26
biVar, 27
bpower, 32
ciapower, 39
cpower, 52

data.frame.create.modify.check, 65
deff, 77
find.matches, 134
gbayes, 143
hoeffd, 178
impute, 184
mhgr, 234
plotCorrPrecision, 269
popower, 278
rcorr, 297
rm.boot, 316
samplesize.bin, 328
simRegOrd, 358
smean.sd, 360
spower, 368
t.test.cluster, 426

∗ html
contents, 50

∗ imputation
aregImpute, 16

∗ interface
contents, 50
data.frame.create.modify.check, 65
describe, 78
format.df, 139
getHdata, 154
getRs, 156
html, 180
knitrSet, 187
latex, 206
latexTabular, 218
latexTherm, 219
rcspline.restate, 307
sas.get, 329
sasxport.get, 336
spss.get, 374
stata.get, 377
summary.formula, 388
summaryM, 403
sys, 425
tabulr, 427
units, 460

∗ iplot
labcurve, 189
mgp.axis, 233
Misc, 238

∗ iteration
mApply, 223

494 INDEX

∗ lattice
Ecdf, 99
panel.bpplot, 259
plsmo, 273
reShape, 312
showPsfrag, 354
tex, 431
xYplot, 479

∗ list
print.char.list, 284

∗ loess
wtd.stats, 474

∗ logistic regression model
rcorr.cens, 298
rcorrp.cens, 301
somers2, 362

∗ longitudinal data
curveRep, 58
reShape, 312
rm.boot, 316

∗ manip
%nin%, 489
addMarginal, 9
capitalize, 38
csv.get, 56
data.frame.create.modify.check, 65
dataRep, 74
discrete, 85
escapeRegex, 107
first.word, 138
format.df, 139
html, 180
Lag, 204
latex, 206
latexTabular, 218
latexTherm, 219
makeNstr, 223
mChoice, 225
mdb.get, 229
nobsY, 253
nstr, 254
partition, 264
prselect, 289
reShape, 312
sas.get, 329
sasxport.get, 336
score.binary, 348
sedit, 350

spss.get, 374
stata.get, 377
summarize, 384
summary.formula, 388
summaryM, 403
summaryP, 411
summaryS, 418
trunc.POSIXt, 459
upData, 461
varclus, 468
wtd.stats, 474

∗ matching
find.matches, 134

∗ math
find.matches, 134
impute, 184

∗ methods
aregImpute, 16
Ecdf, 99
format.df, 139
html, 180
impute, 184
latex, 206
latexTabular, 218
redun, 309
transcan, 441

∗ misc
HmiscOverview, 172
label, 199
valueTags, 466
ynbind, 488

∗ missing data
aregImpute, 16

∗ model validation
transace, 432

∗ models
abs.error.pred, 6
areg, 12
aregImpute, 16
dataRep, 74
describe, 78
impute, 184
na.delete, 249
na.detail.response, 250
na.keep, 252
rcspline.plot, 305
redun, 309
transcan, 441

INDEX 495

∗ multiple choice
mChoice, 225

∗ multivariate
areg, 12
aregImpute, 16
curveRep, 58
find.matches, 134
pc1, 265
redun, 309
rm.boot, 316
summarize, 384
transace, 432
transcan, 441
varclus, 468

∗ nonlinear
transace, 432

∗ nonparametric
biVar, 27
bootkm, 30
bpplot, 34
cut2, 63
describe, 78
Ecdf, 99
hoeffd, 178
panel.bpplot, 259
plsmo, 273
rcorr, 297
rcorr.cens, 298
rcorrp.cens, 301
smean.sd, 360
somers2, 362
transace, 432
wtd.stats, 474
xy.group, 478

∗ ordinal logistic model
popower, 278
simRegOrd, 358

∗ ordinal response
popower, 278
simRegOrd, 358

∗ overview
data.frame.create.modify.check, 65
HmiscOverview, 172

∗ power
bpower, 32
ciapower, 39
cpower, 52
gbayes, 143

popower, 278
samplesize.bin, 328
simRegOrd, 358
spower, 368

∗ predictive accuracy
abs.error.pred, 6
rcorr.cens, 298
rcorrp.cens, 301
somers2, 362

∗ predictive mean matching
aregImpute, 16

∗ print
equalBins, 105
format.pval, 142
print.char.list, 284
print.char.matrix, 285
prnz, 288
simplifyDims, 357
string.bounding.box, 380
string.break.line, 380
stringDims, 381

∗ programming
data.frame.create.modify.check, 65
escapeRegex, 107
Misc, 238
src, 376

∗ proportional odds model
popower, 278
simRegOrd, 358

∗ regression
abs.error.pred, 6
areg, 12
aregImpute, 16
na.detail.response, 250
rcorrp.cens, 301
rcspline.eval, 304
rcspline.plot, 305
rcspline.restate, 307
redun, 309
rm.boot, 316
transace, 432
transcan, 441

∗ repeated measures
curveRep, 58
reShape, 312
rm.boot, 316

∗ representative curves
curveRep, 58

496 INDEX

∗ robust
abs.error.pred, 6
describe, 78
GiniMd, 161
wtd.stats, 474

∗ serial data
curveRep, 58

∗ smooth
areg, 12
aregImpute, 16
plsmo, 273
rcspline.eval, 304
redun, 309
transace, 432
transcan, 441
wtd.stats, 474

∗ stratification
summarize, 384
summary.formula, 388
summaryM, 403
summaryP, 411
summaryS, 418
xy.group, 478

∗ string
makeNstr, 223

∗ study design
bpower, 32
ciapower, 39
cpower, 52
deff, 77
gbayes, 143
popower, 278
samplesize.bin, 328
simRegOrd, 358
spower, 368

∗ survival
bootkm, 30
ciapower, 39
cpower, 52
event.chart, 114
event.convert, 124
event.history, 125
rcorr.cens, 298
rcorrp.cens, 301
spower, 368

∗ trellis
Ecdf, 99
panel.bpplot, 259

plsmo, 273
reShape, 312
showPsfrag, 354
tex, 431
xYplot, 479

∗ univar
GiniMd, 161
hdquantile, 163

∗ utilities
addMarginal, 9
consolidate, 49
Cs, 55
format.df, 139
html, 180
label, 199
latex, 206
latexCheckOptions, 215
latexTabular, 218
latexTherm, 219
Misc, 238
nobsY, 253
nstr, 254
prselect, 289
Save, 339
src, 376
tabulr, 427
trunc.POSIXt, 459
units, 460
valueTags, 466
yearDays, 487
ynbind, 488

∗ weighted sampling
wtd.stats, 474

∗ weights
wtd.stats, 474

.q (Cs), 55
[, 86
[.Cbind (xYplot), 479
[.describe (describe), 78
[.discrete (discrete), 85
[.impute (impute), 184
[.labelled (label), 199
[.mChoice (mChoice), 225
[.pBlock (ynbind), 488
[.roundN (dataRep), 74
[.special.miss (sas.get), 329
[.summary.formula.response

(summary.formula), 388

INDEX 497

[.transcan (transcan), 441
[.ynbind (ynbind), 488
[<-.discrete (discrete), 85
[[, 86
[[.discrete (discrete), 85
%in%, 490
%nin%, 489

abbreviate, 227
abline, 196
abs.error.pred, 6
ace, 14, 433, 436, 437, 439, 441, 454
addggLayers, 7
addMarginal, 9
all.digits (sedit), 350
all.is.numeric, 10
any, 349
apply, 136
approx, 11, 196, 445, 446, 450, 454
approxExtrap, 11
areg, 12, 22, 309, 311, 433
areg.boot (transace), 432
aregImpute, 16, 442, 445, 452, 454
arrGrob (colorFacet), 43
as.character.mChoice (mChoice), 225
as.data.frame.labelled (label), 199
as.discrete (discrete), 85
as.double.mChoice (mChoice), 225
as.numeric, 10
as.vector, 313
asNumericMatrix, 224
asNumericMatrix (summarize), 384
assign, 437, 448, 450
attach, 66
attributes, 467
avas, 433, 436, 437, 439, 454
axis, 233, 237

ballocation (bpower), 32
base::list.files(), 205
base::qr(), 293
bezier (labcurve), 189
binconf, 26, 33
biVar, 27, 299, 300
bj, 451
bootcov, 77, 239, 320, 321
bootkm, 30
boxplot, 35
bpower, 32, 53, 281, 371

bpplot, 34, 262
bpplotM, 410, 414
bpplotM (panel.bpplot), 259
bpplt, 397, 403, 410
bpplt (panel.bpplot), 259
bppltp (panel.bpplot), 259
bsamsize (bpower), 32
bwplot, 35
by, 224, 385
bystats, 36
bystats2 (bystats), 36

cancor, 14, 451, 454
capitalize, 38
casefold, 66
cat, 289
catTestchisq (summary.formula), 388
Cbind (xYplot), 479
ceil (trunc.POSIXt), 459
character.table (show.pch), 353
chisq.test, 30, 33, 298
chiSquare (biVar), 27
chron, 230, 330
ciapower, 39, 53, 371
clara, 58, 59, 61
cleanup.import, 57, 66, 155, 229, 230, 335,

375, 378
cleanup.import (upData), 461
clowess (Misc), 238
cnvrt.coords, 40, 383
code.levels (sas.get), 329
coefficients, 445
colorFacet, 43, 414
combine.levels, 30, 44, 64, 66, 298, 468, 471
combineLabels (label), 199
combplotp, 45, 227
completer, 22, 47
concordance, 300, 303, 363
confbar (Misc), 238
consolidate, 49
consolidate<- (consolidate), 49
contents, 50, 338
contents(), 132, 171
contents.list, 338
conTestkw (summary.formula), 388
cor, 7, 269, 298, 471
cor.test, 269
coxph, 371
coxph.fit, 305, 307

498 INDEX

cph, 305, 307, 371, 451
cpower, 40, 52, 281, 371
Cs, 55, 66
csv.get, 56, 230
cumcategory (summary.formula), 388
cumsum, 102
curveRep, 58
curveSmooth (curveRep), 58
cut, 37, 64
cut2, 30, 37, 63, 159, 298, 385, 397, 471, 478,

483
cutGn, 275, 478
cutGn (cut2), 63
cutGn(), 256, 257

data.frame, 57, 66, 230, 335, 377, 378, 465
data.frame.create.modify.check, 65
data.frame.labelled (label), 199
data.restore, 155
data.table::melt(), 231
datadensity, 66, 447, 454
datadensity (scat1d), 340
dataframeReduce, 311, 470, 471
dataframeReduce (upData), 461
dataRep, 61, 74
Date, 57, 121, 122, 125, 230, 377, 378, 460,

465, 488
Dates, 330, 338
DateTimeClasses, 338, 460
deff, 77
density, 346, 420
describe, 51, 66, 78, 185, 203, 251, 252, 335,

338, 465, 476
detach, 66
dhistboxp (histboxp), 168
dimnames, 313
discrete, 85
dotchart, 89, 90, 93
dotchart2, 87, 93, 397
dotchart3, 22, 30, 89, 218, 298, 410
dotchartp, 96
dotchartp (dotchart3), 89
dotchartpl, 93
dotchartpl(), 258
Dotplot (xYplot), 479
dotplot, 418, 483
download.file, 155, 157
draw.key, 315, 316
drawPlot (labcurve), 189

dualSD, 97
dvi (latex), 206
dvigv (latex), 206
dvips (latex), 206

ebpcomp, 99
Ecdf, 20, 22, 35, 99, 262, 346, 476
ecdfpM (scat1d), 340
ecdfSteps, 104
edit, 66
equalBins, 105
errbar, 106, 483
escapeBS (escapeRegex), 107
escapeRegex, 107
estSeqMarkovOrd, 108
estSeqSim, 112
event.chart, 114, 125, 129
event.convert, 124
event.history, 122, 125, 125
expand.grid, 66
extractlabs, 51, 131, 203
extractlabs(), 171

facet_wrap, 280
factor, 66, 86, 349, 437, 445
Fdebug, 132
fImport, 133
find.matches, 134
first.word, 138
fit.mult.impute, 22, 256
fit.mult.impute (transcan), 441
format, 142, 143
format.default, 397, 410
format.df, 139, 211, 214, 219
format.mChoice (mChoice), 225
format.pval, 142, 143
format.special.miss (sas.get), 329
formatdescribeSingle (describe), 78
formula, 397, 410, 418
formula.summary.formula.cross

(summary.formula), 388
fread, 57
Function, 433, 437, 443, 450
Function (transcan), 441
Function.areg.boot (transace), 432
Function.transcan, 308

gbayes, 143
gbayes1PowerNP (gbayes), 143

INDEX 499

gbayes2 (gbayes), 143
gbayesMixPost (gbayes), 143
gbayesMixPowerNP (gbayes), 143
gbayesMixPredNoData (gbayes), 143
gbayesSeqSim, 147, 150
geom_stepconfint, 152
getabd, 154
getHdata, 154
getLatestSource (Misc), 238
getRs, 156
getZip, 157
ggfreqScatter, 158
ggplot, 414, 454
ggplot.summaryP (summaryP), 411
ggplot.transace (transace), 432
ggplot.transcan (transcan), 441
ggplot2::labs, 172
ggplot2::labs(), 172
ggplotlyr, 160
GiniMd, 84, 161
Glm, 451
glm, 445, 451, 452
Gls, 451
Gompertz2 (spower), 368
grep, 108, 352
grType (Misc), 238

hashCheck, 162
hclust, 471
hdquantile, 163
hidingTOC, 165
hist, 166–168, 346
hist.data.frame, 66, 166, 346
histbackback, 167
histboxp, 168, 346
histboxpM (histboxp), 168
histogram, 168, 346
histSpike, 102, 170
histSpike (scat1d), 340
histSpikeg, 273, 275
histSpikeg (scat1d), 340
hlab, 51, 170, 203
hlab(), 132, 172, 473
hlabs, 171
hlabs(), 171
Hmisc.Overview (HmiscOverview), 172
HmiscOverview, 172
hoeffd, 178, 298, 471
html, 51, 180, 214

html.contents.data.frame (contents), 50
html.describe (describe), 78
html.summaryM (summaryM), 403
htmlSN (latex), 206
htmlSpecialType (Misc), 238
htmltabv, 183
htmlTranslate (latex), 206
htmlVerbatim (html), 180

impactPO, 281
improveProb (rcorrp.cens), 301
impute, 30, 184, 298, 443, 448, 454
impute.transcan, 17, 185
impute.transcan (transcan), 441
inmChoice (mChoice), 225
inmChoicelike (mChoice), 225
interaction, 37
intMarkovOrd, 185
inverseFunction, 13
inverseFunction (Misc), 238
invertTabulated (transcan), 441
is.discrete (discrete), 85
is.imputed (impute), 184
is.mChoice (mChoice), 225
is.na<-.discrete (discrete), 85
is.special.miss (sas.get), 329

james.stein (Misc), 238
jitter, 346, 446
jitter2 (scat1d), 340

keepHattrib (Misc), 238
Key (legendfunctions), 221
Key2 (legendfunctions), 221
km.quick (Misc), 238
knit, 189
knitrSet, 187

labcurve, 102, 189, 269, 275, 370, 371, 483
Label (label), 199
label, 66, 102, 199, 227, 275, 321, 335, 338,

377, 378, 385, 397, 410, 418, 427,
429, 438, 439, 461, 465, 483

label(), 132, 171, 231
Label.data.frame (label), 199
label.data.frame (label), 199
label.default (label), 199
label.Surv (label), 199
label<- (label), 199

500 INDEX

labelLatex, 427
labelLatex (label), 199
labelPlotmath (label), 199
Lag, 204
lag, 205
lapply, 84, 224
largest.empty (labcurve), 189
latestFile, 205
latex, 37, 84, 142, 182, 206, 216, 308, 397,

410, 429
latex.bystats (bystats), 36
latex.bystats2 (bystats), 36
latex.default, 219
latex.describe (describe), 78
latex.summary.formula.cross

(summary.formula), 388
latex.summary.formula.response

(summary.formula), 388
latex.summary.formula.reverse

(summary.formula), 388
latex.summaryM (summaryM), 403
latex.summaryP (summaryP), 411
latexBuild (Misc), 238
latexCheckOptions, 215
latexDotchart, 216
latexNeedle (latexTherm), 219
latexSN (latex), 206
latexTabular, 218
latexTherm, 219
latexTranslate, 397, 410
latexTranslate (latex), 206
latexVerbatim (latex), 206
legend, 196, 315, 316
legendfunctions, 221
length<-.discrete (discrete), 85
list.tree, 221
llist, 385, 397
llist (label), 199
lm, 6, 7, 321, 445, 451
lm.fit, 445
lm.fit.qr.bare, 436
lm.fit.qr.bare (Misc), 238
Load (Save), 339
load, 155, 340
locator, 471
loess.smooth, 476
Lognorm2 (spower), 368
logrank, 235

logrank (spower), 368
lookup.xport, 338
lowess, 58, 59, 275, 319, 321, 346, 379, 416,

476
lrcum (mhgr), 234
lrm, 305, 307, 451
lrm.fit, 305, 307
lsfit, 454

makeNstr, 223
makeSteps (Misc), 238
mApply, 223
mapply, 224
match, 490
match.mChoice (mChoice), 225
matchCases (find.matches), 134
Math.mChoice (mChoice), 225
matrix, 313
matrix2dataFrame, 224
matrix2dataFrame (summarize), 384
matxv (Misc), 238
max, 349
mbarclPanel (summaryS), 418
mbarclpl (summaryS), 418
mChoice, 225, 397, 410
mdb.get, 229
Mean (transace), 432
mean, 476
medvPanel (summaryS), 418
medvpl (summaryS), 418
meltData, 230
Merge, 232
mgp.axis, 233
mgp.axis.labels, 355, 432
mhgr, 234
mice, 22, 442, 445, 454
minor.tick, 236
Misc, 238
model.frame.default, 84, 250–252
model.matrix, 471
monotone (transace), 432
monthDays (yearDays), 487
movStats, 244
mtext, 248
mtitle, 247
multEventChart (popower), 278
multinom, 446
multLines, 248

INDEX 501

na.delete, 84, 249, 251, 252, 436
na.detail.response, 84, 250, 250, 252
na.include, 185
na.keep, 84, 250, 252
na.omit, 250–252
na.pattern, 471
na.pattern (varclus), 468
na.retain (summary.formula), 388
naclus, 22, 66, 452, 454
naclus (varclus), 468
names, 49, 66, 467
naplot, 22, 454
naplot (varclus), 468
naprint, 84, 250–252
naresid, 250–252
nchar, 105, 380, 382
nCoincident, 253
nFm (tabulr), 427
nmChoice (mChoice), 225
nobsY, 253
nomiss (Misc), 238
nomogram, 434, 439
ns, 305, 308
nstr, 254
num.denom.setup (wtd.stats), 474
num.intercepts, 255
numeric.string (sedit), 350
numericScale (xYplot), 479

ols, 6, 7, 439, 445, 451
Ops.mChoice (mChoice), 225
ordGroupBoot, 256
ordTestpo (summary.formula), 388
orm, 239, 256, 450
outer, 313
outerText (Misc), 238

page, 66
pairUpDiff, 257
panel.abline, 483
panel.bpplot, 35, 259, 418
panel.bwplot, 259–262
panel.Dotplot (xYplot), 479
panel.Ecdf (Ecdf), 99
panel.plsmo, 420
panel.plsmo (plsmo), 273
panel.superpose, 273, 275
panel.xYplot (xYplot), 479
panel.xyplot, 275, 483

par, 41, 88, 128, 129, 233, 234, 242, 248, 344,
355, 383, 432

partition, 264
paste, 223, 255
pBlock, 414
pBlock (ynbind), 488
pc1, 265
pdf, 355, 432
pipe, 158
plclust, 471
plot, 101, 129, 307, 318, 433
plot.areg (areg), 12
plot.areg.boot (transace), 432
plot.aregImpute (aregImpute), 16
plot.biVar (biVar), 27
plot.curveRep (curveRep), 58
plot.data.frame, 66
plot.describe, 170
plot.describe (describe), 78
plot.drawPlot (labcurve), 189
plot.gbayes (gbayes), 143
plot.princmp, 266
plot.Quantile2 (spower), 368
plot.rm.boot (rm.boot), 316
plot.summary.formula.response

(summary.formula), 388
plot.summary.formula.reverse

(summary.formula), 388
plot.summaryM (summaryM), 403
plot.summaryP (summaryP), 411
plot.summaryS (summaryS), 418
plot.transcan (transcan), 441
plot.varclus (varclus), 468
plotCorrM, 267
plotCorrPrecision, 269
plotlyM, 270
plotlyParm (Misc), 238
plotlySave (knitrSet), 187
plotmath, 90, 171
plotmathTranslate (label), 199
plotMultSim (varclus), 468
plotp (Misc), 238
plotp.summaryS (summaryS), 418
plsmo, 273, 346, 416–418, 476
pMedian, 84, 277
pMedian(), 98
pngNeedle (latexTherm), 219
points, 354

502 INDEX

polygon, 129, 320, 321
pomodm (popower), 278
popower, 278, 359
posamsize (popower), 278
POSIXct, 57, 465
POSIXlt, 460
POSIXt, 460, 488
postscript, 355, 432
prcomp, 265, 266, 454
predab.resample, 439
predict, 433, 443, 447, 451
predict.areg (areg), 12
predict.areg.boot (transace), 432
predict.dataRep (dataRep), 74
predict.transcan (transcan), 441
prepanel.Dotplot (xYplot), 479
prepanel.Ecdf (Ecdf), 99
prepanel.xYplot (xYplot), 479
princmp, 282
princmp(), 287
print, 289, 433, 448
print.abs.error.pred (abs.error.pred), 6
print.areg (areg), 12
print.areg.boot (transace), 432
print.aregImpute (aregImpute), 16
print.arrGrob (colorFacet), 43
print.biVar (biVar), 27
print.bystats (bystats), 36
print.bystats2 (bystats), 36
print.char.list, 284
print.char.matrix, 37, 285, 397, 410
print.contents.data.frame (contents), 50
print.contents.list (contents), 50
print.curveRep (curveRep), 58
print.dataRep (dataRep), 74
print.describe (describe), 78
print.dvi (latex), 206
print.find.matches (find.matches), 134
print.hoeffd (hoeffd), 178
print.improveProb (rcorrp.cens), 301
print.impute (impute), 184
print.labelled (label), 199
print.latex (latex), 206
print.lrcum (mhgr), 234
print.mChoice (mChoice), 225
print.mhgr (mhgr), 234
print.popower (popower), 278
print.posamsize (popower), 278

print.predict.dataRep (dataRep), 74
print.princmp, 287
print.Quantile2 (spower), 368
print.rcorr (rcorr), 297
print.redun (redun), 309
print.special.miss (sas.get), 329
print.spower (spower), 368
print.summary.areg.boot (transace), 432
print.summary.formula.cross

(summary.formula), 388
print.summary.formula.response

(summary.formula), 388
print.summary.formula.reverse

(summary.formula), 388
print.summary.lm, 143
print.summary.mChoice (mChoice), 225
print.summaryM (summaryM), 403
print.t.test.cluster (t.test.cluster),

426
print.transace (transace), 432
print.transcan (transcan), 441
print.varclus (varclus), 468
printL, 287, 289
printsummaryM (summaryM), 403
prList (label), 199
prn (prnz), 288
prn(), 132, 288
prnz, 288
processMI, 454
propsPO (popower), 278
propsTrans (popower), 278
prselect, 289
prType (Misc), 238
ps.options, 355, 432
psm, 450, 451
pstamp, 248, 290
putHcap (label), 199
putHfig (label), 199
putKey (labcurve), 189
putKeyEmpty (labcurve), 189

qcrypt, 291
qrxcenter, 293
Quantile (transace), 432
quantile, 64, 84, 164, 262, 275, 476
Quantile.cph, 31
Quantile2 (spower), 368

r2describe, 294, 311

INDEX 503

R2Measures, 295
rank, 363, 476
rbind, 357
rbinom, 325
rcorr, 179, 269, 297, 471
rcorr.cens, 298, 303, 363
rcorrcens (rcorr.cens), 298
rcorrp.cens, 300, 301
rcs, 305, 308, 451
rcspline.eval, 304, 305–308, 321, 454
rcspline.plot, 305
rcspline.restate, 305, 307
rcsplineFunction (rcspline.restate), 307
read.csv, 57, 465
read.dta, 377, 378
read.spss, 375
read.table, 66
read.xport, 338
redun, 309
reformM (aregImpute), 16
reLabelled (label), 199
relevel.labelled (label), 199
rendHTML (Misc), 238
rep, 223, 255
replace.substring.wild (sedit), 350
reShape, 312, 321, 483
reshape, 313
restoreHattrib (Misc), 238
rlegend, 93, 315
rlegendg (rlegend), 315
rm.boot, 316
rmClose, 324
rMultinom, 325
robcov, 77
round, 76, 460
roundN (dataRep), 74
roundPOSIXt (trunc.POSIXt), 459
rpart, 446
Rq, 451
rug, 346
runifChanged, 325
runParallel, 327

sample, 185
samplesize.bin, 33, 328
sapply, 224, 242
sas.codes (sas.get), 329
sas.get, 57, 66, 84, 203, 329, 338, 375, 465
sasdsLabels, 51

sasdsLabels (sasxport.get), 336
sasxport.get, 50, 336
Save, 339
save, 155, 339, 340
scale, 136
scale_fill_brewer, 280
scan, 66
scat1d, 167, 170, 196, 262, 275, 340, 420,

421, 448
score.binary, 348
sedit, 350
segments, 346
sepUnitsTrans (Misc), 238
seqFreq, 353
setTrellis, 355, 432
setTrellis (xYplot), 479
show.col (show.pch), 353
show.dvi (latex), 206
show.latex (latex), 206
show.pch, 353
showPsfrag, 354
simMarkovOrd, 355
simplifyDims, 357
simPOcuts (popower), 278
simRegOrd, 281, 358
sKey (legendfunctions), 221
smean.cl.boot (smean.sd), 360
smean.cl.normal (smean.sd), 360
smean.sd, 360, 397, 420
smean.sdl (smean.sd), 360
smearingEst (transace), 432
smedian.hilow (smean.sd), 360
solve, 362
solvet, 362
somers2, 300, 303, 362, 476
soprobMarkovOrd, 364
soprobMarkovOrdm, 365
source, 376
spearman (biVar), 27
spearman2 (biVar), 27
spikecomp, 84, 366
split, 265
spower, 40, 53, 368
sprintf, 428
spss.get, 374
src, 376
stat_plsmo, 273, 275, 346, 378
stata.get, 377

504 INDEX

stats::ecdf(), 104
stats::nlm(), 187
str, 222
strata, 397
stratify, 418
stratify (summary.formula), 388
strgraphwrap (Misc), 238
string.bounding.box, 380, 382
string.break.line, 380
stringDims, 105, 380, 381
stripplot, 346
strptime, 56, 57, 463, 465
strsplit, 381
strwrap, 242
subplot, 41, 382
substring, 352
substring.location (sedit), 350
substring2 (sedit), 350
substring2<- (sedit), 350
sum, 349
summarize, 89, 93, 361, 384, 397, 422, 483
summary, 84, 397, 422, 433, 442, 448, 451
summary.areg.boot (transace), 432
summary.data.frame, 66
summary.find.matches (find.matches), 134
summary.formula, 66, 361, 388, 416
summary.impute (impute), 184
Summary.mChoice (mChoice), 225
summary.mChoice (mChoice), 225
summary.transcan (transcan), 441
summaryD (dotchart3), 89
summaryDp (dotchart3), 89
summaryM, 397, 403, 414, 429
summaryP, 262, 410, 411, 489
summaryRc, 416
summaryS, 418
supsmu, 275, 305, 307, 318, 321
Surv, 31, 84, 242, 301, 303, 418
survfit, 31
Survival.cph, 31
survreg, 450
Sweave, 290
symbol.freq, 424
symbols, 383, 424, 425
sys, 425
system, 426

t.test, 427
t.test.cluster, 426

table, 76, 84, 102, 313, 346, 476
table_formatpct (tabulr), 427
table_freq (tabulr), 427
table_latexdefs (tabulr), 427
table_N (tabulr), 427
table_options, 427
table_pc (tabulr), 427
table_trio (tabulr), 427
tabular, 427–429
tabulr, 410, 427, 427
tapply, 84, 224, 478
testCharDateTime, 430
tex, 431
texi2dvi, 214
text, 196, 354
timePOSIXt (sas.get), 329
title, 106, 248
tobase64image (Misc), 238
transace, 432
transcan, 14, 22, 185, 311, 433, 441
translate, 37, 458
trap.rule (Misc), 238
trellis.device, 355, 432
trellis.strip.blank (Misc), 238
trunc.POSIXt, 459
truncPOSIXt (trunc.POSIXt), 459

units, 66, 321, 427, 460
units(), 132, 171
units<-.default (units), 460
unix, 248, 426
unPaste (Misc), 238
upData, 51, 66, 335, 427, 461
update, 397, 410
upFirst, 466
useOuterStrips, 262, 421

val.prob, 303
validate, 433, 439
validate.ols, 7
valueLabel (valueTags), 466
valueLabel<- (valueTags), 466
valueName (valueTags), 466
valueName<- (valueTags), 466
valueTags, 466
valueTags<- (valueTags), 466
valueUnit (valueTags), 466
valueUnit<- (valueTags), 466
var, 476

INDEX 505

varclus, 30, 179, 298, 311, 468
vcov, 443, 445
vcov.default (transcan), 441
vcov.fit.mult.impute (transcan), 441
vlab, 473

Weibull2 (spower), 368
whichClosek (Misc), 238
whichClosePW (Misc), 238
whichClosest (Misc), 238
wtd.Ecdf, 102
wtd.Ecdf (wtd.stats), 474
wtd.loess.noiter (wtd.stats), 474
wtd.mean (wtd.stats), 474
wtd.quantile (wtd.stats), 474
wtd.rank, 363
wtd.rank (wtd.stats), 474
wtd.stats, 474
wtd.table (wtd.stats), 474
wtd.var (wtd.stats), 474

xless (Misc), 238
xtfrm, 478
xtfrm.labelled, 477
xy.group, 478
xYplot, 60, 102, 196, 479
xyplot, 60, 275, 315, 316, 479, 480, 483

yearDays, 487
ynbind, 411, 414, 488

	abs.error.pred
	addggLayers
	addMarginal
	all.is.numeric
	approxExtrap
	areg
	aregImpute
	binconf
	biVar
	bootkm
	bpower
	bpplot
	bystats
	capitalize
	ciapower
	cnvrt.coords
	colorFacet
	combine.levels
	combplotp
	completer
	consolidate
	contents
	cpower
	Cs
	csv.get
	curveRep
	cut2
	data.frame.create.modify.check
	dataRep
	deff
	describe
	discrete
	dotchart2
	dotchart3
	dotchartpl
	dualSD
	ebpcomp
	Ecdf
	ecdfSteps
	equalBins
	errbar
	escapeRegex
	estSeqMarkovOrd
	estSeqSim
	event.chart
	event.convert
	event.history
	extractlabs
	Fdebug
	fImport
	find.matches
	first.word
	format.df
	format.pval
	gbayes
	gbayesSeqSim
	geom_stepconfint
	getabd
	getHdata
	getRs
	getZip
	ggfreqScatter
	ggplotlyr
	GiniMd
	hashCheck
	hdquantile
	hidingTOC
	hist.data.frame
	histbackback
	histboxp
	hlab
	hlabs
	HmiscOverview
	hoeffd
	html
	htmltabv
	impute
	intMarkovOrd
	knitrSet
	labcurve
	label
	Lag
	latestFile
	latex
	latexCheckOptions
	latexDotchart
	latexTabular
	latexTherm
	legendfunctions
	list.tree
	makeNstr
	mApply
	mChoice
	mdb.get
	meltData
	Merge
	mgp.axis
	mhgr
	minor.tick
	Misc
	movStats
	mtitle
	multLines
	na.delete
	na.detail.response
	na.keep
	nCoincident
	nobsY
	nstr
	num.intercepts
	ordGroupBoot
	pairUpDiff
	panel.bpplot
	partition
	pc1
	plot.princmp
	plotCorrM
	plotCorrPrecision
	plotlyM
	plsmo
	pMedian
	popower
	princmp
	print.char.list
	print.char.matrix
	print.princmp
	printL
	prnz
	prselect
	pstamp
	qcrypt
	qrxcenter
	r2describe
	R2Measures
	rcorr
	rcorr.cens
	rcorrp.cens
	rcspline.eval
	rcspline.plot
	rcspline.restate
	redun
	reShape
	rlegend
	rm.boot
	rmClose
	rMultinom
	runifChanged
	runParallel
	samplesize.bin
	sas.get
	sasxport.get
	Save
	scat1d
	score.binary
	sedit
	seqFreq
	show.pch
	showPsfrag
	simMarkovOrd
	simplifyDims
	simRegOrd
	smean.sd
	solvet
	somers2
	soprobMarkovOrd
	soprobMarkovOrdm
	spikecomp
	spower
	spss.get
	src
	stata.get
	stat_plsmo
	string.bounding.box
	string.break.line
	stringDims
	subplot
	summarize
	summary.formula
	summaryM
	summaryP
	summaryRc
	summaryS
	symbol.freq
	sys
	t.test.cluster
	tabulr
	testCharDateTime
	tex
	transace
	transcan
	translate
	trunc.POSIXt
	units
	upData
	upFirst
	valueTags
	varclus
	vlab
	wtd.stats
	xtfrm.labelled
	xy.group
	xYplot
	yearDays
	ynbind
	nin
	Index

