
Package ‘Gmisc’
January 12, 2026

Version 3.1.0

Title Descriptive Statistics, Transition Plots, and More

Author Max Gordon [aut, cre]

Maintainer Max Gordon <max@gforge.se>

Description Utilities for common medical-statistics graphics
and tables, including automatic creation of publication-ready ``Table 1''
summaries; transition (Sankey) plots; flow-chart helpers that extend the
grid package; Bézier lines and arrows; and a singular-value-decomposition-
based variable-selection method.

License GPL (>= 3)

URL https://gforge.se

BugReports https://github.com/gforge/Gmisc/issues

Depends R (>= 4.1.0), Rcpp (>= 0.11.4), htmlTable (>= 2.0.0)

Imports abind, checkmate, forestplot, Hmisc, glue, grid, grDevices,
graphics, knitr, lattice, lubridate, magrittr, methods, rlang,
rmarkdown, stringr, stats, XML, yaml, utils

Suggests datasets, dplyr, jsonlite, testthat, tidyselect

Encoding UTF-8

NeedsCompilation yes

LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 7.3.3

Repository CRAN

Date/Publication 2026-01-12 06:11:05 UTC

Contents
Gmisc-package . 3
align . 4

1

https://gforge.se
https://github.com/gforge/Gmisc/issues

2 Contents

bezierArrowGradient . 5
bezierArrowSmpl . 7
boxGrob . 9
boxPropGrob . 11
boxShapes . 12
calculateLinesAndArrow . 16
connectGrob . 17
convertShowMissing . 21
coords . 21
copyAllNewAttributes . 22
descGetMissing . 23
describeFactors . 24
describeMean . 25
describeMedian . 27
describeProp . 28
distance . 30
docx_document . 31
fastDoCall . 32
figCapNo . 34
figCapNoLast . 35
figCapNoNext . 35
getBezierAdj4Arrw . 36
getDescriptionStatsBy . 36
getPvalWilcox . 42
getSvdMostInfluential . 44
gnrlBezierPoints . 47
has . 48
insertRowAndKeepAttr . 48
labelConnector . 49
mergeDesc . 50
mergeLists . 54
moveBox . 55
pathJoin . 56
prAddDescStats . 57
prAddDescUnitColumn . 58
prAddEmptyVals . 59
prAddTotalDescColumn . 60
prBuildSubLabel . 61
prConvert2Coords . 62
prCreateBoxCoordinates . 63
prFactorDescs . 63
prFixDescRownames . 64
prGetBoxAxisDefaults . 65
prGetDescHeader . 65
print.Gmisc_connector_label . 66
print.Gmisc_list_of_boxes . 66
prNumericDescs . 67
prPasteVec . 68

Gmisc-package 3

prPropDescs . 68
retrieve . 70
setConnectorLabels . 71
set_column_labels . 71
set_column_units . 72
spread . 73
time2spanTxt . 74
Transition-class . 76
transitionPlot . 79
yamlDump . 82

Index 84

Gmisc-package Collection of functions for plotting relations, generating tables, and
more.

Description

This is a collection of functions that I’ve found useful in my research. The package is inspired by
Frank Harrell’s Hmisc package. The main focus is on tables, plots, and knitr-integration.

Awesome tables

The getDescriptionStatsBy is a straight forward function that aims at helping you to generate
descriptive table stratified by different variables. In other words, the function returns everything
you need for generating a Table 1 ready for publication. This function is accompanied by the
describeMean, describeMedian, describeProp, and describeFactors functions.

The mergeDesc allows you to merge a set of outputs getDescriptionStatsBy into a htmlTable
with the rgroup arguments automatically generated, see vignette("descriptives", package =
"Gmisc") for a detailed workflow description.

Some fancy plots

The transition plot function, transitionPlot, is for descriptive purposes. It tries to illustrate the
size of change between one state and the next, i.e. a transition. This is basically a graph of based
upon table(var1, var2).

The Singular value decomposition is a common method for reducing the number of variables. Un-
fortunately this compression can reduce the interpretability of the model. The getSvdMostInfluential
function tries to remedy that by identifying the most influential elements from the V-matrix.

Other stuff

The insertRowAndKeepAttr simply adds a row while remembering all the attributes previously
set by using the copyAllNewAttributes. The mergeLists tries to merge lists that do not have
identical elements.

https://en.wikipedia.org/wiki/Singular_value_decomposition

4 align

Author(s)

Maintainer: Max Gordon <max@gforge.se>

See Also

Useful links:

• https://gforge.se

• Report bugs at https://github.com/gforge/Gmisc/issues

align Align boxes

Description

Aligns a set of boxGrob/boxPropGrob according to the first positional argument.

Usage

alignVertical(
reference,
...,
.position = c("center", "top", "bottom"),
.subelement = NULL

)

alignHorizontal(
reference,
...,
.position = c("center", "left", "right"),
.sub_position = c("none", "left", "right"),
.subelement = NULL

)

Arguments

reference A boxGrob/boxPropGrob/coords object or a unit or a numerical value that can
be converted into a unit of npc type.

... A set of boxes.

.position How to align the boxes, differs slightly for vertical and horizontal alignment see
the accepted arguments

.subelement If a list of boxes is provided, this parameter can be used to target a specific
element (by name or index) for the alignment operation. The function will then
return the original list with the targeted element replaced by its aligned version.

.sub_position When the box is a boxPropGrob it not only has the general .positions but also
left and right which can be viewed as separate boxes that have simply been
merged.

https://gforge.se
https://github.com/gforge/Gmisc/issues

bezierArrowGradient 5

Value

list with the boxes that are to be aligned

See Also

Other flowchart components: boxGrob(), boxPropGrob(), boxShapes, connectGrob(), coords(),
distance(), moveBox(), spread

Examples

library(grid)
grid.newpage()

Create a reference box
box <- boxGrob("A cool reference box",

x = .5, y = .8,
box_gp = gpar(fill = "#ADB5C7")

)

Create a group of boxes to align
boxes <- list(

another_box = boxGrob("A horizontal box", x = .1, y = .5),
yet_another_box = boxGrob("Another horizontal box", x = .8, y = .3)

)

Align the group and then individual boxes within that group
aligned_boxes <- boxes |>

alignHorizontal(reference = box, .position = "right") |>
alignVertical(reference = .5, .position = "center")

Print the reference and the aligned boxes
box
aligned_boxes

bezierArrowGradient A bezier arrow with gradient

Description

This is an experimental addition to the original bezierArrowSmpl with the addition of a gradient
in the center of the arrow that fades.

Usage

bezierArrowGradient(
x = c(0.2, 0.7, 0.3, 0.9),
y = c(0.2, 0.2, 0.9, 0.9),
width = 0.05,
clr = "#000000",

6 bezierArrowGradient

default.units = "npc",
align_2_axis = TRUE,
grdt_type = c("triangle", "rectangle"),
grdt_prop = 0.8,
grdt_decrease_prop = 0.5,
grdt_clr_prop = 0.7,
grdt_line_width,
grdt_clr = "#2F4F2F",
vp = NULL,
gp = gpar(),
rm_intersect = 3L,
...

)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

width The width of the arrow, either a numeric single number or a unit. Note: The
arrow does not rely on lwd but on actual width.

clr The color of the arrow. This is the main color of the arrow and not the gradient
color.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

align_2_axis Indicates if the arrow should be vertically/horizontally aligned. This is useful
for instance if the arrow attaches to a box.

grdt_type The type of growth and gradient that is to be used, currently it only supports
triangle (I’m considering adding bezier curves but currently I’m a little tired of
coding)

grdt_prop The proportion of the full length that should be a the gradient. The gradient
consists of three things: (1) the central band, (2) the slimming of the central
band, (3) the color shift into the arrow color. Note that the the slimming and
color proportions can be overlapping.

grdt_decrease_prop

The proportion of the gradient that should be decreasing, i.e. narrowing accord-
ing to the grdt_type argument.

grdt_clr_prop The proportion of the gradient that should be converging to the arrow color.
grdt_line_width

The width of the border line. If not specified it defaults to 5 % of the original
width, note the gradient’s width is thus 90 %.

grdt_clr The color of the gradient.

vp A Grid viewport object (or NULL).

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

bezierArrowSmpl 7

rm_intersect Set to 0 if you want to skip intersection removal, 1 only to remove left or 2 to
only remove right. See details for why.
@section Remove intersections:
When the line is wide and the arrow has a narrow curve there may appear an
empty triangle due to polygon cancellation (two polygons within the same are
cancel out). This behaviour may be ugly and the function therefor tries to re-
move these.
Note: it is expensive to check if there are the lineas may intersect at one point,
remove those unexpected, and then adjust the line to the new situation so that
the top and bottom lines match. It can also cause some unexpected behaviour
why you may want to remove this feature if the arrow behaves erratically.

... Passed on to bezierArrowSmpl

Value

A grob of gList-type

Note

The triangle section of the arrow is not currently included in the gradient.

Examples

library(grid)
grid::grid.newpage()
arrowGrob <- bezierArrowGradient(

x = c(.1, .3, .6, .9),
y = c(0.2, 0.2, 0.9, 0.9)

)
grid.draw(arrowGrob)

bezierArrowSmpl A simple bezier arrow

Description

This is an alternative to the grid packages bezierGrob with the advantage that it allows you to draw
an arrow with a specific unit width. Note, it has only a end-arrow at this point.

Usage

bezierArrowSmpl(
x = c(0.2, 0.7, 0.3, 0.9),
y = c(0.2, 0.2, 0.9, 0.9),
width = 0.05,
clr = "#000000",
default.units = "npc",

8 bezierArrowSmpl

arrow = list(),
rez = 200,
align_2_axis = TRUE,
name = NULL,
rm_intersect = 3L,
gp = gpar(),
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

width The width of the arrow, either a numeric single number or a unit. Note: The
arrow does not rely on lwd but on actual width.

clr The color of the arrow.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

arrow This is a list with all the base (width) and the desired length for the arrow. Note:
This differs from the original bezierGrob function.

rez The resolution of the arrow. This specifies how many points to retrieve from the
gnrlBezierPoints function. Defaults to 200.

align_2_axis Indicates if the arrow should be vertically/horizontally aligned. This is useful
for instance if the arrow attaches to a box.

name A character identifier.

rm_intersect Set to 0 if you want to skip intersection removal, 1 only to remove left or 2 to
only remove right. See details for why.
@section Remove intersections:
When the line is wide and the arrow has a narrow curve there may appear an
empty triangle due to polygon cancellation (two polygons within the same are
cancel out). This behaviour may be ugly and the function therefor tries to re-
move these.
Note: it is expensive to check if there are the lineas may intersect at one point,
remove those unexpected, and then adjust the line to the new situation so that
the top and bottom lines match. It can also cause some unexpected behaviour
why you may want to remove this feature if the arrow behaves erratically.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Value

grid::grob A grob of the class polygonGrob with attributes that correspond to the bezier points.

boxGrob 9

Examples

library(grid)
grid::grid.newpage()
arrowGrob <- bezierArrowSmpl(

x = c(.1, .3, .6, .9),
y = c(0.2, 0.2, 0.9, 0.9)

)
grid.draw(arrowGrob)

boxGrob Create a box with text

Description

Creates a grob box with text inside it.

Usage

boxGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
box_fn = roundrectGrob,
name = NULL

)

S3 method for class 'box'
print(x, ...)

S3 method for class 'box'
plot(x, ...)

S3 method for class 'box'
widthDetails(x)

S3 method for class 'box'
heightDetails(x)

Arguments

label The label to print - should be a number, text or expression.

10 boxGrob

y The y position to put the box at. Can be either in npc (i.e. 0-1) or a unit.

x The x position to put the box at. Can be either in npc (i.e. 0-1) or a unit.

width The box automatically adapts the size but you can force by specifying the width

height The box automatically adapts the size but you can force by specifying the height

just The justification for the text: left, center or right.

bjust The justification for the box: left, center, right, top or bottom. See the just
option for the viewport

txt_gp The gpar style to apply to the text. Set boxGrobTxt option if you want to
customize all the boxes at once.

box_gp The gpar style to apply to the box function of ‘box_fn‘ below.

box_fn Function to create box for the text. Parameters of ‘x=0.5‘, ‘y=0.5‘ and ‘box_gp‘
will be passed to this function and return a grob object.

name a character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

... Passed to grid.draw

Value

A grob

The plot/print

To output the grob objects to the plot either call plot on the object or print it. Note that R
automatically prints any object that is outputted to the console. The function calls in turn the
grid.draw function on the object.

S3 from the grid package

Width and height functions address the coords attribute for the corresponding information. The
widthDetails and heightDetails that provide information on an object.

See Also

The package provides several convenience shape helpers that can be passed to ‘boxGrob(..., box_fn
= ...)‘: boxDiamondGrob, boxEllipseGrob, boxRackGrob, boxServerGrob, boxDatabaseGrob,
boxDocumentGrob, boxDocumentsGrob, and boxTapeGrob. For examples see the vignette: vignette("Grid-based_flowcharts",
package = "Gmisc").

Other flowchart components: align, boxPropGrob(), boxShapes, connectGrob(), coords(),
distance(), moveBox(), spread

Examples

Note: grid functions are explicitly namespaced in examples to avoid
relying on attaching the grid package in R CMD check.
grid::grid.newpage()
boxGrob("My box")

boxPropGrob 11

boxPropGrob Create a box with a color split

Description

Creates a grob box with text inside it and a color split in the horizontal axes that allow indicating
different proportions. The box can also have a title that spanse the two color areas and that has its
own background.

Usage

boxPropGrob(
label,
label_left,
label_right,
prop,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxPropGrobTxt", default = gpar(color = "black")),
txt_left_gp = getOption("boxPropGrobLeftTxt", default = gpar(col = "black")),
txt_right_gp = getOption("boxPropGrobRightTxt", default = gpar(col = "black")),
box_left_gp = getOption("boxPropGrobLeft", default = gpar(fill = "#E6E8EF")),
box_right_gp = getOption("boxPropGrobRight", default = gpar(fill = "#FFFDF6")),
box_highlight_gp = getOption("boxPropGrobHighlight", default = gpar(fill = "#ffffff55",

col = NA)),
name = NULL

)

Arguments

label The label to print - should be a number, text or expression.

label_left The label for the left area

label_right The label for the right area

prop The proportion to split along

y The y position to put the box at. Can be either in npc (i.e. 0-1) or a unit.

x The x position to put the box at. Can be either in npc (i.e. 0-1) or a unit.

width The box automatically adapts the size but you can force by specifying the width

height The box automatically adapts the size but you can force by specifying the height

just The justification for the text: left, center or right.

bjust The justification for the box: left, center, right, top or bottom. See the just
option for the viewport

12 boxShapes

txt_gp The gpar style to apply to the text. Set boxPropGrobTxt option if you want to
customize all the boxes at once.

txt_left_gp The gpar style to apply to the left text. Set boxPropGrobLeftTxt option if you
want to customize all the boxes at once.

txt_right_gp The gpar style to apply to the right text. Set boxPropGrobRightTxt option if
you want to customize all the boxes at once.

box_left_gp The gpar style to apply to the left box. Set boxPropGrobLeft option if you
want to customize all the boxes at once.

box_right_gp The gpar style to apply to the right box. Set boxPropGrobRight option if you
want to customize all the boxes at once.

box_highlight_gp

The gpar style to apply to the background of the main label. Set boxPropGrobHighlight
option if you want to customize all the boxes at once.

name a character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

Value

A box grob

See Also

Other flowchart components: align, boxGrob(), boxShapes, connectGrob(), coords(), distance(),
moveBox(), spread

Examples

library(grid)
grid::grid.newpage()
boxPropGrob("Main label", "Left text", "Right text", prop = .3)

boxShapes Additional box shape helpers for ‘boxGrob‘

Description

These helper functions provide alternative box drawing functions that can be passed to ‘boxGrob(...,
box_fn = ...)‘ or used via convenience wrappers (‘boxDiamondGrob‘, ‘boxEllipseGrob‘, ‘boxRack-
Grob‘). They are intentionally lightweight and implemented using base ‘grid‘ primitives.

Two diamond variants are provided: a rounded diamond (default) implemented with ‘xsplineGrob‘
for slightly softened corners, and a sharp diamond implemented with ‘polygonGrob‘ for strict
straight edges.

Approximates an ellipse using a polygon with many points; it respects the box viewport so it scales
correctly.

boxShapes 13

A rectangular box with a slightly darker top band to mimic a server / disk rack look. Implemented
by composing a rounded rectangle and an overlaying top strip. The strip is drawn without border to
avoid double outlines.

Draws a cylinder-like database symbol (ellipse top, rectangular body, base ellipse).

A document icon with a wavy bottom edge, useful to indicate printed output.

Draws a stack of document shapes by repeating the same shape with offsets.

Left/right curved edges to mimic tape-like icons.

A server-styled box with front-panel vent lines so it is visually distinct from a rack (top strip)
representation.

Usage

diamond_rounded_box_fn(x = 0.5, y = 0.5, gp = gpar())

diamond_sharp_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxDiamondGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
rounded = TRUE,
name = NULL

)

ellipse_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxEllipseGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

rack_box_fn(x = 0.5, y = 0.5, gp = gpar())

14 boxShapes

boxRackGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

database_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxDatabaseGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

document_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxDocumentGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

documents_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxDocumentsGrob(
label,
y = unit(0.5, "npc"),

boxShapes 15

x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

tape_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxTapeGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

server_box_fn(x = 0.5, y = 0.5, gp = gpar())

boxServerGrob(
label,
y = unit(0.5, "npc"),
x = unit(0.5, "npc"),
width,
height,
just = "center",
bjust = "center",
txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)),
box_gp = getOption("boxGrob", default = gpar(fill = "white")),
name = NULL

)

Arguments

x Horizontal position inside the box viewport (0-1).

y Vertical position inside the box viewport (0-1).

gp A ‘gpar‘ object with styling information (fill/col/etc).

label The label to print - should be a number, text or expression.

width The box automatically adapts the size but you can force by specifying the width

16 calculateLinesAndArrow

height The box automatically adapts the size but you can force by specifying the height

just The justification for the text: left, center or right.

bjust The justification for the box: left, center, right, top or bottom. See the just
option for the viewport

txt_gp The gpar style to apply to the text. Set boxGrobTxt option if you want to
customize all the boxes at once.

box_gp The gpar style to apply to the box function of ‘box_fn‘ below.

rounded Logical; use rounded diamond (TRUE) or sharp diamond (FALSE).

name a character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

Details

Shape functions are called with ‘x‘ and ‘y‘ in [0,1] inside the box viewport and with ‘box_gp‘ for
styling; convenience wrappers match the ‘boxGrob‘ signature.

Value

A ‘grid‘ grob that draws the requested shape inside the box viewport.

See Also

boxGrob for usage and the ‘box_fn‘ argument

Other flowchart components: align, boxGrob(), boxPropGrob(), connectGrob(), coords(),
distance(), moveBox(), spread

Examples

These functions are designed to be passed to `boxGrob(..., box_fn = ...)`.
grid::grid.newpage()
d <- boxGrob("Decision", box_fn = diamond_rounded_box_fn)
e <- boxGrob("Start", box_fn = ellipse_box_fn)
r <- boxGrob("Server", box_fn = rack_box_fn)
spreadHorizontal(list(d, e, r))

calculateLinesAndArrow

Gets offsetted lines

Description

The function calculates new points according to the offset that lie to the left/right of the provided
line.

connectGrob 17

Usage

calculateLinesAndArrow(
x,
y,
offset,
end_x = -1,
end_y = -1,
arrow_offset = -1,
rm_intersect = 3L

)

Arguments

x A numeric vector containing all the x-elements

y A numeric vector containing all the y-elements

offset The offset to add to the line, can be a vector if you want to use different offsets.

end_x The x end of the line where the arrow occurrs (if < 0 arrow is skipped)

end_y The y end of the line where the arrow occurrs (if < 0 arrow is skipped)

arrow_offset The offset to add to the arrow section if any (if <= 0 arrow is skipped)

rm_intersect Set to 0 if you want to skip intersection removal, 1 only to remove left or 2 to
only remove right. See details for why.
@section Remove intersections:
When the line is wide and the arrow has a narrow curve there may appear an
empty triangle due to polygon cancellation (two polygons within the same are
cancel out). This behaviour may be ugly and the function therefor tries to re-
move these.
Note: it is expensive to check if there are the lineas may intersect at one point,
remove those unexpected, and then adjust the line to the new situation so that
the top and bottom lines match. It can also cause some unexpected behaviour
why you may want to remove this feature if the arrow behaves erratically.

Value

list(list(x = ..., y = ...)) Returns a list with the right/left lines that in turn lists with x and y
elements

connectGrob Connect boxes with arrows

Description

Creates connectors between boxes.

18 connectGrob

Usage

connectGrob(
start,
end,
type = c("vertical", "horizontal", "L", "-", "Z", "N", "fan_in_top"),
subelmnt = c("right", "left"),
lty_gp = getOption("connectGrob", default = gpar(fill = "black")),
arrow_obj = getOption("connectGrobArrow", default = arrow(ends = "last", type =

"closed")),
split_pad = unit(2, "mm"),
margin = unit(2, "mm"),
label = NULL,
label_gp = grid::gpar(cex = 0.9),
label_bg_gp = grid::gpar(fill = "white", col = NA),
label_pad = unit(1.5, "mm"),
label_pos = c("mid", "near_start", "near_end"),
label_offset = unit(2, "mm")

)

S3 method for class 'connect_boxes'
print(x, ...)

S3 method for class 'connect_boxes'
plot(x, ...)

S3 method for class 'connect_boxes_list'
print(x, ...)

S3 method for class 'connect_boxes_list'
plot(x, ...)

Arguments

start A boxGrob/boxPropGrob, or a list of boxes (many-to-one).

end A boxGrob/boxPropGrob, or a list of boxes (one-to-many).

type Connector type, see Details.

subelmnt For split boxes, which sub-element to anchor to: "left" or "right".

lty_gp A grid::gpar() controlling line appearance. Can also be set globally via
options(connectGrob = ...).

arrow_obj Arrow specification created with grid::arrow(). Can also be set globally via
options(connectGrobArrow = ...).

split_pad Padding around the shared bend point for multi-box connections. Numeric val-
ues are interpreted as millimeters.

margin For type = "fan_in_top", the margin applied at the left and right ends of the
end box top edge before distributing attachment points. Numeric values are
interpreted as millimeters.

connectGrob 19

label Optional text label for one-to-one connectors (e.g. "yes" / "no"). Only sup-
ported when both start and end are single boxes.

label_gp A grid::gpar() controlling label appearance.

label_bg_gp A grid::gpar() controlling label background appearance. Defaults to a white
background with no border.

label_pad Padding inside the label background. Numeric values are interpreted as millime-
ters.

label_pos Where to place the label along the connector: "mid", "near_start", or "near_end".

label_offset Offset for the label away from the connector line.

x The grob to print/plot

... Passed to grid.draw

Details

The function supports:

• One-to-one: a single start box connected to a single end box.

• One-to-many: a single start box connected to multiple end boxes.

• Many-to-one: multiple start boxes connected to a single end box.

Many-to-many connections are not supported.

If either start or end is a list, a list of connector grobs is returned (one per connection). Otherwise
a single connector grob is returned.

Each connector stores its computed geometry in attr(x, "line") (or for each element when a list
is returned). This can be reused to construct custom connectors using the calculated coordinates.

Connector types:
type controls the connector shape:

• "vertical": straight vertical connector
• "horizontal": straight horizontal connector
• "L": vertical then horizontal (direction chosen automatically)
• "-": straight horizontal connector at the end box y-position
• "Z": horizontal connector with two 90-degree turns
• "N": vertical connector with one horizontal segment When connecting to or from multiple

boxes, all connectors share the same bend height.
• "fan_in_top": many-to-one connector merging onto the top edge of the end box Attachment

points are evenly distributed along the edge (with optional margin), and all connectors share
a common bend height.

For type = "N" and type = "fan_in_top" with multi-box connections, a shared bend position is
computed so that the horizontal segment aligns visually across all connectors.

Labels:
For one-to-one connectors you can add a text label (for example "yes" / "no"). The label is placed
near the midpoint of the connector. The label is drawn with a white background for readability.
Use label_pad to control padding around the text and label_offset to move the label away
from the connector.

20 connectGrob

Split boxes:
When connecting to or from a boxPropGrob, subelmnt controls whether the left or right sub-box
x-coordinate is used as the anchor point.

Value

• One-to-one: a grid::grob() with class "connect_boxes".

• One-to-many or many-to-one: a list of grobs with class "connect_boxes_list".

See Also

Other flowchart components: align, boxGrob(), boxPropGrob(), boxShapes, coords(), distance(),
moveBox(), spread

Examples

library(grid)
grid.newpage()

Initiate the boxes that we want to connect
boxes <- list(

start = boxGrob("Top", x = .5, y = .8),
end = boxGrob("Bottom", x = .5, y = .2),
side = boxPropGrob("Side", "Left", "Right", prop = .3, x = .2, y = .8),
exclude = boxGrob("Exclude:\n - Too sick\n - Prev. surgery", x = .8, y = .5, just = "left")

)

Connect the boxes and print/plot them
connectGrob(boxes$start, boxes$end, "vertical")
connectGrob(boxes$start, boxes$side, "horizontal")
connectGrob(boxes$start, boxes$exclude, "L")

We can also connect to/from lists
side_boxes <- list(

left = boxGrob("Left", x = attr(boxes$side, "coords")$left_x, y = .5),
right = boxGrob("Right", x = attr(boxes$side, "coords")$right_x, y = .5)

)

connectGrob(boxes$side, side_boxes$left, "v", "l")
connectGrob(boxes$side, side_boxes$right, "v", "r")

Print the boxes
boxes
side_boxes

convertShowMissing 21

convertShowMissing A function for converting a show_missing variable.

Description

The variable is supposed to be directly compatible with table(..., useNA = show_missing). It
throws an error if not compatible. It is mostly useful for custom describe functions.

Usage

convertShowMissing(show_missing)

Arguments

show_missing Boolean or "no", "ifany", "always"

Details

Deprecated: This function will be deprecated as all functions now use the useNA style in order to
comply with standard R naming.

Value

string

coords Get the box coordinates

Description

Retrieves the boxes "coords" attribute.

Usage

coords(box)

Arguments

box The boxGrob or boxPropGrob

Value

A list with the coordinates

22 copyAllNewAttributes

See Also

Other flowchart components: align, boxGrob(), boxPropGrob(), boxShapes, connectGrob(),
distance(), moveBox(), spread

Examples

box <- boxGrob("A test box")
coords(box)

copyAllNewAttributes A simple thing to keep the attributes

Description

Skips the attributes that the to object already has to avoid overwriting dim and other important
attributes

Usage

copyAllNewAttributes(from, to, attr2skip = c(), attr2force = c())

Arguments

from The from object

to The to object

attr2skip An optional lists of attributes that you may want to avoid having copied

attr2force An optional lists of attributes that you may want to force copy even if they
already exist in the new object

Value

object The to argument object

Examples

a <- "test"
attr(a, 'wow') <- 1000
b <- a
b <- copyAllNewAttributes(a, b)
print(attr(b, 'wow'))

descGetMissing 23

descGetMissing Get statistics for missing data

Description

This function calculates the amount of missing per row for describeMean, describeMedian and
custom description functions. It will return invisibly when no missing values are present.

Usage

descGetMissing(
x,
html = TRUE,
number_first = TRUE,
percentage_sign = TRUE,
language = "en",
useNA.digits = 1,
...

)

Arguments

x The variable that you want the statistics for

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

number_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses (). This is only used together with the
useNA variable.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable. Note, this is only used when combined with the missing informa-
tion.

language The ISO-639-1 two-letter code for the language of interest. Currently only en-
glish is distinguished from the ISO format using a ’,’ as the separator in the
txtInt function.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

... Passed on to describeFactors

Value

vector A vector with the missing estimate

24 describeFactors

describeFactors Describes factor variables

Description

A function that returns a description of proportions in a factor that contains the number of times a
level occurs and the percentage

Usage

describeFactors(
x,
html = TRUE,
digits = 1,
digits.nonzero = NA,
number_first = TRUE,
useNA = c("ifany", "no", "always"),
useNA.digits = digits,
horizontal_proportions,
percentage_sign = TRUE,
language = "en",
...

)

Arguments

x The variable that you want the statistics for
html If HTML compatible output should be used. If FALSE it outputs LaTeX format-

ting
digits The number of decimals used
digits.nonzero The number of decimals used for values that are close to zero
number_first If the number should be given or if the percentage should be presented first. The

second is encapsulated in parentheses (). This is only used together with the
useNA variable.

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

horizontal_proportions

Is only active if useNA since this is the only case of a proportion among con-
tinuous variables. This is default NULL and indicates that the proportions are
to be interpreted in a vertical manner. If we want the data to be horizontal, i.e.
the total should be shown and then how these differ in the different groups then
supply the function with the total number in each group, i.e. if done in a by
manner as in getDescriptionStatsBy it needs to provide the number before
the by() command.

describeMean 25

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable. Note, this is only used when combined with the missing informa-
tion.

language The ISO-639-1 two-letter code for the language of interest. Currently only en-
glish is distinguished from the ISO format using a ’,’ as the separator in the
txtInt function.

... Passed on to txtInt

Value

A string formatted for printing either latex by HTML

See Also

getDescriptionStatsBy

Other descriptive functions: describeMean(), describeMedian(), describeProp(), getDescriptionStatsBy(),
getPvalWilcox()

Examples

set.seed(1)
describeFactors(sample(50, x = c("A", "B", "C"), replace = TRUE))

n <- 500
my_var <- factor(sample(size = n, x = c("A", "B", "C", NA), replace = TRUE))
my_exp <- rbinom(n = n, size = 1, prob = 0.2)
total <- table(my_var, useNA = "ifany")
by(my_var,

INDICES = my_exp,
FUN = describeFactors,
useNA = "ifany",
horizontal_proportions = total

)

describeMean Describe the mean

Description

A function that returns a description of a continuous variable using the mean together with the
standard deviation. The standard deviation is used as it is "industry standard" to use mean with
standard deviation and not because it’s the only option.

26 describeMean

Usage

describeMean(
x,
html = TRUE,
digits = 1,
digits.nonzero = NA,
number_first = TRUE,
useNA = c("ifany", "no", "always"),
useNA.digits = digits,
percentage_sign = TRUE,
plusmin_str,
language = "en",
...

)

Arguments

x The variable that you want the statistics for

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

number_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses (). This is only used together with the
useNA variable.

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable. Note, this is only used when combined with the missing informa-
tion.

plusmin_str Provide if you want anything other than the plus minus sign suited for the given
output format.

language The ISO-639-1 two-letter code for the language of interest. Currently only en-
glish is distinguished from the ISO format using a ’,’ as the separator in the
txtInt function.

... Passed on to describeFactors

Value

string Returns a string formatted for either LaTeX or HTML

describeMedian 27

See Also

getDescriptionStatsBy

Other descriptive functions: describeFactors(), describeMedian(), describeProp(), getDescriptionStatsBy(),
getPvalWilcox()

Examples

describeMean(1:10)
describeMean(c(1:10, NA), useNA = "always")
describeMean(c(1:10, NA), useNA = "no")

describeMedian A function that returns a description median that contains the in-
terquartile range or the full range

Description

A function that returns a description median that contains the interquartile range or the full range

Usage

describeMedian(
x,
iqr = TRUE,
html = TRUE,
digits = 1,
digits.nonzero = NA,
number_first = TRUE,
useNA = c("ifany", "no", "always"),
useNA.digits = digits,
percentage_sign = TRUE,
language = "en",
...

)

Arguments

x The variable that you want the statistics for

iqr If interquartile range should be used

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

number_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses (). This is only used together with the
useNA variable.

28 describeProp

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable. Note, this is only used when combined with the missing informa-
tion.

language The ISO-639-1 two-letter code for the language of interest. Currently only en-
glish is distinguished from the ISO format using a ’,’ as the separator in the
txtInt function.

... Passed on to describeFactors

Value

string A string formatted for either LaTeX or HTML

See Also

getDescriptionStatsBy

Other descriptive functions: describeFactors(), describeMean(), describeProp(), getDescriptionStatsBy(),
getPvalWilcox()

Examples

describeMedian(1:10)
describeMedian(c(1:10, NA), useNA = "ifany")

describeProp A function that returns a description proportion that contains the num-
ber and the percentage

Description

A function that returns a description proportion that contains the number and the percentage

Usage

describeProp(
x,
html = TRUE,
digits = 1,
digits.nonzero = NA,
number_first = TRUE,
useNA = c("ifany", "no", "always"),

describeProp 29

useNA.digits = digits,
default_ref = NULL,
percentage_sign = TRUE,
language = "en",
...

)

Arguments

x The variable that you want the statistics for

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

number_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses (). This is only used together with the
useNA variable.

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

default_ref The default reference, either first, the level name or a number within the levels.
If left out it defaults to the first value.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable. Note, this is only used when combined with the missing informa-
tion.

language The ISO-639-1 two-letter code for the language of interest. Currently only en-
glish is distinguished from the ISO format using a ’,’ as the separator in the
txtInt function.

... Passed on to describeFactors

Value

string A string formatted for either LaTeX or HTML

See Also

Other descriptive functions: describeFactors(), describeMean(), describeMedian(), getDescriptionStatsBy(),
getPvalWilcox()

Examples

describeProp(factor(sample(50, x = c("A", "B", NA), replace = TRUE)))

30 distance

distance Get the distance between grid objects

Description

Retrieves the distance between two boxes as absolute "mm" units. The function also accepts coords
objects as well as a unit or a numeric input.

Usage

distance(
box1,
box2,
type = c("vertical", "horizontal", "euclidean"),
half = FALSE,
center = FALSE

)

S3 method for class 'Gmisc_unit'
print(x, ...)

Arguments

box1 The first boxGrob. Can also be a coords object, a unit or a numeric. The latter
is evaluated to a unit with units="npc".

box2 The second object to calculate the distance to. Same type as for box1.

type Whether we should retrieve the vertical, horizontal or euclidean distance

half If set to true it returns half the distance. This is convenient when positioning
boxes between each other.

center Calculate the distance from the center of each object

x A unit with from the distance function

... Passed on to print

Value

A unit in "mm" with an absolute value. The attribute positive indicates the direction of the value,
i.e. if it is TRUE the distance was calculated from the first to the second, otherwise it is FALSE. For
euclidean distance the positive attribute is NA. There is also the from and to attributes that has
the coordinates that were used for the calculations, for euclidean distance this is NA.

See Also

Other flowchart components: align, boxGrob(), boxPropGrob(), boxShapes, connectGrob(),
coords(), moveBox(), spread

docx_document 31

Examples

box1 <- boxGrob("A test box", y = .8)
box2 <- boxGrob("Another test box", y = .2)
distance(box1, box2, "v")

docx_document Formatter wrapper for html_document, facilitates easier porting to
docx

Description

This function adds the option of having adaptations needed for seemless integration with MS Word
for importing html-documents in the .docx-format. The advantage of html documents is the ability
to create advanced formatting frequently needed in medical publications and that is available in the
htmlTable function. You can view the series for more details regarding how to achieve fast-track-
publishing (ftp) together with knitr.

Usage

docx_document(
...,
self_contained = FALSE,
mathjax = NULL,
theme = NULL,
highlight = NULL,
css = "rmarkdown/docx.css",
h1_style = "margin: 24pt 0pt 0pt 0pt;",
other_h_style = "margin: 10pt 0pt 0pt 0pt;",
remove_scripts = TRUE,
force_captions = FALSE,
css_max_width

)

Arguments

... Passed onto html_document.

self_contained Overrides the default TRUE for html_document to FALSE as LibreOffice hangs
on long lines such as the base64 images included in the self-contained version.

mathjax The advanced mathjax does not work with with Word/LibreOffice.

theme No theme should be used for the output as the custom CSS should take care of
everything.

highlight By default turn off highlighting as scripts are difficult to import. This does
though work somewhat OK when copy-pasting from the web-browser.

css The CSS if other that the default within the package

h1_style You can choose any css style formatting here that you want to be applied to all
h1 elements. Note: this is only applied if LibreOffice_adapt is TRUE.

https://gforge.se/2014/07/fast-track-publishing-using-rmarkdown/

32 fastDoCall

other_h_style This is the formatting applied to any other h elements not included to the first.
Note: this is only applied if LibreOffice_adapt is TRUE.

remove_scripts TRUE if <script></script> tags are to be removed. These are usually not compat-
ible with Word-processors and should therefore in most cases be stripped from
the document.

force_captions Since out.width and out.height remove the option of having captions this allows
a workaround through some processing via the XML-package

css_max_width The max width of the body element. Defaults to "40em" if not specified. Any
CSS-compliant width format works.

Details

If you want to get equations into Word the currently best way is to use the word_document format.

Value

R Markdown output format to pass to render

Author(s)

Max Gordon

Examples

Possible yaml configuration at the top of the Rmd doc
Not run:

title: "Test"
author: "Max Gordon"
output:

Gmisc::docx_document

End(Not run)

fastDoCall An alternative to the internal do.call

Description

The do.call can be somewhat slow, especially when working with large objects. This function is
based upon the suggestions from Hadley Wickham on the R mailing list. Also thanks to Tommy at
StackOverflow for suggesting how to handle double and triple colon operators, ::, further enhanc-
ing the function.

Usage

fastDoCall(what, args, quote = FALSE, envir = parent.frame())

https://stackoverflow.com/questions/10022436/do-call-in-combination-with

fastDoCall 33

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

quote a logical value indicating whether to quote the arguments.

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Note

While the function attempts to do most of what do.call can it has limitations. It can currently
not parse the example code from the original function: do.call(paste, list(as.name("A"),
as.name("B")), quote = TRUE) and the functionality of quote has not been thoroughly tested.

Examples

fastDoCall("complex", list(imaginary = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
fastDoCall("paste", c(tmp, sep = ""))

examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A) # 2
fastDoCall("f", list(A)) # 2
fastDoCall("f", list(A), envir = env) # 4
fastDoCall(f, list(A), envir = env) # 2
fastDoCall("f", list(quote(A)), envir = env) # 100
fastDoCall(f, list(quote(A)), envir = env) # 10
fastDoCall("f", list(as.name("A")), envir = env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir = env) # 4
eval(call("f", quote(A)), envir = env) # 100

34 figCapNo

figCapNo Adds a figure caption number

Description

The function relies on options("fig_caption_no") in order to keep track of the last number. If
you want to force the caption function to skip captions while still using it in the knitr fig.cap option
then simply set options(fig_caption_no = FALSE)

Usage

figCapNo(
str,
roman = getOption("fig_caption_no_roman", default = FALSE),
sprintf_str = getOption("fig_caption_no_sprintf", default = "Fig. %s: %s")

)

Arguments

str The string that is to be prepended with string

roman Whether or not to use roman numbers instead of Arabic. Can also be set through
options(fig_caption_no_roman = TRUE)

sprintf_str An sprintf formatted string where the first argument is reserved for the string
generated by the counter and the second one is for the caption text. Can also be
set through options(fig_caption_no_sprintf = TRUE)

See Also

Other figure caption functions: figCapNoLast(), figCapNoNext()

Examples

Not run:
```{r, fig.cap = pigCapNo("My nice plot")}
plot(1:10 + rnorm(10), 1:10)
```

End(Not run)
org_opts <- options(fig_caption_no = 2,

fig_caption_no_sprintf = "Figure %s: %s")
figCapNo("A plot with caption number = 3")

org_opts <- options(fig_caption_no = TRUE)
figCapNo("A plot with caption number = 1")

Use default setting
options(fig_caption_no_sprintf = NULL)
figCapNo("A plot with caption number = 2")

figCapNoLast 35

Return the original settings
options(org_opts)

figCapNoLast Gets the last figure caption number

Description

The function relies on options("fig_caption_no") in order to keep track of the last number.

Usage

figCapNoLast(roman = getOption("fig_caption_no_roman", FALSE))

Arguments

roman Whether or not to use roman numbers instead of Arabic. Can also be set through
options(fig_caption_no_roman = TRUE)

See Also

Other figure caption functions: figCapNo(), figCapNoNext()

Examples

org_opts <- options(fig_caption_no = 1)
figCapNoLast()
options(org_opts)

figCapNoNext Gets the next figure caption number

Description

The function relies on options("fig_caption_no") in order to keep track of the last number.

Usage

figCapNoNext(roman = getOption("fig_caption_no_roman", default = FALSE))

Arguments

roman Whether or not to use roman numbers instead of Arabic. Can also be set through
options(fig_caption_no_roman = TRUE)

36 getDescriptionStatsBy

See Also

Other figure caption functions: figCapNo(), figCapNoLast()

Examples

org_opts <- options(fig_caption_no = 1)
figCapNoNext()
options(org_opts)

getBezierAdj4Arrw Gets the bezier points adjusted for an arrow

Description

Gets the bezier points adjusted for an arrow

Usage

getBezierAdj4Arrw(x, y, arrow_length, length_out = 100)

Arguments

x The x start and end points

y The spline control points

arrow_length The desired length of the arrow

length_out Increases the resolution for the final bezier points, i.e. generating more fine-
grained intervals

Value

list

getDescriptionStatsBy Creating of description statistics

Description

A function that returns a description statistic that can be used for creating a publication "table 1"
when you want it by groups. The function identifies if the variable is a continuous, binary or a
factored variable. The format is inspired by NEJM, Lancet & BMJ.

getDescriptionStatsBy 37

Usage

getDescriptionStatsBy(
x,
...,
by,
digits = 1,
digits.nonzero = NA,
html = TRUE,
numbers_first = TRUE,
statistics = FALSE,
statistics.sig_lim = 10^-4,
statistics.two_dec_lim = 10^-2,
statistics.suppress_warnings = TRUE,
useNA = c("ifany", "no", "always"),
useNA.digits = digits,
continuous_fn = describeMean,
prop_fn = describeProp,
factor_fn = describeFactors,
show_all_values = FALSE,
hrzl_prop = FALSE,
add_total_col,
total_col_show_perc = TRUE,
use_units = FALSE,
units_column_name = "Units",
default_ref = NULL,
NEJMstyle = FALSE,
percentage_sign = TRUE,
header_count = NULL,
missing_value = "-",
names_of_missing = NULL

)

S3 method for class 'Gmisc_getDescriptionStatsBy'
htmlTable(x, ...)

S3 method for class 'Gmisc_getDescriptionStatsBy'
print(x, ...)

S3 method for class 'Gmisc_getDescriptionStatsBy'
knit_print(x, ...)

S3 method for class 'Gmisc_getDescriptionStatsBy'
length(x)

Arguments

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics

38 getDescriptionStatsBy

for. In the print this is equivalent to the output of this function.

... The variables that you want you statistic for. In the print all thes parameters are
passed on as [htmlTable::htmlTable] arguments.

by The variable that you want to split into different columns

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

numbers_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses ().

statistics Add statistics, fisher test for proportions and Wilcoxon for continuous variables.
See details below for more customization.

statistics.sig_lim

The significance limit for < sign, i.e. p-value 0.0000312 should be < 0.0001
with the default setting.

statistics.two_dec_lim

The limit for showing two decimals. E.g. the p-value may be 0.056 and we
may want to keep the two decimals in order to emphasize the proximity to the
all-mighty 0.05 p-value and set this to 10−2. This allows that a value of 0.0056
is rounded to 0.006 and this makes intuitive sense as the 0.0056 level as this is
well below the 0.05 value and thus not as interesting to know the exact proximity
to 0.05. Disclaimer: The 0.05-limit is really silly and debated, unfortunately it
remains a standard and this package tries to adapt to the current standards in
order to limit publication associated issues.

statistics.suppress_warnings

Hide warnings from the statistics function.

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

continuous_fn The method to describe continuous variables. The default is describeMean.

prop_fn The method used to describe proportions, see describeProp.

factor_fn The method used to describe factors, see describeFactors.
show_all_values

Show all values in proportions. For factors with only two values it is most sane
to only show one option as the other one will just be a complement to the first,
i.e. we want to convey a proportion. For instance sex - if you know gender then
automatically you know the distribution of the other sex as it’s 100 % - other %.
To choose which one you want to show then set the default_ref parameter.

hrzl_prop This is default FALSE and indicates that the proportions are to be interpreted in
a vertical manner. If we want the data to be horizontal, i.e. the total should be
shown and then how these differ in the different groups then set this to TRUE.

add_total_col This adds a total column to the resulting table. You can also specify if you want
the total column "first" or "last" in the column order.

getDescriptionStatsBy 39

total_col_show_perc

This is by default true but if requested the percentages are suppressed as this
sometimes may be confusing.

use_units If the Hmisc package’s units() function has been employed it may be interesting
to have a column at the far right that indicates the unit measurement. If this col-
umn is specified then the total column will appear before the units (if specified
as last). You can also set the value to "name" and the units will be added to the
name as a parenthesis, e.g. Age (years).

units_column_name

The name of the units column. Used if use_units = TRUE

default_ref The default reference when dealing with proportions. When using ‘dplyr‘ syntax
(‘tidyselect‘) you can specify a named vector/list for each column name.

NEJMstyle Adds - no (%) at the end to proportions
percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable.

header_count Set to TRUE if you want to add a header count, e.g. Smoking; No. 25 observa-
tions, where there is a new line after the factor name. If you want a different text
for the second line you can specifically use the sprintf formatting, e.g. "No.
%s patients".

missing_value Value that is substituted for empty cells. Defaults to "-"
names_of_missing

Optional character vector containing the names of returned statistics, in case all
returned values for a given by level are missing. Defaults to NULL

Value

Returns matrix if a single value was provided, otherwise a list of matrices with the class "Gmisc_getDescriptionStatsBy".

Customizing statistics

You can specify what function that you want for statistic by providing a function that takes two
arguments x and by and returns a p-value. There are a few functions already prepared for this see
getPvalAnova, getPvalChiSq getPvalFisher getPvalKruskal getPvalWilcox. The default
functions used are getPvalFisher and getPvalWilcox (unless the by argument has more than
three unique levels where it defaults to getPvalAnova).

If you want the function to select functions depending on the type of input you can provide a list
with the names 'continuous', 'proportion', 'factor' and the function will choose accordingly.
If you fail to define a certain category it will default to the above.

You can also use a custom function that returns a string with the attribute 'colname' set that will
be appended to the results instead of the p-value column.

See Also

Other descriptive functions: describeFactors(), describeMean(), describeMedian(), describeProp(),
getPvalWilcox()

40 getDescriptionStatsBy

Examples

library(magrittr)
library(dplyr)
library(htmlTable)

data(mtcars)
mtcars %<>%

mutate(am = factor(am, levels = 0:1, labels = c("Automatic", "Manual")),
vs = factor(vs, levels = 0:1, labels = c("V-shaped", "straight")),
drat_prop = drat > median(drat),
drat_prop = factor(drat_prop,

levels = c(FALSE, TRUE),
labels = c("High ratio", "Low ratio")),

carb_prop = carb > 2,
carb_prop = factor(carb_prop,

levels = c(FALSE, TRUE),
labels = c("≤ 2", "> 2")),

across(c(gear, carb, cyl), factor))

A simple bare-bone example
mtcars %>%

getDescriptionStatsBy(`Miles per gallon` = mpg,
Weight = wt,
`Carborators ≤ 2` = carb_prop,
by = am) %>%

htmlTable(caption = "Basic continuous stats from the mtcars dataset")
invisible(readline(prompt = "Press [enter] to continue"))

For labeling & units we use set_column_labels/set_column_unit that use
the Hmisc package annotation functions
mtcars %<>%

set_column_labels(am = "Transmission",
mpg = "Gas",
wt = "Weight",
gear = "Gears",
disp = "Displacement",
vs = "Engine type",
drat_prop = "Rear axel ratio",
carb_prop = "Carburetors") %>%

set_column_units(mpg = "Miles/(US) gallon",
wt = "10³ lbs",
disp = "cu.in.")

mtcars %>%
getDescriptionStatsBy(mpg,

wt,
`Gear†` = gear,
drat_prop,
carb_prop,
vs,
by = am,
header_count = TRUE,

getDescriptionStatsBy 41

use_units = TRUE,
show_all_values = TRUE) %>%

addHtmlTableStyle(pos.caption = "bottom") %>%
htmlTable(caption = "Stats from the mtcars dataset",

tfoot = "† Number of forward gears")
invisible(readline(prompt = "Press [enter] to continue"))

Using the default parameter we can
mtcars %>%

getDescriptionStatsBy(mpg,
wt,
`Gear†` = gear,
drat_prop,
carb_prop,
vs,
by = am,
header_count = TRUE,
use_units = TRUE,
default_ref = c(drat_prop = "Low ratio",

carb_prop = "> 2")) %>%
addHtmlTableStyle(pos.caption = "bottom") %>%
htmlTable(caption = "Stats from the mtcars dataset",

tfoot = "† Number of forward gears")
invisible(readline(prompt = "Press [enter] to continue"))

We can also use lists
tll <- list()
tll[["Gear (3 to 5)"]] <- getDescriptionStatsBy(mtcars$gear, mtcars$am)
tll <- c(tll,

list(getDescriptionStatsBy(mtcars$disp, mtcars$am)))

mergeDesc(tll,
htmlTable_args = list(caption = "Factored variables")) %>%

htmlTable::addHtmlTableStyle(css.rgroup = "")
invisible(readline(prompt = "Press [enter] to continue"))

tl_no_units <- list()
tl_no_units[["Gas (mile/gallons)"]] <-

getDescriptionStatsBy(mtcars$mpg, mtcars$am,
header_count = TRUE)

tl_no_units[["Weight (10³ kg)"]] <-
getDescriptionStatsBy(mtcars$wt, mtcars$am,

header_count = TRUE)
mergeDesc(tl_no_units,

tll) %>%
htmlTable::addHtmlTableStyle(css.rgroup = "")

invisible(readline(prompt = "Press [enter] to continue"))

Other settings
mtcars$mpg[sample(1:NROW(mtcars), size = 5)] <- NA
getDescriptionStatsBy(mtcars$mpg,

mtcars$am,
statistics = TRUE)

42 getPvalWilcox

invisible(readline(prompt = "Press [enter] to continue"))

Do the horizontal version
getDescriptionStatsBy(mtcars$gear,

mtcars$am,
statistics = TRUE,
hrzl_prop = TRUE)

invisible(readline(prompt = "Press [enter] to continue"))

mtcars$wt_with_missing <- mtcars$wt
mtcars$wt_with_missing[sample(1:NROW(mtcars), size = 8)] <- NA
getDescriptionStatsBy(mtcars$wt_with_missing, mtcars$am, statistics = TRUE,

hrzl_prop = TRUE, total_col_show_perc = FALSE)
invisible(readline(prompt = "Press [enter] to continue"))

Not run:
There is also a LaTeX wrapper
tll <- list(
getDescriptionStatsBy(mtcars$gear, mtcars$am),
getDescriptionStatsBy(mtcars$col, mtcars$am))

latex(mergeDesc(tll),
caption = "Factored variables",
file = "")

End(Not run)

getPvalWilcox P-value extractors for getDescriptionStatsBy

Description

These functions are the base functions for getting the description p-values. You can provide your
own functions but all functions should take two arguments and return a p-value (numeric, non-
formatted)

Usage

getPvalWilcox(x, by)

getPvalAnova(x, by)

getPvalFisher(x, by)

getPvalChiSq(x, by)

getPvalKruskal(x, by)

getPvalWilcox 43

Arguments

x The main variable of interest

by The variable for the stratification

Value

numeric Returns the p-value from that particular test

getPvalWilcox

Performs a two-sample two-sided Wilcoxon test (also known as the Mann-Whitney test), see wilcox.test.

getPvalAnova

Performs a standard Analysis of Variance model through anova(lm(x ~ by))

getPvalFisher

Performs Fisher’s exact test through the fisher.test.

getPvalChiSq

Performs a standard Chi-Squares analysis through chisq.test

getPvalKruskal

Performs a Kruskal-Wallis rank sum test through kruskal.test

See Also

Other descriptive functions: describeFactors(), describeMean(), describeMedian(), describeProp(),
getDescriptionStatsBy()

Examples

set.seed(123)
getPvalFisher(

sample(letters[1:3], size = 100, replace = TRUE),
sample(LETTERS[1:3], size = 100, replace = TRUE)

)
getPvalWilcox(

rnorm(100),
sample(LETTERS[1:2], size = 100, replace = TRUE)

)

44 getSvdMostInfluential

getSvdMostInfluential Gets the maximum contributor variables from svd()

Description

This function is inspired by Jeff Leeks Data Analysis course where he suggests that one way to use
the svd is to look at the most influential rows for first columns in the V matrix.

Usage

getSvdMostInfluential(
mtrx,
quantile,
similarity_threshold,
plot_selection = TRUE,
plot_threshold = 0.05,
varnames = NULL

)

Arguments

mtrx A matrix or data frame with the variables. Note: if it contains missing variables
make sure to impute prior to this function as the svd can’t handle missing values.

quantile The SVD D-matrix gives an estimate for the amount that is explained. This pa-
rameter is used for selecting the columns that have that quantile of explanation.

similarity_threshold

A quantile for how close other variables have to be in value to maximum con-
tributor of that particular column. If you only want the maximum value then set
this value to 1.

plot_selection As this is all about variable exploring it is often interesting to see how the vari-
ables were distributed among the vectors

plot_threshold The threshold of the plotted bars, measured as percent explained by the D-
matrix. By default it is set to 0.05.

varnames A vector with alternative names to the colnames

Details

This function expands on that idea and adds the option of choosing more than just the most con-
tributing variable for each row. For instance two variables may have a major impact on a certain
component where the second variable has 95 important in that particular component it makes sense
to include it in the selection.

It is of course useful when you have many continuous variables and you want to determine a sub-
group to look at, i.e. finding the needle in the haystack.

getSvdMostInfluential 45

Value

Returns a list with vector with the column numbers that were picked in the "most_influential" vari-
able and the svd caluclation in the "svd"

Examples

org_par <- par(ask = TRUE)
set.seed(1345)
Simulate data with a pattern
dataMatrix <- matrix(rnorm(15 * 160), ncol = 15)
colnames(dataMatrix) <- c(

paste("Pos.3:", 1:3, sep = " #"),
paste("Neg.Decr:", 4:6, sep = " #"),
paste("No pattern:", 7:8, sep = " #"),
paste("Pos.Incr:", 9:11, sep = " #"),
paste("No pattern:", 12:15, sep = " #"))

for (i in 1:nrow(dataMatrix)) {
flip a coin
coinFlip1 <- rbinom(1, size = 1, prob = 0.5)
coinFlip2 <- rbinom(1, size = 1, prob = 0.5)
coinFlip3 <- rbinom(1, size = 1, prob = 0.5)

if coin is heads add a common pattern to that row
if (coinFlip1) {
cols <- grep("Pos.3", colnames(dataMatrix))
dataMatrix[i, cols] <- dataMatrix[i, cols] + 3

}

if (coinFlip2) {
cols <- grep("Neg.Decr", colnames(dataMatrix))

dataMatrix[i, cols] <- dataMatrix[i, cols] - seq(from = 5, to = 15, length.out = length(cols))
}

if (coinFlip3) {
cols <- grep("Pos.Incr", colnames(dataMatrix))

dataMatrix[i, cols] <- dataMatrix[i, cols] + seq(from = 3, to = 15, length.out = length(cols))
}

}

Illustrate data
heatmap(dataMatrix, Colv = NA, Rowv = NA, margins = c(7, 2), labRow = "")

svd_out <- svd(scale(dataMatrix))

library(lattice)
b_clr <- c("steelblue", "darkred")
key <- simpleKey(

rectangles = TRUE, space = "top", points = FALSE,
text = c("Positive", "Negative")

)
key$rectangles$col <- b_clr

46 getSvdMostInfluential

b1 <- barchart(as.table(svd_out$v[, 1]),
main = "First column",
horizontal = FALSE, col = ifelse(svd_out$v[, 1] > 0,

b_clr[1], b_clr[2]
),
ylab = "Impact value",

scales = list(x = list(rot = 55, labels = colnames(dataMatrix), cex = 1.1)),
key = key

)

b2 <- barchart(as.table(svd_out$v[, 2]),
main = "Second column",
horizontal = FALSE, col = ifelse(svd_out$v[, 2] > 0,

b_clr[1], b_clr[2]
),
ylab = "Impact value",

scales = list(x = list(rot = 55, labels = colnames(dataMatrix), cex = 1.1)),
key = key

)

b3 <- barchart(as.table(svd_out$v[, 3]),
main = "Third column",
horizontal = FALSE, col = ifelse(svd_out$v[, 3] > 0,

b_clr[1], b_clr[2]
),
ylab = "Impact value",

scales = list(x = list(rot = 55, labels = colnames(dataMatrix), cex = 1.1)),
key = key

)

b4 <- barchart(as.table(svd_out$v[, 4]),
main = "Fourth column",
horizontal = FALSE, col = ifelse(svd_out$v[, 4] > 0,

b_clr[1], b_clr[2]
),
ylab = "Impact value",

scales = list(x = list(rot = 55, labels = colnames(dataMatrix), cex = 1.1)),
key = key

)

Note that the fourth has the no pattern columns as the
chosen pattern, probably partly because of the previous
patterns already had been identified
print(b1, position = c(0, 0.5, .5, 1), more = TRUE)
print(b2, position = c(0.5, 0.5, 1, 1), more = TRUE)
print(b3, position = c(0, 0, .5, .5), more = TRUE)
print(b4, position = c(0.5, 0, 1, .5))

Let's look at how well the SVD identifies
the most influential columns
getSvdMostInfluential(dataMatrix,

quantile = .8,

gnrlBezierPoints 47

similarity_threshold = .9,
plot_threshold = .05,
plot_selection = TRUE)

par(org_par)

gnrlBezierPoints Generates a generalized Bézier line

Description

This is a general form of bezier line that can be used for cubic, quadratic, and more advanced Bézier
lines.

Usage

gnrlBezierPoints(ctrl_points, length_out = 100L)

Arguments

ctrl_points The ctrl_points for the bezier control points. This should either be a matrix or
a data.frame.

length_out The length of the return points, i.e. how fine detailed the points should be.

Examples

library(grid)
grid.newpage()
l <- gnrlBezierPoints(data.frame(x = c(.1, -.1, .7, 1, 1, 0.1),

y = c(.9, 0, 1, .8, .4, .1)),
length_out = 100)

grid.lines(l[,1], l[,2], gp=gpar(col="#550000", lwd = 4))

out_sizes <- 4:20
clrs <- colorRampPalette(c("orange", "darkblue"))(length(out_sizes))
for (i in out_sizes){

l <- gnrlBezierPoints(data.frame(x = c(.1, -.1, .7, 1, 1, 0.1),
y = c(.9, 0, 1, .8, .4, .1)),

length_out = i)
grid.lines(l[,1], l[,2],
gp=gpar(col=clrs[which(i == out_sizes)]))

}

48 insertRowAndKeepAttr

has An R alternative to the lodash has in JavaScript

Description

This is a handy function for checking if item exist in a nested structure

Usage

has(sourceList, path)

Arguments

sourceList The list()/c() that is to be searched for the element

path A string that can be separated by [,] or ., the string "elementname1.1.elementname"
the validity of the path - it only separates and tries to address that element with
‘[[]]‘.

Value

Returns a boolean.

See Also

Other lodash similar functions: retrieve()

Examples

has(list(a = list(b = 1)), "a.b")

insertRowAndKeepAttr Insert a row into a matrix

Description

Inserts a row and keeps the attributes copyAllNewAttributes

Usage

insertRowAndKeepAttr(m, r, v = NA, rName = "")

labelConnector 49

Arguments

m matrix

r row number where the new row should be inserted

v optional values for the new row

rName optional character string: the name of the new row.

Value

matrix Returns a matrix with one more row than the provided matrix m

Author(s)

Max Gordon, Arne Henningsen

Examples

test <- matrix(1:4, ncol = 2)
attr(test, "wow") <- 1000
test <- insertRowAndKeepAttr(test, 2)
print(attr(test, "wow"))

labelConnector Label connector grobs

Description

Place text labels at the midpoint of connector grobs returned by ‘connectGrob()‘ (useful for multi-
target connectors where ‘label=‘ isn’t available). By default the function draws the labels; set ‘draw
= FALSE‘ to only return the ‘textGrob‘ objects for programmatic use.

Usage

labelConnector(
con,
labels,
x_offset = unit(0, "mm"),
y_offset = unit(0, "mm"),
gp = gpar(cex = 0.9),
bg_gp = gpar(fill = "white", col = NA),
pad = unit(2, "mm")

)

50 mergeDesc

Arguments

con A list of connector grobs produced by ‘connectGrob()‘ (typically a ‘connect_boxes_list‘).

labels A character vector of labels (recycled if necessary).

x_offset, y_offset
‘grid::unit‘ offsets added to the label position.

gp A ‘grid::gpar‘ object controlling text appearance.

bg_gp A ‘grid::gpar‘ object controlling label background appearance.

pad A ‘grid::unit‘ padding to add around text inside the background box.

Value

A ‘Gmisc_connector_label‘ S3 object (invisible). Use ‘print()‘ to draw the labels.

Examples

Attach labels to a previously-created connector and draw them
a <- boxDiamondGrob("D")
b <- boxEllipseGrob("L")
c <- boxServerGrob("S")
boxes <- list(decision = a, outcomes = list(b, c)) |>

spreadHorizontal(
.from = grid::unit(.1, "npc"),
.to = grid::unit(.9, "npc"),
.subelement = "outcomes"

) |>
spreadVertical()

connectGrob(boxes$decision, boxes$outcomes, type = "N") |>
labelConnector(c("Local", "Server"))

mergeDesc Prepares a matrix for htmlTable from a list

Description

By putting all the output from the getDescriptionStatsBy into a list, naming each element that
we want in an rgroup we can automatically merge everything and create an object ready for the
htmlTable.

Usage

mergeDesc(..., htmlTable_args = list())

mergeDesc 51

Arguments

... One or more elements coming from getDescriptionStatsBy. You can also
provide pure output from the getDescriptionStatsBy function and have the
function merge this together with the ... argument. Note that all elements must
have the same by argument or you will not be able to merge it into a list.

htmlTable_args Any arguments that should be passed to htmlTable function. The default is to
remove any css formatting for the rgroup.

Value

matrix Returns a matrix object of class descList

The rgroup value

The value for the rgroup is by default the name of the list element. If you have passed a list without
a name for that particular element or if you have passed a matrix it will look for a label set by
the Hmisc::label function. For those elements that have only one row no rgroup is set, and the
naming sequence is the same as above but with an additional rownames if the previous two turn out
empty. All this behavior is exemplified in the example.

The rgroup value can be overridden by simply specifying a custom rgroup when calling the
htmlTable function.

The colnames of the matrix

The function chooses the colnames from the first element in the tlist.

Examples

library(magrittr)
library(dplyr)
library(htmlTable)

data(mtcars)
mtcars %<>%

mutate(am = factor(am, levels = 0:1, labels = c("Automatic", "Manual")),
vs = factor(vs, levels = 0:1, labels = c("V-shaped", "straight")),
drat_prop = drat > median(drat),
drat_prop = factor(drat_prop,

levels = c(FALSE, TRUE),
labels = c("High ratio", "Low ratio")),

carb_prop = carb > 2,
carb_prop = factor(carb_prop,

levels = c(FALSE, TRUE),
labels = c("≤ 2", "> 2")),

across(c(gear, carb, cyl), factor))

A simple bare-bone example
mtcars %>%

getDescriptionStatsBy(`Miles per gallon` = mpg,
Weight = wt,

52 mergeDesc

`Carborators ≤ 2` = carb_prop,
by = am) %>%

htmlTable(caption = "Basic continuous stats from the mtcars dataset")
invisible(readline(prompt = "Press [enter] to continue"))

For labeling & units we use set_column_labels/set_column_unit that use
the Hmisc package annotation functions
mtcars %<>%

set_column_labels(am = "Transmission",
mpg = "Gas",
wt = "Weight",
gear = "Gears",
disp = "Displacement",
vs = "Engine type",
drat_prop = "Rear axel ratio",
carb_prop = "Carburetors") %>%

set_column_units(mpg = "Miles/(US) gallon",
wt = "10³ lbs",
disp = "cu.in.")

mtcars %>%
getDescriptionStatsBy(mpg,

wt,
`Gear†` = gear,
drat_prop,
carb_prop,
vs,
by = am,
header_count = TRUE,
use_units = TRUE,
show_all_values = TRUE) %>%

addHtmlTableStyle(pos.caption = "bottom") %>%
htmlTable(caption = "Stats from the mtcars dataset",

tfoot = "† Number of forward gears")
invisible(readline(prompt = "Press [enter] to continue"))

Using the default parameter we can
mtcars %>%

getDescriptionStatsBy(mpg,
wt,
`Gear†` = gear,
drat_prop,
carb_prop,
vs,
by = am,
header_count = TRUE,
use_units = TRUE,
default_ref = c(drat_prop = "Low ratio",

carb_prop = "> 2")) %>%
addHtmlTableStyle(pos.caption = "bottom") %>%
htmlTable(caption = "Stats from the mtcars dataset",

tfoot = "† Number of forward gears")
invisible(readline(prompt = "Press [enter] to continue"))

mergeDesc 53

We can also use lists
tll <- list()
tll[["Gear (3 to 5)"]] <- getDescriptionStatsBy(mtcars$gear, mtcars$am)
tll <- c(tll,

list(getDescriptionStatsBy(mtcars$disp, mtcars$am)))

mergeDesc(tll,
htmlTable_args = list(caption = "Factored variables")) %>%

htmlTable::addHtmlTableStyle(css.rgroup = "")
invisible(readline(prompt = "Press [enter] to continue"))

tl_no_units <- list()
tl_no_units[["Gas (mile/gallons)"]] <-

getDescriptionStatsBy(mtcars$mpg, mtcars$am,
header_count = TRUE)

tl_no_units[["Weight (10³ kg)"]] <-
getDescriptionStatsBy(mtcars$wt, mtcars$am,

header_count = TRUE)
mergeDesc(tl_no_units,

tll) %>%
htmlTable::addHtmlTableStyle(css.rgroup = "")

invisible(readline(prompt = "Press [enter] to continue"))

Other settings
mtcars$mpg[sample(1:NROW(mtcars), size = 5)] <- NA
getDescriptionStatsBy(mtcars$mpg,

mtcars$am,
statistics = TRUE)

invisible(readline(prompt = "Press [enter] to continue"))

Do the horizontal version
getDescriptionStatsBy(mtcars$gear,

mtcars$am,
statistics = TRUE,
hrzl_prop = TRUE)

invisible(readline(prompt = "Press [enter] to continue"))

mtcars$wt_with_missing <- mtcars$wt
mtcars$wt_with_missing[sample(1:NROW(mtcars), size = 8)] <- NA
getDescriptionStatsBy(mtcars$wt_with_missing, mtcars$am, statistics = TRUE,

hrzl_prop = TRUE, total_col_show_perc = FALSE)
invisible(readline(prompt = "Press [enter] to continue"))

Not run:
There is also a LaTeX wrapper
tll <- list(
getDescriptionStatsBy(mtcars$gear, mtcars$am),
getDescriptionStatsBy(mtcars$col, mtcars$am))

latex(mergeDesc(tll),
caption = "Factored variables",
file = "")

54 mergeLists

End(Not run)

mergeLists Merging of multiple lists

Description

The merge allows for a recursive component where the lists are compared on the subelement. If one
does not contain that element it will get NA in for those parameters.

Usage

mergeLists(
...,
lapplyOutput = NULL,
sortNames = getOption("Gmisc.mergeList.sort", default = TRUE)

)

Arguments

... Any number of lists that you want to merge

lapplyOutput The lapply function outputs a number of lists and this is for specifically merg-
ing all of those.

sortNames Set to false if you don’t want the names to be sorted. This can also be done via
the option ‘Gmisc.mergeList.sort‘.

Value

Returns a list with all the given lists.

Examples

v1 <- list("a" = c(1, 2), b = "test 1", sublist = list(one = 20:21, two = 21:22))
v2 <- list("a" = c(3, 4), b = "test 2", sublist = list(one = 10:11, two = 11:12, three = 1:2))
mergeLists(v1, v2)

moveBox 55

moveBox Move a boxGrob

Description

Moves a boxGrob/boxPropGrob by modifying it’s viewport. This can be useful if you want
to create a series of boxes whose position are relative to each other and depend on each box’s
width/height.

Usage

moveBox(
element,
x = NULL,
y = NULL,
space = c("absolute", "relative"),
just = NULL,
.subelement = NULL

)

Arguments

element A boxGrob/boxPropGrob object.

x A unit element or a numeric that can be converted to a npc unit object.

y A unit element or a numeric that can be converted to a npc unit object.

space We can provide absolute that confers the box absolute position within the par-
ent viewport. If relative the movement is related to the current position.

just The justification of an argument as used by viewport some tiny differences: (1)
you only want to change the justification in the vertical direction you can retain
the existing justification by using NA, e.g. c(NA, 'top'), (2) if you specify
only one string and that string is either top or bottom it will assume vertical
justification.

.subelement If a list of boxes is provided, this can be a name, index, or a vector of names/indices
to target a single nested element to move; the function will return the original
list with the targeted element replaced by its moved version.

Value

The element with updated viewport and coordinates

See Also

Other flowchart components: align, boxGrob(), boxPropGrob(), boxShapes, connectGrob(),
coords(), distance(), spread

56 pathJoin

Examples

library(grid)
grid.newpage()

pushViewport(viewport(y = 0.85, height = unit(.3, "npc")))
grid.rect(gp = gpar(col = "steelblue"))
grid.text("Example 1", y = .9, x = unit(10, "mm"), just = "left")
box <- boxGrob("A simple box", x = .5, y = .5) # Start at the middle
moveBox(box, x = -.2, space = "relative") # Move to the left
popViewport()

Advanced example: create a nested list of treatment boxes, spread them horizontally,
then move a single nested element (`Ibuprofen`) using `.subelement` via a pipe.
pushViewport(viewport(y = 0.35, height = unit(.7, "npc") - unit(2, "mm")))
grid.rect(gp = gpar(col = "lightgreen"))

boxes <- list(
population = boxGrob("Population"),
treatment = list(

Ibuprofen = boxGrob("Ibuprofen"),
Paracetamol = boxGrob("Paracetamol"),
Aspirin = boxGrob("Aspirin")

),
followup = paste("Follow-up 4 weeks:",

" - EQ-5D 5L",
" - Lab",
sep = "\n"

) |>
boxGrob(just = "left")

) |>
alignHorizontal(.position = "center") |>
spreadVertical() |>
spreadHorizontal(

.from = unit(0.1, "npc"),

.to = unit(0.9, "npc"),

.type = "center",

.subelement = "treatment"
) |>
moveBox(

y = 0.1,
space = "relative",
.subelement = c("treatment", "Ibuprofen")

)

boxes
connectGrob(boxes$population, boxes$treatment, type = "N")
connectGrob(boxes$treatment, boxes$followup, type = "N")

pathJoin A path join function

prAddDescStats 57

Description

This function joins strings into a valid path. It is a simple version of python’s os.path.join and
fixes simple problems such as having/not having trailing / in each section.

Usage

pathJoin(...)

Arguments

... A set of strings to join. Each may be a single string or a vector. If you provide
vectors they can either be all of the same length or where there are two lengths
where one is equal to 1.

Value

string A string with the merged path

Examples

pathJoin("my_base_path/helpers", "superfunction.R")
'my_base_path/helpers/superfunction.R'

base_dir <- "/home/tester/images"
out <- data.frame(filename = c("file1.png", "file2.png", "file3.png")) |>

dplyr::mutate(full_path = pathJoin(base_dir, filename))

prAddDescStats Add a p-value column to the results

Description

Add a p-value column to the results

Usage

prAddDescStats(
results,
x,
by,
statistics,
statistics.suppress_warnings,
statistics.sig_lim,
statistics.two_dec_lim,
html

)

58 prAddDescUnitColumn

Arguments

results The results that we want to add the column to

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

by The variable that you want to split into different columns

statistics Add statistics, fisher test for proportions and Wilcoxon for continuous variables.
See details below for more customization.

statistics.suppress_warnings

Hide warnings from the statistics function.

statistics.sig_lim

The significance limit for < sign, i.e. p-value 0.0000312 should be < 0.0001
with the default setting.

statistics.two_dec_lim

The limit for showing two decimals. E.g. the p-value may be 0.056 and we
may want to keep the two decimals in order to emphasize the proximity to the
all-mighty 0.05 p-value and set this to 10−2. This allows that a value of 0.0056
is rounded to 0.006 and this makes intuitive sense as the 0.0056 level as this is
well below the 0.05 value and thus not as interesting to know the exact proximity
to 0.05. Disclaimer: The 0.05-limit is really silly and debated, unfortunately it
remains a standard and this package tries to adapt to the current standards in
order to limit publication associated issues.

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

Value

results with added column

prAddDescUnitColumn Add a units column to the results

Description

Add a units column to the results

Usage

prAddDescUnitColumn(results, x, use_units, units_column_name)

prAddEmptyVals 59

Arguments

results The results that we want to add the column to

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

use_units If the Hmisc package’s units() function has been employed it may be interesting
to have a column at the far right that indicates the unit measurement. If this col-
umn is specified then the total column will appear before the units (if specified
as last). You can also set the value to "name" and the units will be added to the
name as a parenthesis, e.g. Age (years).

units_column_name

The name of the units column. Used if use_units = TRUE

Value

results with added column

prAddEmptyVals Convert the by-list into a matrix compatible format

Description

Helper for [getDescriptionStatsBy] that fixes empty values in matrix so that they are compatible
with the matrix

Usage

prAddEmptyVals(t, missing_value)

Arguments

t Output from [prNumericDescs], [prPropDescs], or [prFactorDescs].

missing_value Value that is substituted for empty cells. Defaults to "-"

Value

A fixed list

60 prAddTotalDescColumn

prAddTotalDescColumn Add a total column to the results

Description

Add a total column to the results

Usage

prAddTotalDescColumn(
results,
x,
by,
numbers_first,
total_col_show_perc,
show_all_values,
useNA,
useNA.digits,
html,
digits,
continuous_fn,
factor_fn,
prop_fn,
percentage_sign,
default_ref,
header_count = NULL,
add_total_col

)

Arguments

results The results that we want to add the column to
x If a data.frame it will be used as the data source for the variables in the ...

parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

by The variable that you want to split into different columns
numbers_first If the number should be given or if the percentage should be presented first. The

second is encapsulated in parentheses ().
total_col_show_perc

This is by default true but if requested the percentages are suppressed as this
sometimes may be confusing.

show_all_values

Show all values in proportions. For factors with only two values it is most sane
to only show one option as the other one will just be a complement to the first,
i.e. we want to convey a proportion. For instance sex - if you know gender then
automatically you know the distribution of the other sex as it’s 100 % - other %.
To choose which one you want to show then set the default_ref parameter.

prBuildSubLabel 61

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

continuous_fn The method to describe continuous variables. The default is describeMean.

factor_fn The method used to describe factors, see describeFactors.

prop_fn The method used to describe proportions, see describeProp.
percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable.

default_ref The default reference when dealing with proportions. When using ‘dplyr‘ syntax
(‘tidyselect‘) you can specify a named vector/list for each column name.

header_count Set to TRUE if you want to add a header count, e.g. Smoking; No. 25 observa-
tions, where there is a new line after the factor name. If you want a different text
for the second line you can specifically use the sprintf formatting, e.g. "No.
%s patients".

add_total_col This adds a total column to the resulting table. You can also specify if you want
the total column "first" or "last" in the column order.

Value

results with added column

prBuildSubLabel Add a sub-label to boxPropGrob

Description

Add a sub-label to boxPropGrob

Usage

prBuildSubLabel(label, prop, txt_gp, side = c("left", "right"))

Arguments

label The text of the label

prop The proportion

txt_gp The style as defined by gpar()

side The side that the label belongs to

62 prConvert2Coords

Value

A textGrob with he additional attributes width and height.

prConvert2Coords Converts an object to coordinates

Description

Sometimes we have an object that can be either a box, a coordinate, a unit or a numerical value and
all we want is a list of coordinates that we can use for calculating distance, alignment and other
things.

Usage

prConvert2Coords(obj)

Arguments

obj A single or a list of [boxGrob], boxPropGrob, [coords] output, unit or a
numeric value that can be converted to an npc [unit][grid::unit]. If a listis provided the function recursively converts each element and returns bounding coordinates that encompass all elements; the returned units are innpc‘
so the coordinates resize with the viewport.

Details

When given a list, prConvert2Coords computes the min/max of edges (or uses center +/- half sizes
if edges are missing) to create a merged bounding box. Any additional coordinate names present on
elements are merged heuristically (e.g., left* -> min, right* -> max, else averaged).

Value

A list with all the points that coords returns. For list inputs the function returns merged bounding
coordinates (class box_coords) with units in npc.

Examples

box1 <- boxGrob("A", x = .2, y = .8)
box2 <- boxGrob("B", x = .6, y = .4)
Gmisc:::prConvert2Coords(list(box1, box2))

prCreateBoxCoordinates 63

prCreateBoxCoordinates

Creates coordinates for box

Description

Creates coordinates for box

Usage

prCreateBoxCoordinates(viewport_data, extra_coordinate_functions = NULL)

Arguments

viewport_data The arguments that will be used for generating the viewport

extra_coordinate_functions

A list with named functions if we want additional parameters

Value

list of class coords

prFactorDescs Helper to [getDescriptionStatsBy()]

Description

Helper to [getDescriptionStatsBy()]

Usage

prFactorDescs(
x,
by,
factor_fn,
hrzl_prop,
html,
digits,
digits.nonzero,
numbers_first,
useNA,
useNA.digits,
percentage_sign,
missing_value,
names_of_missing

)

64 prFixDescRownames

Arguments

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

by The variable that you want to split into different columns

factor_fn The method used to describe factors, see describeFactors.

hrzl_prop This is default FALSE and indicates that the proportions are to be interpreted in
a vertical manner. If we want the data to be horizontal, i.e. the total should be
shown and then how these differ in the different groups then set this to TRUE.

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

numbers_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses ().

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable.

missing_value Value that is substituted for empty cells. Defaults to "-"
names_of_missing

Optional character vector containing the names of returned statistics, in case all
returned values for a given by level are missing. Defaults to NULL

Value

A [base::by] list

prFixDescRownames Fix rownames for descriptive results

Description

Helper for [getDescriptionStatsBy] that fixes row names

Usage

prFixDescRownames(results, t, name)

prGetBoxAxisDefaults 65

Arguments

results A matrix with the results
t The [base::by()] output
name Name if row names are missing or the results is a single row

Value

The results with fixed names

prGetBoxAxisDefaults Get default from/to values for an axis

Description

When axis is "x", the default is from 0 to 1 npc, i.e. left to right. When axis is "y", the default is
from 1 to 0 npc, i.e. top to bottom.

Usage

prGetBoxAxisDefaults(axis = c("x", "y"))

Arguments

axis Axis, either "x" or "y" #’ @return A list with ‘from‘ and ‘to‘ values as ‘unit‘
objects

prGetDescHeader Retrieve basic description stats by header

Description

Helper for [getDescriptionStatsBy] that retrieves the basic header names.

Usage

prGetDescHeader(by, html, header_count, already_table_format = FALSE)

Arguments

by The variable that you want to split into different columns
html If HTML compatible output should be used. If FALSE it outputs LaTeX format-

ting
header_count Set to TRUE if you want to add a header count, e.g. Smoking; No. 25 observa-

tions, where there is a new line after the factor name. If you want a different text
for the second line you can specifically use the sprintf formatting, e.g. "No.
%s patients".

already_table_format

Just a boolean as we use this in the total column

66 print.Gmisc_list_of_boxes

Value

A vector with basic headers

print.Gmisc_connector_label

Print a connector label object

Description

Print a connector label object

Usage

S3 method for class 'Gmisc_connector_label'
print(x, ...)

Arguments

x A ‘Gmisc_connector_label‘ object

... ignored

print.Gmisc_list_of_boxes

Output boxes

Description

Outputs a list of boxes as produced by either the spread or align functions for boxGrobs.

Usage

S3 method for class 'Gmisc_list_of_boxes'
print(x, ...)

Arguments

x A list of a set of [‘boxGrob‘]/[‘boxPropGrob‘] to plot

... Ignored argument

prNumericDescs 67

prNumericDescs Helper to [getDescriptionStatsBy()]

Description

Helper to [getDescriptionStatsBy()]

Usage

prNumericDescs(
x,
by,
hrzl_prop,
continuous_fn,
html,
digits,
digits.nonzero,
numbers_first,
useNA,
useNA.digits,
percentage_sign,
missing_value,
names_of_missing

)

Arguments

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

by The variable that you want to split into different columns

hrzl_prop This is default FALSE and indicates that the proportions are to be interpreted in
a vertical manner. If we want the data to be horizontal, i.e. the total should be
shown and then how these differ in the different groups then set this to TRUE.

continuous_fn The method to describe continuous variables. The default is describeMean.

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

numbers_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses ().

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

68 prPropDescs

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable.

missing_value Value that is substituted for empty cells. Defaults to "-"
names_of_missing

Optional character vector containing the names of returned statistics, in case all
returned values for a given by level are missing. Defaults to NULL

Value

A [base::by] list

prPasteVec Collapses a vector for throwing errors

Description

The function collapses a vector into an output useful when throwing errors, e.g. 1:3 becomes ’1’,
’2’, ’3’

Usage

prPasteVec(x)

Arguments

x The vector

prPropDescs Helper to [getDescriptionStatsBy()]

Description

Helper to [getDescriptionStatsBy()]

Usage

prPropDescs(
x,
by,
name,
default_ref,
prop_fn,
html,

prPropDescs 69

digits,
digits.nonzero,
numbers_first,
useNA,
useNA.digits,
percentage_sign,
missing_value,
names_of_missing,
NEJMstyle

)

Arguments

x If a data.frame it will be used as the data source for the variables in the ...
parameter. If it is a single variable it will be the core value that want the statistics
for. In the print this is equivalent to the output of this function.

by The variable that you want to split into different columns

name The name of the row

default_ref The default reference when dealing with proportions. When using ‘dplyr‘ syntax
(‘tidyselect‘) you can specify a named vector/list for each column name.

prop_fn The method used to describe proportions, see describeProp.

html If HTML compatible output should be used. If FALSE it outputs LaTeX format-
ting

digits The number of decimals used

digits.nonzero The number of decimals used for values that are close to zero

numbers_first If the number should be given or if the percentage should be presented first. The
second is encapsulated in parentheses ().

useNA This indicates if missing should be added as a separate row below all other. See
table for useNA-options. Note: defaults to ifany and not "no" as table does.

useNA.digits The number of digits to use for the missing percentage, defaults to the overall
digits.

percentage_sign

If you want to suppress the percentage sign you can set this variable to FALSE.
You can also choose something else that the default % if you so wish by setting
this variable.

missing_value Value that is substituted for empty cells. Defaults to "-"
names_of_missing

Optional character vector containing the names of returned statistics, in case all
returned values for a given by level are missing. Defaults to NULL

NEJMstyle Adds - no (%) at the end to proportions

Value

A [base::by] list

70 retrieve

retrieve An R alternative to the lodash get in JavaScript

Description

This is a handy function for retrieving items deep in a nested structure without causing error if not
found

Usage

retrieve(sourceList, path, default = NA)

Arguments

sourceList The list()/c() that is to be searched for the element

path A string that can be separated by [,] or ., the string "elementname1.1.elementname"
is equivalent to "elementname1[[1]]]elementname". Note that the function
doesn’t check the validity of the path - it only separates and tries to address that
element with ‘[[]]‘.

default The value to return if the element isn’t found

Value

Returns a sub-element from sourceList or the default value.

See Also

Other lodash similar functions: has()

Examples

source <- list(a = list(b = 1, `odd.name` = 'I hate . in names', c(1,2,3)))
retrieve(source, "a.b")
retrieve(source, "a.b.1")
retrieve(source, "a.odd\\.name")
retrieve(source, "a.not_in_list")

setConnectorLabels 71

setConnectorLabels Attach labels to a connector object

Description

Store labels and presentation options on a connector object so labels are automatically drawn when
the connector is printed.

Usage

setConnectorLabels(
con,
labels,
gp = gpar(cex = 0.9),
bg_gp = gpar(fill = "white", col = NA),
x_offset = unit(0, "mm"),
y_offset = unit(0, "mm")

)

Arguments

con A connector (a ‘connect_boxes‘ grob or ‘connect_boxes_list‘).

labels Character vector of labels (recycled to match connector length).

gp A ‘gpar‘ for label text.

bg_gp A ‘gpar‘ for label background.
x_offset, y_offset

Unit offsets for label placement.

Value

The connector object with attributes set (invisibly).

set_column_labels Add [Hmisc::label()] to multiple columns

Description

Add label attribute using ‘dplyr‘ syntax using the [Hmisc::label()]

Usage

set_column_labels(x, ...)

72 set_column_units

Arguments

x The data frame that we want to label

... Variable names with their intended label, e.g. ‘mpg = "Miles per gallon"‘.

Value

The original data.frame

See Also

Other Hmisc helpers: set_column_units()

Examples

library(magrittr)
data(mtcars)
mtcars_with_labels <- mtcars %>%

set_column_labels(mpg = "Gas",
cyl = "Cylinders",
hp = "Strength")

Hmisc::label(mtcars_with_labels$mpg)

set_column_units Add [Hmisc::unit()] to multiple columns

Description

Add label attribute using ‘dplyr‘ syntax using the [Hmisc::unit()]

Usage

set_column_units(x, ...)

Arguments

x The data frame that we want to define units on

... Variable names with their intended unit, e.g. ‘hp = "Hp"‘.

Value

The original data.frame

See Also

Other Hmisc helpers: set_column_labels()

spread 73

Examples

library(magrittr)
data(mtcars)
mtcars_with_units <- mtcars %>%

set_column_units(wt = "1000 lbs")
Hmisc::units(mtcars_with_units$wt)

spread Spread boxes

Description

Spreads a set of boxGrob/boxPropGrob in either horizontal or vertical direction within a given span.

Usage

spreadVertical(
...,
.from = NULL,
.to = NULL,
.margin = unit(0, "npc"),
.type = c("between", "center"),
.subelement = NULL

)

spreadHorizontal(
...,
.from = NULL,
.to = NULL,
.margin = unit(0, "npc"),
.type = c("between", "center"),
.subelement = NULL

)

Arguments

... A set of boxes to spread. Can also be a list of boxes.

.from Starting point of the span. Can be a box, a coordinate/unit, or a numeric value
interpreted as npc. If only .from is provided, .to defaults to 1 npc.

.to Ending point of the span. Can be a box, a coordinate/unit, or a numeric value
interpreted as npc. If only .to is provided, .from defaults to 0 npc.

.margin Optional padding applied at both ends of the span. Can be a grid::unit or a
numeric value interpreted as npc. Applied whether the span comes from .from
/ .to or the viewport.

.type If between, the space between boxes is identical. If center, the centers of the
boxes are equally distributed across the span.

74 time2spanTxt

.subelement If a list of boxes is provided, this parameter can be used to target a specific
element (by name or index) for the spreading operation. The function will then
return the original list with the targeted element replaced by its spread version.

Details

The span can be defined explicitly using .from / .to, or implicitly by the current viewport. Numeric
values are interpreted as proportions of the viewport (npc units).

Value

A list with the boxes that have been spread.

See Also

Other flowchart components: align, boxGrob(), boxPropGrob(), boxShapes, connectGrob(),
coords(), distance(), moveBox()

Examples

library(grid)
grid.newpage()

Create a set of boxes
start <- boxGrob("Top", x = .5, y = .8)
end <- boxGrob("Bottom", x = .5, y = .2)
side <- boxPropGrob("Side", "Left", "Right", prop = .3, x = .2, y = .8)
exclude <- boxGrob("Exclude:\n - Too sick\n - Prev. surgery", x = .8, y = .5, just = "left")

We can chain the spread operations
boxes <- spreadVertical(

start = start,
middle = list(side, exclude),
end = end

) |>
spreadHorizontal(.subelement = "middle", .from = 0.2, .to = 0.8)

Now we can print them all at once
boxes

time2spanTxt A dense time-span text

Description

When adding a time span text we often don’t want to write 3 jun - 10 jun but shorten it to 3 - 10 jun
while retaining month and year info only if the span crosses between months or years.

time2spanTxt 75

Usage

time2spanTxt(
times,
day_month_glue_txt = getOption("Gmisc_time2spanTxt_day_month", default =
"{mday(time)} {month(time, label = TRUE)}"),

full_year_format = getOption("Gmisc_time2spanTxt_full_year", default =
"{mday(time)} {month(time, label = TRUE)} {year(time)}"),

start_stop_glue_txt = getOption("Gmisc_time2spanTxt_template", default =
"{start} to {stop}")

)

Arguments

times The dates or POSIX timestamps to used for time span

day_month_glue_txt

The glue string to format days and months with time as the time input

full_year_format

The glue string to format the full year with time as the time input

start_stop_glue_txt

The string used in the glue for putting the start and stop dates together into one
string

Details

There are options that can be set using the options:

• Gmisc_time2spanTxt_day_month The date with day + month as formatted by glue where
the time is passed as time.

• Gmisc_time2spanTxt_full_year The full date with day + month + year as formatted by
glue where the time is passed as time.

• Gmisc_time2spanTxt_template The merge of the stop & start elements using glue.

Value

string A string describing the time span

Examples

time2spanTxt(as.POSIXct(c("2020-01-02", "2020-03-01", NA)))
2 jan to 1 mar

76 Transition-class

Transition-class A reference class for generating transition plots

Description

This class simplifies the creating of transition plots. It also allows for advanced multi-column
transitions.

Details

Transition plots are a type of Sankey diagrams. These are a specific type of flow diagram, in which
the width of the arrows is shown proportionally to the flow quantity. See Wikipedia for details.

Fields

id Optional id. The render uses named viewports that require a unique id if multiple transition
plots are combined. In order to avoid having overlapping graphs we need to generate a unique
id for each viewport and thus this variable exists. If left empty it will create a counter that is
stored in the options ("Gmisc.transitionClassCounter") and each viewport will have the
name preceded with tc_[0-9]+. Set this if you intend to use seekViewport.

transitions This is a >= 3 dimensional array with the transitions. Should not be directly accessed.

box_width The box width

box_txt The texts of each box

box_label Box labels

box_label_pos The label’s positions, either "top"/"bottom"

box_label_cex The size of the box labels

box_cex The font-size multiplier for the text within the boxes

arrow_type The type of arrow to use, defaults to "gradient", but can also be "simple". The corre-
sponding functions are bezierArrowGradient, and bezierArrowSmpl. Note The bezierGrob
has been deprecated as it is no longer faster than the bezier arrows and there is a difference in
design.

arrow_clr The arrow color

arrow_rez The resolution of the arrow

vertical_space The space between the boxes

fill_clr The box fill color

clr_bar Shows a color bar if there are proportions. Can be "none", "top", "bottom"

clr_bar_clrs Extracts the colors for the color bar from the fill_clr if none is provided

clr_bar_cex The size of the ticks in the color bar

clr_bar_subspace If little or no difference exists at the low/high proportions of the spectrum then
it can be of interest to focus the color change to the center leaving the tails constant

clr_bar_labels The labels of the color bars. Defaults to the dim names for the proportions.

https://en.wikipedia.org/wiki/Sankey_diagram

Transition-class 77

txt_clr The text color within the boxes

txt_gpar Similar to ‘txt_clr‘ but for more advanced styling with fontfamily (see [grid::gpar()]).
Note that col & cex are overridden.

title The plot title if any

title_cex The font-size multiplier for the title

skip_shadows Skip the shadow effect on the boxes

mar The margins for the plot.

min_lwd The minimum line width that is still shown. The pixels will most likely not have the same
fine resolution as the data and you therefore may want to hide lines that are smaller than a
certain amount.

max_lwd The maximum line width to show

lwd_prop_type The line can either be proportional to the "set" of transitions (group of two box
columns), to "all" transitions, or to each "box". It defaults to "all".

data Internal storage variable. Should not be accessed directly.

Methods

addBoxStyle(fill, txt, gpar) Adds colors or extends existing one so that they match the tran-
sition matrix. The fill corresponds to the fill_clr and txt corresponds to the txt_clr. If the colors
are missing and the transitions consist of only two columns the default colors will be used.
If the matrix is being extended and these values are missing the values from the previous last
column will be used for the default columns.

addTransitions(mtrx, label, txt, fill_clr, txt_clr, txt_gpar) Add a transition matrix.
The input has to be a numerical matrix between 2 and 3 dimensions. If you don’t provide the
txt field the box’ text field will be deduced from the transition matrix’ dimnames. The fill_clr
and txt_clr are passed on to the addBoxStyle function.

arrowWidths(set_no, add_width) Retrieves the details regarding arrow sizes for each arrow
within the transition group

boxPositions(col) The box positions as a list with scalars for the positions:

1. x The center x-position
2. y The center y-position
3. right The right edge
4. left The left edge
5. top The top edge
6. bottom The bottom edge
7. height The box height
8. width The box width
9. unit The unit used for the values (npc)

boxSizes(col) Gets the size of the boxes. The col argument should be either an integer or ’last’

getDim() Gets the current dimensions of the transitions

getTransitionSet(no, reduce_dim = FALSE) Gets a specific set of transitions. If the reduce_dim
is set to TRUE it will only return a 2-dimensional matrix even if the original has a 3rd propor-
tions dimension

78 Transition-class

getYProps(col) Gets the proportions after removing the vertical_space between the boxes

initialize(transitions, label, txt, fill_clr, txt_clr, txt_gpar, id, ...) Set up a Tran-
sition object. The transitions should be a 2D or 3D matrix as defined in the $addTransitions
section and not as later internally stored.

noCols() Gets the number of columns, i.e. the number of transitions

noRows(no) Gets the number of boxes in each row. If multiple rows the number of rows may differ
betwen each transition matrix we therefore need to specify what transitions that we refer to. If
no value is specified it returns all of them.

render(new_page = TRUE) Call this to render the full graph. The new_page argument is for creat-
ing a new plot, set this to FALSE if you want to combine this plot with another or if you have
additional viewports that you intend to use.

trnstnSizes(set_no) Gets the transitions per box as a 2D matrix. For the proportions it also
adds an attribute attr('props', prop_mtrx) that is a 2D matrix with the corresponding
proportions.

Examples

Transitions
set.seed(1)
n <- 10
my_data <-

data.frame(
Var_a = sample(c(

"Test 1",
"Test 2",
"Test 3"

),
size = n,
replace = TRUE,
prob = 3:1
),
Var_b = sample(c(

"Test 1",
"Test 2",
"Test 3"

),
size = n,
replace = TRUE,
prob = 1:3
)

)
mtrx <- with(

my_data,
table(Var_a, Var_b)

)

Initialize the transition plot
transitions <- getRefClass("Transition")$new(mtrx,

label = c("Before", "After"))

transitionPlot 79

Render the plot
transitions$render()

transitionPlot A transition plot

Description

This plot’s purpose is to illustrate how states change before and after. In my research I use it before
surgery and after surgery but it can be used in any situation where you have a change from one state
to another

Usage

transitionPlot(
transition_flow,
type_of_arrow = c("grid", "simple", "gradient"),
box_txt = rownames(transition_flow),
tot_spacing = 0.2,
box_width = 1/4,
fill_start_box = "darkgreen",
txt_start_clr = "white",
fill_end_box = fill_start_box,
txt_end_clr = txt_start_clr,
cex = 2,
min_lwd = if (type_of_arrow == "grid") 1 else unit(0.1, "mm"),
max_lwd = if (type_of_arrow == "grid") 6 else unit(5, "mm"),
lwd_prop_total = TRUE,
arrow_clr = "#000000",
abs_arrow_width = FALSE,
overlap_bg_clr = "#FFFFFF",
overlap_order = 1:nrow(transition_flow),
overlap_add_width = if (type_of_arrow == "grid") 1.5 else unit(1, "mm"),
box_prop,
mar = unit(rep(3, times = 4), "mm"),
main = NULL,
box_label = NULL,
box_label_pos = "top",
box_label_cex = cex,
color_bar = TRUE,
color_bar_cex = cex * 0.33,
color_bar_labels,
color_bar_subspace = NULL,
new_page = FALSE

)

80 transitionPlot

Arguments

transition_flow

This should be a matrix with the size of the transitions. The unit for each cell
should be number of observations, row/column-proportions will show incorrect
sizes. The matrix needs to be square. The best way to generate this matrix is
probably just do a table(starting_state, end_state). The rows represent
the starting positions, while the columns the end positions. I.e. the first rows
third column is the number of observations that go from the first class to the
third class.

type_of_arrow The types of arrow may be grid, simple, or gradient. Simple grid arrows are
the bezierGrob arrows (not that pretty), simple is the bezierArrowSmpl that
I’ve created to get a more exact control of the arrow position and width, while
gradient corresponds to bezierArrowGradient allowing the arrow to have a fill
color that slowly turns into the color of the arrow.

box_txt The text to appear inside of the boxes. If you need line breaks then you need to
manually add a \n inside the string.

tot_spacing The proportion of the vertical space that is to be left empty. It is then split evenly
between the boxes.

box_width The width of the box. By default the box is one fourth of the plot width.

fill_start_box The fill color of the start boxes. This can either be a single value or a vector if
you desire different colors for each box. If you specify box_prop then this has
to be a 2 column matrix.

txt_start_clr The text color of the start boxes. This can either be a single value or a vector if
you desire different colors for each box. If you specify box_prop then this has
to be a 2 column matrix.

fill_end_box The fill color of the end boxes. This can either be a single value or a vector if
you desire different colors for each box. If you specify box_prop then this has
to be a 2 column matrix.

txt_end_clr The text color of the end boxes. This can either be a single value or a vector if
you desire different colors for each box. If you specify box_prop then this has
to be a 2 column matrix.

cex The cex gpar of the text

min_lwd The minimum width of the line that we want to illustrate the tranisition with.

max_lwd The maximum width of the line that we want to illustrate the tranisition with.

lwd_prop_total The width of the lines may be proportional to either the other flows from that
box, or they may be related to all flows. This is a boolean parameter that is set
to true by default, i.e. relating to all flows.

arrow_clr The color of the arrows. Usually black, can be a vector indicating each arrow
from first to last arrow (counting from the top). If the vector is of the same
length as the boxes then all box arrows will have the same color (that is all the
arrows stemming from the left boxes)

abs_arrow_width

The width can either be absolute, i.e. each arrow headed for a box has the exact
same width. The alternative is that the width is related to the line width.

transitionPlot 81

overlap_bg_clr In order to enhance the 3D perspective and to make it easier to follow arrows
the arrows have a background color to separate them from those underneath.

overlap_order The order from first->last for the lines. This means that the last line will be on
top while the first one will appear at the bottom. This should be provided as a
vector.

overlap_add_width

The width of the white cross-over line. You can specify this as a scalar multi-
plication of the current line width. In case of non-grid arrows then you can also
have this as a unit which is recommended as it looks better. If the scalar is < 1
then the overlap is ignored.

box_prop If you want the boxes to have proportions indicating some other factors then in-
put a matrix with quantiles for the proportions. Note the size must be nrow(transition_flow)
x 2.

mar A numerical vector of the form c(bottom, left, top, right) of the type unit()

main The title of the plot if any, default NULL

box_label A vector of length 2 if you want to label each box column

box_label_pos The position of the label, either 'top' or 'bottom'

box_label_cex The cex of the label, defaults to the default cex

color_bar If you have proportions inside the transition_flow variable then the color_bar
will automatically appear at the bottom unless you set this to FALSE

color_bar_cex The size of the tick labels for the color bar
color_bar_labels

The labels of the two proportions that make up the color bar. Defaults to the
labels of the third dimension for the transition_flow argument.

color_bar_subspace

If there is little or no difference at the low/high proportions of the spectrum
then it can be of interest to focus the color change to the center leaving the tails
constant

new_page If you want the plot to appear on a new blank page then set this to TRUE, by
default it is FALSE.

Value

void

Examples

This example does not run since it
takes a little while to assemble the
arrows and RMD Check complains that this
is more than allowed for
library(grid)
par_org <- par(ask = TRUE)
Settings
no_boxes <- 3
Generate test setting

82 yamlDump

transition_matrix <- matrix(NA, nrow = no_boxes, ncol = no_boxes)
transition_matrix[1,] <- 200 * c(.5, .25, .25)
transition_matrix[2,] <- 540 * c(.75, .10, .15)
transition_matrix[3,] <- 340 * c(0, .2, .80)

grid::grid.newpage()
transitionPlot(transition_matrix,

box_txt = c("First", "Second", "Third"),
type_of_arrow = "simple",
min_lwd = unit(1, "mm"),
max_lwd = unit(6, "mm"),
overlap_add_width = unit(1, "mm")

)

Setup proportions
box_prop <- cbind(c(1, 0, 0.5), c(.52, .2, .8))
From the Set2 Colorbrewer
start_box_clr <- c("#8DA0CB", "#FC8D62")
Darken the colors slightly
end_box_clr <- c(

colorRampPalette(c(start_box_clr[1], "#000000"))(10)[2],
colorRampPalette(c(start_box_clr[2], "#000000"))(10)[2]

)
Create a new grid
grid::grid.newpage()
transitionPlot(transition_matrix,

box_prop = box_prop,
fill_start_box = start_box_clr, fill_end_box = end_box_clr,
txt_start_clr = c("#FFFFFF", "#000000"), txt_end_clr = c("#FFFFFF", "#000000"),
box_txt = c("First", "Second", "Third"),
type_of_arrow = "gradient",
min_lwd = unit(1, "mm"),
max_lwd = unit(10, "mm"),
overlap_add_width = unit(1, "mm")

)
par(par_org)

yamlDump Outputs an object

Description

Manually viewing a list object can be tricky where the natural print can be hard to work through.
The config format *yaml* is increadibly dense and useful not only for writing configs but also
viewing them which ‘yamlDump‘ helps with.

Usage

yamlDump(x)

yamlDump 83

Arguments

x An object that as.yaml accepts

Value

void

Examples

some_fancy_list <- list(complex = list(some_data = 1:3,
other_data = list(name = "Max")),

simple = "awesome overview")
yamlDump(some_fancy_list)
#complex:
some_data:
- 1
- 2
- 3
other_data:
name: Max
#simple: awesome overview

If you got a character json you can also input it directly
and the function will automatically convert it to a list
yamlDump('{"a":{"b":["1"]}}')

Index

∗ Hmisc helpers
set_column_labels, 71
set_column_units, 72

∗ descriptive functions
describeFactors, 24
describeMean, 25
describeMedian, 27
describeProp, 28
getDescriptionStatsBy, 36
getPvalWilcox, 42

∗ figure caption functions
figCapNo, 34
figCapNoLast, 35
figCapNoNext, 35

∗ flowchart components
align, 4
boxGrob, 9
boxPropGrob, 11
boxShapes, 12
connectGrob, 17
coords, 21
distance, 30
moveBox, 55
spread, 73

∗ lodash similar functions
has, 48
retrieve, 70

∗ table functions
mergeDesc, 50

align, 4, 10, 12, 16, 20, 22, 30, 55, 74
alignHorizontal (align), 4
alignVertical (align), 4
anova, 43
as.yaml, 83

bezierArrowGradient, 5, 76, 80
bezierArrowSmpl, 5, 7, 7, 76, 80
bezierGrob, 7, 8, 80
boxDatabaseGrob (boxShapes), 12

boxDiamondGrob (boxShapes), 12
boxDocumentGrob (boxShapes), 12
boxDocumentsGrob (boxShapes), 12
boxEllipseGrob (boxShapes), 12
boxGrob, 4, 5, 9, 12, 16, 20–22, 30, 55, 73, 74
boxPropGrob, 4, 5, 10, 11, 16, 20–22, 30, 55,

62, 73, 74
boxRackGrob (boxShapes), 12
boxServerGrob (boxShapes), 12
boxShapes, 5, 10, 12, 12, 20, 22, 30, 55, 74
boxTapeGrob (boxShapes), 12

calculateLinesAndArrow, 16
chisq.test, 43
colnames, 51
connectGrob, 5, 10, 12, 16, 17, 22, 30, 55, 74
convertShowMissing, 21
coords, 4, 5, 10, 12, 16, 20, 21, 30, 55, 62, 74
copyAllNewAttributes, 3, 22, 48

database_box_fn (boxShapes), 12
descGetMissing, 23
describeFactors, 3, 23, 24, 26–29, 38, 39,

43, 61, 64
describeMean, 3, 23, 25, 25, 28, 29, 38, 39,

43, 61, 67
describeMedian, 3, 23, 25, 27, 27, 29, 39, 43
describeProp, 3, 25, 27, 28, 28, 38, 39, 43,

61, 69
diamond_rounded_box_fn (boxShapes), 12
diamond_sharp_box_fn (boxShapes), 12
distance, 5, 10, 12, 16, 20, 22, 30, 55, 74
do.call, 32, 33
document_box_fn (boxShapes), 12
documents_box_fn (boxShapes), 12
docx_document, 31

ellipse_box_fn (boxShapes), 12

fastDoCall, 32

84

INDEX 85

figCapNo, 34, 35, 36
figCapNoLast, 34, 35, 36
figCapNoNext, 34, 35, 35
fisher.test, 43

getBezierAdj4Arrw, 36
getDescriptionStatsBy, 3, 24, 25, 27–29,

36, 42, 43, 50, 51
getPvalAnova, 39
getPvalAnova (getPvalWilcox), 42
getPvalChiSq, 39
getPvalChiSq (getPvalWilcox), 42
getPvalFisher, 39
getPvalFisher (getPvalWilcox), 42
getPvalKruskal, 39
getPvalKruskal (getPvalWilcox), 42
getPvalWilcox, 25, 27–29, 39, 42
getSvdMostInfluential, 3, 44
gList, 7
glue, 75
Gmisc (Gmisc-package), 3
Gmisc-package, 3
gnrlBezierPoints, 8, 47
gpar, 6, 8, 10, 12, 16, 61, 80
grid.draw, 10, 19
grid::arrow(), 18
grid::gpar(), 18, 19
grid::grob(), 20
grid::unit, 73
grob, 9, 10

has, 48, 70
heightDetails, 10
heightDetails.box (boxGrob), 9
html_document, 31
htmlTable, 3, 31, 50, 51
htmlTable.Gmisc_getDescriptionStatsBy

(getDescriptionStatsBy), 36

insertRowAndKeepAttr, 3, 48

knit_print.Gmisc_getDescriptionStatsBy
(getDescriptionStatsBy), 36

kruskal.test, 43

label, 51
labelConnector, 49
lapply, 54
length.Gmisc_getDescriptionStatsBy

(getDescriptionStatsBy), 36

lm, 43

mergeDesc, 3, 50
mergeLists, 3, 54
moveBox, 5, 10, 12, 16, 20, 22, 30, 55, 74

options, 75, 76

pathJoin, 56
plot.box (boxGrob), 9
plot.connect_boxes (connectGrob), 17
plot.connect_boxes_list (connectGrob),

17
prAddDescStats, 57
prAddDescUnitColumn, 58
prAddEmptyVals, 59
prAddTotalDescColumn, 60
prBuildSubLabel, 61
prConvert2Coords, 62
prCreateBoxCoordinates, 63
prFactorDescs, 63
prFixDescRownames, 64
prGetBoxAxisDefaults, 65
prGetDescHeader, 65
print.box (boxGrob), 9
print.connect_boxes (connectGrob), 17
print.connect_boxes_list (connectGrob),

17
print.Gmisc_connector_label, 66
print.Gmisc_getDescriptionStatsBy

(getDescriptionStatsBy), 36
print.Gmisc_list_of_boxes, 66
print.Gmisc_unit (distance), 30
prNumericDescs, 67
prPasteVec, 68
prPropDescs, 68

rack_box_fn (boxShapes), 12
render, 32
retrieve, 48, 70
rownames, 51

seekViewport, 76
server_box_fn (boxShapes), 12
set_column_labels, 71, 72
set_column_units, 72, 72
setConnectorLabels, 71
spread, 5, 10, 12, 16, 20, 22, 30, 55, 73
spreadHorizontal (spread), 73

86 INDEX

spreadVertical (spread), 73
sprintf, 34, 39, 61, 65
svd, 44

table, 21, 24, 26, 28, 29, 38, 61, 64, 67, 69
tape_box_fn (boxShapes), 12
time2spanTxt, 74
Transition (Transition-class), 76
Transition-class, 76
transitionPlot, 3, 79
txtInt, 23, 25, 26, 28, 29

unit, 4, 10, 11, 30, 55, 62

viewport, 10, 11, 16, 55

widthDetails, 10
widthDetails.box (boxGrob), 9
wilcox.test, 43
word_document, 32

yamlDump, 82

	Gmisc-package
	align
	bezierArrowGradient
	bezierArrowSmpl
	boxGrob
	boxPropGrob
	boxShapes
	calculateLinesAndArrow
	connectGrob
	convertShowMissing
	coords
	copyAllNewAttributes
	descGetMissing
	describeFactors
	describeMean
	describeMedian
	describeProp
	distance
	docx_document
	fastDoCall
	figCapNo
	figCapNoLast
	figCapNoNext
	getBezierAdj4Arrw
	getDescriptionStatsBy
	getPvalWilcox
	getSvdMostInfluential
	gnrlBezierPoints
	has
	insertRowAndKeepAttr
	labelConnector
	mergeDesc
	mergeLists
	moveBox
	pathJoin
	prAddDescStats
	prAddDescUnitColumn
	prAddEmptyVals
	prAddTotalDescColumn
	prBuildSubLabel
	prConvert2Coords
	prCreateBoxCoordinates
	prFactorDescs
	prFixDescRownames
	prGetBoxAxisDefaults
	prGetDescHeader
	print.Gmisc_connector_label
	print.Gmisc_list_of_boxes
	prNumericDescs
	prPasteVec
	prPropDescs
	retrieve
	setConnectorLabels
	set_column_labels
	set_column_units
	spread
	time2spanTxt
	Transition-class
	transitionPlot
	yamlDump
	Index

