
Package ‘GE’
January 16, 2026

Type Package

Title General Equilibrium Modeling

Version 0.5.4

Depends R (>= 4.1.0), CGE, data.tree

Imports DiagrammeR

Description Some tools for developing general equilibrium models and some general equilib-
rium models. These models can be used for teaching economic theory and are built by the meth-
ods of new structural economics (see LI Wu, 2019, ISBN: 9787521804225, General Equilib-
rium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Eco-
nomic Science Press). The model form and mathematical meth-
ods can be traced back to J. von Neumann (1945, A Model of General Economic Equilib-
rium. The Review of Economic Studies, 13. pp. 1-9), J. G. Kemeny, O. Morgen-
stern and G. L. Thompson (1956, A Generalization of the von Neumann Model of an Expand-
ing Economy, Econometrica, 24, pp. 115-135) et al. By the way, J. G. Kemeny is a co-
inventor of the computer language BASIC.

License GPL-2 | GPL-3

Encoding UTF-8

BugReports https://www.facebook.com/groups/1392622365121413

NeedsCompilation no

RoxygenNote 7.3.3

Author Wu LI [aut, cre]

Maintainer Wu LI <liwu.shu@qq.com>

Repository CRAN

Date/Publication 2026-01-16 12:00:11 UTC

Contents
AMSD . 5
AMSDP . 6
apply_expand.grid . 8
CARA . 9

1

https://www.facebook.com/groups/1392622365121413

2 Contents

CES . 10
CESAK_dc . 10
convert_ir . 11
CRRA . 12
DCES . 13
demand_coefficient . 17
demCreditPolicy . 20
demInsufficientDemand_3_3 . 23
gemAssetExchange_MatthewEffect_2_2 . 25
gemAssetPricingExample . 27
gemAssetPricing_CUF . 33
gemAssetPricing_PUF . 39
gemBalancedGrowthPath . 45
gemCanonicalDynamicMacroeconomic_3_2 . 48
gemCanonicalDynamicMacroeconomic_4_3 . 50
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3 53
gemCanonicalDynamicMacroeconomic_TimeCircle_2_2 55
gemCanonicalDynamicMacroeconomic_Timeline_2_2 58
gemCapitalAccumulation . 62
gemCESAK_Timeline_2_2 . 66
gemCoffeeProblem_3_3 . 68
gemConstantGrowthPath_TechnologyProgress_3_3 . 70
gemDCES_5_3 . 71
gemDualLinearProgramming . 72
gemDynamicMacroeconomic_SpotTrading_3_2 . 79
gemEquityShare_3_3 . 81
gemEquityShare_Bond_4_4 . 84
gemExogenousPrice . 85
gemExogenousPrice_EndogenousLaborSupply_3_3 . 89
gemExogenousUtilityLevel_EndogenousLaborSupply_3_3 90
gemExternality_Negative . 92
gemExternality_Positive . 98
gemFirmAsConsumer . 101
gemHeterogeneousFirms_2_3 . 104
gemInformation_ProductQuality . 106
gemInputOutputTable_2_2 . 107
gemInputOutputTable_2_7_2 . 109
gemInputOutputTable_2_7_4 . 112
gemInputOutputTable_2_8_4 . 116
gemInputOutputTable_5_4 . 120
gemInputOutputTable_5_5 . 125
gemInputOutputTable_7_4 . 129
gemInputOutputTable_8_8 . 132
gemInputOutputTable_easy_5_4 . 136
gemInputOutputTable_Leontief_3_3 . 138
gemInputOutputTable_SCES_3_3 . 139
gemIntertemporalStochastic_Bank_ThreePeriods . 140
gemIntertemporalStochastic_Bank_TwoPeriods . 142

Contents 3

gemIntertemporalStochastic_ThreePeriods_2_2 . 145
gemIntertemporalStochastic_TwoPeriods . 147
gemIntertemporal_1_2 . 149
gemIntertemporal_2_2 . 151
gemIntertemporal_3_3 . 153
gemIntertemporal_3_4 . 158
gemIntertemporal_4_4 . 160
gemIntertemporal_5_5 . 167
gemIntertemporal_AdValoremClaim . 175
gemIntertemporal_Bank_1_2 . 179
gemIntertemporal_Bank_1_3 . 181
gemIntertemporal_Dividend . 183
gemIntertemporal_Dividend_TechnologicalProgress 188
gemIntertemporal_EndogenousEquilibriumInterestRate 193
gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate 198
gemIntertemporal_ExhaustibleResources_3_2 . 201
gemIntertemporal_Money_Dividend_Example7.5.1 . 203
gemIntertemporal_PublicFirm . 207
gemIntertemporal_TimeCircle_2_2 . 210
gemIntertemporal_TimeCircle_3_3 . 213
gemIntertemporal_TimeCircle_3_4 . 215
gemIntertemporal_TimeCircle_Bank_1_2 . 217
gemIntertemporal_TimeCircle_Stochastic_2_2 . 219
gemLand_Labor . 222
gemLand_Labor_Capital_4_3 . 225
gemMarketClearingPath_2_2 . 227
gemMoney_3_2 . 230
gemMoney_3_3 . 232
gemNonexcludability . 236
gemNonrivalry_Congestiblity . 239
gemNonrivalry_Uncongestiblity . 242
gemOLGF_OneFirm . 246
gemOLGF_PureExchange . 252
gemOLGF_TwoFirms . 259
gemOLG_Basic . 262
gemOLG_PrivateFirm . 266
gemOLG_PublicFirm . 269
gemOLG_PureExchange . 271
gemOLG_PureExchange_Bank . 274
gemOLG_StochasticSequential_3_3 . 277
gemOLG_StochasticSpotEquilibrium_3_3 . 283
gemOLG_TimeCircle . 285
gemOpenEconomy_4_4 . 294
gemOpenEconomy_6_6 . 298
gemPersistentTechnologicalProgress . 300
gemPureExchange . 304
gemQuasilinearPureExchange_2_2 . 306
gemResearchDevelopmentIntensity . 310

4 Contents

gemRobinson_3_2 . 314
gemShortTermInvestment_2_3 . 317
gemSkill . 318
gemSpotEquilibriumPath_StickyDecisions . 321
gemstEndogenousLaborSupply_2_2 . 323
gemstEndogenousProductionFunction_2_2 . 325
gemstEndogenousUtilityFunction . 327
gemStickyDecisionPath_2_2 . 330
gemStickyPricePath_2_2 . 331
gemstIntertemporal_EndogenousProductionFunction_2_2 333
gemstStructuralMultipleEquilibria_2_2 . 335
gemTax_3_3 . 340
gemTax_4_4 . 345
gemTax_5_4 . 347
gemTax_5_5 . 351
gemTax_QuasilinearPreference_4_4 . 353
gemTax_VAT_IncomeTax_5_4 . 356
gemTechnologyProgress_PopulationGrowth . 358
gemTemporaryEquilibriumPath . 361
gemTwoCountryForeignExchangeRate_6_6 . 365
gemTwoCountryPureExchange . 366
gemTwoCountryPureExchange_Bond . 371
gemTwoCountry_Bond_7_4 . 373
gemTwoCountry_RealExchangeRateIndex_7_4 . 377
gemTwoCountry_Tariff_9_5 . 380
gemTwoIndustries_4_3 . 382
gem_2_2 . 384
gem_3_2 . 390
gem_3_3 . 394
gem_3_4 . 396
gem_4_4 . 399
ge_tidy . 401
growth_rate . 402
iterate . 402
makeCountercyclicalProductTax . 403
makePolicyHeadAdjustment . 404
makePolicyHeadTailAdjustment . 405
makePolicyIncomeTax . 406
makePolicyMeanValue . 408
makePolicyStickyPrice . 409
makePolicySupply . 410
makePolicyTailAdjustment . 411
makePolicyTechnologyChange . 412
marginal_utility . 414
matrix_add_by_name . 415
matrix_aggregate . 416
matrix_to_dstl . 417
MDCES_demand . 418

AMSD 5

node_insert . 420
node_new . 421
node_plot . 423
node_print . 423
node_prune . 424
node_replace . 425
node_set . 426
output . 428
policyMarketClearingPrice . 429
policyMeanValue . 432
QL_demand . 433
rate_to_beta . 434
ratio_adjust . 435
SCES . 436
SCES_A . 437
sdm2 . 438
sdm_dstl . 446
sserr . 453
structural_function . 454
var.p . 455

Index 456

AMSD Additive-Mean-Variance Utility Function and Additive-Mean-
Standard-Deviation Utility Function

Description

Compute the utility function mean(x) - (gamma * sd.p(x))^theta / theta or weighted.mean(x, wt) -
(gamma * sd.p(x, wt))^theta / theta.

Usage

AMSD(x, gamma = 1, wt = NULL, theta = 1)

AMV(x, gamma = 1, wt = NULL)

Arguments

x a numeric n-vector.

gamma a non-negative scalar representing the risk aversion coefficient with a default
value of 1.

wt a numeric n-vector of weights (or probability). If wt is NULL, all elements of x
are given the same weight.

theta a non-negative scalar with a default value of 1.

6 AMSDP

Value

A scalar indicating the utility level.

Functions

• AMSD(): Computes the utility function mean(x) - (gamma * sd.p(x))^theta / theta or weighted.mean(x,
wt) - (gamma * sd.p(x, wt))^theta / theta. When theta == 2, it is the additive mean-variance
utility function (i.e. the function AMV). When theta == 1 (the default value), it is the additive
mean and standard deviation utility function.

• AMV(): Compute the additive mean-variance utility function mean(x) - 0.5 * gamma * var.p(x)
or weighted.mean(x, wt) - 0.5 * gamma * var.p(x, wt).

References

Nakamura, Yutaka (2015). Mean-Variance Utility. Journal of Economic Theory, 160: 536-556.

Examples

AMSD(1:2, gamma = 0.05)
AMSD(1:2, gamma = 1, theta = 2)

marginal_utility(
c(1, 1.001),
c(0, 1), function(x) AMSD(x, gamma = 0.5)

)
marginal_utility(

c(1.001, 1),
c(0, 1), function(x) AMSD(x, gamma = 0.5)

)

AMSDP Additive-Mean-Standard-Deviation Portfolio Utility Function

Description

Compute the utility function x %*% mp - gamma^theta * (t(x) %*% Cov %*% x)^(0.5 * theta) /
theta for a portfolio x.

Usage

AMSDP(x, mp, Cov, gamma = 1, theta = 1)

AMSDP 7

Arguments

x a numeric n-vector representing a portfolio.

mp a numeric n-vector representing the mean payoff of each of the n assets.

Cov the n-by-n covariance matrix of the payoff vectors of n assets.

gamma a non-negative scalar representing the risk aversion coefficient with a default
value of 1.

theta a non-negative scalar with a default value of 1.

Value

A scalar indicating the utility level.

References

Danthine, J. P., Donaldson, J. (2005, ISBN: 9780123693808) Intermediate Financial Theory. Else-
vier Academic Press.

Nakamura, Yutaka (2015) Mean-Variance Utility. Journal of Economic Theory, 160: 536-556.

Sharpe, William F (2008, ISBN: 9780691138503) Investors and Markets: Portfolio Choices, Asset
Prices, and Investment Advice. Princeton University Press.

Xu Gao (2018, ISBN: 9787300258232) Twenty-five Lectures on Financial Economics. Beijing:
China Renmin University Press. (In Chinese)

See Also

AMSD

Examples

UAP <- matrix(c(
0, 1, 1,
0, 2, 1,
1, 1, 1,
1, 2, 1,
2, 0, 1

), nrow = 5, byrow = TRUE)

portfolio <- c(1.977, 1.183, 3.820)

AMSDP(portfolio, colMeans(UAP),
cov.wt(UAP, method = "ML")$cov,
gamma = 1, theta = 1

)

AMSD(UAP %*% portfolio, gamma = 1, theta = 1)

8 apply_expand.grid

apply_expand.grid Applying a Function to All Combinations of the Supplied Vectors

Description

A wrapper of the functions apply and expand.grid. Returns a data frame of values obtained by
applying a function to all combinations of the supplied vectors. Firstly, the function expand.grid
will be used for the supplied vectors in ... and we will get a data frame containing one row for
each combination of the supplied vectors. Then the function will be applied to each row of the data
frame. The values of the data frame will also be included in the returned data frame.

Usage

apply_expand.grid(FUN, ...)

Arguments

FUN the function to be applied. The argument is a numeric vector.

... numeric vectors.

Value

A data frame.

Examples

apply_expand.grid(prod, a = 1:9, b = 1:9)

####
f <- function(x) c(r1 = sum(x), r2 = unname(x["b"] - x["a"]))
apply_expand.grid(f, a = c(1, 2), b = c(3, 4))

####
f <- function(x) list(list(sum(x)), prod(x))
apply_expand.grid(f, a = c(1, 2), b = c(3, 4))

####
f <- function(x) {

result <- SCES_A(alpha = 1, Beta = c(0.5, 0.5), p = c(x["p1"], 1), es = x["es"])
names(result) <- c("dc1", "dc2")
result

}

apply_expand.grid(f, p1 = seq(0.1, 10, 0.1), es = c(0.3, 0.5, 1))

CARA 9

CARA Constant Absolute Risk Aversion (CARA) Utility Function

Description

Compute the value and the certainty equivalent of the CARA utility function, i.e. -exp(-gamma*x).
In general equilibrium analysis, the CARA utility function has an interval scale like temperature.

Usage

CARA(x, gamma, prob = rep(1/length(x), length(x)))

Arguments

x a payoff k-vector.

gamma the Arrow-Pratt measure of absolute risk aversion.

prob a probability k-vector. By default, the states are assumed to occur with equal
probability.

Value

A list containing the following components:

• u: the utility level.

• CE: the certainty equivalent.

Examples

mu <- 5 # mu <- 8
a <- 1
x <- c(mu - a, mu + a)
gamma <- 0.8
mu - CARA(x, gamma)$CE

####
gamma <- 0.8
mu <- 2
sigma <- 2
x <- seq(mu - 5 * sigma, mu + 5 * sigma, length.out = 10000)
two CE calculation methods for random variables of normal distribution
CARA(x, gamma, dnorm(x, mean = mu, sd = sigma))
mu - gamma * sigma^2 / 2

10 CESAK_dc

CES CES Function

Description

CES function, e.g. alpha * (beta1 * (x1 / theta1)^sigma + beta2 * (x2 / theta2)^sigma)^(1 / sigma).

Usage

CES(sigma = 1 - 1/es, alpha, beta, x, theta = rep(1, length(beta)), es = NA)

Arguments

sigma a scalar not greater than one.

alpha a nonnegative scalar.

beta a nonnegative n-vector.

x a nonnegative n-vector consisting of the inputs.

theta the all-ones n-vector (default) or a positive n-vector.

es the elasticity of substitution. If es is not NA, the value of sigma (i.e. 1 - 1 / es)
will be ignored.

Value

A scalar indicating the output or utility level.

Examples

CES(0.5, 1, c(0.4, 0.6), c(1, 1), c(0.4, 0.6))
CES(0.5, 1, c(0.4, 0.6), c(1, 2))

CESAK_dc Demand coefficients of the CESAK Production Function

Description

Computing the demand coefficients of the CESAK production function alpha * (betaK * x1^((es -
1) / es) + (1 - betaK) * x2^((es - 1) / es))^(es / (es - 1)) + alphaK * x1. When es==1, the CESAK
production function becomes the CDAK production function alpha * x1^betaK * x2^(1 - betaK) +
alphaK * x1.

Usage

CESAK_dc(alpha, betaK, alphaK, p, es = 1)

convert_ir 11

Arguments

alpha a positive scalar.

betaK a scalar between 0 and 1.

alphaK a nonnegative scalar.

p a 2-vector indicating the prices.

es a nonnegative scalar specifying the elasticity of substitution.

Value

A 2-vector indicating the demand coefficients.

Examples

CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 1 - 0.06, p = c(10, 1))
CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 1 - 0.06, p = c(1, 10))
CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 2, p = c(1, 1))

CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 1 - 0.06, p = c(1, 1), es = 0.5)
CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 0.1, p = c(1, 10), es = 0.5)
CESAK_dc(alpha = 1, betaK = 0.35, alphaK = 1.5, p = c(1, 10), es = 0.5)

convert_ir Convert between (Primitive) Period Interest Rates and (Primitive) In-
traperiod Interest Rates

Description

This function converts between (primitive) period interest rates and (primitive) intraperiod interest
rates. Here, a period is considered as the shortest term for monetary lending.

The primitive interest rate is defined as the interest rate when the money stock is adjusted to be
constant under the assumption of monetary neutrality.

In the structural dynamic model, the period interest rate refers to the interest rate at which principal
and interest are repaid at the beginning of the next period after borrowing money in the current
period, while the intraperiod interest rate refers to the interest rate at which the principal and interest
are repaid during the current period after borrowing money in the current period.

When the velocity of money is equal to one, these two types of interest rates are the same. When
the velocity of money, namely vm, is greater than one, the intraperiod interest will be repaid in vm
installments within the period, and there is usually a difference between the two types of interest
rates.

Usage

convert_ir(ir, vm, to = c("period", "intraperiod"))

12 CRRA

Arguments

ir a vector consisting of period interest rates or intraperiod interest rates.

vm a scalar, or a vector consisting of velocities of money. The velocity of money in
each period is usually a positive integer.

to type of conversion. Can be abbreviated.

Value

A vector consisting of intraperiod interest rates or period interest rates.

Examples

ir <- seq(0, 1, 0.1)
plot(ir, convert_ir(ir, 2, "period"), "b")
plot(ir, convert_ir(ir, 2, "intraperiod"), "b")

CRRA Constant Relative Risk Aversion (CRRA) Utility Function

Description

Compute the value and the certainty equivalent of the CRRA utility function.

Usage

CRRA(x, gamma, prob = rep(1/length(x), length(x)))

Arguments

x a payoff k-vector.

gamma the relative risk aversion coefficient.

prob a probability k-vector. By default, the states are assumed to occur with equal
probability.

Value

A list containing the following components:

• u: the utility level.

• CE: the certainty equivalent.

DCES 13

Examples

csv <- 0.05 # coefficient of standard deviation
mu <- 90 # mu <- 100
sigma <- mu * csv
x <- seq(mu - 5 * sigma, mu + 5 * sigma, length.out = 10000)
pd <- dnorm(x, mean = mu, sd = sigma)
gamma <- 0.8
the ratio of risk premium to expected return (i.e. the relative risk premium).
(mu - CRRA(x, gamma, pd)$CE) / mu

####
df <- apply_expand.grid(

function(arg) {
CRRA(arg["x"], arg["gamma"])$u

},
x = seq(0.5, 3, 0.1),
gamma = c(0.5, 1, 2, 3)

)
coplot(result ~ x | as.factor(gamma), data = df)

DCES Displaced CES Utility Function and Displaced CES Demand Function

Description

The displaced CES utility function and the displaced CES demand function (Fullerton, 1989).

Usage

DCES(es, beta, xi, x)

DCES_demand(es, beta, xi, w, p)

DCES_compensated_demand(es, beta, xi, u, p)

DCES_indirect(es, beta, xi, w, p)

Arguments

es a scalar indicating the elasticity of substitution.

beta an n-vector consisting of the marginal expenditure share coefficients. The sum
of all components of beta should be 1.

xi an n-vector or a scalar. If xi is a scalar, it will be recycled to an n-vector. Each
element of xi parameterizes whether the particular good is a necessity for the
household (Acemoglu, 2009, page 152). For example, xi[i] > 0 may mean that
the household needs to consume at least a certain amount of good i to survive.

x an n-vector consisting of the inputs.

14 DCES

w a scalar indicating the income.

p an n-vector indicating the prices.

u a scalar indicating the utility level.

Value

The return values of these functions are as follows:
DCES: A scalar indicating the utility level.
DCES_demand: An n-vector indicating the demands.
DCES_compensated_demand: An n-vector indicating the compensated demands.
DCES_indirect: A scalar indicating the utility level.

Functions

• DCES(): Compute the displaced CES utility function (Fullerton, 1989), e.g. (beta1 ^ (1 / es) *
(x1 - xi1) ^ (1 - 1 / es) + beta2 ^ (1 / es) * (x2 - xi2) ^ (1 - 1 / es)) ^ (es / (es - 1) wherein beta1
+ beta2 == 1.
When es==1, the DCES utility function becomes the Stone-Geary utility function.

• DCES_demand(): The displaced CES demand function (Fullerton, 1989).

• DCES_compensated_demand(): The displaced CES compensated demand function (Fuller-
ton, 1989).

• DCES_indirect(): The displaced CES indirect utility function (Fullerton, 1989).

References

Acemoglu, D. (2009, ISBN: 9780691132921) Introduction to Modern Economic Growth. Princeton
University Press.

Fullerton, D. (1989) Notes on Displaced CES Functional Forms. Available at: https://works.bepress.com/don_fullerton/39/

Examples

es <- 0.99
beta <- prop.table(1:5)
xi <- 0
w <- 500
p <- 2:6

x <- DCES_demand(
es = es,
beta = beta,
xi = xi,
w = w,
p = p

)

DCES_demand(
es = es,
beta = prop.table(0:4),
xi = 5:1,

DCES 15

w = w,
p = p

)

u <- DCES(
es = es,
beta = beta,
xi = xi,
x = x

)

SCES(
es = es,
alpha = 1,
beta = beta,
x = x

)

DCES_compensated_demand(
es = es,
beta = beta,
xi = xi,
u = u,
p = p

)

DCES_compensated_demand(
es = es,
beta = beta,
xi = seq(10, 50, 10),
u = u,
p = p

)

A 2-by-2 general equilibrium model
with a DCES utility function.
ge <- sdm2(

A = function(state) {
a.consumer <- DCES_demand(

es = 2, beta = c(0.2, 0.8), xi = c(1000, 500),
w = state$w[1], p = state$p

)
a.firm <- c(1.1, 0)
cbind(a.consumer, a.firm)

},
B = diag(c(0, 1)),
S0Exg = matrix(c(

3500, NA,
NA, NA

), 2, 2, TRUE),
names.commodity = c("corn", "iron"),
names.agent = c("consumer", "firm"),
numeraire = "corn"

16 DCES

)

ge$p
ge$z
ge$A
ge$D

a 2-by-2 pure exchange economy
sdm2(

A = function(state) {
a1 <- CD_A(1, rbind(1 / 3, 2 / 3), state$p)
a2 <- DCES_demand(

es = 1, beta = c(0.4, 0.6), xi = c(0.1, 0.2),
w = state$w[2], p = state$p

)
cbind(a1, a2)

},
B = matrix(0, 2, 2),
S0Exg = matrix(c(

3, 4,
7, 0

), 2, 2, TRUE),
names.commodity = c("fish", "banana"),
names.agent = c("Annie", "Ben"),
numeraire = "banana"

)

A 3-by-3 general equilibrium model
with a DCES utility function.
lab <- 1 # the amount of labor supplied by each laborer
n.laborer <- 100 # the number of laborers
ge <- sdm2(

A = function(state) {
a.firm.corn <- CD_A(alpha = 1, Beta = c(0, 0.5, 0.5), state$p)
a.firm.iron <- CD_A(alpha = 5, Beta = c(0, 0.5, 0.5), state$p)
a.laborer <- DCES_demand(

es = 0, beta = c(0, 1, 0), xi = c(0.1, 0, 0),
w = state$w[3] / n.laborer, p = state$p

)

cbind(a.firm.corn, a.firm.iron, a.laborer)
},
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, lab * n.laborer

), 3, 3, TRUE),
names.commodity = c("corn", "iron", "lab"),

demand_coefficient 17

names.agent = c("firm.corn", "firm.iron", "laborer"),
numeraire = "lab",
priceAdjustmentVelocity = 0.1

)

ge$z
ge$A
ge$D

demand_coefficient Compute Demand Coefficients of an Agent with a Demand Structural
Tree

Description

Given a price vector, this function computes the demand coefficients of an agent with a demand
structural tree. The class of a demand structural tree is Node defined by the package data.tree.

Usage

demand_coefficient(node, p, trace = FALSE)

Arguments

node a demand structural tree.

p a price vector with names of commodities.

trace FALSE (default) or TRUE. If TRUE, calculation intermediate results will be
recorded in nodes.

Details

Demand coefficients often indicate the quantity of various commodities needed by an economic
agent in order to obtain a unit of output or utility, and these commodities can include both real
commodities and financial instruments such as tax receipts, stocks, bonds and currency.
The demand for various commodities by an economic agent can be expressed by a demand structure
tree. Each non-leaf node can be regarded as the output of all its child nodes. Each node can be
regarded as an input of its parent node. In other words, the commodity represented by each non-
leaf node is a composite commodity composed of the commodities represented by its child nodes.
Each non-leaf node usually has an attribute named type. This attribute describes the input-output
relationship between the child nodes and the parent node. This relationship can sometimes be
represented by a production function or a utility function. The type attribute of each non-leaf node
can take the following values.

• SCES. In this case, this node also has parameters alpha, beta and es (or sigma = 1 - 1 / es).
alpha and es are scalars. beta is a vector. These parameters are parameters of a standard CES
function (see SCES and SCES_A).

18 demand_coefficient

• CES. In this case, this node also has parameters alpha, beta, theta (optional) and es (or sigma
= 1 - 1 / es) (see CGE::CES_A).

• Leontief. In this case, this node also has the parameter a, which is a vector and is the parameter
of a Leontief function.

• CD. CD is Cobb-Douglas. In this case, this node also has parameters alpha and beta, which
are parameters of a Cobb-Douglas function.

• CESAK. In this case, this node also has parameters es, alpha, betaK and alphaK, which are
parameters of the CESAK function (see CESAK_dc). Moreover, the first child node should
represent capital goods.

• FIN. That is the financial type. In this case, this node also has the parameter rate or beta.
If the parameter beta is not NULL, then the parameter rate will be ignored. The parameter
rate applies to all situations, while the parameter beta only applies for some special cases.
For FIN nodes, the first child node should represent for a physical commodity or a composite
commodity containing a physical commodity, and other child nodes represent for financial
instruments. The parameter beta indicates the proportion of each child node’s expenditure.
The parameter rate indicates the expenditure ratios between financial-instrument-type child
nodes and the first child node. The first element of the parameter rate indicates the amount of
the first child node needed to get a unit of output.

• FUNC. That is the function type. In this case, this node also has an attribute named func.
The value of that attribute is a function which calculates the demand coefficient for the child
nodes. The argument of that function is a price vector. The length of that price vector is equal
to the number of the child nodes.

• StickyLinear or SL. That is the sticky linear type. In this case, this node also has an attribute
named beta that contains the coefficients of the linear utility or production function. In order
to avoid too drastic changes in the demand structure, the adjustment process of the demand
structure has a certain stickiness when prices change.

Value

A vector consisting of demand coefficients.

Examples

a Leontief-type node
dst <- node_new("firm",

type = "Leontief", a = c(0.5, 0.1),
"wheat", "iron"

)
print(dst, "type")
node_print(dst)
plot(dst)
node_plot(dst, TRUE)

demand_coefficient(dst, p = c(wheat = 1, iron = 2)) # the same as a = c(0.5, 0.1)

a CD-type node
dst <- node_new("firm",

type = "CD", alpha = 1, beta = c(0.5, 0.5),

demand_coefficient 19

"wheat", "iron"
)

demand_coefficient(dst, p = c(wheat = 1, iron = 2))
the same as the following
CD_A(1, c(0.5, 0.5), c(1, 2))

a SCES-type node
dst <- node_new("firm",

type = "SCES",
alpha = 2, beta = c(0.8, 0.2), es = 0.5,
"wheat", "iron"

)

demand_coefficient(dst, p = c(wheat = 1, iron = 2))

the same as the following
SCES_A(alpha = 2, Beta = c(0.8, 0.2), p = c(1, 2), es = 0.5)
CES_A(sigma = 1 - 1 / 0.5, alpha = 2, Beta = c(0.8, 0.2), p = c(1, 2), Theta = c(0.8, 0.2))

a FUNC-type node
dst <- node_new("firm",

type = "FUNC",
func = function(p) {

CES_A(
sigma = -1, alpha = 2,
Beta = c(0.8, 0.2), p,
Theta = c(0.8, 0.2)

)
},
"wheat", "iron"

)

demand_coefficient(dst, p = c(wheat = 1, iron = 2))

the same as the following
CES_A(sigma = -1, alpha = 2, Beta = c(0.8, 0.2), p = c(1, 2), Theta = c(0.8, 0.2))

####
p <- c(wheat = 1, iron = 3, labor = 2, capital = 4)
dst <- node_new("firm 1",

type = "SCES", sigma = -1, alpha = 1, beta = c(1, 1),
"cc1", "cc2"

)
node_set(dst, "cc1",

type = "Leontief", a = c(0.6, 0.4),
"wheat", "iron"

)
node_set(dst, "cc2",

type = "SCES", sigma = -1, alpha = 1, beta = c(1, 1),
"labor", "capital"

)

20 demCreditPolicy

node_plot(dst)
demand_coefficient(dst, p)

####
p <- c(product = 1, labor = 1, money = 1)
dst <- node_new("firm",

type = "FIN", rate = c(0.75, 1 / 3),
"cc1", "money"

) # a financial-type node
node_set(dst, "cc1",

type = "Leontief", a = c(0.8, 0.2),
"product", "labor"

)

node_plot(dst)
demand_coefficient(dst, p)

the same as above
p <- c(product = 1, labor = 1, money = 1)
dst <- node_new("firm",

type = "Leontief", a = c(0.8, 0.2),
"cc1", "cc2"

)
node_set(dst, "cc1",

type = "FIN", rate = c(0.75, 1 / 3),
"product", "money"

)

node_set(dst, "cc2",
type = "FIN", rate = c(0.75, 1 / 3),
"labor", "money"

)
node_plot(dst)
demand_coefficient(dst, p)

the same as above
p <- c(product = 1, labor = 1, money = 1)
dst <- node_new("firm",

type = "FIN", rate = c(1, 1 / 3),
"cc1", "money"

) # Financial-type Demand Structure
node_set(dst, "cc1",

type = "Leontief", a = c(0.6, 0.15),
"product", "labor"

)

node_plot(dst)
demand_coefficient(dst, p)

demCreditPolicy A Disequilibrium Model with Credit

demCreditPolicy 21

Description

These are some examples to illustrate that credit policies may lead to business cycles. When the
firm’s profit rate is high, the laborer lends labor or labor income to the firm; when the firm’s profit
rate is low, the firm repays the loan with products.

Usage

demCreditPolicy(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm <- node_new("output",
type = "CD", alpha = 1.2,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "Leontief", a = 1,
"prod"

)

f <- function(policy = NULL) {
ge <- sdm2(

A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,
0, 1

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
ts = TRUE,
policy = policy,
numberOfPeriods = 200,
maxIteration = 1,
priceAdjustmentVelocity = 0.05

)

matplot(ge$ts.z, type = "o", pch = 20)
ge

}

no credit policy
ge <- f()

22 demCreditPolicy

credit policy
policy.credit <- function(time, state) {

profit.rate <- state$p[1] / sum(state$last.A[, 1] * state$p) - 1

if (profit.rate > 0.01) {
state$S[2, 2] <- 50
state$S[2, 1] <- 50

} else if (profit.rate < -0.01) {
state$S[1, 2] <- state$S[1, 1] * 0.5
state$S[1, 1] <- state$S[1, 1] * 0.5

}

state
}

de <- f(policy = policy.credit)

an example with 3 firms.
policy.credit <- function(time, state) {

if (time <= 10) {
return(state)

}
profit.rate <- state$p[1] / sum(state$last.A[, 1] * state$p) - 1

if (profit.rate > 0.01) {
state$S[3, 1] <- 30
state$S[3, 1:3] <- 10
state$S[3, 4] <- 70

} else if (profit.rate < -0.01) {
state$S[1, 4] <- state$S[1, 1] * 0.3
state$S[1, 1] <- state$S[1, 1] * 0.7

}

state
}

f <- function(policy = NULL,
numberOfPeriods = 50) {

ge <- sdm2(
A = function(state) {

a.firm.prod <- CD_A(alpha = 1, Beta = c(0, 0.5, 0.5, 0), state$p)
a.firm.cap1 <- c(1, 0, 0.1, 0)
a.firm.cap2 <- c(0, 0, 0.1, 1)
a.consumer <- c(1, 0, 0, 0)
cbind(a.firm.prod, a.firm.cap1, a.firm.cap2, a.consumer)

},
B = matrix(c(

1, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0,
0, 1, 0, 0

), 4, 4, TRUE),

demInsufficientDemand_3_3 23

S0Exg = {
tmp <- matrix(NA, 4, 4)
tmp[3, 4] <- 100
tmp

},
names.commodity = c("prod", "cap2", "lab", "cap1"),
names.agent = c("firm.prod", "firm.cap1", "firm.cap2", "consumer"),
numeraire = "lab",
maxIteration = 1,
numberOfPeriods = numberOfPeriods,
ts = TRUE,
p0 = c(4.191, 4.391, 1, 4.291),
The equilibrium output of firm.prod is 45.64.
z0 = c(50, 21.78, 21.78, 23.86),
policy = policy

)

matplot(ge$ts.z, type = "o", pch = 20)
ge

}

a disequilibrium path
de <- f(numberOfPeriods = 500)

a spot equilibrium path converging to the steady-state equilibrium
ge <- f(

policy = policyMarketClearingPrice,
numberOfPeriods = 40

)
ge$p
ge$z

a spot equilibrium path with persisting fluctuations
de <- f(policy = list(

policy.credit,
policyMarketClearingPrice

))

demInsufficientDemand_3_3

A Disequilibrium Model Illustrating Insufficient Demand (Supply-
demand Structural Mismatch)

Description

A disequilibrium model illustrating supply-demand structural mismatch and insufficient demand.
Assume that from the 5th period, the producer expects the sales rate of products to decline, so he
reduces investment in production and increases the demand for value storage means (such as foreign

24 demInsufficientDemand_3_3

assets, gold, etc.); the laborer expects the unemployment rate to rise, so he reduces consumption
and increases the demand for value storage means.

Here the supplier of value storage means is referred to as ROW (the rest of the world).

Usage

demInsufficientDemand_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm <- node_new("output",
type = "FIN", rate = c(1, 0),
"cc1", "store of value"

)
node_set(dst.firm, "cc1",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new("util",
type = "FIN", rate = c(1, 0),
"cc1", "store of value"

)
node_set(dst.laborer, "cc1",

type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.ROW <- node_new("util",
type = "Leontief", a = 1,
"lab"

)

policy.demand <- function(time, A, state) {
if (time >= 5) {

A[[1]]$rate <- c(1, 0.25)
A[[2]]$rate <- c(1, 0.25)

} else {
A[[1]]$rate <- c(1, 0)
A[[2]]$rate <- c(1, 0)

}

state
}

ge <- sdm2(

gemAssetExchange_MatthewEffect_2_2 25

A = list(dst.firm, dst.laborer, dst.ROW),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "store of value"),
names.agent = c("firm", "laborer", "ROW"),
ts = TRUE,
policy = policy.demand,
numberOfPeriods = 100,
maxIteration = 1,
numeraire = "prod",
z0 = c(100, 0, 0),
p0 = c(1, 1, 1),
pExg = c(1, NA, 1)

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)
matplot(ge$ts.q, type = "o", pch = 20)

gemAssetExchange_MatthewEffect_2_2

An Example Illustrating the Matthew Effect of Asset Exchange

Description

This is an example that illustrates the Matthew effect of asset exchange, wherein the wealth gap
between two traders widens after the exchange process. Initially, these traders had a relatively
small wealth (i.e. expected average payoff) gap. However, the exchange leads to an expansion of
the wealth gap. This outcome can be attributed to the fact that a trader’s risk aversion coefficient
is affected by his level of wealth. When traders have less wealth their risk aversion coefficient is
higher. Consequently, a trader with less wealth tends to acquire more low-risk, low-average-payoff
assets through trading. As a result, the expected average payoff of a trader with less wealth may
decrease after the exchange. Conversely, a trader with more wealth may hold more high-risk, high-
average-payoff assets after trading.

Usage

gemAssetExchange_MatthewEffect_2_2(...)

26 gemAssetExchange_MatthewEffect_2_2

Arguments

... arguments to be passed to the function sdm2.

See Also

gemAssetPricing_PUF.

Examples

Matthew effect
asset1 <- c(40, 200)
asset2 <- c(100, 100)

unit asset payoff matrix.
UAP <- cbind(asset1, asset2)

S <- matrix(c(
0.49, 0.51,
0.49, 0.51

), 2, 2, TRUE)

ge <- sdm2(
A = function(state) {

Portfolio <- state$last.A %*% dg(state$last.z)

Payoff <- UAP %*% Portfolio
payoff.average <- colMeans(Payoff)

the risk aversion coefficients.
rac <- ifelse(payoff.average > mean(UAP) * 1.02, 0.5, 1)
rac <- ifelse(payoff.average < mean(UAP) / 1.02, 2, rac)

uf1 <- function(portfolio) {
payoff <- UAP %*% portfolio
CES(alpha = 1, beta = c(0.5, 0.5), x = payoff, es = 1 / rac[1])

}

uf2 <- function(portfolio) {
payoff <- UAP %*% portfolio
CES(alpha = 1, beta = c(0.5, 0.5), x = payoff, es = 1 / rac[2])

}

VMU <- marginal_utility(Portfolio, diag(2), list(uf1, uf2), state$p)
VMU <- pmax(VMU, 1e-10)

Ratio <- sweep(VMU, 2, colMeans(VMU), "/")
A <- state$last.A * ratio_adjust(Ratio, coef = 0.1, method = "linear")

prop.table(A, 2)
},
B = matrix(0, 2, 2),
S0Exg = S,

gemAssetPricingExample 27

names.commodity = c("asset1", "asset2"),
numeraire = 2,
maxIteration = 1,
numberOfPeriods = 1000,
policy = makePolicyMeanValue(50),
ts = TRUE

)

matplot(ge$ts.p, type = "l")
ge$p
ge$z
ge$D

(Payoff.S <- UAP %*% S)
colMeans(Payoff.S)

(Payoff.D <- UAP %*% ge$D)
colMeans(Payoff.D)

Calculate the equilibrium under the fixed risk aversion coefficients.
rac <- c(2, 0.5)

uf <- list()
uf[[1]] <- function(portfolio) {

payoff <- UAP %*% portfolio
CES(alpha = 1, beta = c(0.5, 0.5), x = payoff, es = 1 / rac[1])

}

uf[[2]] <- function(portfolio) {
payoff <- UAP %*% portfolio
CES(alpha = 1, beta = c(0.5, 0.5), x = payoff, es = 1 / rac[2])

}

ge <- gemAssetPricing_PUF(
S = S,
uf = uf,
policy = makePolicyMeanValue(50)

)

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
ge$VMU

(Payoff <- UAP %*% ge$D)
colMeans(Payoff)

gemAssetPricingExample

Some Examples of Asset Pricing

28 gemAssetPricingExample

Description

These examples illustrate how to find the equilibrium of an asset market by the function sdm2 and
by computing marginal utility of assets (see Sharpe, 2008).

Usage

gemAssetPricingExample(...)

Arguments

... arguments to be passed to the function sdm2.

Value

A general equilibrium.

References

Danthine, J. P., Donaldson, J. (2005, ISBN: 9780123693808) Intermediate Financial Theory. Else-
vier Academic Press.

Sharpe, William F. (2008, ISBN: 9780691138503) Investors and Markets: Portfolio Choices, Asset
Prices, and Investment Advice. Princeton University Press.

Xu Gao (2018, ISBN: 9787300258232) Twenty-five Lectures on Financial Economics. Beijing:
China Renmin University Press. (In Chinese)

https://web.stanford.edu/~wfsharpe/apsim/index.html

See Also

gemAssetPricing_CUF.

Examples

an example of Danthine and Donaldson (2005, section 8.3).
uf <- function(x) 0.5 * x[1] + 0.9 * (1 / 3 * log(x[2]) + 2 / 3 * log(x[3]))

ge <- sdm2(
A = function(state) {

VMU <- marginal_utility(state$last.A %*% dg(state$last.z), diag(3), uf, state$p)
Ratio <- sweep(VMU, 2, colMeans(VMU), "/")

A <- state$last.A * Ratio
prop.table(A, 2)

},
B = matrix(0, 3, 2),
S0Exg = matrix(c(

10, 5,
1, 4,
2, 6

), 3, 2, TRUE),
names.commodity = c("asset1", "asset2", "asset3"),

gemAssetPricingExample 29

names.agent = c("agt1", "agt2"),
numeraire = "asset1",
ts = TRUE

)

ge$p

an example of Sharpe (2008, chapter 2)
asset1 <- c(1, 0, 0, 0, 0)
asset2 <- c(0, 1, 1, 1, 1)
asset3 <- c(0, 5, 3, 8, 4) - 3 * asset2
asset4 <- c(0, 3, 5, 4, 8) - 3 * asset2
unit asset payoff matrix
UAP <- cbind(asset1, asset2, asset3, asset4)

prob <- c(0.15, 0.25, 0.25, 0.35)
wt <- prop.table(c(1, 0.96 * prob)) # weights

gamma.agt1 <- 1.5
gamma.agt2 <- 2.5

ge <- sdm2(
A = function(state) {

Payoff <- UAP %*% (state$last.A %*% dg(state$last.z))

VMU <- marginal_utility(Payoff, UAP, list(
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / gamma.agt1),
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / gamma.agt2)

), price = state$p)
Ratio <- sweep(VMU, 2, colMeans(VMU), "/")

A <- state$last.A * ratio_adjust(Ratio, coef = 0.05, method = "linear")

A <- prop.table(A, 2)
},
B = matrix(0, 4, 2),
S0Exg = matrix(c(

49, 49,
30, 30,
10, 0,
0, 10

), 4, 2, TRUE),
names.commodity = c("asset1", "asset2", "asset3", "asset4"),
names.agent = c("agt1", "agt2"),
numeraire = "asset1"

)

ge$p
ge$p[3:4] + 3 * ge$p[2]

an example of Xu (2018, section 10.4, P151)
asset1 <- c(1, 0, 0)
asset2 <- c(0, 1, 0)

30 gemAssetPricingExample

asset3 <- c(0, 0, 1)
prob <- c(0.5, 0.5)
wt <- c(1, prob)
UAP <- cbind(asset1, asset2, asset3)

gamma.agt1 <- 1
gamma.agt2 <- 0.5

ge <- sdm2(
A = function(state) {
Payoff <- UAP %*% (state$last.A %*% dg(state$last.z))

VMU <- marginal_utility(Payoff, UAP, list(
Here CRRA(...)$u, CRRA(...)$CE and CES functions are interexchangeable.
function(x) CRRA(x, gamma = gamma.agt1, p = wt)$u,
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / gamma.agt2)

), state$p)
Ratio <- sweep(VMU, 2, colMeans(VMU), "/")

A <- state$last.A * Ratio
prop.table(A, 2)

},
B = matrix(0, 3, 2),
S0Exg = matrix(c(

1, 0,
0, 0.5,
0, 2

), 3, 2, TRUE),
names.commodity = c("asset1", "asset2", "asset3"),
names.agent = c("agt1", "agt2"),
numeraire = "asset1",
maxIteration = 1,
ts = TRUE

)

ge$p #c(1, (1 + sqrt(5)) / 4, (1 + sqrt(17)) / 16)

the same as above.
dst.agt1 <- node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.25, 0.25),
"asset1", "asset2", "asset3"

)

dst.agt2 <- node_new("util",
type = "CES", alpha = 1, beta = c(2, 1, 1), sigma = 0.5,
"asset1", "asset2", "asset3"

)

ge <- sdm2(
A = list(dst.agt1, dst.agt2),
B = matrix(0, 3, 2),
S0Exg = matrix(c(

1, 0,

gemAssetPricingExample 31

0, 0.5,
0, 2

), 3, 2, TRUE),
names.commodity = c("asset1", "asset2", "asset3"),
names.agent = c("agt1", "agt2"),
numeraire = "asset1",
maxIteration = 1,
ts = TRUE

)

ge$p

an example with production.
asset1 <- c(1, 0, 0, 0, 0, 0)
asset2 <- c(0, 1, 0, 0, 0, 0)
asset3 <- c(0, 0, 1, 3, 1, 2)
asset4 <- c(0, 0, 4, 2, 6, 2)
asset5 <- c(0, 0, 1, 0, 2, 0)

unit asset payoff matrix
UAP <- cbind(asset1, asset2, asset3, asset4, asset5)

muf1 <- function(x) 1 / x
muf2 <- function(x) 1 / x * c(0.4, 0.1, 0.2, 0.05, 0.2, 0.05)

ge <- sdm2(
A = function(state) {

Payoff <- UAP %*% (state$last.A[, 1:2] %*% dg(state$last.z[1:2]))

VMU <- marginal_utility(Payoff, UAP, muf = list(muf1, muf2), price = state$p)
Ratio <- sweep(VMU, 2, colMeans(VMU), "/")

A <- state$last.A[, 1:2] * ratio_adjust(Ratio, coef = 0.15, method = "linear")
A <- prop.table(A, 2)

a.firm <- CD_A(alpha = 4, Beta = c(0.5, 0.5, 0, 0, 0), state$p)
A <- cbind(A, a.firm)

},
B = matrix(c(

0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 1

), 5, 3, TRUE),
S0Exg = matrix(c(

1, 1, NA,
1, 2, NA,
1, NA, NA,
NA, 1, NA,
NA, NA, NA

), 5, 3, TRUE),
names.commodity = c("asset1", "asset2", "asset3", "asset4", "asset5"),

32 gemAssetPricingExample

names.agent = c("consumer1", "consumer2", "firm"),
numeraire = "asset1"

)

ge$p
ge$z

an example with demand structure trees.
asset1 <- c(1, 0, 0, 0, 0)
asset2 <- c(0, 1, 3, 1, 2)
asset3 <- c(0, 2, 1, 3, 1)

the asset unit payoff matrix.
UAP <- cbind(asset1, asset2, asset3)

dst.consumer1 <- node_new("util",
type = "CES", es = 0.5, alpha = 1, beta = c(0.5, 0.5),
"x1", "u2"

)
node_set(dst.consumer1, "u2",

type = "CES", es = 0.8, alpha = 1, beta = c(0.6, 0.4),
"u2.1", "u2.2"

)
node_set(dst.consumer1, "u2.1",

type = "CES", es = 1, alpha = 1, beta = c(0.8, 0.2),
"x2", "x3"

)
node_set(dst.consumer1, "u2.2",

type = "CES", es = 1, alpha = 1, beta = c(0.8, 0.2),
"x4", "x5"

)

dst.consumer2 <- node_new("util",
type = "CES", es = 0.5, alpha = 1, beta = c(0.5, 0.5),
"x1", "u2"

)
node_set(dst.consumer2, "u2",

type = "CES", es = 0.8, alpha = 1, beta = c(0.6, 0.4),
"u2.1", "u2.2"

)
node_set(dst.consumer2, "u2.1",

type = "CES", es = 1, alpha = 1, beta = c(0.2, 0.8),
"x2", "x3"

)
node_set(dst.consumer2, "u2.2",

type = "CES", es = 1, alpha = 1, beta = c(0.2, 0.8),
"x4", "x5"

)

uf1 <- function(x) {
names(x) <- paste0("x", seq_along(x))
output(dst.consumer1, x)

}

gemAssetPricing_CUF 33

uf2 <- function(x) {
names(x) <- paste0("x", seq_along(x))
output(dst.consumer2, x)

}

ge <- gemAssetPricing_CUF(
S = matrix(c(
3, 3,
1, 0,
0, 2

), 3, 2, TRUE),
UAP = UAP,
uf = list(uf1, uf2)

)

ge$p
ge$z

gemAssetPricing_CUF Compute Asset Market Equilibria with Commodity Utility Functions
for Some Simple Cases

Description

Compute the equilibrium of an asset market by the function sdm2 and by computing marginal
utility of assets (see Sharpe, 2008). The argument of the utility function used in the calculation is
the commodity vector (i.e. payoff vector).

Usage

gemAssetPricing_CUF(
S = diag(2),
UAP = diag(nrow(S)),
uf = NULL,
muf = NULL,
ratio_adjust_coef = 0.05,
numeraire = 1,
...

)

Arguments

S an n-by-m supply matrix of assets.

UAP a unit asset payoff k-by-n matrix.

uf a utility function or a utility function list.

muf a marginal utility function or a marginal utility function list.

34 gemAssetPricing_CUF

ratio_adjust_coef

a scalar indicating the adjustment velocity of demand structure.

numeraire the index of the numeraire commodity.

... arguments to be passed to the function sdm2.

Value

A general equilibrium containing a value marginal utility matrix (VMU).

References

Danthine, J. P., Donaldson, J. (2005, ISBN: 9780123693808) Intermediate Financial Theory. Else-
vier Academic Press.

Sharpe, William F. (2008, ISBN: 9780691138503) Investors and Markets: Portfolio Choices, Asset
Prices, and Investment Advice. Princeton University Press.

Wang Jiang (2006, ISBN: 9787300073477) Financial Economics. Beijing: China Renmin Univer-
sity Press. (In Chinese)

Xu Gao (2018, ISBN: 9787300258232) Twenty-five Lectures on Financial Economics. Beijing:
China Renmin University Press. (In Chinese)

https://web.stanford.edu/~wfsharpe/apsim/index.html

See Also

gemAssetPricingExample.

Examples

gemAssetPricing_CUF(muf = function(x) 1 / x)

gemAssetPricing_CUF(
S = cbind(c(1, 0), c(0, 2)),
muf = function(x) 1 / x

)

gemAssetPricing_CUF(
UAP = cbind(c(1, 0), c(0, 2)),
muf = function(x) 1 / x

)

an example of Danthine and Donaldson (2005, section 8.3).
ge <- gemAssetPricing_CUF(

S = matrix(c(
10, 5,
1, 4,
2, 6

), 3, 2, TRUE),
uf = function(x) 0.5 * x[1] + 0.9 * (1 / 3 * log(x[2]) + 2 / 3 * log(x[3]))

)

ge$p

gemAssetPricing_CUF 35

an example of Sharpe (2008, chapter 2, case 1)
asset1 <- c(1, 0, 0, 0, 0)
asset2 <- c(0, 1, 1, 1, 1)
asset3 <- c(0, 5, 3, 8, 4) - 3 * asset2
asset4 <- c(0, 3, 5, 4, 8) - 3 * asset2
unit asset payoff matrix
UAP <- cbind(asset1, asset2, asset3, asset4)

prob <- c(0.15, 0.25, 0.25, 0.35)
wt <- prop.table(c(1, 0.96 * prob)) # weights

geSharpe1 <- gemAssetPricing_CUF(
S = matrix(c(
49, 49,
30, 30,
10, 0,
0, 10

), 4, 2, TRUE),
UAP = UAP,
uf = list(

function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 1.5),
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 2.5)

)
)
geSharpe1$p
geSharpe1$p[3:4] + 3 * geSharpe1$p[2]

an example of Sharpe (2008, chapter 3, case 2)
geSharpe2 <- gemAssetPricing_CUF(

S = matrix(c(
49, 49, 98, 98,
30, 30, 60, 60,
10, 0, 20, 0,
0, 10, 0, 20

), 4, 4, TRUE),
UAP = UAP,
uf = list(

function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 1.5),
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 2.5),
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 1.5),
function(x) CES(alpha = 1, beta = wt, x = x, es = 1 / 2.5)

)
)

geSharpe2$p
geSharpe2$p[3:4] + 3 * geSharpe2$p[2]
geSharpe2$D

an example of Sharpe (2008, chapter 3, case 3)
geSharpe3 <- gemAssetPricing_CUF(UAP,

uf = function(x) (x - x^2 / 400) %*% wt,
S = matrix(c(

36 gemAssetPricing_CUF

49, 98,
30, 60,
5, 10,
5, 10

), 4, 2, TRUE)
)
geSharpe3$p
geSharpe3$p[3:4] + 3 * geSharpe3$p[2]

the same as above
geSharpe3b <- gemAssetPricing_CUF(

S = matrix(c(
49, 98,
30, 60,
5, 10,
5, 10

), 4, 2, TRUE),
UAP = UAP,
muf = function(x) (1 - x / 200) * wt

)

geSharpe3b$p
geSharpe3b$p[3:4] + 3 * geSharpe3b$p[2]

an example of Sharpe (2008, chapter 3, case 4)
geSharpe4 <- gemAssetPricing_CUF(

S = matrix(c(
49, 98,
30, 60,
5, 10,
5, 10

), 4, 2, TRUE),
UAP,
muf = function(x) abs((x - 20)^(-1)) * wt,
maxIteration = 100,
numberOfPeriods = 300,
ts = TRUE

)

geSharpe4$p
geSharpe4$p[3:4] + 3 * geSharpe4$p[2]

an example of Sharpe (2008, chapter 6, case 14)
prob1 <- c(0.15, 0.26, 0.31, 0.28)
wt1 <- prop.table(c(1, 0.96 * prob1))
prob2 <- c(0.08, 0.23, 0.28, 0.41)
wt2 <- prop.table(c(1, 0.96 * prob2))

uf1 <- function(x) CES(alpha = 1, beta = wt1, x = x, es = 1 / 1.5)
uf2 <- function(x) CES(alpha = 1, beta = wt2, x = x, es = 1 / 2.5)
geSharpe14 <- gemAssetPricing_CUF(

S = matrix(c(
49, 49,

gemAssetPricing_CUF 37

30, 30,
10, 0,
0, 10

), 4, 2, TRUE),
UAP = UAP,
uf = list(uf1,uf2)

)

geSharpe14$D
geSharpe14$p
geSharpe14$p[3:4] + 3 * geSharpe14$p[2]
mu <- marginal_utility(geSharpe14$Payoff, diag(5),uf=list(uf1,uf2))
mu[,1]/mu[1,1]
mu[,2]/mu[1,2]

an example of Wang (2006, example 10.1, P146)
geWang <- gemAssetPricing_CUF(

S = matrix(c(
1, 0,
0, 2,
0, 1

), 3, 2, TRUE),
muf = list(

function(x) 1 / x * c(0.5, 0.25, 0.25),
function(x) 1 / sqrt(x) * c(0.5, 0.25, 0.25)

)
)

geWang$p # c(1, (1 + sqrt(17)) / 16)

the same as above
geWang.b <- gemAssetPricing_CUF(

S = matrix(c(
1, 0,
0, 2,
0, 1

), 3, 2, TRUE),
uf = list(

function(x) log(x) %*% c(0.5, 0.25, 0.25),
function(x) 2 * sqrt(x) %*% c(0.5, 0.25, 0.25)

)
)

geWang.b$p

an example of Xu (2018, section 10.4, P151)
wt <- c(1, 0.5, 0.5)
ge <- gemAssetPricing_CUF(

S = matrix(c(
1, 0,
0, 0.5,
0, 2

), 3, 2, TRUE),

38 gemAssetPricing_CUF

uf = list(
function(x) CRRA(x, gamma = 1, prob = wt)$u,
function(x) CRRA(x, gamma = 0.5, prob = wt)$u

)
)

ge$p # c(1, (1 + sqrt(5)) / 4, (1 + sqrt(17)) / 16)

an example of incomplete market
ge <- gemAssetPricing_CUF(

UAP = cbind(c(1, 1), c(2, 1)),
uf = list(

function(x) sum(log(x)) / 2,
function(x) sum(sqrt(x))

),
ratio_adjust_coef = 0.1,
priceAdjustmentVelocity = 0.05,
policy = makePolicyMeanValue(span = 100),
maxIteration = 1,
numberOfPeriods = 2000,

)

ge$p

the same as above
ge.b <- gemAssetPricing_CUF(

UAP = cbind(c(1, 1), c(2, 1)),
muf = list(

function(x) 1 / x * c(0.5, 0.5),
function(x) 1 / sqrt(x) * c(0.5, 0.5)

),
ratio_adjust_coef = 0.1,
priceAdjustmentVelocity = 0.05,
policy = makePolicyMeanValue(span = 100),
maxIteration = 1,
numberOfPeriods = 2000,
ts = TRUE

)

ge.b$p
matplot(ge.b$ts.p, type = "l")

an example with outside position.
asset1 <- c(1, 0, 0)
asset2 <- c(0, 1, 1)

unit (asset) payoff matrix
UAP <- cbind(asset1, asset2)
wt <- c(0.5, 0.25, 0.25) # weights

uf1 <- function(x) prod((x + c(0, 0, 2))^wt)
uf2 <- function(x) prod(x^wt)

gemAssetPricing_PUF 39

ge <- gemAssetPricing_CUF(
S = matrix(c(
1, 1,
0, 2

), 2, 2, TRUE),
UAP = UAP,
uf = list(uf1, uf2),
numeraire = 1

)

ge$p
ge$z
uf1(ge$Payoff[,1])
uf2(ge$Payoff[,2])

gemAssetPricing_PUF Compute Asset Market Equilibria with Portfolio Utility Functions for
Some Simple Cases

Description

Compute the equilibrium of an asset market by the function sdm2 and by computing marginal
utility of assets. The argument of the utility function used in the calculation is the asset vector (i.e.
portfolio).

Usage

gemAssetPricing_PUF(S, uf, numeraire = nrow(S), ratio_adjust_coef = 0.1, ...)

Arguments

S an n-by-m supply matrix of assets.

uf a portfolio utility function or a list of m portfolio utility functions.

numeraire the index of the numeraire commodity.

ratio_adjust_coef

a scalar indicating the adjustment velocity of demand structure.

... arguments to be passed to the function sdm2.

Value

A general equilibrium containing a value marginal utility matrix (VMU).

40 gemAssetPricing_PUF

References

Danthine, J. P., Donaldson, J. (2005, ISBN: 9780123693808) Intermediate Financial Theory. Else-
vier Academic Press.

Sharpe, William F. (2008, ISBN: 9780691138503) Investors and Markets: Portfolio Choices, Asset
Prices, and Investment Advice. Princeton University Press.

https://web.stanford.edu/~wfsharpe/apsim/index.html

See Also

gemAssetPricing_CUF.

Examples

an example of Danthine and Donaldson (2005, section 8.3).
ge <- gemAssetPricing_PUF(

S = matrix(c(
10, 5,
1, 4,
2, 6

), 3, 2, TRUE),
uf = function(x) 0.5 * x[1] + 0.9 * (1 / 3 * log(x[2]) + 2 / 3 * log(x[3])),
maxIteration = 1,
numberOfPeriods = 500,
ts = TRUE

)
matplot(ge$ts.p, type = "l")
ge$p

an example of Sharpe (2008, chapter 2, case 1)
asset1 <- c(1, 0, 0, 0, 0)
asset2 <- c(0, 1, 1, 1, 1)
asset3 <- c(0, 5, 3, 8, 4) - 3 * asset2
asset4 <- c(0, 3, 5, 4, 8) - 3 * asset2
the unit asset payoff matrix
UAP <- cbind(asset1, asset2, asset3, asset4)

prob <- c(0.15, 0.25, 0.25, 0.35)
wt <- prop.table(c(1, 0.96 * prob)) # weights

ge <- gemAssetPricing_PUF(
S = matrix(c(

49, 49,
30, 30,
10, 0,
0, 10

), 4, 2, TRUE),
uf = list(

function(portfolio) CES(alpha = 1, beta = wt, x = UAP %*% portfolio, es = 1 / 1.5),
function(portfolio) CES(alpha = 1, beta = wt, x = UAP %*% portfolio, es = 1 / 2.5)

),
maxIteration = 1,

gemAssetPricing_PUF 41

numberOfPeriods = 1000,
numeraire = 1,
ts = TRUE

)
matplot(ge$ts.p, type = "l")
ge$p
ge$p[3:4] + 3 * ge$p[2]

a 3-by-2 example of asset pricing with two heterogeneous agents who
have different beliefs and predict different payoff vectors.
the predicted payoff vectors of agent 1 on the two assets.
asset1.1 <- c(1, 2, 2, 0)
asset2.1 <- c(2, 2, 0, 2)

the predicted payoff vectors of agent 2 on the two assets.
asset1.2 <- c(1, 0, 2, 0)
asset2.2 <- c(2, 1, 0, 2)

asset3 <- c(1, 1, 1, 1)

the unit asset payoff matrix of agent 1.
UAP1 <- cbind(asset1.1, asset2.1, asset3)

the unit asset payoff matrix of agent 2.
UAP2 <- cbind(asset1.2, asset2.2, asset3)

mp1 <- colMeans(UAP1)
Cov1 <- cov.wt(UAP1, method = "ML")$cov

mp2 <- colMeans(UAP2)
Cov2 <- cov.wt(UAP2, method = "ML")$cov

ge <- gemAssetPricing_PUF(
S = matrix(c(

1, 5,
2, 5,
3, 5

), 3, 2, TRUE),
uf = list(

the utility function of agent 1.
function(x) AMSDP(x, mp1, Cov1, gamma = 0.2, theta = 2),
function(x) AMSDP(x, mp2, Cov2) # the utility function of agent 2

),
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE

)
matplot(ge$ts.p, type = "l")
ge$p
ge$VMU

another 3-by-2 example.
asset1.1 <- c(0, 0, 1, 1, 2)

42 gemAssetPricing_PUF

asset2.1 <- c(1, 2, 1, 2, 0)
asset3.1 <- c(1, 1, 1, 1, 1)

asset1.2 <- c(0, 0, 1, 2)
asset2.2 <- c(1, 2, 2, 1)
asset3.2 <- c(1, 1, 1, 1)

the unit asset payoff matrix of agent 1.
UAP1 <- cbind(asset1.1, asset2.1, asset3.1)

the unit asset payoff matrix of agent 2.
UAP2 <- cbind(asset1.2, asset2.2, asset3.2)

mp1 <- colMeans(UAP1)
Cov1 <- cov.wt(UAP1, method = "ML")$cov

mp2 <- colMeans(UAP2)
Cov2 <- cov.wt(UAP2, method = "ML")$cov

ge <- gemAssetPricing_PUF(
S = matrix(c(
1, 5,
2, 5,
3, 5

), 3, 2, TRUE),
uf = list(

function(x) AMSDP(x, mp1, Cov1), # the utility function of agent 1.
function(x) AMSDP(x, mp2, Cov2) # the utility function of agent 2.

),
maxIteration = 1,
numberOfPeriods = 3000,
ts = TRUE

)

ge$p
ge$D

a 5-by-3 example.
set.seed(1)
n <- 5 # the number of asset types
m <- 3 # the number of agents
Supply <- matrix(runif(n * m, 10, 100), n, m)

the risk aversion coefficients of agents.
gamma <- runif(m, 0.25, 1)

the predicted mean payoffs, which may be gross return rates, price indices or prices.
PMP <- matrix(runif(n * m, min = 0.8, max = 1.5), n, m)

the predicted standard deviations of payoffs.
PSD <- matrix(runif(n * m, min = 0.01, max = 0.2), n, m)
PSD[n,] <- 0

gemAssetPricing_PUF 43

Suppose the predicted payoff correlation matrices of agents are the same.
Cor <- cor(matrix(runif(2 * n^2), 2 * n, n))
Cor[, n] <- Cor[n,] <- 0
Cor[n, n] <- 1

the list of utility functions.
lst.uf <- list()

make.uf <- function(mp, Cov, gamma) {
force(mp)
force(Cov)
force(gamma)
function(x) {
AMSDP(x, mp = mp, Cov = Cov, gamma = gamma, theta = 1)

}
}

for (k in 1:m) {
sigma <- PSD[, k]
if (is.matrix(Cor)) {

Cov <- dg(sigma) %*% Cor %*% dg(sigma)
} else {

Cov <- dg(sigma) %*% Cor[[k]] %*% dg(sigma)
}

lst.uf[[k]] <- make.uf(mp = PMP[, k], Cov = Cov, gamma = gamma[k])
}

ge <- gemAssetPricing_PUF(
S = Supply, uf = lst.uf,
priceAdjustmentVelocity = 0.05,
policy = makePolicyMeanValue(100),
ts = TRUE,
tolCond = 1e-04

)

ge$p
round(addmargins(ge$D, 2), 3)
round(addmargins(ge$S, 2), 3)
ge$VMU

a 3-by-2 example.
asset1 <- c(1, 0, 0)
asset2 <- c(0, 0, 2)
asset3 <- c(0, 1, 1)

the unit asset payoff matrix.
UAP <- cbind(asset1, asset2, asset3)
wt <- c(0.5, 0.25, 0.25) # weights

uf <- function(portfolio) {
payoff <- UAP %*% portfolio
prod(payoff^wt)

44 gemAssetPricing_PUF

}

ge <- gemAssetPricing_PUF(
matrix(c(
1, 1,
1, 0,
0, 2

), 3, 2, TRUE),
uf = uf,
numeraire = 1

)

ge$p
ge$z
ge$A
addmargins(ge$D, 2)
addmargins(UAP %*% ge$D, 2)
ge$VMU

a price-control stationary state.
pcss <- gemAssetPricing_PUF(

matrix(c(
1, 1,
1, 0,
0, 2

), 3, 2, TRUE),
uf = uf,
numeraire = 1,
pExg = c(1, 2, 1),
maxIteration = 1,
numberOfPeriods = 300,
ts = TRUE

)

matplot(pcss$ts.q, type = "l")
tail(pcss$ts.q, 3)
addmargins(round(pcss$D, 4), 2)
pcss$VMU

a 2-by-2 example with outside position.
asset1 <- c(1, 0, 0)
asset2 <- c(0, 1, 1)

the unit asset payoff matrix
UAP <- cbind(asset1, asset2)
wt <- c(0.5, 0.25, 0.25) # weights

uf1 <- function(portfolio) prod((UAP %*% portfolio + c(0, 0, 2))^wt)
uf2 <- function(portfolio) prod((UAP %*% portfolio)^wt)

ge <- gemAssetPricing_PUF(
S = matrix(c(

1, 1,

gemBalancedGrowthPath 45

0, 2
), 2, 2, TRUE),
uf = list(uf1, uf2),
numeraire = 1

)

ge$p
ge$z
uf1(ge$D[,1])
uf2(ge$D[,2])

gemBalancedGrowthPath Some Examples of Balanced Growth Paths

Description

Some examples of spot equilibrium paths that converge to balanced growth paths.

Usage

gemBalancedGrowthPath(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with a firm and a laborer
dst.firm <- node_new(

"prod",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dstl <- list(dst.firm, dst.consumer)

ge <- sdm2(
A = dstl,
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),

46 gemBalancedGrowthPath

S0Exg = matrix(c(
NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(1, 1),
ts = TRUE,
policy = policyMarketClearingPrice,
numberOfPeriods = 40,
maxIteration = 1,
GRExg = 0.03

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)

an example with two firms and a laborer
dst.firm.corn <- node_new(

"corn",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"iron", "lab"

)

dst.firm.iron <- node_new(
"iron",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"iron", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"corn"

)

ge <- sdm2(
A = list(dst.firm.corn, dst.firm.iron, dst.consumer),
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer"),
numeraire = "lab",
ts = TRUE,

gemBalancedGrowthPath 47

policy = policyMarketClearingPrice,
numberOfPeriods = 30,
maxIteration = 1,
GRExg = 0.03

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)

another example with two firms and a laborer
dst.manu <- node_new("manu",

type = "SCES", es = 1, alpha = 1,
beta = c(0.6, 0.4),
"manu", "lab"

)

dst.serv <- node_new("serv",
type = "SCES", es = 1, alpha = 1,
beta = c(0.4, 0.6),
"manu", "lab"

)

dst.consumer <- node_new("util",
type = "SCES", es = 1, alpha = 1,
beta = c(0.4, 0.6),
"manu", "serv"

)

dstl <- list(dst.manu, dst.serv, dst.consumer)

S0Exg <- matrix(NA, 3, 3)
S0Exg[3, 3] <- 100

ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = S0Exg,
names.commodity = c("manu", "serv", "lab"),
names.agent = c("manu", "serv", "consumer"),
numeraire = c("manu"),
ts = TRUE,
policy = list(

function(time, state) {
if (time >= 5) {

state$S[3, 3] <- 100 * 1.03^(time - 4)
}
state

},
policyMarketClearingPrice

48 gemCanonicalDynamicMacroeconomic_3_2

),
numberOfPeriods = 20,
maxIteration = 1,
z0 = c(160, 60, 100),
p0 = c(1, 1, 1)

)

ge$p
ge$D
ge$S

matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)

gemCanonicalDynamicMacroeconomic_3_2

A Canonical Dynamic Macroeconomic General Equilibrium Model
(see Torres, 2016)

Description

This is a function used to calculate the steady state of a canonical dynamic macroeconomic gen-
eral equilibrium model (see Torres, 2016, Table 2.1 and Table 2.2). The model consists of three
commodities (i.e., product, labor, and equity shares) and two agents (i.e., a firm and a consumer),
with labor serving as the numeraire. It can also compute the spot equilibrium path based on the
steady-state return rate. The spot equilibrium path includes only spot market transactions, with no
intertemporal transactions.

Usage

gemCanonicalDynamicMacroeconomic_3_2(
discount.factor = 0.97,
depreciation.rate = 0.06,
beta.prod.firm = 0.35,
beta.prod.consumer = 0.4,
policy.supply = NULL,
policy.technology = NULL,
policy.price = NULL,
...

)

Arguments

discount.factor

the intertemporal discount factor.
depreciation.rate

the physical depreciation rate of capital stock.

gemCanonicalDynamicMacroeconomic_3_2 49

beta.prod.firm the share parameter of the product in the Cobb-Douglas production function.
beta.prod.consumer

the share parameter of the product in the Cobb-Douglas period utility function.
This parameter represents an individual’s preferences for consumption-leisure
choices.

policy.supply a policy function or a policy function list which adjusts the supplies.
policy.technology

a policy function or a policy function list which adjusts the technology.

policy.price a policy function or a policy function list which adjusts the prices.

... arguments to be passed to the function sdm2.

Value

A general equilibrium (see sdm2).

References

Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General
Equilibrium Models (Second Edition). Vernon Press.

Li Xiangyang (2018, ISBN: 9787302497745) Dynamic Stochastic General Equilibrium (DSGE)
Model: Theory, Methodology, and Dynare Practice. Tsinghua University Press. (In Chinese)

See Also

The spot equilibrium path can be computed with the function policyMarketClearingPrice.

Examples

gemCanonicalDynamicMacroeconomic_3_2()

(A) A spot equilibrium path.
ge <- gemCanonicalDynamicMacroeconomic_3_2(

policy.price = policyMarketClearingPrice,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 100,
z0 = c(50, 100)

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

(B) Technology change in a spot equilibrium path.
policyTechnologyChange <- function(time, A) {

alpha <- 1.2 # The original value is 1.
time.win <- c(50, 50)
discount.factor <- 0.97
depreciation.rate <- 0.06
beta.prod.firm <- 0.35

50 gemCanonicalDynamicMacroeconomic_4_3

return.rate <- 1 / discount.factor - 1

if (time >= time.win[1] && time <= time.win[2]) {
A[[1]]$func <- function(p) {

result <- CD_A(
alpha, rbind(beta.prod.firm , 1 - beta.prod.firm , 0),
c(p[1] * (return.rate + depreciation.rate), p[2:3])

)
result[3] <- p[1] * result[1] * return.rate / p[3]
result

}
}

}

ge <- gemCanonicalDynamicMacroeconomic_3_2(
policy.technology = policyTechnologyChange,
policy.price = policyMarketClearingPrice,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 100,
z0 = c(50, 100)

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

(C) An example on page 46 in Li Xiangyang (2018).
ge <- gemCanonicalDynamicMacroeconomic_3_2(

discount.factor = 0.99,
depreciation.rate = 0.025,
beta.prod.firm = 0.36,
beta.prod.consumer = 1

)

gemCanonicalDynamicMacroeconomic_4_3

A Canonical Dynamic Macroeconomic General Equilibrium Model
(see Torres, 2016)

Description

This is a function used to calculate the steady state of a canonical dynamic macroeconomic general
equilibrium model (see Torres, 2016, Table 2.1 and Table 2.2). The model consists of four com-
modities (i.e., product, labor, capital, and equity shares) and three agents (i.e., a production firm, a
consumer, and a capital-leasing firm). It can also compute the spot equilibrium path based on the
steady-state return rate.

gemCanonicalDynamicMacroeconomic_4_3 51

Usage

gemCanonicalDynamicMacroeconomic_4_3(
discount.factor = 0.97,
depreciation.rate = 0.06,
beta.prod.firm = 0.35,
beta.prod.consumer = 0.4,
...

)

Arguments

discount.factor

the intertemporal discount factor.
depreciation.rate

the physical depreciation rate of capital stock.

beta.prod.firm the share parameter of the product in the Cobb-Douglas production function of
the production firm.

beta.prod.consumer

the share parameter of the product in the Cobb-Douglas period utility function
of the consumer.

... arguments to be passed to the function sdm2.

Value

A general equilibrium (see sdm2)

References

Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General
Equilibrium Models (Second Edition). Vernon Press.

Examples

(A) A spot equilibrium path that converges to the steady-state equilibrium.
ge <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 100,
policy = policyMarketClearingPrice

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

population growth: a spot equilibrium path
that converges to a balanced growth path
ge <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 100,
GRExg = 0.01,
policy = policyMarketClearingPrice

)

52 gemCanonicalDynamicMacroeconomic_4_3

matplot((ge$ts.p), type = "l")
matplot((ge$ts.z), type = "l")
matplot(growth_rate(ge$ts.z), type = "l")

(B) A disequilibrium path and the steady-state equilibrium.
ge <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 5000,
priceAdjustmentVelocity = 0.03,

)

ge$p
ge$z
matplot(ge$ts.z, type = "l")
node_plot(ge$dstl[[3]], param = TRUE)

a small disturbance to the product supply
ge <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 4000,
priceAdjustmentVelocity = 0.03,
policy = function(time, state) {
if (time == 1500) {

state$S[1, 1] <- state$S[1, 1] * 0.999
}
state

}
)

(C) Business cycles.
de <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 1000,
priceAdjustmentVelocity = 0.15

)

A tax rate policy is implemented from the 600th period to stabilize the economy.
ge <- gemCanonicalDynamicMacroeconomic_4_3(

numberOfPeriods = 1500,
priceAdjustmentVelocity = 0.15,
policy = Example9.10.policy.tax

)

matplot(ge$ts.z, type = "l")
plot(ge$policy.data, type = "l") # tax rates

(D) A spot equilibrium path with a productivity shock.
nPeriod <- 100 # the number of periods of the spot equilibrium path
set.seed(1)
alpha.shock <- rep(1, nPeriod)
alpha.shock[11] <- exp(0.01)
for (t in 12:nPeriod) {

alpha.shock[t] <- exp(0.95 * log(alpha.shock[t - 1]))
}
plot(alpha.shock)

gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3 53

ge <- gemCanonicalDynamicMacroeconomic_4_3(
numberOfPeriods = nPeriod,
p0 = c(1, 1.34312, 0.09093, 0.08865),
z0 = c(74.47, 61.20, 286.65),
policy = list(
function(time, A) {

A[[1]]$alpha <- alpha.shock[time]
},
policyMarketClearingPrice

)
)

matplot(ge$ts.z[, 1], type = "o", pch = 20)

gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3

A Canonical Dynamic Macroeconomic General Equilibrium Model in
Sequential Form under the Wage Postpayment Assumption (see Torres,
2016)

Description

A canonical dynamic macroeconomic general equilibrium model in sequential form under the wage
postpayment assumption (see Torres, 2016, Table 2.1 and 2.2). In this model, there are two firms
and one consumer. Under the wage postpayment assumption, the consumer actually consumes a
kind of labor (that is, leisure) and the products produced by this labor at the same time. Firm 1 is a
regular production firm. Firm 2 can store labor from one period to the next period for consumption
by the consumer.

Usage

gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3(
alpha.firm = 1,
es.prod.lab.firm = 1,
beta.prod.firm = 0.35,
depreciation.rate = 0.06,
eis = 1,
Gamma.beta = 0.97,
es.prod.lab.consumer = 1,
beta.prod.consumer = 0.4,
gr = 0,
...

)

54 gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3

Arguments

alpha.firm a positive scalar, indicating the efficiency parameter of firm 1.
es.prod.lab.firm

the elasticity of substitution between product and labor in the production func-
tion of firm 1.

beta.prod.firm the share parameter of the product in the production function of firm 1.
depreciation.rate

the physical depreciation rate of capital stock of firm 1.

eis the elasticity of intertemporal substitution of the consumer.

Gamma.beta the subjective discount factor of the consumer.
es.prod.lab.consumer

the elasticity of substitution between product and labor in the CES-type period
utility function of the consumer.

beta.prod.consumer

the share parameter of the product in the period utility function.

gr the growth rate of the labor supply.

... arguments to be passed to the function sdm2.

Value

A general equilibrium (see sdm2).

See Also

gemCanonicalDynamicMacroeconomic_Timeline_2_2,
gemCanonicalDynamicMacroeconomic_TimeCircle_2_2,
gemDynamicMacroeconomic_SpotTrading_3_2.

Examples

gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3()

####
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03
ge <- gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3(

es.prod.lab.firm = 0.8,
eis = eis, Gamma.beta = Gamma.beta, es.prod.lab.consumer = 0.8,
gr = gr

)

ge$p
ge$p[1] * (sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr, prepaid = TRUE) + 1)
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
ge$S[1, 1] * (1 + gr)

gemCanonicalDynamicMacroeconomic_TimeCircle_2_2 55

gemCanonicalDynamicMacroeconomic_TimeCircle_2_2

A Canonical Dynamic Macroeconomic General Equilibrium Model in
Time-circle Form (see Torres, 2016)

Description

A canonical dynamic macroeconomic general equilibrium model in time-circle form (see Torres,
2016, Table 2.1 and 2.2).

Usage

gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(
alpha.firm = rep(1, 3),
es.prod.lab.firm = 1,
beta.prod.firm = 0.35,
depreciation.rate = 0.06,
eis = 1,
Gamma.beta = 0.97,
beta.prod.consumer = 0.4,
es.prod.lab.consumer = 1,
gr = 0,
wage.payment = "post",
...

)

Arguments

alpha.firm a positive vector, indicating the efficiency parameters of the firm for each eco-
nomic period. The number of economic periods will be set to length(alpha.firm)
.

es.prod.lab.firm

the elasticity of substitution between product and labor in the production func-
tion of the firm.

beta.prod.firm the share parameter of the product in the production function.
depreciation.rate

the physical depreciation rate of capital stock.

eis the elasticity of intertemporal substitution of the consumer.

Gamma.beta the subjective discount factor of the consumer.
beta.prod.consumer

the share parameter of the product in the period utility function.

56 gemCanonicalDynamicMacroeconomic_TimeCircle_2_2

es.prod.lab.consumer

the elasticity of substitution between product and labor in the CES-type period
utility function of the consumer.

gr the growth rate of the labor supply.

wage.payment a character string specifying the wage payment method, must be one of "pre" or
"post".

... arguments to be passed to the function sdm2.

Value

A general equilibrium (see sdm2).

References

Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General
Equilibrium Models (Second Edition). Vernon Press.

See Also

gemCanonicalDynamicMacroeconomic_Timeline_2_2,
gemDynamicMacroeconomic_SpotTrading_3_2,
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3.

Examples

Take the wage postpayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2()
np <- 3
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S

Take the wage postpayment assumption.
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(

es.prod.lab.firm = 0.8,
eis = eis, Gamma.beta = Gamma.beta, es.prod.lab.consumer = 0.8,
gr = gr

)

ge$p
growth_rate(ge$p[1:np])

gemCanonicalDynamicMacroeconomic_TimeCircle_2_2 57

1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S

an anticipated technology shock.
Warning: Running the program below takes about 4 minutes.
np <- 120
alpha.firm <- rep(1, np)
alpha.firm[40] <- 1.05
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(alpha.firm = alpha.firm)

The steady state product supply is 343.92.
the (economic) time series of product supply
plot(ge$z[1:np] / 343.92 - 1, type = "o", pch = 20)
The steady state product consumption is 57.27.
the (economic) time series of product consumption
plot(ge$D[2:np, np + 1] / 57.27 - 1, type = "o", pch = 20)

Take the wage prepayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(wage.payment = "pre")
np <- 3
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S

Take the wage prepayment assumption.
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03

ge <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(
es.prod.lab.firm = 0.8,
eis = eis, es.prod.lab.consumer = 0.8,
Gamma.beta = Gamma.beta, gr = gr,
wage.payment = "pre"

)

ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:np])
ge$D
ge$S

58 gemCanonicalDynamicMacroeconomic_Timeline_2_2

gemCanonicalDynamicMacroeconomic_Timeline_2_2

A Canonical Dynamic Macroeconomic General Equilibrium Model in
Timeline Form (see Torres, 2016)

Description

A canonical dynamic macroeconomic general equilibrium model in timeline form (see Torres, 2016,
Table 2.1 and 2.2). The firm has a CESAK production function.

Usage

gemCanonicalDynamicMacroeconomic_Timeline_2_2(
alpha.firm = rep(1, 4),
es.prod.lab.firm = 1,
beta.prod.firm = 0.35,
depreciation.rate = 0.06,
eis = 1,
Gamma.beta = 0.97,
beta.prod.consumer = 0.4,
es.prod.lab.consumer = 1,
gr = 0,
initial.product.supply = 200,
head.tail.adjustment = "both",
wage.payment = "post",
beta.consumer = NULL,
...

)

Arguments

alpha.firm a positive vector, indicating the efficiency parameters of the firm for each eco-
nomic period. The number of economic periods will be set to length(alpha.firm)
+ 1.

es.prod.lab.firm

the elasticity of substitution between product and labor in the production func-
tion of the firm.

beta.prod.firm the share parameter of the product in the production function.
depreciation.rate

the physical depreciation rate of capital stock.

eis a positive scalar indicating the elasticity of intertemporal substitution of the con-
sumer.

Gamma.beta the subjective discount factor of the consumer.

gemCanonicalDynamicMacroeconomic_Timeline_2_2 59

beta.prod.consumer

the share parameter of the product in the period utility function.
es.prod.lab.consumer

the elasticity of substitution between product and labor in the CES-type period
utility function of the consumer.

gr the growth rate of the labor supply.
initial.product.supply

the initial product supply.
head.tail.adjustment

a character string specifying the type of the head-tail-adjustment policy, must be
one of "both" (default), "head", "tail" or "none".

wage.payment a character string specifying the wage payment method, must be one of "pre" or
"post".

beta.consumer NULL (the default) or a positive vector containing length(alpha.firm) + 1 ele-
ments specifying the consumer’s intertemporal share parameter. If beta.consumer
is not NULL, Gamma.beta will be ignored.

... arguments to be passed to the function sdm2.

References

Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General
Equilibrium Models (Second Edition). Vernon Press.

See Also

gemCanonicalDynamicMacroeconomic_TimeCircle_2_2,
gemDynamicMacroeconomic_SpotTrading_3_2,
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3.

Examples

Take the wage postpayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2()
np <- 5
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
ge$p[1:(np - 1)] / ge$p[2:np] - 1
ge$p[(np + 1):(2 * np - 2)] / ge$p[(np + 2):(2 * np - 1)] - 1
sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr) # the steady-state equilibrium return rate
ge$z
ge$D
node_plot(ge$dst.consumer, TRUE)

Take the wage postpayment assumption.
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03

60 gemCanonicalDynamicMacroeconomic_Timeline_2_2

ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(
es.prod.lab.firm = 0.8,
eis = eis, Gamma.beta = Gamma.beta, es.prod.lab.consumer = 0.8,
gr = gr

)

np <- 5
ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:(np - 1)])
ge$D
ge$S

a fully anticipated technology shock.
Warning: Running the program below takes several minutes.
np <- 120
alpha.firm <- rep(1, np - 1)
alpha.firm[40] <- 1.05
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(alpha.firm = alpha.firm)
#
The steady state product supply is 343.92.
the (economic) time series of product supply.
plot(ge$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 20)
The steady state product consumption is 57.27.
the (economic) time series of product consumption.
plot(ge$D[2:(np - 1), np] / 57.27 - 1, type = "o", pch = 20)
plot(growth_rate(ge$p[1:(np)]), type = "o", pch = 20)
plot(growth_rate(ge$p[(np + 1):(2 * np)]), type = "o", pch = 20)
#
an unanticipated technology shock.
np <- 50
alpha.firm <- rep(1, np - 1)
alpha.firm[1] <- 1.05
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(
alpha.firm = alpha.firm,
initial.product.supply = 286.6341, # the steady state value
head.tail.adjustment = "tail"
)
#
The steady state product supply is 343.92.
the (economic) time series of product supply.
plot(ge$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 20)
The steady state product consumption is 57.27.
the (economic) time series of product consumption.
plot(ge$D[2:(np - 1), np] / 57.27 - 1, type = "o", pch = 20)
plot(growth_rate(ge$p[1:(np)]), type = "o", pch = 20)
plot(growth_rate(ge$p[(np + 1):(2 * np)]), type = "o", pch = 20)
#
a technology shock anticipated several periods in advance.
np <- 50
alpha.firm <- rep(1, np - 1)

gemCanonicalDynamicMacroeconomic_Timeline_2_2 61

alpha.firm[5] <- 1.05
ge5 <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(
alpha.firm = alpha.firm,
initial.product.supply = 286.6341, # the steady state value
head.tail.adjustment = "tail"
)
#
The steady state product supply is 343.92.
the (economic) time series of product supply
plot(ge5$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 20)
The steady state product consumption is 57.27.
the (economic) time series of product consumption
plot(ge5$D[2:(np - 1), np] / 57.27 - 1, type = "o", pch = 20)
plot(growth_rate(ge5$p[1:(np)]), type = "o", pch = 20)
plot(growth_rate(ge5$p[(np + 1):(2 * np)]), type = "o", pch = 20)
#
alpha.firm <- rep(1, np - 1)
alpha.firm[10] <- 1.05
ge10 <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(
alpha.firm = alpha.firm,
initial.product.supply = 286.6341, # the steady state value
head.tail.adjustment = "tail"
)
plot(ge$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 20, ylim = c(-0.005, 0.017))
lines(ge5$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 21)
lines(ge10$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 22)

an unanticipated technology shock.
Warning: Running the program below takes several minutes.
np <- 100
alpha.firm <- exp(0.01)
for (t in 2:(np - 1)) {
alpha.firm[t] <- exp(0.9 * log(alpha.firm[t - 1]))
}
plot(alpha.firm)
#
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(
alpha.firm = alpha.firm,
initial.product.supply = 286.6341, # the steady state value
head.tail.adjustment = "tail"
)
#
The steady state product supply is 343.92.
the (economic) time series of product supply
plot(ge$z[1:(np - 1)] / 343.92 - 1, type = "o", pch = 20)
The steady state product consumption is 57.27.
the (economic) time series of product consumption
plot(ge$D[2:(np - 1), np] / 57.27 - 1, type = "o", pch = 20)
plot(growth_rate(ge$p[1:(np)]), type = "o", pch = 20)
plot(growth_rate(ge$p[(np + 1):(2 * np)]), type = "o", pch = 20)

Take the wage prepayment assumption.
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(wage.payment = "pre")

62 gemCapitalAccumulation

np <- 5
eis <- 1
Gamma.beta <- 0.97
gr <- 0
ge$p
ge$p[1:(np - 1)] / ge$p[2:np] - 1
ge$p[(np + 1):(2 * np - 2)] / ge$p[(np + 2):(2 * np - 1)] - 1
sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr) # the steady-state equilibrium return rate
ge$z
ge$D
node_plot(ge$dst.consumer, TRUE)

Take the wage prepayment assumption.
np <- 5
eis <- 0.8
Gamma.beta <- 0.97
gr <- 0.03
ge <- gemCanonicalDynamicMacroeconomic_Timeline_2_2(

es.prod.lab.firm = 0.8,
eis = eis, Gamma.beta = Gamma.beta, es.prod.lab.consumer = 0.8,
gr = gr,
wage.payment = "pre"

)

ge$p
growth_rate(ge$p[1:np])
1 / (1 + sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)) - 1
ge$z
growth_rate(ge$z[1:(np - 1)])
ge$D
ge$S

gemCapitalAccumulation

Some Examples of Spot Equilibrium Paths with Capital Accumulation

Description

Some examples of spot equilibrium paths with capital accumulation. The economy contains a
production firm, a capital-leasing firm and a consumer.

Usage

gemCapitalAccumulation(...)

Arguments

... arguments to be passed to the function sdm2.

gemCapitalAccumulation 63

See Also

gemPersistentTechnologicalProgress

Examples

a 3-by-3 example
dst.firm1 <- node_new(

"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
"cap", "cc1"

)
node_set(dst.firm1, "cc1",

type = "Leontief", a = 1,
"lab"

)

dst.consumer <- dst.firm2 <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dstl <- list(dst.firm1, dst.consumer, dst.firm2)

B <- matrix(c(
1, 0, 0.5,
0, 0, 1,
0, 0, 0

), 3, 3, TRUE)

S0Exg <- matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 100, NA

), 3, 3, TRUE)

ge <- sdm2(
A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer", "firm2"),
numeraire = "prod",
z0 = c(100, 0, 50),
policy = policyMarketClearingPrice,
maxIteration = 1,
numberOfPeriods = 30,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
matplot((ge$ts.p), type = "o", pch = 20)

64 gemCapitalAccumulation

a MCP with labor supply change
ge <- sdm2(

A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer", "firm2"),
numeraire = "prod",
z0 = c(400, 200, 400),
policy = list(
function(time, state) {

if (time >= 5) state$S[3, 2] <- 150
state

},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 30,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
matplot((ge$ts.p), type = "o", pch = 20)

a MCP with transitory technological progress
ge <- sdm2(

A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer", "firm2"),
numeraire = "prod",
z0 = c(400, 200, 400),
policy = list(

function(time, A) {
if (time == 5) {

A[[1]]$alpha <- 3
} else {

A[[1]]$alpha <- 2
}

},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 30,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
matplot((ge$ts.p), type = "o", pch = 20)

a MCP with permanent technological progress

gemCapitalAccumulation 65

ge <- sdm2(
A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer", "firm2"),
numeraire = "prod",
z0 = c(400, 200, 400),
policy = list(
function(time, A) {

if (time >= 5) {
A[[1]]$alpha <- 3

} else {
A[[1]]$alpha <- 2

}
},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 30,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
matplot((ge$ts.p), type = "o", pch = 20)

A 4-by-4 example wherein the capital goods
have a useful life of two periods.
ge <- sdm2(

A = function(state) {
a.firm1 <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5, 0), state$p)
a.consumer <- c(1, 0, 0, 0)
a.firm2 <- c(1, 0, 0, 0)
a.firm3 <- c(0, 0, 0, 1)
cbind(a.firm1, a.consumer, a.firm2, a.firm3)

},
B = matrix(c(

1, 0, 0, 0,
0, 0, 1, 1,
0, 0, 0, 0,
0, 0, 1, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, 100, NA, NA,
NA, NA, NA, NA

), 4, 4, TRUE),
names.commodity = c("prod", "cap", "lab", "prod.used"),
names.agent = c("firm1", "consumer", "firm2", "firm3"),
numeraire = "prod",
policy = policyMarketClearingPrice,
z0 = c(100, 100, 100, 100),

66 gemCESAK_Timeline_2_2

ts = TRUE,
numberOfPeriods = 30,
maxIteration = 1

)

matplot(ge$ts.z, type = "o", pch = 20)

gemCESAK_Timeline_2_2 Some Timeline Equilibrium Models with CESAK Production Function

Description

Some timeline general equilibrium models with CESAK production function.

Usage

gemCESAK_Timeline_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

np <- 5
gr <- 0
initial.product.supply <- 20
beta.prod.firm <- 0.35
eis <- 1
Gamma.beta <- 0.97
gr <- 0.05
alphaK <- 1.05

S0Exg <- matrix(NA, 2 * np - 1, np)
S0Exg[(np + 1):(2 * np - 1), np] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg[1, np] <- initial.product.supply

B <- matrix(0, 2 * np - 1, np)
B[2:np, 1:(np - 1)] <- diag(np - 1)

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new("output",
type = "CESAK", es = 1,
alpha = 0.1, betaK = beta.prod.firm, alphaK = alphaK,
paste0("prod", k), paste0("lab", k)

)
}

gemCESAK_Timeline_2_2 67

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = c(paste0("prod", 1:np), paste0("lab", 1:(np - 1))),
names.agent = c(paste0("firm", 1:(np - 1)), "consumer"),
numeraire = "lab1",
priceAdjustmentVelocity = 0.03

)

growth_rate(ge$p[1:np])
growth_rate(ge$z[1:np])
ge$D

a AK model
np <- 5
initial.product.supply <- 20
eis <- 1
Gamma.beta <- 1
alphaK <- 1.25

S0Exg <- matrix(NA, np, np)
S0Exg[1, np] <- initial.product.supply

B <- matrix(0, np, np)
B[2:np, 1:(np - 1)] <- diag(np - 1)

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new("output",
type = "Leontief", a = 1 / alphaK,
paste0("prod", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,

68 gemCoffeeProblem_3_3

names.commodity = paste0("prod", 1:np),
names.agent = c(paste0("firm", 1:(np - 1)), "consumer"),
numeraire = "prod1",
priceAdjustmentVelocity = 0.03,
policy = makePolicyMeanValue(50),

)

growth_rate(ge$p)
growth_rate(ge$z[1:(np - 1)])
ge$D

Simplify the production function in the model above.
dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new("output",
type = "Leontief", a = 1 / alphaK^(k),
"prod1"

)
}

ge2 <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = paste0("prod", 1:np),
names.agent = c(paste0("firm", 1:(np - 1)), "consumer"),
numeraire = "prod1",
priceAdjustmentVelocity = 0.03,
policy = makePolicyMeanValue(50),

)

growth_rate(ge2$p)
growth_rate(ge2$z[1:(np - 1)])
ge2$D

gemCoffeeProblem_3_3 Coffee Problem: Some Examples of Equilibrium and Disequilibrium
Pure Exchange Economies

Description

Some examples of equilibrium and disequilibrium pure exchange economies.

Usage

gemCoffeeProblem_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

gemCoffeeProblem_3_3 69

References

Bapat, R. B., Raghavan, T. E. S. (1997, ISBN: 9780521571678) Nonnegative Matrices and Appli-
cations. Cambridge University Press.

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Examples

the equilibrium coffee problem (Bapat, Raghavan, 1997, example 7.1; Li, 2019, example 8.1)
ge <- sdm2(

A = matrix(c(
0.05, 0.05, 0.1,
0.1, 0, 0.1,
0, 0.15, 0.05

), 3, 3, TRUE),
B = matrix(0, 3, 3),
S0Exg = diag(3),
names.commodity = c("coffee powder", "milk", "sugar"),
names.agent = c("consumer1", "consumer2", "consumer3"),
numeraire = "sugar"

)

ge$p

the disequilibrium coffee problem with exogenous prices (Li, 2019, example 8.3).
Computing the price-control stationary state.
pcss <- sdm2(

A = matrix(c(
0.05, 0.05, 0.1,
0.1, 0, 0.1,
0, 0.15, 0.05

), 3, 3, TRUE),
B = matrix(0, 3, 3),
S0Exg = diag(3),
names.commodity = c("coffee powder", "milk", "sugar"),
names.agent = c("consumer1", "consumer2", "consumer3"),
pExg = c(1, 1, 1),
maxIteration = 1,
numberOfPeriods = 50,
ts = TRUE

)

pcss$z
addmargins(pcss$D, 2)
addmargins(pcss$S, 2)

matplot(pcss$ts.z, type = "o", pch = 20)
matplot(pcss$ts.q, type = "o", pch = 20)

70 gemConstantGrowthPath_TechnologyProgress_3_3

gemConstantGrowthPath_TechnologyProgress_3_3

Constant Growth Paths with Technology Progress

Description

This is an example of a spot equilibrium path that converges to a constant growth path. In a constant
growth path, the supply of each commodity grows at a constant rate. The balanced growth path is a
special case of the constant growth path.

Usage

gemConstantGrowthPath_TechnologyProgress_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm1 <- node_new(
"output",
type = "CD", alpha = 1, beta = c(0.35, 0.65),
"prod1", "lab"

)

dst.firm2 <- node_new(
"output",
type = "CD", alpha = 1, beta = c(0.4, 0.6),
"prod1", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod2"

)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.consumer),
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, 1

), 3, 3, TRUE),

gemDCES_5_3 71

names.commodity = c("prod1", "prod2", "lab"),
names.agent = c("firm1", "firm2", "consumer"),
numeraire = "lab",
z0 = c(0.2, 0.2, 1),
ts = TRUE,
policy = list(

function(time, A, state) {
A[[1]]$alpha <- exp(time * 0.01)
A[[2]]$alpha <- exp(time * 0.01)
state$S[3, 3] <- exp(time * 0.01)
state

},
policyMarketClearingPrice

),
numberOfPeriods = 20,
maxIteration = 1

)

matplot(ge$ts.z, type = "l")
matplot(log(ge$ts.z[, 1:2]), type = "l")
matplot(growth_rate(ge$ts.z[, 1:2], log = TRUE), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p[, 1:2], log = TRUE), type = "o", pch = 20)

gemDCES_5_3 A Model with a Displaced CES Utility Function

Description

A model with a displaced CES utility function (Zhang, 2008, page 134; Li, 2019, example 3.12,
page 130).

Usage

gemDCES_5_3(...)

Arguments

... arguments to be passed to the function sdm2.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Zhang Jinshui (2008, ISBN: 9787040224818) Mathematical Economics. Beijing: Higher Education
Press. (In Chinese)

72 gemDualLinearProgramming

Examples

ge <- sdm2(
A = function(state) {
a.firm1 <- CD_A(alpha = 1, Beta = c(0, 0, 0.5, 0.5, 0), state$p)
a.firm2 <- CD_A(alpha = 2, Beta = c(0, 0, 0.5, 0, 0.5), state$p)
a.consumer <- DCES_demand(

es = 1,
beta = c(1 / 3, 1 / 3, 1 / 3, 0, 0),
xi = c(0, 0, 0.4, 0, 0),
w = state$w[3] / 10^4,
p = state$p

)
cbind(a.firm1, a.firm2, a.consumer)

},
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0

), 5, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, 10000,
NA, NA, 1,
NA, NA, 1

), 5, 3, TRUE),
names.commodity = c("prod1", "prod2", "lab", "land1", "land2"),
names.agent = c("firm1", "firm2", "consumer"),
numeraire = "lab"

)

ge$p
ge$z

gemDualLinearProgramming

General Equilibrium Models and Linear Programming Problems (see
Winston, 2003)

Description

Some examples illustrating the relationship between general equilibrium problems and (dual) lin-
ear programming problems. Some linear programming problems can be transformed into general
equilibrium problems and vice versa.

gemDualLinearProgramming 73

Usage

gemDualLinearProgramming(...)

Arguments

... arguments to be passed to the function CGE::sdm.

Details

These examples are similar and let us explain briefly the first example (Winston, 2003).
The Dakota Furniture Company manufactures desks, tables, and chairs. The manufacture of each
type of furniture requires lumber and two types of skilled labor: finishing and carpentry. The amount
of each resource needed to make each type of furniture is as follows:
desk: (8, 4, 2)
table: (6, 2, 1.5)
chair: (1, 1.5, 0.5)
Currently, 48 board feet of lumber, 20 finishing hours, and 8 carpentry hours are available. A desk
sells for $60, a table for $30, and a chair for $20. Because the available resources have already
been purchased, Dakota wants to maximize total revenue. This problem can be solved by the linear
programming method.
Now let us regard the problem above as a general equilibrium problem. The Dakota Furniture
Company can be regarded as a consumer who obtains 1 unit of utility from 1 dollar and owns
lumber and two types of skilled labor. There are four commodities (i.e. dollar, lumber and two
types of skilled labor) and four agents (i.e. a desk producer, a table producer, a chair producer and
the consumer Dakota) in this problem. We need to compute the equilibrium activity levels and the
equilibrium prices, which are also the solutions of the (dual) linear programming problems (i.e. the
utility-maximizing problem of the consumer and the cost-minimizing problem of the producers).

Value

A general equilibrium.

Note

Below is a simplified form of the von Neumann general equilibrium model (von Neumann, 1945;
Kemeny, Morgenstern, Thompson, 1956):

pTA ≥ ρpTB

Az ≤ ρBz

The above model can be extended to the following general equilibrium model, namely the structural
equilibrium model (Li, 2019, section 3.4):

pTA(p,u, z) ≥ ρpTB(p,u, z)

A(p,u, z)z ≤ ρB(p,u, z)z

We explain the structural equilibrium model as follows:
(i) The vectors p and z reflect the prices of various commodities and the activity levels of various

74 gemDualLinearProgramming

economic agents, respectively.
(ii) The vector u reflects the utility levels of various consumers. In this model, the matrices A and
B are functions of prices, utilities, and activity levels.
(iii) When describing a static general equilibrium and a steady-state equilibrium without intertem-
poral decisions, the structural equilibrium model usually does not explicitly include time, while
when describing an intertemporal general equilibrium, variables such as prices and activity levels
explicitly include time, that is, they are labeled with time.
(iv) In a time-independent model, ρ is the discount factor 1

1+γ corresponding to the steady-state
growth rate γ. In a time-dependent model, ρ is usually equal to 1.
(v) The unit demand matrix A(p,u, z), the unit supply matrix B(p,u, z) and the activity level
vector z in the structural equilibrium model are different from the input coefficient matrix A, the
output coefficient matrix B and the purchase level vector z in the structural dynamic model. The
input coefficient matrix A is equivalent to the unit demand matrix with utility levels equal to 1. The
output coefficient matrix B, unlike the unit supply matrix, does not contain the exogenous supplies.
In the structural equilibrium model, the elements corresponding to consumers in z usually reflect
the number of consumers, while in the structural dynamic model, they usually reflect the utility
levels.

Now consider the following linear programming problem:

max bT z s.t. Az ≤ e, z ≥ 0

The dual linear programming problem is

min pTe s.t. pTA ≥ b, p ≥ 0

In the example of Winston (2003), we have e = (48, 20, 8)T , b = (60, 30, 20)T and

A =

8 6 1
4 2 1.5
2 1.5 0.5


The corresponding structural equilibrium model is

pTA(u) ≥ pTB

A(u)z ≤ Bz

wherein p = (1, p2, p3, p4)
T , z = (z1, z2, z3, 1)

T ,

A(u) =


0 0 0 u
8 6 1 0
4 2 1.5 0
2 1.5 0.5 0


and

B =


60 30 20 0
0 0 0 48
0 0 0 20
0 0 0 8


The following results are obtained by solving the above structural equilibrium model:

p∗ = (1, 0, 10, 10)T , z∗ = (2, 0, 8, 1)T , u∗ = 280

gemDualLinearProgramming 75

References

Kemeny, J. G., O. Morgenstern and G. L. Thompson (1956) A Generalization of the von Neumann
Model of an Expanding Economy, Econometrica, 24, pp. 115-135.

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

von Neumann, J. (1945) A Model of General Economic Equilibrium. The Review of Economic
Studies, 13. pp. 1-9.

Winston, Wayne L. (2003, ISBN: 9780534380588) Operations Research: Applications and Algo-
rithms. Cengage Learning.

Examples

the Dakota example of Winston (2003, section 6.3, 6.6 and 6.8)
A <- matrix(c(

0, 0, 0, 1,
8, 6, 1, 0,
4, 2, 1.5, 0,
2, 1.5, 0.5, 0

), 4, 4, TRUE)
B <- matrix(c(

60, 30, 20, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 4, 4, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 4, 4)
S0Exg[2:4, 4] <- c(48, 20, 8)
S0Exg

}

Compute the equilibrium by the function CGE::sdm.
ge <- CGE::sdm(A = A, B = B, S0Exg = S0Exg)

gep / gep[1]
ge$z

Compute the equilibrium by the function sdm2.
The function policyMeanValue is used to accelerate convergence.
ge <- sdm2(

A = A, B = B, S0Exg = S0Exg,
policy = policyMeanValue,
names.commodity = c("dollar", "lumber", "lab1", "lab2"),
names.agent = c("desk producer", "table producer", "chair producer", "consumer"),
numeraire = "dollar"

)

ge$z
ge$p

76 gemDualLinearProgramming

an example at http://web.mit.edu/15.053/www/AMP-Chapter-04.pdf.
A <- matrix(c(

0, 0, 0, 1,
0.5, 2, 1, 0,
1, 2, 4, 0

), 3, 4, TRUE)
B <- matrix(c(

6, 14, 13, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 3, 4, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 3, 4)
S0Exg[2:3, 4] <- c(24, 60)
S0Exg

}

ge <- CGE::sdm(
A = A, B = B, S0Exg = S0Exg

)

ge$z
gep / gep[1]

an example at https://web.stanford.edu/~ashishg/msande111/notes/chapter4.pdf.
A <- matrix(c(

0, 0, 1,
4.44, 0, 0,
0, 6.67, 0,
4, 2.86, 0,
3, 6, 0

), 5, 3, TRUE)
B <- matrix(c(

3, 2.5, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0

), 5, 3, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 5, 3)
S0Exg[2:5, 3] <- 100
S0Exg

}

ge <- CGE::sdm(
A = A, B = B, S0Exg = S0Exg

)

ge$z
gep / gep[1]

an example at https://utw11041.utweb.utexas.edu/ORMM/supplements/methods/lpmethod/S3_dual.pdf.

gemDualLinearProgramming 77

A <- matrix(c(
0, 0, 1,
0, 1, 0,
1, 3, 0,
1, 0, 0

), 4, 3, TRUE)
B <- matrix(c(

2, 3, 0,
1, 0, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 4, 3)
S0Exg[2:4, 3] <- c(5, 35, 20)
S0Exg

}

ge <- CGE::sdm(
A = A, B = B, S0Exg = S0Exg

)

ge$z
gep / gep[1]

the Giapetto example of Winston (2003, section 3.1)
A <- matrix(c(

0, 0, 1,
2, 1, 0,
1, 1, 0,
1, 0, 0

), 4, 3, TRUE)
B <- matrix(c(

27 - 10 - 14, 21 - 9 - 10, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 4, 3)
S0Exg[2:4, 3] <- c(100, 80, 40)
S0Exg

}

ge <- sdm2(
A = A, B = B, S0Exg = S0Exg,
policy = policyMeanValue,
numeraire = 1

)

ge$z
ge$p

78 gemDualLinearProgramming

the Dorian example (a minimization problem) of Winston (2003, section 3.2)
A <- matrix(c(

0, 0, 1,
7, 2, 0,
2, 12, 0

), 3, 3, TRUE)
B <- matrix(c(

28, 24, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 3, 3)
S0Exg[2:3, 3] <- c(50, 100)
S0Exg

}

ge <- sdm2(
A = A, B = B, S0Exg = S0Exg,
policy = policyMeanValue,
numeraire = 1

)

ge$p
ge$z

the diet example (a minimization problem) of Winston (2003, section 3.4)
A <- matrix(c(

0, 0, 0, 0, 1,
400, 3, 2, 2, 0,
200, 2, 2, 4, 0,
150, 0, 4, 1, 0,
500, 0, 4, 5, 0

), 5, 5, TRUE)
B <- matrix(c(

500, 6, 10, 8, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 5, 5, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 5, 5)
S0Exg[2:5, 5] <- c(50, 20, 30, 80)
S0Exg

}

ge <- sdm2(
A = A, B = B, S0Exg = S0Exg,
policy = policyMeanValue,
numeraire = 1

)

gemDynamicMacroeconomic_SpotTrading_3_2 79

ge$p
ge$z

An example of Elizabeth Stapel (Linear Programming: Introduction. Purplemath.
Available from https://www.purplemath.com/modules/linprog.htm):
Find the maximal value of 3x + 4y subject to the following constraints:
x + 2y <= 14, 3x - y >= 0, x - y <= 2, x >= 0, y >= 0

A <- matrix(c(
0, 0, 1,
1, 2, 0,
0, 1, 0,
1, 0, 0

), 4, 3, TRUE)
B <- matrix(c(

3, 4, 0,
0, 0, 0,
3, 0, 0,
0, 1, 0

), 4, 3, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 4, 3)
S0Exg[2:4, 3] <- c(14, 0, 2)
S0Exg

}

ge <- sdm2(
A = A, B = B, S0Exg = S0Exg,
policy = policyMeanValue,
priceAdjustmentVelocity = 0.03,
numeraire = 1

)

ge$z
ge$p

gemDynamicMacroeconomic_SpotTrading_3_2

A Dynamic Macroeconomic General Equilibrium Model with Spot
Trading

Description

A dynamic macroeconomic general equilibrium model in sequential form.

Usage

gemDynamicMacroeconomic_SpotTrading_3_2(
alpha.firm = 1,

80 gemDynamicMacroeconomic_SpotTrading_3_2

es.prod.lab.firm = 1,
beta.prod.firm = 0.35,
depreciation.rate = 0.06,
eis = 1,
Gamma.beta = 0.97,
es.prod.lab.consumer = 1,
beta.prod.consumer = 0.4,
gr = 0,
wage.payment = "post",
...

)

Arguments

alpha.firm a positive scalar, indicating the efficiency parameter of the firm.
es.prod.lab.firm

the elasticity of substitution between product and labor in the production func-
tion of firm 1.

beta.prod.firm the share parameter of the product in the production function.
depreciation.rate

the physical depreciation rate of capital stock.

eis the elasticity of intertemporal substitution of the consumer.

Gamma.beta the subjective discount factor of the consumer.
es.prod.lab.consumer

the elasticity of substitution between product and labor in the CES-type period
utility function of the consumer.

beta.prod.consumer

the share parameter of the product in the period utility function.

gr the growth rate of the labor supply.

wage.payment a character string specifying the wage payment method, must be one of "pre" or
"post". See the note below.

... arguments to be passed to the function sdm2.

Value

A general equilibrium (see sdm2).

Note

In the timeline model and the time-circle model, we refer to the labor provided in period t as labor t,
and the product produced using labor t as product t+1. When the consumer’s period utility function
simultaneously includes both labor (or leisure) and product, we can adopt one of two assumptions:
either we assume that the period utility function of the consumer in period t includes labor t and
product t, or we assume it includes labor t and product t+1. These two assumptions are referred to
as the wage prepayment assumption and the wage postpayment assumption, respectively.

gemEquityShare_3_3 81

See Also

gemCanonicalDynamicMacroeconomic_Timeline_2_2,
gemCanonicalDynamicMacroeconomic_TimeCircle_2_2,
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3.

Examples

Take the wage postpayment assumption.
ge <- gemDynamicMacroeconomic_SpotTrading_3_2()
ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

Take the wage prepayment assumption.
ge <- gemDynamicMacroeconomic_SpotTrading_3_2(wage.payment = "pre")
ge$p
ge$z
ge$D
ge$S

Take the wage prepayment assumption.
ge <- gemDynamicMacroeconomic_SpotTrading_3_2(

es.prod.lab.firm = 0.8,
eis = 0.8, es.prod.lab.consumer = 0.8, gr = 0.03,
wage.payment = "pre"

)
ge$p
ge$z
ge$D
ge$S

an example of steady-state equilibrium at
http://gecon.r-forge.r-project.org/models/rbc.pdf
ge <- gemDynamicMacroeconomic_SpotTrading_3_2(

beta.prod.firm = 0.36,
depreciation.rate = 0.025,
Gamma.beta = 0.99,
eis = 0.5,
beta.prod.consumer = 0.3,

)

gep / gep[1]
addmargins(ge$D, 2)
addmargins(ge$S, 2)

gemEquityShare_3_3 A General Equilibrium Model with Equity Shares

82 gemEquityShare_3_3

Description

A general equilibrium model with equity shares and dividend.

Usage

gemEquityShare_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm <- node_new("output",
type = "FIN",
rate = c(1, dividend.rate = 0.25),
"cc1", "equity.share"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new("util",
type = "Leontief", a = 1,
"prod"

)

dst.shareholder <- Clone(dst.laborer)

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),
S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod"

)

ge$p # The third component is the dividend per unit of share.
ge$DV
ge$SV

Set the growth rate to 0.03.
ge <- sdm2(

A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),

gemEquityShare_3_3 83

S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod",
GRExg = 0.03

)

ge$z
ge$p

an equivalent intertemporal model.
gr <- 0.03 # the growth rate of the labor supply
Gamma.beta <- 0.8 # the subjective discount factor
np <- 5 # the number of economic periods
y1 <- 100 # the initial product supply

n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg["prod1", "consumer"] <- y1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

84 gemEquityShare_Bond_4_4

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

ge$z
growth_rate(ge$z[1:4])
ge$p[6:9] / ge$p[1:4]
addmargins(ge$D, 2)
addmargins(ge$S, 2)

gemEquityShare_Bond_4_4

A General Equilibrium Model with Equity Shares and Bond

Description

A general equilibrium model with equity shares and bond.

Usage

gemEquityShare_Bond_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm <- node_new("output",
type = "FIN",
rate = c(1, dividend.rate = 0.15, bond.yield.rate = 0.1),
"cc1", "equity.share", "bond"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- dst.shareholder <- dst.bondholder <-
node_new("util",

type = "Leontief", a = 1,

gemExogenousPrice 85

"prod"
)

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder, dst.bondholder),
B = diag(c(1, 0, 0, 0)),
S0Exg = {
S0Exg <- matrix(NA, 4, 4)
S0Exg[2, 2] <- S0Exg[3, 3] <-

S0Exg[4, 4] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share", "bond"),
names.agent = c("firm", "laborer", "shareholder", "bondholder"),
numeraire = "prod"

)

ge$p
ge$DV
ge$SV

gemExogenousPrice Some Examples with Exogenous Price (Price Control)

Description

Some examples with exogenous price (i.e. price control, price regulation). When a price control
policy is imposed in a structural dynamic model, the economy may converge to a steady state where
the market does not clear.

Usage

gemExogenousPrice(...)

Arguments

... arguments to be passed to the function sdm2.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

See Also

gemExogenousPrice_EndogenousLaborSupply_3_3

86 gemExogenousPrice

Examples

dst.firm <- node_new("output",
type = "CD", alpha = 5,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"prod", "lab"

)

f <- function(pExg = NULL, policy = NULL) {
pcss <- sdm2(
A = list(dst.firm, dst.consumer),
B = diag(c(1, 0)),
S0Exg = {

S0Exg <- matrix(NA, 2, 2)
S0Exg[2, 2] <- 100
S0Exg

},
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
maxIteration = 1,
numberOfPeriods = 100,
p0 = c(0.16, 1),
ts = TRUE,
pExg = pExg,
policy = policy

)

print(pcss$p)
print(pcss$z)
par(mfrow = c(1, 2))
matplot(pcss$ts.p, type = "l")
matplot(pcss$ts.z, type = "l")
invisible(pcss)

}

No price control policy.
f()

Set the market prices to the steady-state equilibrium prices from the beginning.
The labor market keeps oversupplied.
result <- f(pExg = c(0.16, 1))
matplot(result$ts.q, type = "l") # sale rates

the same as above
f(policy = function(state) {

state$p <- c(0.16, 1)

gemExogenousPrice 87

state
})

The price control policy is implemented from the 10th period.
f(policy = function(time, state) {

if (time >= 10) state$p <- c(0.16, 1)
state

})

The price control policy is implemented from the 30th period.
f(policy = function(time, state) {

if (time >= 30) state$p <- c(0.16, 1)
state

})

price ceil
f(policy = function(time, state) {

if (time >= 30) {
state$p <- state$p / state$p[2]
if (state$p[1] > 0.15) state$p[1] <- 0.15

}
state

})

##
pcss <- f(policy = function(time, state) {

if (time >= 30) state$p <- c(0.17, 1)
state

})

tail(pcss$ts.q)

another 2-by-2 example.
f <- function(GRExg = 0, pExg = c(2, 1)) {

pcss <- sdm(
A = matrix(c(

0, 1,
1, 0

), 2, 2, TRUE),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
GRExg = GRExg,
pExg = pExg,
maxIteration = 1,
numberOfPeriods = 300,
depreciationCoef = 0,
z0 = c(100, 0),

88 gemExogenousPrice

ts = TRUE
)
matplot(pcss$ts.z, type = "l")
print("pcss$z:")
pcss$z
print("tail(pcss$ts.q, 3)")
print(tail(pcss$ts.q, 3))
invisible(pcss)

}

f()
f(GRExg = 0.01)
f(pExg = c(1, 2))

Example 9.5 in Li (2019).
f <- function(GRExg = 0, pExg = c(1, NA, 0.625)) {

pcss <- sdm(
A = function(state) {

alpha <- rbind(1, 1, 1)
Beta <- matrix(c(

0, 1, 1,
0.5, 0, 0,
0.5, 0, 0

), 3, 3, TRUE)
CD_A(alpha, Beta, state$p)

},
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
GRExg = GRExg,
pExg = pExg,
maxIteration = 1,
numberOfPeriods = 300,
depreciationCoef = 0,
z0 = c(100, 0, 0),
ts = TRUE

)
matplot(pcss$ts.z, type = "l")
print("pcss$z:")
pcss$z
print("tail(pcss$ts.q, 3)")
print(tail(pcss$ts.q, 3))
invisible(pcss)

}

f()
f(GRExg = 0.01)
f(pExg = c(1, 0.25, 0.25))
f(pExg = c(1, 0.2, 0.25))

gemExogenousPrice_EndogenousLaborSupply_3_3 89

gemExogenousPrice_EndogenousLaborSupply_3_3

An Example of Price Regulation and Endogenous Labor Supply (Ex-
ample 9.5 of Li, 2019)

Description

This is an example of price regulation and endogenous labor supply. See CGE::Example9.5.

Usage

gemExogenousPrice_EndogenousLaborSupply_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemExogenousPrice

Examples

the exogenous labor price with product as numeraire.
p.labor <- 0.625

dst.firm <- node_new("output",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"land", "lab"

)

dst.landowner <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dst.laborer <- Clone(dst.landowner)

ge <- sdm2(
A = list(

dst.firm,
dst.landowner,
dst.laborer

),
B = diag(3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,

90 gemExogenousUtilityLevel_EndogenousLaborSupply_3_3

NA, NA, 100
), 3, 3, TRUE),
GRExg = 0,
names.commodity = c("prod", "land", "lab"),
names.agent = c("firm", "landowner", "laborer"),
maxIteration = 1,
numberOfPeriods = 200,
depreciationCoef = 0,
numeraire = "prod",
ts = TRUE,
policy = function(time, state, state.history) {

if (time > 1) {
ratio <- state$p[3] / state$p[1] / p.labor
last.labor.supply <- state.history$S[3, 3, time - 1]
state$S[3, 3] <- last.labor.supply * ratio

}

state
}

)

matplot(ge$ts.p, type = "l")
tail(ge$ts.S[3, 3,])
plot(ge$ts.S[3, 3,], type = "l")

gemExogenousUtilityLevel_EndogenousLaborSupply_3_3

Some Examples with Exogenous Utility Level and Endogenous Labor
Supply

Description

Some examples with exogenous utility level and endogenous labor supply.

Usage

gemExogenousUtilityLevel_EndogenousLaborSupply_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a spot equilibrium path
utility.level.laborer <- 0.625

dst.firm <- node_new("output",
type = "CD",

gemExogenousUtilityLevel_EndogenousLaborSupply_3_3 91

alpha = 1,
beta = c(0.5, 0.5),
"land", "lab"

)

dst.landowner <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dst.laborer <- Clone(dst.landowner)

dstl <- list(dst.firm, dst.landowner, dst.laborer)

ge <- sdm2(
A = dstl,
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
GRExg = 0,
names.commodity = c("prod", "land", "lab"),
names.agent = c("firm", "landowner", "laborer"),
maxIteration = 1,
numberOfPeriods = 30,
numeraire = "prod",
ts = TRUE,
policy = list(

function(time, state, state.history) {
if (time > 1) {

last.labor.supply <- state.history$S[3, 3, time - 1]

ratio <- state$last.z[3] / last.labor.supply / utility.level.laborer
state$S[3, 3] <- last.labor.supply * ratio

}
state

},
policyMarketClearingPrice

)
)

matplot(ge$ts.p, type = "l")
plot(ge$ts.S[3, 3,], type = "l")
ge$S

Regard the laborer as a firm.
dstl[[3]] <- node_new(

"lab",
type = "Leontief", a = utility.level.laborer,

92 gemExternality_Negative

"prod"
)

ge <- sdm2(
A = dstl,
B = diag(c(1, 0, 1)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, NA

), 3, 3, TRUE),
names.commodity = c("prod", "land", "lab"),
names.agent = c("firm", "landowner", "laborer"),
maxIteration = 1,
numberOfPeriods = 30,
numeraire = "prod",
ts = TRUE,
policy = policyMarketClearingPrice

)

matplot(ge$ts.p, type = "l")
plot(ge$ts.S[3, 3,], type = "l")
ge$p
ge$S

gemExternality_Negative

Some Examples Illustrating Negative Externality

Description

Some examples illustrating negative externality.

Usage

gemExternality_Negative(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

negative externality of consumption to consumption
Here the distortion means that an agent
will use environmental resources for free.
dst.consumer1.distorted <- node_new("util",

type = "CD",
alpha = 1, beta = c(0.5, 0.5),

gemExternality_Negative 93

"lab", "land"
)

dst.consumer1 <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"lab", "cc1"

)
node_set(dst.consumer1, "cc1",

type = "Leontief",
a = c(1, 1),
"land", "env"

)

dst.consumer2 <- node_new(
"util",
type = "CD",
alpha = 1, beta = c(0.4, 0.4, 0.2),
"lab", "land", "env"

)

ge.externality <- sdm2(
A = list(dst.consumer1.distorted, dst.consumer2),
B = matrix(0, 3, 2),
S0Exg = matrix(c(

50, 0,
0, 50,
0, 0

), 3, 2, TRUE),
names.commodity = c("lab", "land", "env"),
names.agent = c("consumer1.distorted", "consumer2"),
numeraire = "lab",
policy = function(state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[3, 2] <- 100 - last.D[2, 1]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 3, 2),
S0Exg = matrix(c(

50, 0,
0, 50,
13, 87

), 3, 2, TRUE),
names.commodity = c("lab", "land", "env"),

94 gemExternality_Negative

names.agent = c("consumer1", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

A corrective tax is imposed on distorted consumer 1.
54% of tax revenue is allocated to distorted consumers 1, 46% to consumers 2.
dst.consumer1.distorted.taxed <- node_new("util",

type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"lab", "cc1"

)
node_set(dst.consumer1.distorted.taxed, "cc1",

type = "FIN", rate = c(1, ge$DV[3, 1] / ge$DV[2, 1]),
"land", "tax"

)

ge.corrective.tax <- sdm2(
A = list(dst.consumer1.distorted.taxed, dst.consumer2),
B = matrix(0, 4, 2),
S0Exg = matrix(c(
50, 0,
0, 50,
0, 0,
54, 46

), 4, 2, TRUE),
names.commodity = c("lab", "land", "env", "tax"),
names.agent = c("consumer1.distorted", "consumer2"),
numeraire = "lab",
policy = function(state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[3, 2] <- 100 - last.D[2, 1]
state

}
)

ge.corrective.tax$z
addmargins(ge.corrective.tax$D, 2)
addmargins(ge.corrective.tax$S, 2)

negative externality of production to consumption
dst.firm1.distorted <- dst.consumer1.distorted
dst.firm1 <- dst.consumer1

dst.consumer1.Leontief <- node_new(
"util",
type = "Leontief",
a = 1,
"prod1"

gemExternality_Negative 95

)

ge.externality <- sdm2(
A = list(dst.firm1.distorted, dst.consumer1.Leontief, dst.consumer2),
B = diag(c(1, 0, 0), 4, 3),
S0Exg = matrix(c(
NA, NA, NA,
NA, 50, NA,
NA, NA, 50,
NA, NA, NA

), 4, 3, TRUE),
names.commodity = c("prod1", "lab", "land", "env"),
names.agent = c("firm1", "consumer1.Leontief", "consumer2"),
numeraire = "lab",
policy = function(state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[4, 3] <- 100 - last.D[3, 1]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.firm1, dst.consumer1.Leontief, dst.consumer2),
B = diag(c(1, 0, 0), 4, 3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 50, NA,
NA, NA, 50,
NA, 13, 87

), 4, 3, TRUE),
names.commodity = c("prod1", "lab", "land", "env"),
names.agent = c("firm1", "consumer1.Leontief", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

negative externality of consumption to production and consumption
dst.firm2 <- dst.consumer2
dst.consumer2.Leontief <- node_new(

"util",
type = "Leontief",
a = 1,
"prod2"

)

96 gemExternality_Negative

ge.externality <- sdm2(
A = list(dst.firm2, dst.consumer1.distorted, dst.consumer2.Leontief),
B = diag(c(1, 0, 0), 4, 3),
S0Exg = matrix(c(
NA, NA, NA,
NA, 50, NA,
NA, NA, 50,
NA, NA, NA

), 4, 3, TRUE),
names.commodity = c("prod2", "lab", "land", "env"),
names.agent = c("firm2", "consumer1", "consumer2.Leontief"),
numeraire = "lab",
policy = function(state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[4, 3] <- 100 - last.D[3, 2]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.firm2, dst.consumer1, dst.consumer2.Leontief),
B = diag(c(1, 0, 0), 4, 3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 50, NA,
NA, NA, 50,
NA, 13, 87

), 4, 3, TRUE),
names.commodity = c("prod2", "lab", "land", "env"),
names.agent = c("firm2", "consumer1", "consumer2.Leontief"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

negative externality of production to production and consumption
ge.externality <- sdm2(
A = list(dst.firm1.distorted, dst.firm2, dst.consumer1.Leontief, dst.consumer2.Leontief),
B = diag(c(1, 1, 0, 0), 5, 4),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 50, NA,
NA, NA, NA, 50,

gemExternality_Negative 97

NA, NA, NA, NA
), 5, 4, TRUE),
names.commodity = c("prod1", "prod2", "lab", "land", "env"),
names.agent = c("firm1", "firm2", "consumer1.Leontief", "consumer2.Leontief"),
numeraire = "lab",
policy = function(state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[5, 4] <- 100 - last.D[4, 1]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.consumer1.Leontief, dst.consumer2.Leontief),
B = diag(c(1, 1, 0, 0), 5, 4),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 50, NA,
NA, NA, NA, 50,
NA, NA, 13, 87

), 5, 4, TRUE),
names.commodity = c("prod1", "prod2", "lab", "land", "env"),
names.agent = c("firm1", "firm2", "consumer1.Leontief", "consumer2.Leontief"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

negative externality of consumption to production
dst.firm2.distorted <- node_new(

"util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"lab", "land"

)

ge.externality <- sdm2(
A = list(dst.firm2.distorted, dst.consumer1.distorted, dst.consumer2.Leontief),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 50, NA,
NA, NA, 50

), 3, 3, TRUE),

98 gemExternality_Positive

names.commodity = c("prod2", "lab", "land"),
names.agent = c("firm2.distorted", "consumer1", "consumer2.Leontief"),
numeraire = "lab",
policy = function(A, state) {

last.D <- state$last.A %*% dg(state$last.z)
state$S[1, 1] <- (100 - last.D[3, 2])^0.2 * state$S[1, 1]^0.8
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

gemExternality_Positive

Some Examples Illustrating Positive Externality

Description

Some examples illustrating positive externality.

Usage

gemExternality_Positive(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

positive externality of consumption to consumption
dst.consumer1 <- node_new("util",

type = "Leontief", a = 1,
"lab"

)

dst.consumer2 <- node_new(
"util",
type = "CD",
alpha = 1, beta = c(0.2, 0.8), # c(0.8, 0.2),
"lab", "byproduct"

)

ge.externality <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 2, 2),

gemExternality_Positive 99

S0Exg = matrix(c(
50, 50,
0, 0

), 2, 2, TRUE),
names.commodity = c("lab", "byproduct"),
names.agent = c("consumer1", "consumer2"),
numeraire = "lab",
policy = function(state) {

state$S[2, 2] <- state$last.z[1]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 2, 2),
S0Exg = matrix(c(

50, 50,
0, 0

), 2, 2, TRUE),
names.commodity = c("lab", "byproduct"),
names.agent = c("consumer1", "consumer2"),
numeraire = "lab",
policy = function(state) {

state$S[2, 1] <- state$last.z[1]
state

}
)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

positive externality of production to consumption
dst.firm1 <- node_new("prod1",

type = "Leontief", a = 1,
"lab"

)

dst.consumer3 <- node_new("util",
type = "Leontief", a = 1,
"prod1"

)

dst.consumer2 <- node_new(
"util",
type = "CD",

100 gemExternality_Positive

alpha = 1, beta = c(0.2, 0.8),
"lab", "byproduct"

)

ge.externality <- sdm2(
A = list(dst.firm1, dst.consumer3, dst.consumer2),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 50, 50,
NA, NA, NA

), 3, 3, TRUE),
names.commodity = c("prod1", "lab", "byproduct"),
names.agent = c("firm1", "consumer3", "consumer2"),
numeraire = "lab",
policy = function(state) {

state$S[3, 3] <- state$last.z[1]
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

ge <- sdm2(
A = list(dst.firm1, dst.consumer3, dst.consumer2),
B = matrix(c(

1, 0, 0,
0, 0, 0,
1, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 50, 50,
NA, NA, NA

), 3, 3, TRUE),
names.commodity = c("prod1", "lab", "byproduct"),
names.agent = c("firm1", "consumer3", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

positive externality of consumption to production

gemFirmAsConsumer 101

dst.consumer1 <- node_new("util",
type = "Leontief", a = 1,
"lab"

)

dst.firm2.distorted <- node_new(
"prod2",
type = "Leontief", a = 1,
"lab"

)

dst.consumer2.Leontief <- node_new("util",
type = "Leontief", a = 1,
"prod2"

)

ge.externality <- sdm2(
A = list(dst.firm2.distorted, dst.consumer1, dst.consumer2.Leontief),
B = matrix(c(
1, 0, 0,
0, 0, 0

), 2, 3, TRUE),
S0Exg = matrix(c(

0, 0, 0,
0, 50, 50

), 2, 3, TRUE),
names.commodity = c("prod2", "lab"),
names.agent = c("firm2.distorted", "consumer1", "dst.consumer2.Leontief"),
numeraire = "lab",
policy = function(state) {

state$S[1, 1] <- state$last.z[1]^0.2 * state$last.z[2]^0.8
state

}
)

ge.externality$p
ge.externality$z
addmargins(ge.externality$D, 2)
addmargins(ge.externality$S, 2)

gemFirmAsConsumer Some Examples of Treating Firms as Consumer-Type Agents

Description

Some examples of equilibrium models wherein firms are treated as consumer-type agents instead
of producer-type agents.

102 gemFirmAsConsumer

Usage

gemFirmAsConsumer(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemIntertemporal_2_2

Examples

an intertemporal model with firm
(see gemIntertemporal_2_2)
np <- 3 # the number of economic periods

S0Exg <- matrix(c(
0, 0, 150,
1000, 0, 0,
0, 1000, 0,
0, 0, 100,
0, 0, 100

), 5, 3, TRUE)

B <- matrix(0, 5, 3, TRUE)

dst.firm1 <- node_new("util",
type = "StickyLinear",
beta = c(1, 1),
"prod2", "cc1"

)
node_set(dst.firm1, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod1", "lab1"

)

dst.firm2 <- node_new("util",
type = "StickyLinear",
beta = c(1, 1),
"prod3", "cc1"

)
node_set(dst.firm2, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod2", "lab2"

)

dst.consumer <- node_new(
"util",
type = "CD",

gemFirmAsConsumer 103

alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = c(paste0("prod", 1:np), paste0("lab", 1:(np - 1))),
names.agent = c(paste0("firm", 1:(np - 1)), "consumer"),
numeraire = "prod1",
ts = TRUE

)

an intertemporal model with bank
igr <- 1.1
beta.bank <- c(1, 1 / igr, 1 / igr^2)

dst.bank <- node_new(
"output",
type = "StickyLinear",
beta = beta.bank,
"payoff1", "payoff2", "payoff3"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 2, 1 / 6, 1 / 3),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.bank, dst.consumer),
B = matrix(0, 3, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 2,
100, 1

), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank", "consumer"),
numeraire = "payoff1"

)

a spot sequential model
dst.firm <- node_new("output",

type = "StickyLinear",
beta = c(1, 1),
"prod", "cc1"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),

104 gemHeterogeneousFirms_2_3

"cap", "lab"
)

dst.consumer <- node_new("util",
type = "Leontief",
a = 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(0, 3, 2, TRUE),
S0Exg = matrix(c(

1000, 0,
0, 50,
0, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)
ge$p
ge$z
ge$D

the corresponding model treating a firm as a producer-type agent
ge <- sdm2(

A = function(state) {
a1 <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5), p = state$p)
a2 <- c(1, 0, 0)
cbind(a1, a2)

},
B = diag(c(1, 0), 3, 2),
S0Exg = matrix(c(

NA, NA,
NA, 50,
NA, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)
ge$p
ge$z
ge$D

gemHeterogeneousFirms_2_3

Spot equilibrium paths with Heterogeneous Firms

gemHeterogeneousFirms_2_3 105

Description

This is an example of spot equilibrium paths with heterogeneous firms.

Usage

gemHeterogeneousFirms_2_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm1 <- node_new(
"output",
type = "CD", alpha = 1, beta = c(0.35, 0.65),
"prod", "lab"

)

dst.firm2 <- node_new(
"output",
type = "CD", alpha = 1.3, beta = c(0.9, 0.1),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.consumer),
B = matrix(c(

1, 1, 0,
0, 0, 0

), 2, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, 100

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm1", "firm2", "consumer"),
numeraire = "lab",
z0 = c(1, 1, 1),
ts = TRUE,
policy = policyMarketClearingPrice,
numberOfPeriods = 200,
maxIteration = 1

)

matplot(ge$ts.z, type = "l")

106 gemInformation_ProductQuality

gemInformation_ProductQuality

An Example Illustrating Product Quality Information

Description

An examples illustrating product quality information.

Usage

gemInformation_ProductQuality(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm.normal <- node_new("normal prod",
type = "Leontief", a = 1,
"lab"

)

dst.firm.inferior <- node_new("inferior prod",
type = "Leontief", a = 0.5,
"lab"

)

dst.quasifirm <- node_new("normal prod",
type = "Leontief", a = 1,
a = 1 means that consumers cannot distinguish between normal and inferior products.
In this case, the calculated consumer utility is nominal.
The real utility of the consumer is lower than the nominal utility.
a = 10 is the opposite.
"inferior prod"

)

dst.consumer <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"lab", "normal prod"

)

ge <- sdm2(
A = list(dst.firm.normal, dst.firm.inferior, dst.quasifirm, dst.consumer),
B = matrix(c(

1, 0, 1, 0,
0, 1, 0, 0,

gemInputOutputTable_2_2 107

0, 0, 0, 0
), 3, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, 100

), 3, 4, TRUE),
names.commodity = c("normal prod", "inferior prod", "lab"),
names.agent = c("normal firm", "inferior firm", "quasifirm", "consumer"),
numeraire = "lab",
maxIteration = 1,
numberOfPeriods = 800

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

gemInputOutputTable_2_2

A General Equilibrium Model based on a 2×2 (Unbalanced) Input-
Output Table

Description

A general equilibrium model based on a 2×2 (unbalanced) input-output table (unit: yuan).

Usage

gemInputOutputTable_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

names.commodity <- c("prod", "lab")
names.agent <- c("firm", "laborer")

IT <- matrix(c(
40, 40,
40, 60

), 2, 2, TRUE)

OT <- matrix(c(
100, 0,
0, 100

108 gemInputOutputTable_2_2

), 2, 2, TRUE)

dimnames(IT) <- dimnames(OT) <- list(names.commodity, names.agent)

addmargins(IT)
addmargins(OT)

the model
dst.firm <- node_new(

"prod",
type = "SCES",
es = 1,
alpha = 1.25, # 100 / (40 + 40)
beta = prop.table(c(40, 40)),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "SCES",
es = 1, alpha = 1,
beta = prop.table(c(40, 60)),
"prod", "lab"

)

dstl <- list(dst.firm, dst.consumer)

ge.benchmark <- sdm2(
A = dstl,
B = matrix(c(
1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab"

)

ge.benchmark$p
ge.benchmark$D
ge.benchmark$S

addmargins(ge.benchmark$DV)
addmargins(ge.benchmark$SV)

the same as above
ge <- sdm2(

A = function(state) {
a.firm <- SCES_A(es = 1, alpha = 1.25, Beta = prop.table(c(40, 40)), p = state$p)

gemInputOutputTable_2_7_2 109

a.consumer <- SCES_A(es = 1, alpha = 1.25, Beta = prop.table(c(40, 60)), p = state$p)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab"

)

technology progress
dstl[[1]]$alpha <- 2.5

ge.TP <- sdm2(
A = dstl,
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab"

)

ge.TP$p
ge.TP$D
ge.TP$S

addmargins(ge.TP$DV)
addmargins(ge.TP$SV)

gemInputOutputTable_2_7_2

A Two-Country General Equilibrium Model

Description

A two-country general equilibrium model. This general equilibrium model is based on a two-
country (i.e. CHN and ROW) input-output table consisting of an input part and an output part. Each

110 gemInputOutputTable_2_7_2

country contains 2 sectors and 7 commodities (or subjects). The 2 sectors are firm and household.
The 7 commodities (or subjects) are product, labor, capital goods, bond, tax, dividend, tariff. Hence
the input-output table has 14 rows and 4 columns.

Usage

gemInputOutputTable_2_7_2(
IT,
OT,
es.DIProduct.firm.CHN = 3,
es.DIProduct.firm.ROW = 3,
es.laborCapital.firm.CHN = 0.75,
es.laborCapital.firm.ROW = 0.75,
es.household.CHN = 3,
es.household.ROW = 3,
return.dstl = FALSE,
...

)

Arguments

IT the input part of the input-output table.

OT the output part of the input-output table.
es.DIProduct.firm.CHN

the elasticity of substitution between domestic product and imported product
used by the production sector of CHN.

es.DIProduct.firm.ROW

the elasticity of substitution between domestic product and imported product
used by the production sector of ROW.

es.laborCapital.firm.CHN

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of CHN.

es.laborCapital.firm.ROW

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of ROW.

es.household.CHN

the elasticity of substitution between domestic product and imported product
used by the consumption sector of CHN.

es.household.ROW

the elasticity of substitution between domestic product and imported product
used by the consumption sector of ROW.

return.dstl If TRUE, the demand structure tree will be returned.

... arguments to be transferred to the function sdm2.

Value

A general equilibrium, which usually is a list with the following elements:

gemInputOutputTable_2_7_2 111

• p - the price vector with CHN labor as numeraire.

• dstl - the demand structure tree list of sectors if return.dstl == TRUE.

• ... - some elements returned by the function sdm2.

Examples

IT <- matrix(c(
142, 84, 13, 4.1,
47, 0, 0, 0,
13, 0, 0, 0,
0, 0, 0, 3.4,
9.3, 0, 0, 0,
22, 0, 0, 0,
0.15, 0.091, 0, 0,
10, 6, 381, 451,
0, 0, 252, 0,
0, 0, 81, 0,
0, 4.9, 0, 0,
0, 0, 26, 0,
0, 0, 92, 0,
0, 0, 1.9, 0.59

), 14, 4, TRUE)

OT <- matrix(c(
244, 0, 0, 0,
0, 47, 0, 0,
0, 13, 0, 0,
0, 3.4, 0, 0,
0, 9.3, 0, 0,
0, 22, 0, 0,
0, 0.24, 0, 0,
0, 0, 849, 0,
0, 0, 0, 252,
0, 0, 0, 81,
0, 0, 0, 4.9,
0, 0, 0, 26,
0, 0, 0, 92,
0, 0, 0, 2.5

), 14, 4, TRUE)

dimnames(IT) <- dimnames(OT) <- list(
c(
"product.CHN", "labor.CHN", "capital.CHN", "bond.CHN",
"tax.CHN", "dividend.CHN", "tariff.CHN",
"product.ROW", "labor.ROW", "capital.ROW", "bond.ROW",
"tax.ROW", "dividend.ROW", "tariff.ROW"

),
c(

"firm.CHN", "household.CHN",
"firm.ROW", "household.ROW"

)
)

112 gemInputOutputTable_2_7_4

ge <- gemInputOutputTable_2_7_2(IT, OT, return.dstl = TRUE)
ge$p
ge$z
node_plot(ge$dstl[[1]])
ge$dstl[[1]]$a

tariff rate change in CHN
dstl <- lapply(ge$dstl, Clone)
tmp <- node_set(dstl[[1]], "cc1.1")
tmp$beta[2] <- tmp$beta[2] * 10

ge.TRC <- sdm2(
A = dstl, B = ge$B, S0Exg = ge$S0Exg,
names.commodity = rownames(ge$B),
names.agent = colnames(ge$B),
numeraire = "labor.CHN"

)

ge.TRC$p
ge.TRC$z
technology progress in CHN
OT.TP <- OT
OT.TP["product.CHN", "firm.CHN"] <- OT["product.CHN", "firm.CHN"] * 1.2

ge.TP <- gemInputOutputTable_2_7_2(IT, OT.TP, return.dstl = TRUE)
ge.TP$p
ge.TP$z
ge.TP$dstl[[1]]$a

capital accumulation in CHN
OT.CA <- OT
OT.CA["capital.CHN", "household.CHN"] <- OT["capital.CHN", "household.CHN"] * 2

ge.CA <- gemInputOutputTable_2_7_2(IT, OT.CA)
ge.CA$p
ge.CA$z

labor supply change in CHN
OT.LSC <- OT
OT.LSC["labor.CHN", "household.CHN"] <- OT["labor.CHN", "household.CHN"] * 0.5

ge.LSC <- gemInputOutputTable_2_7_2(IT, OT.LSC)
ge.LSC$p
ge.LSC$z

gemInputOutputTable_2_7_4

A Two-Country General Equilibrium Model

gemInputOutputTable_2_7_4 113

Description

A two-country general equilibrium model. This general equilibrium model is based on a two-
country (i.e. CHN and ROW) input-output table consisting of an input part and an output part.
Each country contains 4 sectors and 7 commodities (or subjects). The 4 sectors are production,
consumption, investment and foreign trade. The 7 commodities (or subjects) are product, labor,
capital goods, bond, tax, dividend, imported product. Hence the input-output table has 14 rows and
8 columns.

Usage

gemInputOutputTable_2_7_4(
IT,
OT,
es.DIProduct.production.CHN = 3,
es.DIProduct.production.ROW = 3,
es.laborCapital.production.CHN = 0.75,
es.laborCapital.production.ROW = 0.75,
es.consumption.CHN = 3,
es.consumption.ROW = 3,
es.investment.CHN = 3,
es.investment.ROW = 3,
return.dstl = FALSE,
...

)

Arguments

IT the input part of the input-output table.

OT the output part of the input-output table.
es.DIProduct.production.CHN

the elasticity of substitution between domestic product and imported product
used by the production sector of CHN.

es.DIProduct.production.ROW

the elasticity of substitution between domestic product and imported product
used by the production sector of ROW.

es.laborCapital.production.CHN

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of CHN.

es.laborCapital.production.ROW

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of ROW.

es.consumption.CHN

the elasticity of substitution between domestic product and imported product
used by the consumption sector of CHN.

es.consumption.ROW

the elasticity of substitution between domestic product and imported product
used by the consumption sector of ROW.

114 gemInputOutputTable_2_7_4

es.investment.CHN

the elasticity of substitution between domestic product and imported product
used by the investment sector of CHN.

es.investment.ROW

the elasticity of substitution between domestic product and imported product
used by the investment sector of ROW.

return.dstl If TRUE, the demand structure tree will be returned.

... arguments to be transferred to the function sdm2.

Value

A general equilibrium, which usually is a list with the following elements:

• p - the price vector with CHN labor as numeraire.

• dstl - the demand structure tree list of sectors if return.dstl == TRUE.

• ... - some elements returned by the function sdm2.

Examples

IT <- matrix(c(
30, 12, 9, 0, 0, 0, 0, 13,
15, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0,
0, 9, 0, 0, 0, 2, 0, 0,
3, 0, 0, 1, 0, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0,
8, 3, 3, 0, 0, 0, 0, 0,
0, 0, 0, 13, 150, 316, 258, 0,
0, 0, 0, 0, 288, 0, 0, 0,
0, 0, 0, 0, 92, 0, 0, 0,
0, 2, 0, 0, 0, 269, 0, 0,
0, 0, 0, 0, 35, 0, 0, 1,
0, 0, 0, 0, 172, 0, 0, 0,
0, 0, 0, 0, 1, 5, 13, 0

), 14, 8, TRUE)

OT <- matrix(c(
64, 0, 0, 0, 0, 0, 0, 0,
0, 15, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0,
0, 0, 11, 0, 0, 0, 0, 0,
0, 3, 0, 0, 0, 0, 0, 0,
0, 6, 0, 0, 0, 0, 0, 0,
0, 0, 0, 13, 0, 0, 0, 0,
0, 0, 0, 0, 738, 0, 0, 0,
0, 0, 0, 0, 0, 288, 0, 0,
0, 0, 0, 0, 0, 92, 0, 0,
0, 0, 0, 0, 0, 0, 271, 0,
0, 0, 0, 0, 0, 36, 0, 0,
0, 0, 0, 0, 0, 172, 0, 0,
0, 0, 0, 0, 0, 0, 0, 14

gemInputOutputTable_2_7_4 115

), 14, 8, TRUE)

dimnames(IT) <- dimnames(OT) <- list(
c(
"product.CHN", "labor.CHN", "capital.CHN", "bond.CHN",
"tax.CHN", "dividend.CHN", "imported.product.CHN",
"product.ROW", "labor.ROW", "capital.ROW", "bond.ROW",
"tax.ROW", "dividend.ROW", "imported.product.ROW"

),
c(

"production.CHN", "consumption.CHN", "investment.CHN", "foreign.trade.CHN",
"production.ROW", "consumption.ROW", "investment.ROW", "foreign.trade.ROW"

)
)

ge <- gemInputOutputTable_2_7_4(IT, OT, return.dstl = TRUE)
ge$p
ge$z
node_plot(ge$dstl[[1]])
ge$dstl[[1]]$a

technology progress in CHN
OT.TP <- OT
OT.TP["product.CHN", "production.CHN"] <- OT["product.CHN", "production.CHN"] * 1.2

ge.TP <- gemInputOutputTable_2_7_4(IT, OT.TP, return.dstl = TRUE)
ge.TP$p
ge.TP$z
ge.TP$dstl[[1]]$a

capital accumulation in CHN
OT.CA <- OT
OT.CA["capital.CHN", "consumption.CHN"] <- OT["capital.CHN", "consumption.CHN"] * 2

ge.CA <- gemInputOutputTable_2_7_4(IT, OT.CA)
ge.CA$p
ge.CA$z

labor supply change in CHN
OT.LSC <- OT
OT.LSC["labor.CHN", "consumption.CHN"] <- OT["labor.CHN", "consumption.CHN"] * 0.5

ge.LSC <- gemInputOutputTable_2_7_4(IT, OT.LSC)
ge.LSC$p
ge.LSC$z

tariff rate change in CHN
IT.TRC <- IT
IT.TRC["tax.CHN","foreign.trade.CHN"] <- IT.TRC["tax.CHN","foreign.trade.CHN"] * 1.2
ge.TRC <- gemInputOutputTable_2_7_4(IT.TRC, OT)
ge.TRC$p
ge.TRC$z

116 gemInputOutputTable_2_8_4

gemInputOutputTable_2_8_4

A Two-Country General Equilibrium Model with Money

Description

A two-country general equilibrium model with money. This general equilibrium model is based on
a two-country (i.e. CHN and ROW) input-output table. Each country contains four sectors and eight
commodities (or subjects). The four sectors are production, consumption, investment and foreign
trade. The eight commodities (or subjects) are product, labor, capital goods, bond, tax, dividend,
imported product and money interest. Hence the input-output table has 16 rows and 8 columns.

Usage

gemInputOutputTable_2_8_4(
IT,
product.output.CHN = sum(IT[, "production.CHN"]),
product.output.ROW = sum(IT[, "production.ROW"]),
labor.supply.CHN = sum(IT["labor.CHN",]),
labor.supply.ROW = sum(IT["labor.ROW",]),
capital.supply.CHN = sum(IT["capital.CHN",]),
capital.supply.ROW = sum(IT["capital.ROW",]),
money.interest.supply.CHN = 5,
money.interest.supply.ROW = 30,
es.DIProduct.production.CHN = 0.5,
es.DIProduct.production.ROW = 0.5,
es.laborCapital.production.CHN = 0.75,
es.laborCapital.production.ROW = 0.75,
es.consumption.CHN = 0.5,
es.consumption.ROW = 0.5,
es.investment.CHN = 0.9,
es.investment.ROW = 0.9,
interest.rate.CHN = NA,
interest.rate.ROW = NA,
return.dstl = FALSE,
...

)

Arguments

IT the input part of the input-output table (unit: trillion yuan).
product.output.CHN

the product output of the production sector of CHN.
product.output.ROW

the product output of the production sector of ROW.

gemInputOutputTable_2_8_4 117

labor.supply.CHN

the labor supply of CHN.

labor.supply.ROW

the labor supply of ROW.

capital.supply.CHN

the capital supply of CHN.

capital.supply.ROW

the capital supply of ROW.

money.interest.supply.CHN

the money interest supply of CHN, that is, the exogenous money supply multi-
plied by the exogenous interest rate.

money.interest.supply.ROW

the money interest supply of ROW.

es.DIProduct.production.CHN

the elasticity of substitution between domestic product and imported product
used by the production sector of CHN.

es.DIProduct.production.ROW

the elasticity of substitution between domestic product and imported product
used by the production sector of ROW.

es.laborCapital.production.CHN

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of CHN.

es.laborCapital.production.ROW

the elasticity of substitution between labor and capital goods used by the pro-
duction sector of ROW.

es.consumption.CHN

the elasticity of substitution between domestic product and imported product
used by the consumption sector of CHN.

es.consumption.ROW

the elasticity of substitution between domestic product and imported product
used by the consumption sector of ROW.

es.investment.CHN

the elasticity of substitution between domestic product and imported product
used by the investment sector of CHN.

es.investment.ROW

the elasticity of substitution between domestic product and imported product
used by the investment sector of ROW.

interest.rate.CHN

the interest rate of CHN.
interest.rate.ROW

the interest rate of ROW.

return.dstl If TRUE, the demand structure tree will be returned.

... arguments to be transferred to the function sdm2.

118 gemInputOutputTable_2_8_4

Details

If interest.rate.CHN is NA or interest.rate.CHN is NA, they are assumed to be equal. And in this
case, the exchange rate is determined by the ratio of the interest of unit currency of the two countries.
In this model, the ratio of a sector’s monetary interest expenditure to its transaction value may not
be equal to the interest rate because the ratio is not only affected by the interest rate, but also by the
sector’s currency circulation velocity and other factors.

Value

A general equilibrium, which usually is a list with the following elements:

• p - the price vector with CHN labor as numeraire, wherein the price of a currency is the interest
per unit of currency.

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• eri.CHN - the exchange rate index of CHN currency.

• eri.ROW - the exchange rate index of ROW currency.

• p.money - the price vector with CHN money as numeraire if both interest.rate.CHN and inter-
est.rate.CHN are not NA.

• dstl - the demand structure tree list of sectors if return.dstl == TRUE.

• ... - some elements returned by the function sdm2.

Examples

ITExample <- matrix(0, 16, 8, dimnames = list(
c(
"product.CHN", "labor.CHN", "capital.CHN", "bond.CHN",
"tax.CHN", "dividend.CHN", "imported.product.CHN", "money.interest.CHN",
"product.ROW", "labor.ROW", "capital.ROW", "bond.ROW",
"tax.ROW", "dividend.ROW", "imported.product.ROW", "money.interest.ROW"

),
c(

"production.CHN", "consumption.CHN", "investment.CHN", "foreign.trade.CHN",
"production.ROW", "consumption.ROW", "investment.ROW", "foreign.trade.ROW"

)
))

production.CHN <- c(
product.CHN = 140, labor.CHN = 40, capital.CHN = 10,
tax.CHN = 10, dividend.CHN = 20, imported.product.CHN = 5, money.interest.CHN = 5

)
production.ROW <- c(

product.ROW = 840, labor.ROW = 240, capital.ROW = 60,
tax.ROW = 60, dividend.ROW = 120, imported.product.ROW = 6, money.interest.ROW = 30

)

gemInputOutputTable_2_8_4 119

consumption.CHN <- c(
product.CHN = 40, bond.CHN = 30, imported.product.CHN = 5, money.interest.CHN = 2

)

consumption.ROW <- c(
product.ROW = 240, bond.ROW = 180, imported.product.ROW = 6, money.interest.ROW = 12

)

investment.CHN <- c(
product.CHN = 30,
imported.product.CHN = 4, money.interest.CHN = 1,
bond.ROW = 1,
money.interest.ROW = 0.02

)

investment.ROW <- c(
bond.CHN = 1,
money.interest.CHN = 0.02,
product.ROW = 180,
imported.product.ROW = 4, money.interest.ROW = 6

)

foreign.trade.CHN <- c(
product.ROW = 13,
tax.CHN = 0.65,
money.interest.ROW = 0.26

)

foreign.trade.ROW <- c(
product.CHN = 15,
tax.ROW = 0.75,
money.interest.CHN = 0.3

)

ITExample <- matrix_add_by_name(
ITExample, production.CHN, consumption.CHN, investment.CHN, foreign.trade.CHN,
production.ROW, consumption.ROW, investment.ROW, foreign.trade.ROW

)

ge <- gemInputOutputTable_2_8_4(
IT = ITExample,
return.dstl = TRUE

)
ge$eri.CHN
ge$p
node_plot(ge$dstl[[4]], TRUE)

ge2 <- gemInputOutputTable_2_8_4(
IT = ge$DV,
money.interest.supply.CHN = sum(ge$DV["money.interest.CHN",]),
money.interest.supply.ROW = sum(ge$DV["money.interest.ROW",]),

120 gemInputOutputTable_5_4

return.dstl = TRUE
)
ge2$eri.CHN
ge2$p

technology progress in CHN
ITTmp <- ITExample
ITTmp["labor.CHN", "production.CHN"] <- ITTmp["labor.CHN", "production.CHN"] * 0.8
geTmp <- gemInputOutputTable_2_8_4(

IT = ITTmp,
product.output.CHN = sum(ITExample[, "production.CHN"]),
return.dstl = TRUE

)
geTmp$eri.CHN

increased demand for imported product in CHN
ITTmp <- ITExample
ITTmp["imported.product.CHN", "production.CHN"] <-

ITTmp["imported.product.CHN", "production.CHN"] * 1.2
geTmp <- gemInputOutputTable_2_8_4(

IT = ITTmp,
return.dstl = TRUE

)
geTmp$eri.CHN

capital accumulation in CHN
geTmp <- gemInputOutputTable_2_8_4(

IT = ITExample,
capital.supply.CHN = sum(ITExample["capital.CHN",]) * 1.2,
return.dstl = TRUE

)
geTmp$eri.CHN

##
geTmp <- gemInputOutputTable_2_8_4(

IT = ITExample,
capital.supply.CHN = sum(ITExample["capital.CHN",]) * 1.2,
es.DIProduct.production.CHN = 0.3,
return.dstl = TRUE

)
geTmp$eri.CHN

gemInputOutputTable_5_4

A General Equilibrium Model based on a 5×4 Input-Output Table (see
Zhang Xin, 2017, Table 8.6.1)

gemInputOutputTable_5_4 121

Description

This is a general equilibrium model based on a 5×4 input-output table (see Zhang Xin, 2017, Table
8.6.1).

Usage

gemInputOutputTable_5_4(
dstl,
supply.labor = 850,
supply.capital = 770,
names.commodity = c("agri", "manu", "serv", "lab", "cap"),
names.agent = c("agri", "manu", "serv", "hh")

)

Arguments

dstl a demand structure tree list.

supply.labor the supply of labor.

supply.capital the supply of capital.

names.commodity

names of commodities.

names.agent names of agents.

Details

Given a 5×4 input-output table (e.g., see Zhang Xin, 2017, Table 8.6.1), this model calculates the
corresponding general equilibrium. This input-output table contains 3 production sectors and one
household. The household consumes products and supplies labor and capital.

Value

A general equilibrium which is a list with the following elements:

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• ... - some elements returned by the CGE::sdm function

References

Zhang Xin (2017, ISBN: 9787543227637) Principles of Computable General Equilibrium Model-
ing and Programming (Second Edition). Shanghai: Gezhi Press. (In Chinese)

122 gemInputOutputTable_5_4

Examples

es.agri <- 0.2 # the elasticity of substitution
es.manu <- 0.3
es.serv <- 0.1

es.VA.agri <- 0.25
es.VA.manu <- 0.5
es.VA.serv <- 0.8

d.agri <- c(260, 345, 400, 200, 160)
d.manu <- c(320, 390, 365, 250, 400)
d.serv <- c(150, 390, 320, 400, 210)
d.hh <- c(635, 600, 385, 0, 0)
d.hh <- c(635, 600, 100, 0, 0)

IT <- cbind(d.agri, d.manu, d.serv, d.hh)
OT <- matrix(c(

1365, 0, 0, 0,
0, 1725, 0, 0,
0, 0, 1470, 0,
0, 0, 0, 850,
0, 0, 0, 770

), 5, 4, TRUE)

dimnames(IT) <- dimnames(OT) <-
list(
c("agri", "manu", "serv", "lab", "cap"),
c("agri", "manu", "serv", "hh")

)

addmargins(IT)
addmargins(OT)

dst.agri <- node_new("sector.agri",
type = "SCES", es = es.agri,
alpha = 1,
beta = prop.table(

c(sum(d.agri[1:3]), sum(d.agri[4:5]))
),
"cc1.agri", "cc2.agri"

)
node_set(dst.agri, "cc1.agri",

type = "Leontief",
a = prop.table(d.agri[1:3]),
"agri", "manu", "serv"

)
node_set(dst.agri, "cc2.agri",

type = "SCES", es = es.VA.agri,
alpha = 1,
beta = prop.table(d.agri[4:5]),
"lab", "cap"

)

gemInputOutputTable_5_4 123

dst.manu <- node_new("sector.manu",
type = "SCES", es = es.manu,
alpha = 1,
beta = prop.table(

c(sum(d.manu[1:3]), sum(d.manu[4:5]))
),
"cc1.manu", "cc2.manu"

)
node_set(dst.manu, "cc1.manu",

type = "Leontief",
a = prop.table(d.manu[1:3]),
"agri", "manu", "serv"

)
node_set(dst.manu, "cc2.manu",

type = "SCES", es = es.VA.manu,
alpha = 1,
beta = prop.table(d.manu[4:5]),
"lab", "cap"

)

dst.serv <- node_new("sector.serv",
type = "SCES", es = es.serv,
alpha = 1,
beta = prop.table(

c(sum(d.serv[1:3]), sum(d.serv[4:5]))
),
"cc1.serv", "cc2.serv"

)
node_set(dst.serv, "cc1.serv",

type = "Leontief",
a = prop.table(d.serv[1:3]),
"agri", "manu", "serv"

)
node_set(dst.serv, "cc2.serv",

type = "SCES", es = es.VA.serv,
alpha = 1,
beta = prop.table(d.serv[4:5]),
"lab", "cap"

)

##
dst.hh <- node_new("sector.hh",

type = "SCES", es = 0.5,
alpha = 1,
beta = prop.table(d.hh[1:3]),
"agri", "manu", "serv"

)

dstl <- list(dst.agri, dst.manu, dst.serv, dst.hh)

ge <- gemInputOutputTable_5_4(dstl)

124 gemInputOutputTable_5_4

labor supply increase
geLSI <- gemInputOutputTable_5_4(dstl, supply.labor = 850 * 1.08)
geLSI$p
geLSIz / gez

capital supply change
ge.CSC <- sdm2(

A = dstl,
B = matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
0, 0, 0, 1

), 5, 4, TRUE),
S0Exg = {

tmp <- matrix(NA, 5, 4)
tmp[4, 4] <- 850
tmp[5, 4] <- 770
tmp

},
names.commodity = c("agri", "manu", "serv", "lab", "cap"),
names.agent = c("agri", "manu", "serv", "hh"),
numeraire = "lab",
ts = TRUE,
numberOfPeriods = 100,
maxIteration = 1,
z0 = c(1365, 1725, 1470, 1620),
p0 = rep(1, 5),
policy = function(time, state) {

if (time >= 5) {
state$S[5, 4] <- 880

}
state

}
)

matplot(ge.CSC$ts.p, type = "l")
matplot(ge.CSC$ts.z, type = "l")

economic fluctuation: a sticky-price path
de <- sdm2(

A = dstl,
B = matrix(c(

1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
0, 0, 0, 1

), 5, 4, TRUE),
S0Exg = {

tmp <- matrix(NA, 5, 4)

gemInputOutputTable_5_5 125

tmp[4, 4] <- 850
tmp[5, 4] <- 770
tmp

},
names.commodity = c("agri", "manu", "serv", "lab", "cap"),
names.agent = c("agri", "manu", "serv", "hh"),
numeraire = "lab",
ts = TRUE,
numberOfPeriods = 50,
maxIteration = 1,
z0 = c(1365, 1725, 1470, 1620),
p0 = rep(1, 5),
policy = list(

function(time, state) {
if (time >= 5) {

state$S[5, 4] <- 880
}
state

},
makePolicyStickyPrice(0.5)

),
priceAdjustmentVelocity = 0

)

matplot(de$ts.p, type = "o", pch = 20)
matplot(de$ts.z, type = "o", pch = 20)

gemInputOutputTable_5_5

General Equilibrium Models based on a 5×5 Input-Output Table (see
Zhang Xin, 2017, Table 3.2.1)

Description

Some general equilibrium models based on a 5×5 input-output table (see Zhang Xin, 2017, Table
3.2.1).

Usage

gemInputOutputTable_5_5(...)

Arguments

... arguments to be passed to the function sdm2.

References

Zhang Xin (2017, ISBN: 9787543227637) Principles of Computable General Equilibrium Model-
ing and Programming (Second Edition). Shanghai: Gezhi Press. (In Chinese)

126 gemInputOutputTable_5_5

Examples

names.commodity <- c("agri", "manu", "serv", "lab", "cap")
names.agent <- c("agri", "manu", "serv", "consumer", "investor")

IT <- matrix(c(
200, 300, 150, 280, 70,
80, 400, 250, 550, 320,
30, 420, 240, 350, 110,
500, 250, 330, 0, 0,
190, 230, 180, 0, 0

), 5, 5, TRUE)

OT <- matrix(c(
1000, 0, 0, 0, 0,
0, 1600, 0, 0, 0,
0, 0, 1150, 0, 0,
0, 0, 0, 758.5714, 321.4286,
0, 0, 0, 421.4286, 178.5714

), 5, 5, TRUE)

dimnames(IT) <- dimnames(OT) <- list(names.commodity, names.agent)

addmargins(IT)
addmargins(OT)

a model with non-nested production functions (demand structure trees)
dst.agri <- node_new("output",

type = "SCES", es = 1, alpha = 1,
beta = prop.table(c(200, 80, 30, 500, 190)),
"agri", "manu", "serv", "lab", "cap"

)

dst.manu <- node_new("output",
type = "SCES", es = 1, alpha = 1,
beta = prop.table(c(300, 400, 420, 250, 230)),
"agri", "manu", "serv", "lab", "cap"

)

dst.serv <- node_new("output",
type = "SCES", es = 1, alpha = 1,
beta = prop.table(c(150, 250, 240, 330, 180)),
"agri", "manu", "serv", "lab", "cap"

)

dst.consumer <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(280, 550, 350)),
"agri", "manu", "serv"

)

dst.investor <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,

gemInputOutputTable_5_5 127

beta = prop.table(c(70, 320, 110)),
"agri", "manu", "serv"

)

ge1.benchmark <- sdm2(list(dst.agri, dst.manu, dst.serv, dst.consumer, dst.investor),
B = matrix(c(

1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 5, 5, TRUE),
S0Exg = {

S0Exg <- matrix(NA, 5, 5)
S0Exg[4:5, 4] <- c(1080, 600) * (1180 / (1180 + 500))
S0Exg[4:5, 5] <- c(1080, 600) * (500 / (1180 + 500))
S0Exg

},
names.commodity = c("agri", "manu", "serv", "lab", "cap"),
names.agent = c("agri", "manu", "serv", "consumer", "investor"),
numeraire = c("lab")

)

addmargins(ge1.benchmark$D)
addmargins(ge1.benchmark$S)

a model with nested production functions (demand structure trees)
dst.agri <- node_new("output",

type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(200 + 80 + 30, 500 + 190)),
"cc.II", "cc.VA"

)
node_set(dst.agri, "cc.II",

type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(200, 80, 30)),
"agri", "manu", "serv"

)
node_set(dst.agri, "cc.VA",

type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(500, 190)),
"lab", "cap"

)

dst.manu <- node_new("output",
type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(300 + 400 + 420, 250 + 230)),
"cc.II", "cc.VA"

)
node_set(dst.manu, "cc.II",

type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(300, 400, 420)),
"agri", "manu", "serv"

)

128 gemInputOutputTable_5_5

node_set(dst.manu, "cc.VA",
type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(250, 230)),
"lab", "cap"

)

dst.serv <- node_new("output",
type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(150 + 250 + 240, 330 + 180)),
"cc.II", "cc.VA"

)
node_set(dst.serv, "cc.II",

type = "SCES", es = 0, alpha = 1,
beta = prop.table(c(150, 250, 240)),
"agri", "manu", "serv"

)
node_set(dst.serv, "cc.VA",

type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(330, 180)),
"lab", "cap"

)

dst.consumer <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(280, 550, 350)),
"agri", "manu", "serv"

)

dst.investor <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = prop.table(c(70, 320, 110)),
"agri", "manu", "serv"

)

ge2.benchmark <- sdm2(list(dst.agri, dst.manu, dst.serv, dst.consumer, dst.investor),
B = matrix(c(
1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 5, 5, TRUE),
S0Exg = {

S0Exg <- matrix(NA, 5, 5)
S0Exg[4:5, 4] <- c(1080, 600) * (1180 / (1180 + 500))
S0Exg[4:5, 5] <- c(1080, 600) * (500 / (1180 + 500))
S0Exg

},
names.commodity = c("agri", "manu", "serv", "lab", "cap"),
names.agent = c("agri", "manu", "serv", "consumer", "investor"),
numeraire = c("lab")

)

gemInputOutputTable_7_4 129

addmargins(ge2.benchmark$D)
addmargins(ge2.benchmark$S)

gemInputOutputTable_7_4

A General Equilibrium Model based on a 7×4 (Standard) Input-
Output Table

Description

This is a general equilibrium model based on a 7×4 standard input-output table. There is no negative
number in this standard input-output table, and both the input and output parts are 7×4 matrices.
The standard input-output table consists of input and output parts with the same dimensions.

Usage

gemInputOutputTable_7_4(
IT,
OT,
es.agri = 0,
es.manu = 0,
es.serv = 0,
es.hh = 0,
es.VA.agri = 0.25,
es.VA.manu = 0.5,
es.VA.serv = 0.8,
...

)

Arguments

IT the input part of the input-output table in the base period (unit: trillion yuan).

OT the output part of the input-output table in the base period (unit: trillion yuan).

es.agri, es.manu, es.serv
the elasticity of substitution between the intermediate input and the value-added
input of the agriculture sector, manufacturing sector and service sector.

es.hh the elasticity of substitution among products consumed by the household sector.

es.VA.agri, es.VA.manu, es.VA.serv
the elasticity of substitution between labor input and capital input of the agricul-
ture sector, manufacturing sector and service sector.

... arguments to be transferred to the function sdm of the package CGE.

130 gemInputOutputTable_7_4

Details

Given a 7×4 input-output table, this model calculates the corresponding general equilibrium. This
input-output table contains 3 production sectors and 1 household. The household consumes prod-
ucts and supplies labor, capital, stock and tax receipt. Generally speaking, the value of the elasticity
of substitution in this model should be between 0 and 1.

Value

A general equilibrium, which is a list with the following elements:

• p - the price vector with labor as numeraire.

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• value.added - the value-added of the three production sectors.

• dstl - the demand structure tree list of sectors.

• ... - some elements returned by the sdm2 function.

Examples

IT2017 <- matrix(c(
1.47, 6.47, 0.57, 2.51,
2.18, 76.32, 12.83, 44.20,
0.82, 19.47, 23.33, 35.61,
6.53, 13.92, 21.88, 0,
0.23, 4.05, 6.76, 0,
0, 6.43, 3.40, 0,
0.13, 8.87, 10.46, 0

), 7, 4, TRUE)

OT2017 <- matrix(c(
11.02, 0, 0, 0,
0, 135.53, 0, 0,
0, 0, 79.23, 0,
0, 0, 0, 42.33,
0, 0, 0, 11.04,
0.34, 0, 0, 9.49,
0, 0, 0, 19.46

), 7, 4, TRUE)

rownames(IT2017) <- rownames(OT2017) <-
c("agri", "manu", "serv", "lab", "cap", "tax", "dividend")

colnames(IT2017) <- colnames(OT2017) <-
c("sector.agri", "sector.manu", "sector.serv", "sector.hh")

ge <- gemInputOutputTable_7_4(
IT = IT2017,

gemInputOutputTable_7_4 131

OT = OT2017
)

labor supply reduction
OTLSR <- OT2017
OTLSR["lab", "sector.hh"] <- OTLSR["lab", "sector.hh"] * 0.9
geLSR <- gemInputOutputTable_7_4(

IT = IT2017,
OT = OTLSR

)

geLSRz / gez
geLSRp / gep

capital accumulation
OTCA <- OT2017
OTCA["cap", "sector.hh"] <- OTCA["cap", "sector.hh"] * 1.1
geCA <- gemInputOutputTable_7_4(

IT = IT2017,
OT = OTCA

)

geCAz / gez
geCAp / gep

technology progress
IT.TP <- IT2017
IT.TP ["lab", "sector.manu"] <-

IT.TP ["lab", "sector.manu"] * 0.9

geTP <- gemInputOutputTable_7_4(
IT = IT.TP,
OT = OT2017

)

geTPz / gez
geTPp / gep

##
IT.TP2 <- IT.TP
IT.TP2 ["cap", "sector.manu"] <-

IT.TP2["cap", "sector.manu"] * 1.02
geTP2 <- gemInputOutputTable_7_4(

IT = IT.TP2,
OT = OT2017

)

geTP2z / gez
geTP2p / gep

##
IT.TP3 <- IT2017
IT.TP3 ["lab", "sector.manu"] <-

132 gemInputOutputTable_8_8

IT.TP3 ["lab", "sector.manu"] * 0.9
IT.TP3 ["lab", "sector.agri"] <-

IT.TP3 ["lab", "sector.agri"] * 0.8

geTP3 <- gemInputOutputTable_7_4(
IT = IT.TP3,
OT = OT2017

)

geTP3$value.added / ge$value.added
prop.table(geTP3$value.added) - prop.table(ge$value.added)

demand structure change
IT.DSC <- IT2017
IT.DSC["serv", "sector.hh"] <- IT.DSC ["serv", "sector.hh"] * 1.2

geDSC <- gemInputOutputTable_7_4(
IT = IT.DSC,
OT = OT2017

)

geDSC$z[1:3] / ge$z[1:3]
geDSCp / gep

tax change
OT.TC <- OT2017
OT.TC["tax", "sector.agri"] <- OT.TC["tax", "sector.agri"] * 2

geTC <- gemInputOutputTable_7_4(
IT = IT2017,
OT = OT.TC

)

geTCz / gez
geTCp / gep

##
IT.TC2 <- IT2017
IT.TC2["tax", "sector.manu"] <- IT.TC2["tax", "sector.manu"] * 0.8

geTC2 <- gemInputOutputTable_7_4(
IT = IT.TC2,
OT = OT2017

)

geTC2z / gez
geTC2p / gep

gemInputOutputTable_8_8 133

gemInputOutputTable_8_8

A General Equilibrium Model based on an 8×8 Input-Output Table

Description

This is a general equilibrium model based on a 8×8 input-output table.

Usage

gemInputOutputTable_8_8(
IT,
OT,
es.agri = 0,
es.manu = 0,
es.serv = 0,
es.CI = 0,
es.FT = 0,
es.VA.agri = 0.25,
es.VA.manu = 0.5,
es.VA.serv = 0.8,
es.prodDM = 0.5,
...

)

Arguments

IT the input part of the input-output table in the base period (unit: trillion yuan).

OT the output part of the input-output table in the base period (unit: trillion yuan).
es.agri, es.manu, es.serv

the elasticity of substitution between the intermediate input and the value-added
input of the agriculture sector, manufacturing sector and service sector.

es.CI the elasticity of substitution among products used by the CI sector.

es.FT the elasticity of substitution among exported products.
es.VA.agri, es.VA.manu, es.VA.serv

the elasticity of substitution between labor input and capital input of the agricul-
ture sector, manufacturing sector and service sector.

es.prodDM the elasticity of substitution between domestic product and imported product.

... arguments to be transferred to the function sdm of the package CGE.

Details

Given an 8×8 input-output table, this model calculates the corresponding general equilibrium. This
input-output table contains 3 production sectors, 1 consumption and (temporarily unproductive)
investment sector (CI sector), 1 foreign trade sector importing agriculture goods, 1 foreign trade
sector importing manufacturing goods, 1 foreign trade sector importing service, 1 foreign trade
sector importing bond. There are 8 kinds of commodities (or subjects) in the table, i.e. agriculture

134 gemInputOutputTable_8_8

product, manufacturing product, service, labor, capital goods, tax, dividend and bond of ROW (i.e.
the rest of the world). The CI sector uses products and supplies labor, capital, stock and tax receipt.
Generally speaking, the value of the elasticity of substitution in this model should be between 0 and
1.

Value

A general equilibrium, which is a list with the following elements:

• p - the price vector with labor as numeraire.

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• value.added - the value-added of the three production sectors.

• dstl - the demand structure tree list of sectors.

• ... - some elements returned by the CGE::sdm function

Examples

IT17 <- matrix(c(
1.47, 6.47, 0.57, 2.99, 0.12 * 0.60 / (0.60 + 12.10 + 2.23 + 1.45),
0.12 * 12.10 / (0.60 + 12.10 + 2.23 + 1.45),
0.12 * 2.23 / (0.60 + 12.10 + 2.23 + 1.45),
0.12 * 1.45 / (0.60 + 12.10 + 2.23 + 1.45),

2.18, 76.32, 12.83, 43, 13.30 * 0.60 / (0.60 + 12.10 + 2.23 + 1.45),
13.30 * 12.10 / (0.60 + 12.10 + 2.23 + 1.45),
13.30 * 2.23 / (0.60 + 12.10 + 2.23 + 1.45),
13.30 * 1.45 / (0.60 + 12.10 + 2.23 + 1.45),

0.82, 19.47, 23.33, 34.88, 2.96 * 0.60 / (0.60 + 12.10 + 2.23 + 1.45),
2.96 * 12.10 / (0.60 + 12.10 + 2.23 + 1.45),
2.96 * 2.23 / (0.60 + 12.10 + 2.23 + 1.45),
2.96 * 1.45 / (0.60 + 12.10 + 2.23 + 1.45),

6.53, 13.92, 21.88, 0, 0, 0, 0, 0,
0.23, 4.05, 6.76, 0, 0, 0, 0, 0,
0, 6.43, 3.40, 0, 0, 0, 0, 0,
0.13, 8.87, 10.46, 0, 0, 0, 0, 0,
0, 0, 0, 1.45, 0, 0, 0, 0

), 8, 8, TRUE)

OT17 <- matrix(c(
11.02, 0, 0, 0, 0.60, 0, 0, 0,
0, 135.53, 0, 0, 0, 12.10, 0, 0,
0, 0, 79.23, 0, 0, 0, 2.23, 0,
0, 0, 0, 42.33, 0, 0, 0, 0,

gemInputOutputTable_8_8 135

0, 0, 0, 11.04, 0, 0, 0, 0,
0.34, 0, 0, 9.49, 0, 0, 0, 0,
0, 0, 0, 19.46, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1.45

), 8, 8, TRUE)

rownames(IT17) <- rownames(OT17) <-
c("agri", "manu", "serv", "lab", "cap", "tax", "dividend", "bond.ROW")

colnames(IT17) <- colnames(OT17) <- c(
"sector.agri", "sector.manu", "sector.serv", "sector.CI",
"sector.FT.agri", "sector.FT.manu", "sector.FT.serv", "sector.FT.bond.ROW"

)

the benchmark equilibrium.
ge <- gemInputOutputTable_8_8(

IT = IT17,
OT = OT17

)

technology progress.
IT.TP <- IT17
IT.TP ["lab", "sector.manu"] <-

IT.TP ["lab", "sector.manu"] * 0.9

geTP <- gemInputOutputTable_8_8(
IT = IT.TP,
OT = OT17

)

geTPz / gez
geTPp / gep
geTP$value.added
prop.table(geTP$value.added) - prop.table(ge$value.added)

capital accumulation.
OT.CA <- OT17
OT.CA["cap", "sector.CI"] <- OT.CA["cap", "sector.CI"] * 1.1
geCA <- gemInputOutputTable_8_8(

IT = IT17,
OT = OT.CA

)

geCAz / gez
geCAp / gep
geCA$p
geCA$value.added
prop.table(geCA$value.added) - prop.table(ge$value.added)

tax change.
OT.TC <- OT17
OT.TC["tax", "sector.agri"] <- OT.TC["tax", "sector.agri"] * 2

geTC <- gemInputOutputTable_8_8(

136 gemInputOutputTable_easy_5_4

IT = IT17,
OT = OT.TC

)

geTCz / gez
geTCp / gep

##
IT.TC2 <- IT17
IT.TC2["tax", "sector.manu"] <- IT.TC2["tax", "sector.manu"] * 0.8

geTC2 <- gemInputOutputTable_8_8(
IT = IT.TC2,
OT = OT17

)

geTC2z / gez
geTC2p / gep

gemInputOutputTable_easy_5_4

An Easy General Equilibrium Model based on a 5×4 Input-Output
Table (see Zhang Xin, 2017, Table 8.6.1)

Description

This is a general equilibrium model based on a 5×4 input-output table (see Zhang Xin, 2017, Table
8.6.1).

Usage

gemInputOutputTable_easy_5_4(
IT = cbind(sector.agri = c(agri = 260, manu = 345, serv = 400, lab = 200, cap = 160),

sector.manu = c(agri = 320, manu = 390, serv = 365, lab = 250, cap = 400),
sector.serv = c(agri = 150, manu = 390, serv = 320, lab = 400, cap = 210), sector.hh
= c(agri = 635, manu = 600, serv = 385, lab = 0, cap = 0)),

supply.labor = 850,
supply.capital = 770,
es.agri = 0.2,
es.manu = 0.3,
es.serv = 0.1,
es.VA.agri = 0.25,
es.VA.manu = 0.5,
es.VA.serv = 0.8

)

gemInputOutputTable_easy_5_4 137

Arguments

IT the input and consumption part of the input-output table.
supply.labor the supply of labor.
supply.capital the supply of capital.
es.agri, es.manu, es.serv

the elasticity of substitution between the intermediate input and the value-added
input of the agriculture sector, manufacturing sector and service sector.

es.VA.agri, es.VA.manu, es.VA.serv
the elasticity of substitution between labor input and capital input of the agricul-
ture sector, manufacturing sector and service sector.

Details

Given a 5×4 input-output table (e.g., see Zhang Xin, 2017, Table 8.6.1), this model calculates the
corresponding general equilibrium. This input-output table contains 3 production sectors and one
household. The household consumes products and supplies labor and capital.

Value

A general equilibrium, which is a list with the following elements:

• p - the price vector with labor as numeraire.
• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.
• DV - the demand value matrix, also called the value input table. Wherein the current price is

used.
• SV - the supply value matrix, also called the value output table. Wherein the current price is

used.
• ... - some elements returned by the CGE::sdm function

References

Zhang Xin (2017, ISBN: 9787543227637) Principles of Computable General Equilibrium Model-
ing and Programming (Second Edition). Shanghai: Gezhi Press. (In Chinese)

Examples

sector.agri <- c(260, 345, 400, 200, 160)
sector.manu <- c(320, 390, 365, 250, 400)
sector.serv <- c(150, 390, 320, 400, 210)
sector.hh <- c(635, 600, 100, 0, 0)

IT <- cbind(sector.agri, sector.manu, sector.serv, sector.hh)
rownames(IT) <- c("agri", "manu", "serv", "lab", "cap")

ge <- gemInputOutputTable_easy_5_4(IT)

####
ge <- gemInputOutputTable_easy_5_4(supply.capital = 1870)
prop.table(ge$z[1:3])

138 gemInputOutputTable_Leontief_3_3

gemInputOutputTable_Leontief_3_3

A Leontief-type General Equilibrium Model based on a 3×3 Input-
Output Table

Description

Given a 3×3 input-output table (e.g., see Zhang Xin, 2017, Table 2.2.2), this model can be used
to calculate the corresponding equilibrium. This input-output table contains two firms and one
household. The household consumes products and supplies labor.

Usage

gemInputOutputTable_Leontief_3_3(
input = matrix(c(200, 300, 100, 150, 320, 530, 250, 380, 0), 3, 3, TRUE),
output = c(600, 1000, 630)

)

Arguments

input the input matrix in the base period.

output a vector consisting of the product outputs and labor supply in the base period.

Value

A general equilibrium, which is a list with the following elements:

• p - the price vector with labor as numeraire.

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• ... - some elements returned by the CGE::sdm function

References

Zhang Xin. (2017, ISBN: 9787543227637). Principles of Computable General Equilibrium Mod-
eling and Programming (Second Edition). Shanghai: Gezhi Press. (In Chinese)

Examples

x <- 75
gemInputOutputTable_Leontief_3_3(

input = matrix(c(
200, 300, 100,
x, 320, 530,

gemInputOutputTable_SCES_3_3 139

250, 380, 0
), 3, 3, TRUE),
output = c(600, 1000, 630)

)

gemInputOutputTable_SCES_3_3

A SCES-type General Equilibrium Model based on an Input-Output
Table.

Description

Given a 3×3 input-output table (e.g., see Zhang Xin, 2017, Table 2.2.2), this model can be used
to calculate the corresponding equilibrium. This input-output table contains two firms and one
household. The household consumes products and supplies labor.

Usage

gemInputOutputTable_SCES_3_3(
input = matrix(c(200, 300, 100, 150, 320, 530, 250, 380, 0), 3, 3, TRUE),
output = c(600, 1000, 630),
es = 0

)

Arguments

input the input matrix in the base period.

output a vector consisting of the product outputs and labor supply in the base period.

es a scalar, which is the elasticity of substitution between the inputs.

Value

A general equilibrium, which is a list with the following elements:

• p - the price vector with labor as numeraire.

• D - the demand matrix, also called the input table. Wherein the benchmark prices are used.

• DV - the demand value matrix, also called the value input table. Wherein the current price is
used.

• SV - the supply value matrix, also called the value output table. Wherein the current price is
used.

• ... - some elements returned by the CGE::sdm function

References

Zhang Xin. (2017, ISBN: 9787543227637). Principles of Computable General Equilibrium Mod-
eling and Programming (Second Edition). Shanghai: Gezhi Press. (In Chinese)

140 gemIntertemporalStochastic_Bank_ThreePeriods

Examples

x <- 75
gemInputOutputTable_SCES_3_3(

input = matrix(c(
200, 300, 100,
x, 320, 530,
250, 380, 0

), 3, 3, TRUE),
output = c(600, 1000, 630),
es = 0.5

)

gemIntertemporalStochastic_Bank_ThreePeriods

An Intertemporal Stochastic Model with a Consumer and Some Banks

Description

An intertemporal stochastic model with a consumer and some banks. In the model the consumer
will live for three periods. There is one natural state in the first period, and two natural states in the
second and third period.

Usage

gemIntertemporalStochastic_Bank_ThreePeriods(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.bank1a <- node_new(
"payoff2.1&2.2",
type = "Leontief", a = 1,
"payoff1"

)

dst.bank1b <- node_new(
"payoff3.1&3.2",
type = "Leontief", a = 1,
"payoff1"

)

dst.bank2.1 <- node_new(
"payoff3.1",
type = "Leontief", a = 1,
"payoff2.1"

)

gemIntertemporalStochastic_Bank_ThreePeriods 141

dst.bank2.2 <- node_new(
"payoff3.2",
type = "Leontief", a = 1,
"payoff2.2"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1/3, 1/6, 1/6, 1/6, 1/6),
"payoff1", "payoff2.1", "payoff2.2", "payoff3.1", "payoff3.2"

)

ge <- sdm2(
A = list(dst.bank1a, dst.bank1b,dst.bank2.1,dst.bank2.2,dst.consumer),
B = matrix(c(
0, 0,0, 0,0,
1.1, 0,0, 0,0,
1.1, 0,0, 0, 0,
0, 1.5, 1.1, 0,0,
0, 1.5, 0, 1.1,0

), 5, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, 1,
NA, NA, NA, NA, 1,
NA, NA, NA, NA, 0,
NA, NA, NA, NA, 0,
NA, NA, NA, NA, 0

), 5, 5, TRUE),
names.commodity = c("payoff1", "payoff2.1", "payoff2.2", "payoff3.1", "payoff3.2"),
names.agent = c("bank1a","bank1b","bank2.1","bank2.2", "consumer"),
numeraire = "payoff1"

)

ge$p
round(ge$D, 4)
round(ge$S, 4)

the general equilibrium in the first natural state in period 2
dst.bank2.1 <- node_new(

"payoff3.1",
type = "Leontief", a = 1,
"payoff2.1"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"payoff2.1", "payoff3.1"

)

ge2.1 <- sdm2(
A = list(dst.bank2.1,

142 gemIntertemporalStochastic_Bank_TwoPeriods

dst.consumer),
B = matrix(c(
0, 0,
1.1, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, 1.3084,
NA, 0.4599

), 2, 2, TRUE),
names.commodity = c("payoff2.1", "payoff3.1"),
names.agent = c("bank2.1", "consumer"),
numeraire = "payoff2.1"

)

ge2.1$p
round(ge2.1$D, 4)
round(ge2.1$S, 4)

the general equilibrium in an unanticipated natural state in period 2
ge2.3 <- sdm2(

A = list(dst.bank2.1,
dst.consumer),

B = matrix(c(
0, 0,
1.1, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, 0.4,
NA, 0.4599

), 2, 2, TRUE),
names.commodity = c("payoff2.1", "payoff3.1"),
names.agent = c("bank2.1", "consumer"),
numeraire = "payoff2.1"

)

ge2.3$p
round(ge2.3$D, 4)
round(ge2.3$S, 4)

gemIntertemporalStochastic_Bank_TwoPeriods

An Intertemporal Stochastic Model with a Consumer and a Bank

Description

An intertemporal stochastic model with a consumer and a bank. In this model the consumer will
live for two periods. There is one natural state in the first period, and two natural states in the second
period.

gemIntertemporalStochastic_Bank_TwoPeriods 143

The consumer has an intertemporal stochastic utility function of the Cobb-Douglas (CD) type,
x
1/2
1 x

1/6
2 x

1/3
3 , where x1, x2, and x3 represent the payoffs in three different states of nature, re-

spectively. The ratio of the share coefficients for the two future states of nature is equal to the ratio
of their corresponding probabilities. The share coefficient for the present is the same as that for the
future.

Usage

gemIntertemporalStochastic_Bank_TwoPeriods(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

(A) A savings bank.
Ra <- 1.2 # the interest rate coefficient in the first natural state in the future
Rb <- 1.1 # the interest rate coefficient in the second natural state in the future

When the savings bank invests one unit of payoff 1, it can
produce Ra units of payoff 2 and Rb units of payoff 3.
dst.bank <- node_new(

"output",
type = "Leontief", a = 1,
"payoff1"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 2, 1 / 6, 1 / 3),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.bank, dst.consumer),
B = matrix(c(

0, 0,
Ra, 0,
Rb, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, 1,
NA, 0,
NA, 2

), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank", "consumer"),
numeraire = "payoff1",

)

ge$p

144 gemIntertemporalStochastic_Bank_TwoPeriods

unname(Ra * ge$p[2] + Rb * ge$p[3])
The amount of savings in equilibrium is 0.2995.
addmargins(ge$D, 2)
addmargins(ge$S, 2)

Solve with the optimization method and Rsolnp package.
library(Rsolnp)
Ra <- 1.2
Rb <- 1.1
payoff <- c(1, 0, 2)
The loss function is used to calculate the loss (i.e.,
the negative utility) for a given amount of savings.
loss <- function(savings) {
utility <- prod(c(payoff[1] - savings, payoff[2] +
Ra * savings, payoff[3] + Rb * savings)^wt)
return(-utility)
}
#
result <- solnp(0.5, loss, LB = 0, UB = 1)
result$pars
#
x <- rbind(payoff[1] - result$pars, payoff[2] + Ra * result$pars, payoff[3] + Rb * result$pars)
mu <- marginal_utility(x, diag(3), uf = function(x) prod(x^wt))
mu / mu[1]

(B) A lending bank.
Ra <- 1.2
Rb <- 1.1

To produce one unit of payoff 1, the lending bank needs
to invest Ra units of payoff 2 and Rb units of payoff 3.
dst.bank <- node_new(

"payoff1",
type = "Leontief", a = c(Ra, Rb),
"payoff2", "payoff3"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 2, 1 / 6, 1 / 3),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.bank, dst.consumer),
B = matrix(c(
1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, 0,
NA, 1,

gemIntertemporalStochastic_ThreePeriods_2_2 145

NA, 2
), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank", "consumer"),
numeraire = "payoff1"

)

ge$p
unname(Ra * ge$p[2] + Rb * ge$p[3])
addmargins(ge$D, 2)
In equilibrium, the bank lends out 0.5645 units of payoff in period 1.
addmargins(ge$S, 2)

Solve with the optimization method and Rsolnp package.
library(Rsolnp)
Ra <- 1.2
Rb <- 1.1
payoff <- c(0, 1, 2)
loss <- function(savings) {
utility <- prod(c(payoff[1] - savings, payoff[2] +
Ra * savings, payoff[3] + Rb * savings)^wt)
return(-utility)
}
#
result <- solnp(-0.5, loss, LB = -2, UB = 0)
result$pars
#
x <- rbind(payoff[1] - result$pars, payoff[2] + Ra * result$pars, payoff[3] + Rb * result$pars)
mu <- marginal_utility(x, diag(3), uf = function(x) prod(x^wt))
mu / mu[1]

gemIntertemporalStochastic_ThreePeriods_2_2

A Three-Period Intertemporal Stochastic Equilibrium Model with a
Consumer and a Type of Firm

Description

An intertemporal stochastic equilibrium model of three periods with a consumer and a type of firm.
The consumer will live for three periods and has a von Neumann-Morgenstern expected utility
function. There is one natural state in the first period, two natural states in the second period and
two natural states in the third period.

Usage

gemIntertemporalStochastic_ThreePeriods_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

146 gemIntertemporalStochastic_ThreePeriods_2_2

Examples

dst.firm1 <- node_new(
"prod2",
type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"lab1", "prod1"

)

dst.firm2.1 <- node_new(
"prod3.1",
type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"prod2.1", "lab2.1"

)

dst.firm2.2 <- node_new(
"prod3.2",
type = "CD", alpha = 1,
beta = c(0.4, 0.6),
"prod2.2", "lab2.2"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 5, 5),
"prod1", "prod2.1", "prod2.2",
"prod3.1", "prod3.2"

)

ge <- sdm2(
A = c(
dst.firm1, dst.firm2.1, dst.firm2.2,
dst.consumer

),
B = matrix(c(

0, 0, 0, 0,
1, 0, 0, 0,
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 8, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, 50,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, 100,

gemIntertemporalStochastic_TwoPeriods 147

NA, NA, NA, 100,
NA, NA, NA, 100

), 8, 4, TRUE),
names.commodity = c(

"prod1", "prod2.1", "prod2.2",
"prod3.1", "prod3.2",
"lab1", "lab2.1", "lab2.2"

),
names.agent = c(

"firm1", "firm2.1", "firm2.2",
"consumer"

),
numeraire = "lab1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporalStochastic_TwoPeriods

Some Examples of a Two-Period Intertemporal Stochastic Equilibrium
Model

Description

Some examples of a two-period intertemporal equilibrium model with two types of commodities
(i.e. product and labor) and one firm. In the second period there are two states of nature, in which
the firm has different productivity.

Usage

gemIntertemporalStochastic_TwoPeriods(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an examples with a consumer and a firm.
alpha1 <- 1
alpha2 <- 2

148 gemIntertemporalStochastic_TwoPeriods

supply.lab <- 100
supply.prod1 <- 30

dst.firm <- node_new(
"prod2",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod1", "lab1"

)

dst.consumer <- node_new(
"util",
type = "CD",
alpha = 1, beta = c(0.5, 0.25, 0.25),
"prod1", "prod2.1", "prod2.2"

)

ge <- sdm2(
A = c(dst.firm, dst.consumer),
B = matrix(c(
0, 0,
0, 0,
alpha1, 0,
alpha2, 0

), 4, 2, TRUE),
S0Exg = matrix(c(

NA, supply.prod1,
NA, supply.lab,
NA, NA,
NA, NA

), 4, 2, TRUE),
names.commodity = c("prod1", "lab1", "prod2.1", "prod2.2"),
names.agent = c("firm", "consumer"),
numeraire = "prod1"

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

an examples with two types of consumer and a firm.
dst.firm <- node_new(

"prod2",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod1", "lab1"

)

dst.consumer1 <- node_new(
"util",

gemIntertemporal_1_2 149

type = "CD",
alpha = 1, beta = c(0.5, 0.4, 0.1),
"prod1", "prod2.1", "prod2.2"

)

dst.consumer2 <- node_new(
"util",
type = "CD",
alpha = 1, beta = c(0.5, 0.25, 0.25),
"prod1", "prod2.1", "prod2.2"

)

ge <- sdm2(
A = c(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(

0, 0, 0,
0, 0, 0,
1, 0, 0,
2, 0, 0

), 4, 3, TRUE),
S0Exg = matrix(c(

NA, 30, 30,
NA, 100, 100,
NA, NA, NA,
NA, NA, NA

), 4, 3, TRUE),
names.commodity = c("prod1", "lab1", "prod2.1", "prod2.2"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "prod1"

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporal_1_2 An Example of a 1-by-2 Intertemporal Equilibrium Model

Description

An example of an intertemporal equilibrium model with one type of commodity (i.e., product) and
two types of agents (i.e., a firm with an AK production function and a consumer).

Usage

gemIntertemporal_1_2(...)

150 gemIntertemporal_1_2

Arguments

... arguments to be passed to the function sdm2.

Examples

eis <- 0.5 # the elasticity of intertemporal substitution of the consumer
Gamma.beta <- 0.97 # the subjective discount factor of the consumer
alphaK <- 1.1 # the parameter of the AK production function

np <- 5 # the number of economic periods

n <- np # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- paste0("prod", 1:np)
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("prod", 1:np), "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "Leontief",
a = 1 / alphaK,
paste0("prod", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1"

)

gemIntertemporal_2_2 151

ge$p
ge$z
ge$D
ge$S
growth_rate(ge$D[, m])
(Gamma.beta * alphaK)^eis - 1

gemIntertemporal_2_2 Some Examples of a 2-by-2 Intertemporal Equilibrium Model

Description

Some examples of an intertemporal equilibrium model with two types of commodities and two
types of agents.

In these examples, there is an np-period-lived consumer maximizing intertemporal utility, and there
is a type of firm which produces from period 1 to np-1. There are two types of commodities, i.e.
product and labor. Assume the consumer has some product in the first period. That is, the product
supply in the first period is an exogenous variable.

Usage

gemIntertemporal_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with a Cobb-Douglas intertemporal utility function
np <- 5 # the number of economic periods
y1 <- 150 # the initial product supply

n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["prod1", "consumer"] <- y1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

152 gemIntertemporal_2_2

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer.CD <- node_new(
"util",
type = "CD",
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

f <- function(dstl) {
sdm2(

A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE

)
}

ge <- f(c(dstl.firm, dst.consumer.CD))

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

an example with a Leontief intertemporal utility function
dst.consumer.Leontief <- node_new(

"util",
type = "Leontief",
a = rep(1, np),
paste0("prod", 1:np)

)

ge2 <- f(c(dstl.firm, dst.consumer.Leontief))

ge2$p
ge2$z

gemIntertemporal_3_3 153

ge2$D
ge2$S
ge2$DV
ge2$SV

Assume that the consumer has a CES (i.e. CRRA) intertemporal utility function.
eis is the elasticity of intertemporal substitution.
Gamma.beta is the subjective discount factor.
f2 <- function(eis = 1, Gamma.beta = 1, head.tail.adjustment = "none") {

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE,
policy = makePolicyHeadTailAdjustment(head.tail.adjustment, np = np)

)

list(
p = ge$p, z = ge$z,
D = addmargins(ge$D, 2), S = addmargins(ge$S, 2),
DV = addmargins(ge$DV), SV = addmargins(ge$SV)

)
}

f2(Gamma.beta = 0.9)
f2(Gamma.beta = 0.9, head.tail.adjustment = "both") # the steady state in the worldsheet
f2(Gamma.beta = 1.25, head.tail.adjustment = "both") # the steady state in the worldsheet
f2(eis = 2, Gamma.beta = 0.9)

gemIntertemporal_3_3 Some Examples of Intertemporal Models with One Consumer and Two
Types of Firms

Description

Some examples of intertemporal models with one consumer and two types of firms. There are three
types of commodities (i.e. corn, iron and labor). The consumer may consume corn and iron in each
period, and may have a nested intertemporal utility function.

154 gemIntertemporal_3_3

Usage

gemIntertemporal_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

References

Zen Xiangjin (1995, ISBN: 7030046560). Basics of Economic Cybernetics. Beijing: Science Press.
(In Chinese)

Examples

an example with a nested intertemporal utility function
np <- 5 # the number of economic periods

n <- 3 * np - 1 # the number of commodity kinds
m <- 2 * (np - 1) + 1 # the number of agent kinds

names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1))

)
names.agent <- c(

paste0("firm.corn", 1:(np - 1)),
paste0("firm.iron", 1:(np - 1)),
"consumer"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["corn1", "consumer"] <- 25
S0Exg["iron1", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("corn", k + 1), paste0("firm.corn", k)] <-
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1

}

dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {

dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)

gemIntertemporal_3_3 155

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = prop.table(rep(1, np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(
dst.consumer,
paste0("cc", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("corn", k), paste0("iron", k)

)
}

ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

an example with a non-nested intertemporal utility function
np <- 3 # the number of economic periods

There are np types of corn, np-1 types of iron and np-1 types of labor.
There are np-1 corn firms, np-2 iron firms and one consumer.
n <- 3 * np - 2
m <- 2 * np - 2

names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:(np - 1)),
paste0("lab", 1:(np - 1))

)
names.agent <- c(

156 gemIntertemporal_3_3

paste0("firm.corn", 1:(np - 1)),
paste0("firm.iron", 1:(np - 2)),
"consumer"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["corn1", "consumer"] <- 25
S0Exg["iron1", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("corn", k + 1), paste0("firm.corn", k)] <- 1
}
for (k in 1:(np - 2)) {

B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1
}

dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {

dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

for (k in seq_along(np:(2 * np - 3))) {
dstl.firm.iron[[k]] <- node_new(

"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("corn", 1:np)

)

ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

gemIntertemporal_3_3 157

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

an example of Zeng (1995, page 227)
ic1 <- 1 / 10 # input coefficient
ic2 <- 1 / 7
dc1 <- 2 / 3 # depreciation coefficient
dc2 <- 9 / 10

ge <- sdm2(
A = {
corn, iron1, iron2, iron3, iron4
a1.1 <- c(0, ic1, 0, 0, 0)
a1.2 <- c(0, ic2, 0, 0, 0)
a2.1 <- c(0, 0, ic1, 0, 0)
a2.2 <- c(0, 0, ic2, 0, 0)
a3.1 <- c(0, 0, 0, ic1, 0)
a3.2 <- c(0, 0, 0, ic2, 0)
a4.1 <- c(0, 0, 0, 0, ic1)
a4.2 <- c(0, 0, 0, 0, ic2)

a.consumer <- c(1, 0, 0, 0, 0)

cbind(a1.1, a1.2, a2.1, a2.2, a3.1, a3.2, a4.1, a4.2, a.consumer)
},
B = {

b1.1 <- c(1, 0, ic1 * dc1, 0, 0)
b1.2 <- c(1, 0, ic2 * dc2, 0, 0)
b2.1 <- c(1, 0, 0, ic1 * dc1, 0)
b2.2 <- c(1, 0, 0, ic2 * dc2, 0)
b3.1 <- c(1, 0, 0, 0, ic1 * dc1)
b3.2 <- c(1, 0, 0, 0, ic2 * dc2)
b4.1 <- c(1, 0, 0, 0, 0)
b4.2 <- c(1, 0, 0, 0, 0)
b.consumer <- c(0, 0, 0, 0, 0)

cbind(b1.1, b1.2, b2.1, b2.2, b3.1, b3.2, b4.1, b4.2, b.consumer)
},
S0Exg = {

tmp <- matrix(NA, 5, 9)
tmp[2, 9] <- 100
tmp

},
names.commodity = c("corn", paste0("iron", 1:4)),
names.agent = c(paste0("firm", 1:8), "consumer"),
numeraire = "corn",
policy = makePolicyMeanValue(30),
priceAdjustmentVelocity = 0.05,
maxIteration = 1,

158 gemIntertemporal_3_4

numberOfPeriods = 1000,
ts = TRUE

)

matplot(ge$ts.z, type = "l")

ge$p
ge$z
ge$D
ge$S

gemIntertemporal_3_4 An Intertemporal Model with Two Consumers and Two Types of Firms

Description

An intertemporal (timeline) model with two consumers and two types of firms.

Usage

gemIntertemporal_3_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with Cobb-Douglas production functions and intertemporal utility functions.
np <- 5 # the number of economic periods

n <- 3 * np - 1 # the number of commodity kinds
m <- 2 * (np - 1) + 2 # the number of agent kinds

names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1))

)
names.agent <- c(

paste0("firm.corn", 1:(np - 1)),
paste0("firm.iron", 1:(np - 1)),
"consumer1", "consumer2"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), c("consumer1", "consumer2")] <- 100
S0Exg["corn1", c("consumer1", "consumer2")] <- 25

gemIntertemporal_3_4 159

S0Exg["iron1", c("consumer1", "consumer2")] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("corn", k + 1), paste0("firm.corn", k)] <-
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1

}

dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {

dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

dst.consumer1 <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("corn", 1:np)

)

dst.consumer2 <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(
dst.consumer2,
paste0("cc", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("corn", k), paste0("iron", k)

)
}

ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer1, dst.consumer2),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

160 gemIntertemporal_4_4

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporal_4_4 An Intertemporal Model with Land, Two Consumers and Two Types of
Firms

Description

An (intertemporal) timeline model with two consumers (i.e. a laborer and a landowner) and two
types of firms (i.e. wheat producers and iron producers). There are four commodities in the model,
namely wheat, iron, labor and land.

Usage

gemIntertemporal_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

np <- 15 # the number of economic periods
alpha.firm.wheat <- rep(5, np - 1)
alpha.firm.iron <- rep(5, np - 1)

Gamma.beta <- 0.97 # 1, 1.03 # the subjective discount factor of consumers
eis <- 0.5 # the elasticity of intertemporal substitution of consumers
y1.wheat <- 100 # 126, 129.96
y1.iron <- 30 # 40.59, 43.47

gr <- 0 # the growth rate in the steady state equilibrium

last.beta.laborer <- 0
last.beta.landowner <- 0

names.commodity <- c(
paste0("wheat", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1)),
paste0("land", 1:(np - 1))

)

gemIntertemporal_4_4 161

names.agent <- c(
paste0("firm", 1:(np - 1), ".wheat"), paste0("firm", 1:(np - 1), ".iron"),
"laborer", "landowner"

)

f <- function(policy = NULL) {
n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg["wheat1", "laborer"] <- y1.wheat
S0Exg["iron1", "landowner"] <- y1.iron
S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 * (1 + gr)^(0:(np - 2)) # the supply of labor
S0Exg[paste0("land", 1:(np - 1)), "landowner"] <- 100 * (1 + gr)^(0:(np - 2)) # the supply of land

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("wheat", k + 1), paste0("firm", k, ".wheat")] <- 1
B[paste0("iron", k + 1), paste0("firm", k, ".iron")] <- 1

}

dstl.firm.wheat <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {

dstl.firm.wheat[[k]] <- node_new(
"prod",
type = "CES", es = 0.8,
alpha = alpha.firm.wheat[k], beta = c(0.2, 0.4, 0.4),
paste0("iron", k), paste0("lab", k), paste0("land", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CES", es = 0.8,
alpha = alpha.firm.iron[k], beta = c(0.4, 0.4, 0.2),
paste0("iron", k), paste0("lab", k), paste0("land", k)

)
}

tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.laborer)
dst.laborer <- node_new(

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("wheat", np)

)
for (k in 1:(np - 1)) {

node_set(dst.laborer, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),

162 gemIntertemporal_4_4

paste0("wheat", k), paste0("lab", k), paste0("land", k)
)

}

tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.landowner)
dst.landowner <- node_new(

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("iron", np)

)
for (k in 1:(np - 1)) {

node_set(dst.landowner, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),
paste0("wheat", k), paste0("lab", k), paste0("land", k)

)
}
ge <- sdm2(

A = c(dstl.firm.wheat, dstl.firm.iron, Clone(dst.laborer), Clone(dst.landowner)),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
policy = policy,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000,
priceAdjustmentVelocity = 0.05

)

plot(ge$z[1:(np - 1)],
type = "o", pch = 20, ylab = "production level",
xlab = "time", ylim = range(ge$z[1:(2 * np - 2)])

)
lines(ge$z[np:(2 * np - 2)], type = "o", pch = 21)
legend("bottom", c("wheat", "iron"), pch = 20:21)

invisible(ge)
}

ge <- f()
plot(2:(np - 1), ge$z[1:(np - 2)],

type = "o", pch = 20, ylab = "production output",
xlab = "time", ylim = range(ge$z[1:(2 * np - 2)])

)
lines(2:(np - 1), ge$z[np:(2 * np - 3)], type = "o", pch = 21)
legend("bottom", c("wheat", "iron"), pch = 20:21)

Compute the steady-state equilibrium based on head and tail adjustments.

gemIntertemporal_4_4 163

policyHeadAdjustment <- makePolicyHeadAdjustment(
ind = rbind(
c(

which(names.commodity == "wheat1"), which(names.agent == "laborer"),
which(names.commodity == "wheat2"), which(names.agent == "firm1.wheat")

),
c(

which(names.commodity == "iron1"), which(names.agent == "landowner"),
which(names.commodity == "iron2"), which(names.agent == "firm1.iron")

)
),
gr = gr

)
policyTailAdjustment <- makePolicyTailAdjustment(

ind = rbind(
c(which(names.agent == paste0("firm", np - 1, ".wheat")), which(names.agent == "laborer")),
c(which(names.agent == paste0("firm", np - 1, ".iron")), which(names.agent == "landowner"))
),
gr = gr

)

f(list(policyHeadAdjustment, policyTailAdjustment))$z

the corresponding sequential model with the same steady-state equilibrium.
dividend.rate <- sserr(eis, Gamma.beta, prepaid = TRUE)

dst.firm.wheat <- node_new("prod",
type = "FIN", rate = c(1, dividend.rate),
"cc1", "equity.share.wheat"

)
node_set(dst.firm.wheat, "cc1",

type = "CES", es = 0.8,
alpha = 5, beta = c(0.2, 0.4, 0.4),
"iron", "lab", "land"

)

dst.firm.iron <- node_new("prod",
type = "FIN", rate = c(1, dividend.rate),
"cc1", "equity.share.iron"

)
node_set(dst.firm.iron, "cc1",

type = "CES", es = 0.8,
alpha = 5, beta = c(0.4, 0.4, 0.2),
"iron", "lab", "land"

)

dst.laborer <- node_new("util",
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),
"wheat", "lab", "land"

)

dst.landowner <- node_new("util",

164 gemIntertemporal_4_4

type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),
"wheat", "lab", "land"

)

ge <- sdm2(
A = list(dst.firm.wheat, dst.firm.iron, dst.laborer, dst.landowner),
B = matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 6, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 100, NA,
NA, NA, NA, 100,
NA, NA, 100, NA,
NA, NA, NA, 100

), 6, 4, TRUE),
names.commodity = c(

"wheat", "iron", "lab", "land",
"equity.share.wheat", "equity.share.iron"

),
names.agent = c("firm.wheat", "firm.iron", "laborer", "landowner"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

f(policyTailAdjustment)

an anticipated technological shock
np <- 50 # the number of economic periods
alpha.firm.wheat <- rep(5, np - 1)
alpha.firm.iron <- rep(5, np - 1)
alpha.firm.iron[25] <- 10
names.commodity <- c(
paste0("wheat", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1)),
paste0("land", 1:(np - 1))
)
names.agent <- c(
paste0("firm", 1:(np - 1), ".wheat"), paste0("firm", 1:(np - 1), ".iron"),
"laborer", "landowner"
)

gemIntertemporal_4_4 165

#
ge <- f()
plot(2:(np - 1), ge$z[1:(np - 2)],
type = "o", pch = 20, ylab = "production output",
xlab = "time", ylim = range(ge$z[1:(2 * np - 2)])
)
lines(2:(np - 1), ge$z[np:(2 * np - 3)], type = "o", pch = 21)
legend("bottom", c("wheat", "iron"), pch = 20:21)
grid()

a structural transformation path
np <- 50
tax.rate <- 0.1 # the tax rate imposed on income from land and labor income.
tax.time <- 1 # tax.time <- 20
#
alpha.firm.wheat <- rep(5, np - 1)
Suppose the tax rate is high enough so that the iron
producer's efficiency coefficient immediately rises to 10.
alpha.firm.iron <- c()
for (k in 1:(np - 1)) {
alpha.firm.iron[k] <- ifelse(k <= tax.time, 5, 10)
}
#
Gamma.beta <- 0.97 # 1, 1.03 # the subjective discount factor of consumers
eis <- 0.5 # the elasticity of intertemporal substitution of consumers
y1.wheat <- 100
y1.iron <- 30
last.beta.laborer <- 0
last.beta.landowner <- 0
#
names.commodity <- c(
paste0("wheat", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1)),
paste0("land", 1:(np - 1))
)
names.agent <- c(
paste0("firm", 1:(np - 1), ".wheat"), paste0("firm", 1:(np - 1), ".iron"),
"laborer", "landowner"
)
#
n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds
#
the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg["wheat1", "laborer"] <- y1.wheat
S0Exg["iron1", "landowner"] <- y1.iron
S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 # the supply of labor
S0Exg[paste0("land", 1:(np - 1)), "landowner"] <- 100 # the supply of land
#
S0Exg[paste0("lab", tax.time), paste0("firm", tax.time, ".iron")] <-
S0Exg[paste0("lab", tax.time), "laborer"] * tax.rate

166 gemIntertemporal_4_4

S0Exg[paste0("land", tax.time), paste0("firm", tax.time, ".iron")] <-
S0Exg[paste0("land", tax.time), "landowner"] * tax.rate
#
S0Exg[paste0("lab", tax.time), "laborer"] <-
S0Exg[paste0("lab", tax.time), "laborer"] * (1 - tax.rate)
S0Exg[paste0("land", tax.time), "landowner"] <-
S0Exg[paste0("land", tax.time), "landowner"] * (1 - tax.rate)
#
the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("wheat", k + 1), paste0("firm", k, ".wheat")] <- 1
B[paste0("iron", k + 1), paste0("firm", k, ".iron")] <- 1
}
#
dstl.firm.wheat <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {
dstl.firm.wheat[[k]] <- node_new(
"prod",
type = "CES", es = 0.8,
alpha = alpha.firm.wheat[k], beta = c(0.2, 0.4, 0.4),
paste0("iron", k), paste0("lab", k), paste0("land", k)
)
#
dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CES", es = 0.8,
alpha = alpha.firm.iron[k], beta = c(0.4, 0.4, 0.2),
paste0("iron", k), paste0("lab", k), paste0("land", k)
)
}
#
tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.laborer)
dst.laborer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("wheat", np)
)
for (k in 1:(np - 1)) {
node_set(dst.laborer, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),
paste0("wheat", k), paste0("lab", k), paste0("land", k)
)
}
#
tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.landowner)
dst.landowner <- node_new(

gemIntertemporal_5_5 167

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("iron", np)
)
for (k in 1:(np - 1)) {
node_set(dst.landowner, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),
paste0("wheat", k), paste0("lab", k), paste0("land", k)
)
}
ge <- sdm2(
A = c(dstl.firm.wheat, dstl.firm.iron, Clone(dst.laborer), Clone(dst.landowner)),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000,
priceAdjustmentVelocity = 0.05
)
#
plot(2:(np - 1), ge$z[1:(np - 2)],
type = "o", pch = 20, ylab = "production output",
xlab = "time", ylim = range(ge$z[1:(2 * np - 2)])
)
lines(2:(np - 1), ge$z[np:(2 * np - 3)], type = "o", pch = 21)
legend("bottom", c("wheat", "iron"), pch = 20:21)

gemIntertemporal_5_5 Some Intertemporal (Timeline and Time-circle) Models with Land,
Two Consumers, and Three Types of Firms

Description

Some intertemporal (timeline and time-circle) models with two consumers (i.e. a laborer and a
landowner) and three types of firms (i.e. wheat producers, iron producers and iron leaser). Here the
iron leasing firm is actually a quasi-firm, which does not require primary factors such as labor and
land in its production process. There are four commodities in the model, namely wheat, iron, iron
leased out as a capital good, labor and land.

Usage

gemIntertemporal_5_5(...)

168 gemIntertemporal_5_5

Arguments

... arguments to be passed to the function sdm2.

Examples

a timeline model.
np <- 15 # the number of economic periods
gr <- 0 # the growth rate in the steady state equilibrium
eis <- 1 # the elasticity of intertemporal substitution of consumers
Gamma.beta <- 0.97 # the subjective discount factor of consumers
last.beta.laborer <- 0
last.beta.landowner <- 0
depreciation.rate <- 0.06

alpha.firm.wheat <- rep(5, np - 1)
alpha.firm.iron <- rep(5, np - 1)

y1.wheat <- 200
y1.iron <- 100

names.commodity <- c(
paste0("wheat", 1:np),
paste0("iron", 1:np),
paste0("cap", 1:(np - 1)),
paste0("lab", 1:(np - 1)),
paste0("land", 1:(np - 1))

)
names.agent <- c(

paste0("firm.wheat", 1:(np - 1)), paste0("firm.iron", 1:(np - 1)),
paste0("quasifirm.cap", 1:(np - 1)), # a quasifirm
"laborer", "landowner"

)

n <- length(names.commodity) # the number of commodity kinds, i.e. 5 * np - 3
m <- length(names.agent) # the number of agent kinds, i.e. 3 * np - 1

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg["wheat1", "laborer"] <- y1.wheat
S0Exg["iron1", "landowner"] <- y1.iron
S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 * (1 + gr)^(0:(np - 2)) # the supply of labor
S0Exg[paste0("land", 1:(np - 1)), "landowner"] <- 100 * (1 + gr)^(0:(np - 2)) # the supply of land

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("wheat", k + 1), paste0("firm.wheat", k)] <- 1
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1
B[paste0("cap", k), paste0("quasifirm.cap", k)] <- 1
B[paste0("iron", k + 1), paste0("quasifirm.cap", k)] <- 1 - depreciation.rate

}

gemIntertemporal_5_5 169

dstl.firm.wheat <- dstl.firm.iron <- dstl.quasifirm.cap <- list()
for (k in 1:(np - 1)) {

dstl.firm.wheat[[k]] <- node_new(
"prod",
type = "CES", es = 1,
alpha = alpha.firm.wheat[k], beta = c(0.2, 0.4, 0.4),
paste0("cap", k), paste0("lab", k), paste0("land", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CES", es = 1,
alpha = alpha.firm.iron[k], beta = c(0.4, 0.4, 0.2),
paste0("cap", k), paste0("lab", k), paste0("land", k)

)

dstl.quasifirm.cap[[k]] <- node_new(
"output",
type = "Leontief", a = 1,
paste0("iron", k)

)
}

tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.laborer)
dst.laborer <- node_new(

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("wheat", np)

)
for (k in 1:(np - 1)) {

node_set(dst.laborer, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),
paste0("wheat", k), paste0("lab", k), paste0("land", k)

)
}

tmp.beta <- Gamma.beta^(1:(np - 1))
tmp.beta <- tmp.beta / tmp.beta[np - 1]
tmp.beta <- c(tmp.beta, last.beta.landowner)
dst.landowner <- node_new(

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(tmp.beta),
paste0("cc", 1:(np - 1)), paste0("iron", np)

)
for (k in 1:(np - 1)) {

node_set(dst.landowner, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),

170 gemIntertemporal_5_5

paste0("wheat", k), paste0("lab", k), paste0("land", k)
)

}

ge <- sdm2(
A = c(

dstl.firm.wheat, dstl.firm.iron, dstl.quasifirm.cap,
dst.laborer, dst.landowner

),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
policy = makePolicyMeanValue(50),
ts = TRUE,
priceAdjustmentVelocity = 0.03

)

ge$p
ge$z
plot(ge$z[2 * (np - 1) + (1:(np - 1))], type = "b", pch = 20)
lines(1:(np - 1), ge$z[1:(np - 1)], type = "b", pch = 21)
lines(1:(np - 1), ge$z[np - 1 + (1:(np - 1))], type = "b", pch = 22)
legend("topleft", c("cap","wheat", "iron"), pch = 20:22)

a time-circle model.
np <- 5 # the number of economic periods
gr <- 0.03 # the growth rate in the steady state equilibrium
eis <- 0.5 # the elasticity of intertemporal substitution of consumers
Gamma.beta <- 0.97 # the subjective discount factor of consumers
es.firm <- 1
depreciation.rate <- 0.06
zeta <- (1 + gr)^np # the ratio of repayments to loans
yield.rate <- sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr, prepaid = TRUE)
captial.share.laborer <- 0.7795
captial.share.landowner <- 1 - captial.share.laborer

alpha.firm.wheat <- rep(5, np)
alpha.firm.iron <- rep(5, np)

names.commodity <- c(
paste0("wheat", 1:np),
paste0("iron", 1:np),
paste0("cap", 1:np),
paste0("lab", 1:np),
paste0("land", 1:np),
"claim"

)
names.agent <- c(

paste0("firm.wheat", 1:np), paste0("firm.iron", 1:np),
paste0("quasifirm.cap", 1:np), # a quasifirm
"laborer", "landowner"

gemIntertemporal_5_5 171

)
n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "laborer"] <- 100 * (1 + gr)^(0:(np - 1)) # the supply of labor
S0Exg[paste0("land", 1:np), "landowner"] <- 100 * (1 + gr)^(0:(np - 1)) # the supply of land
S0Exg["claim", "laborer"] <- 100 * captial.share.laborer
S0Exg["claim", "landowner"] <- 100 * captial.share.landowner

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("wheat", k + 1), paste0("firm.wheat", k)] <- 1
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1
B[paste0("cap", k), paste0("quasifirm.cap", k)] <- 1
B[paste0("iron", k + 1), paste0("quasifirm.cap", k)] <- 1 - depreciation.rate

}
B[paste0("wheat", 1), paste0("firm.wheat", np)] <- 1 / zeta
B[paste0("iron", 1), paste0("firm.iron", np)] <- 1 / zeta
B[paste0("cap", np), paste0("quasifirm.cap", np)] <- 1
B[paste0("iron", 1), paste0("quasifirm.cap", np)] <- (1 - depreciation.rate) / zeta

dstl.firm.wheat <- dstl.firm.iron <- dstl.quasifirm.cap <- list()
for (k in 1:(np - 1)) {

dstl.firm.wheat[[k]] <- node_new(
"prod",
type = "CES", es = es.firm,
alpha = alpha.firm.wheat[k], beta = c(0.2, 0.4, 0.4),
paste0("cap", k), paste0("lab", k), paste0("land", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CES", es = es.firm,
alpha = alpha.firm.iron[k], beta = c(0.4, 0.4, 0.2),
paste0("cap", k), paste0("lab", k), paste0("land", k)

)

dstl.quasifirm.cap[[k]] <- node_new(
"output",
type = "Leontief", a = 1,
paste0("iron", k)

)
}

dstl.firm.wheat[[np]] <- node_new(
"prod",
type = "FIN", rate = c(1, (1 + yield.rate)^np - 1),
"cc1", "claim"

)
node_set(dstl.firm.wheat[[np]], "cc1",

172 gemIntertemporal_5_5

type = "CES", es = es.firm,
alpha = alpha.firm.wheat[k], beta = c(0.2, 0.4, 0.4),
paste0("cap", np), paste0("lab", np), paste0("land", np)

)

dstl.firm.iron[[np]] <- node_new(
"prod",
type = "FIN", rate = c(1, (1 + yield.rate)^np - 1),
"cc1", "claim"

)
node_set(dstl.firm.iron[[np]], "cc1",

type = "CES", es = es.firm,
alpha = alpha.firm.wheat[k], beta = c(0.4, 0.4, 0.2),
paste0("cap", np), paste0("lab", np), paste0("land", np)

)

return.rate <- sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr)
fund.occupancy.rate <- (1 - depreciation.rate) / (1 + return.rate)
The prepaid rent rate (i.e. the prepaid-rent-to-price ratio) of
the capital good is equal to 1 minus fund.occupancy.rate.

dstl.quasifirm.cap[[np]] <- node_new(
"prod",
type = "FIN", rate = c(1, ((1 + yield.rate)^np - 1) * fund.occupancy.rate),
"cc1", "claim"

)
node_set(dstl.quasifirm.cap[[np]], "cc1",

type = "Leontief", a = 1,
paste0("iron", np)

)

dst.laborer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(dst.laborer, paste0("cc", k),
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),
paste0("wheat", k), paste0("lab", k), paste0("land", k)

)
}

dst.landowner <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(dst.landowner, paste0("cc", k),

gemIntertemporal_5_5 173

type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),
paste0("wheat", k), paste0("lab", k), paste0("land", k)

)
}

ge.tc <- sdm2(
A = c(
dstl.firm.wheat, dstl.firm.iron, dstl.quasifirm.cap,
dst.laborer, dst.landowner

),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
numberOfPeriods = 1000,
priceAdjustmentVelocity = 0.03

)

ge.tc$p
growth_rate(ge.tc$p)
ge.tc$z
growth_rate(ge.tc$z)

the corresponding sequential model with the same steady-state equilibrium.
dst.firm.wheat <- node_new("prod",

type = "FIN", rate = c(1, yield.rate),
"cc1", "equity.share.wheat"

)
node_set(dst.firm.wheat, "cc1",

type = "CES", es = es.firm,
alpha = 5, beta = c(0.2, 0.4, 0.4),
"cap", "lab", "land"

)

dst.firm.iron <- node_new("prod",
type = "FIN", rate = c(1, yield.rate),
"cc1", "equity.share.iron"

)
node_set(dst.firm.iron, "cc1",

type = "CES", es = es.firm,
alpha = 5, beta = c(0.4, 0.4, 0.2),
"cap", "lab", "land"

)

dst.quasifirm.cap <- node_new("prod",
type = "FIN", rate = c(1, yield.rate * fund.occupancy.rate),
"cc1", "equity.share.cap"

)
node_set(dst.quasifirm.cap, "cc1",

type = "Leontief", a = 1,
"iron"

174 gemIntertemporal_5_5

)

dst.laborer <- node_new("util",
type = "CES", es = 1,
alpha = 1, beta = c(0.4, 0.4, 0.2),
"wheat", "lab", "land"

)

dst.landowner <- node_new("util",
type = "CES", es = 1,
alpha = 1, beta = c(0.2, 0.4, 0.4),
"wheat", "lab", "land"

)

ge.seq <- sdm2(
A = list(
dst.firm.wheat, dst.firm.iron, dst.quasifirm.cap,
dst.laborer, dst.landowner

),
B = matrix(c(

1, 0, 0, 0, 0,
0, 1, 1 - depreciation.rate, 0, 0,
0, 0, 1 + gr, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 8, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, 100, NA,
NA, NA, NA, NA, 100,
NA, NA, NA, 100 * captial.share.laborer, 100 * captial.share.landowner,
NA, NA, NA, 100 * captial.share.laborer, 100 * captial.share.landowner,
NA, NA, NA, 100 * captial.share.laborer, 100 * captial.share.landowner

), 8, 5, TRUE),
names.commodity = c(

"wheat", "iron", "cap", "lab", "land",
"equity.share.wheat", "equity.share.iron", "equity.share.cap"

),
names.agent = c("firm.wheat", "firm.iron", "quasifirm.cap", "laborer", "landowner"),
numeraire = "lab",
numberOfPeriods = 2000,
priceAdjustmentVelocity = 0.03,
GRExg = gr

)

ge.seq$p
ge.seq$z
ge.tc$z

gemIntertemporal_AdValoremClaim 175

gemIntertemporal_AdValoremClaim

Some Intertemporal Models with Ad Valorem Claim

Description

Some intertemporal models with ad valorem claim. Ad valorem claims may be equities, bonds, ad
valorem taxation rights (ad valorem tax receipt), fiat money etc, which can be treated in the same
way in models.

Usage

gemIntertemporal_AdValoremClaim(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a model with tax.
np <- 5 # the number of economic periods
gr.lab <- 0.03 # the growth rate of the labor supply
tax.rate <- 0.25

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "tax receipt")
names.agent <- c(paste0("firm", 1:(np - 1)), "laborer", "government")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "laborer"] <- 100 * (1 + gr.lab)^(0:(np - 1)) # the labor supply
S0Exg["prod1", "laborer"] <- 10 # the product supply in the first period
S0Exg["tax receipt", "government"] <- np * 100 # the supply of tax receipt (i.e. ad valorem claim)

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, tax.rate),

176 gemIntertemporal_AdValoremClaim

"cc1", "tax receipt"
)
node_set(dstl.firm[[k]], "cc1",

type = "CD",
alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.laborer <- node_new(
"util",
type = "FIN", rate = c(1, tax.rate),
"cc1", "tax receipt"

)
node_set(dst.laborer, "cc1",

type = "CES", es = 0.5,
alpha = 1, beta = rep(1 / np, np),
paste0("cc1.", 1:np)

)
for (k in 1:np) {

node_set(dst.laborer, paste0("cc1.", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.government <- node_new(
"util",
type = "CD",
alpha = 1, beta = rep(1 / np, np),
paste0("cc1.", 1:np)

)
for (k in 1:np) {

node_set(dst.government, paste0("cc1.", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}
node_plot(dst.government, TRUE)

ge <- sdm2(
A = c(dstl.firm, dst.laborer, dst.government),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr.lab, np = np)

)

ge$D
ge$z
ge$DV

gemIntertemporal_AdValoremClaim 177

a pure exchange model with money.
np <- 3 # the number of economic periods
gr.lab <- 0.03 # the growth rate of the labor supply
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
interest.rate <- sserr(eis, Gamma.beta, gr.lab, prepaid = TRUE) # 0.2593

dst.laborer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = Gamma.beta^(0:(np - 1)),
paste0("cc", 1:np)

)

for (k in 1:np) {
node_set(dst.laborer, paste0("cc", k),
type = "FIN",
rate = c(1, interest.rate),
paste0("lab", k), paste0("money", k)

)
}

node_plot(dst.laborer, TRUE)

dst.moneyOwner <- Clone(dst.laborer)

ge <- sdm2(
A = list(dst.laborer, dst.moneyOwner),
B = matrix(0, 2 * np, 2),
S0Exg = {

tmp <- matrix(0, 2 * np, 2)
tmp[1:np, 1] <- 100 * (1 + gr.lab)^(0:(np - 1))
tmp[(np + 1):(2 * np), 2] <- 200
tmp

},
names.commodity = c(paste0("lab", 1:np), paste0("money", 1:np)),
names.agent = c("laborer", "moneyOwner"),
numeraire = c(money1 = interest.rate)

)

ge$p
growth_rate(ge$p[1:3]) + 1
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

In the following program, the periods to which
the money belongs are not distinguished.
dst.laborer <- node_new(

"util",
type = "FIN",
rate = c(1, interest.rate),

178 gemIntertemporal_AdValoremClaim

"cc1", "money"
)
node_set(dst.laborer, "cc1",

type = "CES", es = eis,
alpha = 1, beta = Gamma.beta^(0:(np - 1)),
paste0("lab", 1:np)

)

dst.moneyOwner <- Clone(dst.laborer)

ge <- sdm2(
A = list(dst.laborer, dst.moneyOwner),
B = matrix(0, np + 1, 2),
S0Exg = {

tmp <- matrix(0, np + 1, 2)
tmp[1:np, 1] <- 100 * (1 + gr.lab)^(0:(np - 1))
tmp[np + 1, 2] <- 100
tmp

},
names.commodity = c(paste0("lab", 1:np), "money"),
names.agent = c("laborer", "moneyOwner"),
numeraire = c(money = interest.rate)

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

a two-period model with production and money.
interest.rate1 <- 0.25
interest.rate2 <- 0.1

dst.firm <- node_new(
"prod",
type = "FIN",
rate = c(1, interest.rate1),
"cc1", "money1"

)
node_set(dst.firm, "cc1",

type = "CES",
es = 1, alpha = 2, beta = c(0.5, 0.5),
"prod1", "lab1"

)

dst.laborer <- node_new(
"util",
type = "CES",
es = 0.5, alpha = 1, beta = c(2 / 3, 1 / 3),
"cc1", "cc2"

)
node_set(dst.laborer, "cc1",

type = "FIN",

gemIntertemporal_Bank_1_2 179

rate = c(1, interest.rate1),
"prod1", "money1"

)

node_set(dst.laborer, "cc2",
type = "FIN",
rate = c(1, interest.rate2),
"prod2", "money2"

)

dst.moneyOwner <- Clone(dst.laborer)

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.moneyOwner),
B = matrix(c(

0, 0, 0,
0, 0, 0,
0, 0, 0,
1, 0, 0,
0, 0, 0

), 5, 3, TRUE),
S0Exg = matrix(c(

NA, 200, NA,
NA, 100, NA,
NA, NA, 100,
NA, NA, NA,
NA, NA, 100

), 5, 3, TRUE),
names.commodity = c("prod1", "lab1", "money1", "prod2", "money2"),
names.agent = c("firm", "laborer", "moneyOwner"),
numeraire = c(money1 = interest.rate1)

)

ge$p
ge$DV

gemIntertemporal_Bank_1_2

Some Examples of an Intertemporal Model with a Consumer and a
Type of Bank

Description

Some examples of an intertemporal model with a consumer and a type of bank. These models can
be used to solve some intertemporal savings problems. Below is an example.

An np-period-lived consumer has some payoff (or cash etc.) in each period. In each period the
consumer can use payoff for consumption or save payoff into a bank. The interest rate is given. The
consumer has a SCES intertemporal utility function and attempts to maximize intertemporal utility
by saving.

180 gemIntertemporal_Bank_1_2

Usage

gemIntertemporal_Bank_1_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with a 5-period-lived consumer
np <- 5 # the number of economic periods

interest.rate <- 0.1

n <- np # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- paste0("payoff", 1:np)
names.agent <- c(paste0("bank", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("payoff", 1:np), "consumer"] <- 100 / (np:1)

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("payoff", k + 1), paste0("bank", k)] <- 1
}

dstl.bank <- list()
for (k in 1:(np - 1)) {

dstl.bank[[k]] <- node_new("output",
type = "Leontief", a = 1 / (1 + interest.rate),
paste0("payoff", k)

)
}

dst.consumer <- node_new(
"util",
type = "SCES", es = 1, alpha = 1, beta = prop.table(1:np),
paste0("payoff", 1:np)

)

ge <- sdm2(
A = c(dstl.bank, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
policy = makePolicyMeanValue(30),

gemIntertemporal_Bank_1_3 181

ts = TRUE
)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
growth_rate(ge$p)

##
dst.consumer$es <- 0
dst.consumer$beta <- rep(1 / np, np)
S0Exg[paste0("payoff", 1:np), "consumer"] <- 100 / (1:np)
ge <- sdm2(

A = c(dstl.bank, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporal_Bank_1_3

Some Examples of an Intertemporal Model with Two Consumers and
a Type of Bank

Description

Some examples of an intertemporal model with two consumers and a type of bank.

Usage

gemIntertemporal_Bank_1_3(...)

Arguments

... arguments to be passed to the function sdm2.

182 gemIntertemporal_Bank_1_3

See Also

gemIntertemporal_Bank_1_2

Examples

an example with a 5-period-lived consumer
np <- 5 # the number of economic periods
interest.rate <- 0.1

n <- np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- paste0("payoff", 1:np)
names.agent <- c(paste0("bank", 1:(np - 1)), "consumer1", "consumer2")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("payoff", 1:np), "consumer1"] <- 100 / (np:1)
S0Exg[paste0("payoff", 1:np), "consumer2"] <- 100 / (1:np)

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("payoff", k + 1), paste0("bank", k)] <- 1
}

dstl.bank <- list()
for (k in 1:(np - 1)) {

dstl.bank[[k]] <- node_new(
"output",
type = "Leontief", a = 1 / (1 + interest.rate),
paste0("payoff", k)

)
}

dst.consumer1 <- node_new(
"util",
type = "SCES",
es = 1, alpha = 1, beta = prop.table(1:np),
paste0("payoff", 1:np)

)

dst.consumer2 <- node_new(
"util",
type = "SCES",
es = 1, alpha = 1, beta = prop.table(np:1),
paste0("payoff", 1:np)

)

ge <- sdm2(
A = c(dstl.bank, dst.consumer1, dst.consumer2),
B = B,

gemIntertemporal_Dividend 183

S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
growth_rate(ge$p)

##
dst.consumer1$es <- 0
dst.consumer1$beta <- rep(1 / np, np)

ge <- sdm2(
A = c(dstl.bank, dst.consumer1, dst.consumer2),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
growth_rate(ge$p)

gemIntertemporal_Dividend

The Identical Steady-state Equilibrium: Four Models Illustrating Div-
idend

Description

Four models are presented to illustrate dividend, which have the same steady-state equilibrium.

These models are as follows: (1) a real timeline model with head-tail adjustment; (2) a financial
timeline model with dividend and head-tail adjustment; (3) a financial sequential model with divi-
dend; (4) a financial time-circle model with dividend.

184 gemIntertemporal_Dividend

Usage

gemIntertemporal_Dividend(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

(1) a real timeline model with head-tail adjustment.
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
gr <- 0.03 # the growth rate
np <- 5 # the number of economic periods

n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg["prod1", "consumer"] <- 140 # the product supply in the first period, which will be adjusted.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge.tl <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,

gemIntertemporal_Dividend 185

S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

sserr(eis, Gamma.beta, gr) # the steady-state equilibrium return rate, 0.2970
ge.tl$p[1:(np - 1)] / ge.tl$p[2:np] - 1
ge.tl$z

(2) a financial timeline model with dividend and head-tail adjustment.
yield.rate <- sserr(

eis = eis, Gamma.beta = Gamma.beta,
gr = gr, prepaid = TRUE

) # the prepaid steady-state equilibrium return rate, 0.2593

n <- 2 * np # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)), "claim")
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg["claim", "consumer"] <- 100
S0Exg["prod1", "consumer"] <- 140 # the product supply in the first period, which will be adjusted.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)), # prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

186 gemIntertemporal_Dividend

)

ge.ftl <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

ge.ftl$z

(3) a financial sequential model with dividend.
dst.firm <- node_new("output",

type = "FIN",
rate = c(1, dividend.rate = yield.rate),
"cc1", "equity.share"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new("util",
type = "Leontief", a = 1,
"prod"

)

dst.shareholder <- Clone(dst.laborer)

ge.fs <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),
S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod",
GRExg = gr

)

ge.fs$z

a steady-state path.
ge2.fs <- sdm2(

A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),

gemIntertemporal_Dividend 187

S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod",
GRExg = gr,
maxIteration = 1,
numberOfPeriods = 20,
z0 = ge.fs$z,
policy = policyMarketClearingPrice,
ts = TRUE

)

ge2.fs$ts.z[, 1]
growth_rate(ge2.fs$ts.z[, 1])

(4) a financial time-circle model with dividend.
np <- 5
zeta <- (1 + gr)^np # the ratio of repayments to loans

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr)^(0:(np - 1))
S0Exg["claim", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new("output",
type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
paste0("lab", k), paste0("prod", k)

)
}

188 gemIntertemporal_Dividend_TechnologicalProgress

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

ge.ftc <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE

)

ge.ftc$z

##
ge.tc <- gemCanonicalDynamicMacroeconomic_TimeCircle_2_2(

alpha.firm = rep(2, 5),
es.prod.lab.firm = 1,
beta.prod.firm = 0.5,
depreciation.rate = 1,
eis = 0.8,
Gamma.beta = 0.8,
beta.prod.consumer = 1,
es.prod.lab.consumer = 1,
gr = 0.03,
wage.payment = "pre"

)

ge.tc$z

gemIntertemporal_Dividend_TechnologicalProgress

The Identical Steady-state Equilibrium: Four Models Illustrating Div-
idend and Technological Progress

Description

Four models with labor-saving technological progress are presented to illustrate dividend, which
have the same steady-state equilibrium.

These models are as follows: (1) a real timeline model with head-tail adjustment; (2) a financial
timeline model with dividend and head-tail adjustment; (3) a financial sequential model with divi-
dend; (4) a financial time-circle model with dividend.

gemIntertemporal_Dividend_TechnologicalProgress 189

Usage

gemIntertemporal_Dividend_TechnologicalProgress(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemIntertemporal_Dividend

Examples

(1) a real timeline model with head-tail adjustment.
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
gr.tech <- 0.02 # the technological progress rate
gr.lab <- 0.03 # the growth rate of labor supply
gr <- (1 + gr.lab) * (1 + gr.tech) - 1 # the growth rate
np <- 4 # the number of economic periods

n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr.lab)^(0:(np - 2))
S0Exg["prod1", "consumer"] <- 140 # the product supply in the first period, which will be adjusted.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), "cc1"

)
node_set(dstl.firm[[k]], "cc1",

type = "Leontief", a = 1 / (1 + gr.tech)^(k - 1),
paste0("lab", k)

)
}

190 gemIntertemporal_Dividend_TechnologicalProgress

node_plot(dstl.firm[[np - 1]], TRUE)

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

sserr(eis, Gamma.beta, gr) # the steady-state equilibrium return rate
ge$p[1:(np - 1)] / ge$p[2:np] - 1 # the steady-state equilibrium return rate
ge$z
growth_rate(ge$z)

(2) a financial timeline model with dividend and head-tail adjustment.
yield.rate <- sserr(eis, Gamma.beta, gr, prepaid = TRUE)

n <- 2 * np # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)), "claim")
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr.lab)^(0:(np - 2))
S0Exg["claim", "consumer"] <- 100
S0Exg["prod1", "consumer"] <- 140 # the product supply in the first period, which will be adjusted.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

gemIntertemporal_Dividend_TechnologicalProgress 191

type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), "cc1.1"

)
node_set(dstl.firm[[k]], "cc1.1",

type = "Leontief", a = 1 / (1 + gr.tech)^(k - 1),
paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)), # prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

ge$z

(3) a financial sequential model with dividend.
dst.firm <- node_new("output",

type = "FIN",
rate = c(1, dividend.rate = yield.rate),
"cc1", "equity.share"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "cc1.1"

)
node_set(dst.firm, "cc1.1",

type = "Leontief", a = 1,
"lab"

)

node_plot(dst.firm, TRUE)

dst.laborer <- node_new("util",
type = "Leontief", a = 1,
"prod"

)

dst.shareholder <- Clone(dst.laborer)

192 gemIntertemporal_Dividend_TechnologicalProgress

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),
S0Exg = {
S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- 100 / (1 + gr.lab)
S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "equity.share",
maxIteration = 1,
numberOfPeriods = 20,
z0 = c(143.1811, 0, 0),
policy = list(policy.technology <- function(time, A, state) {

node_set(A[[1]], "cc1.1",
a = 1 / (1 + gr.tech)^(time - 1)

)
state$S[2, 2] <- 100 * (1 + gr.lab)^(time - 1)

state
}, policyMarketClearingPrice),
ts = TRUE

)

ge$ts.z[, 1]
growth_rate(ge$ts.z[, 1])

(4) a financial time-circle model with dividend.
zeta <- (1 + gr)^np # the ratio of repayments to loans

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr.lab)^(0:(np - 1))
S0Exg["claim", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new("output",

gemIntertemporal_EndogenousEquilibriumInterestRate 193

type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
paste0("prod", k), "cc1.1"

)
node_set(dstl.firm[[k]], "cc1.1",

type = "Leontief", a = 1 / (1 + gr.tech)^(k - 1),
paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE

)

ge$z
growth_rate(ge$z[1:np])

gemIntertemporal_EndogenousEquilibriumInterestRate

Some Examples Illustrating Endogenous Equilibrium Interest Rates in
(Timeline) Transitional Equilibrium Paths

Description

These examples illustrate (endogenous) equilibrium primitive interest rates in a transitional equilib-
rium path, which is an intertemporal path distinct from a steady-state equilibrium. Assume that the
velocity of money is equal to one, that is, money circulates once per period.

The interest rate calculated here is adjusted from the nominal interest rate based on the growth rate
of the money supply, which is equal to the nominal interest rate when the money stock remains
unchanged. We refer to this kind of interest rate as the primitive interest rate, which usually differs
from the real interest rate obtained by adjusting the nominal rate based on the inflation rate.

194 gemIntertemporal_EndogenousEquilibriumInterestRate

Usage

gemIntertemporal_EndogenousEquilibriumInterestRate(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

There are two types of economic agents in this example: firms and a consumer.
Suppose the consumer needs to use money to buy products,
and firms need to use money to buy labor.
set.seed(123)
eis <- 1 # the elasticity of intertemporal substitution
np <- 3 # the number of economic periods
alpha <- runif(np, 1, 3)
beta <- runif(np, 0.9, 1) |>

cumprod() |>
proportions()

f <- function(ir = rep(0.1, np), return.ge = FALSE) {
ir[np] <- 1e6

n <- 3 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(
paste0("prod", 1:np),
paste0("lab", 1:np),
paste0("money", 1:np)

)

names.agent <- c(
paste0("firm", 1:np),
"consumer"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100
S0Exg[paste0("money", 1:np), "consumer"] <- 1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

B[paste0("prod", k), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",

gemIntertemporal_EndogenousEquilibriumInterestRate 195

type = "FIN", rate = c(1, ir[k]),
"cc1", paste0("money", k)

)
node_set(dstl.firm[[k]], "cc1",

type = "Leontief", a = 1 / alpha[k],
paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "SCES", es = eis,
alpha = 1, beta = beta,
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(dst.consumer, paste0("cc", k),
type = "FIN", rate = c(1, ir[k]),
paste0("prod", k), paste0("money", k)

)
}

ge <- sdm2(
A = c(

dstl.firm, dst.consumer
),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",

)

tmp <- rowSums(ge$SV)
ts.trading.value <- tmp[paste0("prod", 1:np)] + tmp[paste0("lab", 1:np)] +

tmp[paste0("money", 1:np)]
ir.new <- ts.trading.value[1:(np - 1)] / ts.trading.value[2:np] - 1
ir.new <- pmax(1e-6, ir.new)

ir.new[np] <- 1e6
ir <- ir.new

cat("ir: ", ir, "\n")

if (return.ge) {
ge$ts.trading.value <- unname(ts.trading.value)
return(ge)

} else {
return(ir)

}
}

mat.ir <- iterate(rep(0.1, np), f, tol = 1e-3)

196 gemIntertemporal_EndogenousEquilibriumInterestRate

When eis equals 1 and np equals 3, compute the
interest rates using the closed-form formulas.
compute_ir <- function(beta) {

b1 <- beta[1]
b2 <- beta[2]
b3 <- beta[3]

A <- sqrt(b2^2 + 4 * b2 * b3)
B <- sqrt(b1^2 + 2 * b1 * (b2 + A))

r1 <- (b1 - b2 - A + B) / (b2 + A)
r2 <- (b2 - 2 * b3 + A) / (2 * b3)

c(r1 = r1, r2 = r2)
}
compute_ir(beta)

ge <- f(tail(mat.ir, 1), return.ge = TRUE)
ge$p

There are three types of economic agents in this example: firms, a laborer, and a money owner.
Suppose the laborer and the money owner need to use money to buy products,
and firms need to use money to buy products and labor.
Formally, the money owner borrows money from himself and pays interest to himself.
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
gr <- 0 # the steady-state growth rate
np <- 20 # the number of economic periods

f <- function(ir = rep(0.25, np - 1), return.ge = FALSE,
y1 = 20, # the product supply in the first period
alpha.firm = rep(2, np - 1) # the efficiency parameters of firms

) {
n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(
paste0("prod", 1:np),
paste0("lab", 1:(np - 1)),
"money"

)
names.agent <- c(

paste0("firm", 1:(np - 1)),
"laborer", "moneyOwner"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 * (1 + gr)^(0:(np - 2))
S0Exg["money", "moneyOwner"] <- 100
S0Exg["prod1", "laborer"] <- y1

gemIntertemporal_EndogenousEquilibriumInterestRate 197

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, ir[k]),
"cc1", "money"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = alpha.firm[k], beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.laborer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("cc", 1:(np - 1)), paste0("prod", np)

)

for (k in 1:(np - 1)) {
node_set(dst.laborer, paste0("cc", k),

type = "FIN", rate = c(1, ir[k]),
paste0("prod", k), "money"

)
}

dst.moneyOwner <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:(np - 1))),
paste0("cc", 1:(np - 1))

)
for (k in 1:(np - 1)) {

node_set(dst.moneyOwner, paste0("cc", k),
type = "FIN", rate = c(1, ir[k]),
paste0("prod", k), "money"

)
}

ge <- sdm2(
A = c(dstl.firm, dst.laborer, dst.moneyOwner),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",

198 gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate

policy = makePolicyHeadTailAdjustment(gr = gr, np = np, type = c("tail"))
)

tmp <- rowSums(ge$SV)
ts.trading.value <- (tmp[paste0("prod", 1:(np - 1))] + tmp[paste0("lab", 1:(np - 1))]) * (1 + ir)
ir.new <- ts.trading.value[1:(np - 2)] / ts.trading.value[2:(np - 1)] - 1
ir.new <- pmax(1e-6, ir.new)
ir.new[np - 1] <- ir.new[np - 2]

ir <- ir.new
cat("ir: ", ir, "\n")

if (return.ge) {
ge$ts.trading.value <- ts.trading.value
return(ge)

} else {
return(ir)

}
}

Calculate equilibrium interest rates.
Warning: Running the program below may take several minutes.
mat.ir <- iterate(rep(0.1, np - 1), f, tol = 1e-4)
sserr(eis, Gamma.beta, gr, prepaid = TRUE)

Below are the calculated equilibrium interest rates.
ir <- c(0.4297, 0.3449, 0.3014, 0.2782, 0.2656, 0.2587, 0.2548, 0.2527,

0.2515, 0.2508, 0.2505, 0.2503, 0.2501, 0.2501, 0.2500, 0.2500,
0.2500, 0.2500, 0.2500)

ge <- f(ir, TRUE)

plot(ge$z[1:(np - 1)], type = "o")
ge$ts.trading.value[1:(np - 2)] / ge$ts.trading.value[2:(np - 1)] - 1
ir

gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate

Some Examples Illustrating Endogenous Equilibrium Interest Rates
and Foreign Exchange Rates in an Intertemporal Pure Exchange
Economy with Two Currencies

Description

These examples illustrate (endogenous) equilibrium primitive interest rates and foreign exchange
rates in an intertemporal pure exchange economy with two currencies. Assume that the velocity of
money is equal to one, that is, money circulates once per period.

gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate 199

Usage

gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemIntertemporal_EndogenousEquilibriumInterestRate

Examples

f <- function(ir, es = 1, beta, beta_prime = beta, return.ge = FALSE) {
np <- length(beta) / 2
n <- 4 * np # the number of commodity kinds
m <- 2 # the number of agent kinds

ir[c(np, 2 * np)] <- last.ir <- 1000
dst.consumer1 <- node_new(

"util",
type = "SCES", alpha = 1, es = es,
beta = beta,
paste0("cc", 1:(2 * np))

)
for (k in 1:(2 * np)) {

node_set(
dst.consumer1,
paste0("cc", k),
type = "FIN", rate = ir[k],
paste0("lab", k), paste0("money", k)

)
}

dst.consumer2 <- Clone(dst.consumer1)
dst.consumer2$beta <- beta_prime

names.commodity <- c(
paste0("lab", 1:(2 * np)),
paste0("money", 1:(2 * np))

)
names.agent <- paste0("consumer", 1:m)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer1"] <-

S0Exg[paste0("lab", (np + 1):(2 * np)), "consumer2"] <- 100
S0Exg[paste0("money", 1:np), "consumer1"] <-

S0Exg[paste0("money", (np + 1):(2 * np)), "consumer2"] <- 1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))

200 gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

tmp <- rowSums(ge$SV)
ts.trading.value <- tmp[paste0("lab", 1:(2 * np))] * (1 + ir)

ir[1:(np - 1)] <- ts.trading.value[1:(np - 1)] / ts.trading.value[2:np] - 1
ir[(np + 1):(2 * np - 1)] <- ts.trading.value[(np + 1):(2 * np - 1)] /

ts.trading.value[(np + 2):(2 * np)] - 1
ir <- pmax(1e-6, ir)

cat("ir: ", ir, "\n")
cat("foreign.exchange.rate: ", ts.trading.value[(np + 1):(2 * np)] / ts.trading.value[1:np], "\n")
if (return.ge) {

ge$ts.trading.value <- ts.trading.value
return(ge)

} else {
return(ir)

}
}

##
np <- 4 # the number of economic periods
beta <- proportions(c(0.4, 0.3, 0.2, 0.1, 0.5, 0.25, 0.15, 0.1))
mat.ir <- iterate(rep(0.1, 2 * np), f, tol = 1e-4, beta = beta)
beta[1:(np - 1)] / beta[2:np] - 1 # domestic interest rates
beta[(np + 1):(2 * np - 1)] / beta[(np + 2):(2 * np)] - 1 # foreign interest rates
beta[(np + 1):(2 * np)] / beta[1:np] # foreign exchange rates

ge <- f(ir = tail(mat.ir, 1), es = 1.1, beta = beta, return.ge = TRUE)

Assume that the two consumers have different preferences.
random.beta <- function(np) {

beta <- runif(np, 0.9, 1) |>
cumprod() |>
proportions()

}

set.seed(1)
np <- 5
beta <- proportions(c(random.beta(np), random.beta(np)))
beta_prime <- proportions(c(random.beta(np), random.beta(np)))
mat.ir <- iterate(rep(0.1, 2 * np), f, tol = 1e-4, beta = beta, beta_prime = beta_prime)

gemIntertemporal_ExhaustibleResources_3_2 201

Calculate the equilibrium exchange rates and
interest rates based on closed-form solutions.
compute_fx_ir <- function(beta, beta_prime) {

np <- length(beta) / 2
xi1 <- sum(beta_prime[1:np])
xi2 <- sum(beta[(np + 1):(2 * np)])

v_tilde <- xi2 * beta_prime + xi1 * beta
names(v_tilde) <- paste0("v", seq_len(2 * np))

foreign.exchange.rate <- v_tilde[(np + 1):(2 * np)] / v_tilde[1:np]
names(foreign.exchange.rate) <- paste0("epsilon", 1:np)

r <- rep(NA_real_, 2 * np)
for (i in 1:(2 * np - 1)) r[i] <- v_tilde[i] / v_tilde[i + 1] - 1
r[np] <- Inf
r[2 * np] <- Inf
names(r) <- paste0("r", 1:(2 * np))

list(
ir = r,
foreign.exchange.rate = foreign.exchange.rate

)
}

compute_fx_ir(beta, beta_prime)

gemIntertemporal_ExhaustibleResources_3_2

An Example of an Intertemporal Equilibrium Model with Exhaustible
Resources

Description

An example of an intertemporal equilibrium model with three types of commodities (i.e., product,
labor and coal) and two types of agents (i.e., firms and a consumer).

Usage

gemIntertemporal_ExhaustibleResources_3_2(...)

Arguments

... arguments to be passed to the function sdm2.

202 gemIntertemporal_ExhaustibleResources_3_2

Examples

np <- 10 # the number of economic periods

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "coal")
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100
S0Exg["coal", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

B[paste0("prod", k), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "Leontief", a = c(1, 0.1),
"coal", paste0("lab", k)

)
}

Gamma.beta <- 0.8
eis <- 0.8
es <- 1
dst.consumer <- node_new(

"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(dst.consumer, paste0("cc", k),
type = "CES", es = es,
alpha = 1, beta = c(0.5, 0.5),
paste0("lab", k), paste0("prod", k)

)
}

f <- function(dstl = c(dstl.firm, dst.consumer)) {
sdm2(
A = dstl,
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,

gemIntertemporal_Money_Dividend_Example7.5.1 203

names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)
}

ge <- f()
ge$p
ge$z

node_set(dst.consumer, "util", beta = rep(1 / np, np))
ge2 <- f()
ge2$p
ge2$z

gemIntertemporal_Money_Dividend_Example7.5.1

The Identical Steady-state Equilibrium: Three Models with Money and
Dividend

Description

Three steady-state-identical models with money and dividend as follows: (1) a sequential model
(Li, 2019, example 7.5); (2) a time-circle model; (3) a timeline model with head-tail adjustment.

Stocks, fiat currencies, bonds, and taxes, etc. can be collectively referred to as ad valorem claims.
Sometimes we do not need to differentiate between these financial instruments when modeling.
Furthermore, sometimes we do not need to consider which period these financial instruments belong
to.

Usage

gemIntertemporal_Money_Dividend_Example7.5.1(...)

Arguments

... arguments to be passed to the function sdm2.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Examples

(1) a sequential model. See the first part of example 7.5 in Li (2019).
dividend.rate <- 0.25
ir <- 0.25 # the interest rate.

204 gemIntertemporal_Money_Dividend_Example7.5.1

dst.firm <- node_new(
"output",
type = "FIN", rate = c(1, dividend.rate),
"cc1", "dividend"

)
node_set(dst.firm, "cc1",

type = "FIN", rate = c(1, ir),
"cc1.1", "money"

)
node_set(dst.firm, "cc1.1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "FIN", rate = c(1, ir),
"cc1", "money"

)
node_set(dst.consumer, "cc1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

ge.seq <- sdm2(
A = list(
dst.firm, dst.consumer, dst.consumer, dst.consumer

),
B = diag(c(1, 0, 0, 0)),
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[2, 2] <- tmp[3, 3] <- tmp[4, 4] <- 100
tmp

},
names.commodity = c("prod", "lab", "money", "dividend"),
names.agent = c("firm", "laborer", "moneyOwner", "shareholder"),
numeraire = "prod",
GRExg = 0.1,
z0 = c(9.30909, 0, 0, 0),
policy = policyMarketClearingPrice,
maxIteration = 1,
numberOfPeriods = 20,
ts = TRUE

)

matplot(ge.seq$ts.z, type = "o", pch = 20)
ge.seq$D
ge.seq$S
ge.seq$ts.z[,1]
growth_rate(ge.seq$ts.z[,1])

(2) a time-circle model.
np <- 5 # the number of economic periods

gemIntertemporal_Money_Dividend_Example7.5.1 205

gr <- 0.1 # the growth rate.
dividend.rate <- 0.25
ir <- 0.25
zeta <- (1 + gr)^np # the ratio of repayments to loans

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr)^(0:(np - 1)) # the labor supply.
S0Exg["claim", "consumer"] <- np * 100 # the ad valorem claim supply.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, (1 + ir) * (1 + dividend.rate) - 1),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "FIN", rate = c(1, ir),
"cc1", "claim"

)
node_set(dst.consumer, "cc1",

type = "CES", es = 1,
type = "CD",
alpha = 1, beta = rep(1 / np, np),
paste0("cc1.", 1:np)

)
for (k in 1:np) {

node_set(dst.consumer, paste0("cc1.", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

206 gemIntertemporal_Money_Dividend_Example7.5.1

node_plot(dst.consumer, TRUE)

ge.tc <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1"

)

ge.tc$D
ge.tc$z

(3) a timeline model with head-tail adjustment.
np <- 5 # the number of economic periods
gr <- 0.1
dividend.rate <- 0.25
ir <- 0.25

n <- 2 * np + 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr)^(0:(np - 1))
S0Exg["claim", "consumer"] <- np * 100
S0Exg["prod1", "consumer"] <- 10 # the product supply in the first period, which will be adjusted.

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "FIN", rate = c(1, (1 + ir) * (1 + dividend.rate) - 1),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",

gemIntertemporal_PublicFirm 207

type = "FIN", rate = c(1, ir),
"cc1", "claim"

)
node_set(dst.consumer, "cc1",

type = "CD",
alpha = 1, beta = rep(1 / np, np),
paste0("cc1.", 1:np)

)
for (k in 1:np) {

node_set(dst.consumer, paste0("cc1.", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

ge.tl <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy = makePolicyHeadTailAdjustment(gr = gr, np = np)

)

node_plot(dst.consumer, TRUE)
ge.tl$D
ge.tl$z

gemIntertemporal_PublicFirm

Some Examples of Intertemporal (Timeline) Models with Production
and Public Firms

Description

Some examples of intertemporal (timeline) models with production and public firms. A public
producer is akin to a consumer with an infinite lifespan. The public producer owns the products it
manufactures. In each period, it exchanges the products it has produced for the inputs required for
production. In intertemporal models, a public producer can be treated as multiple public firms that
each only produces for a single period. Each public firm hands over its products to the public firm
of the next period, which in turn uses these products for trading.

Usage

gemIntertemporal_PublicFirm(...)

Arguments

... arguments to be passed to the function sdm2.

208 gemIntertemporal_PublicFirm

Examples

np <- 15 # the number of economic periods, firms.
gr <- 0 # the growth rate of the labor supply
eis <- 0.5 # the elasticity of intertemporal substitution
Gamma.beta <- 0.9 # the subjective discount factor
y1 <- 100 # the initial product supply

n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
the supply of labor.
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr)^(0:(np - 1))
S0Exg["prod1", "firm1"] <- y1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("lab", k), paste0("prod", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

policy.PublicFirm <- function(state) {
for (k in 1:(np - 1)) {

state$S[k + 1, k + 1] <- state$S[k + 1, k]
state$S[k + 1, k] <- 0

}
state

}

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,

gemIntertemporal_PublicFirm 209

S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
policy=policy.PublicFirm

)

ge$p
ge$z[1:15]

the sequential form of the above model.
dst.firm <- node_new(

"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dstl <- list(dst.firm, dst.consumer)

ge.seq <- sdm2(
A = dstl,
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(100, 1),
ts = TRUE,
policy = policyMarketClearingPrice,
numberOfPeriods = 20,
maxIteration = 1

)

growth_rate(ge$p[paste0("prod", 1:np)]) + 1
growth_rate(ge$p[paste0("lab", 1:np)]) + 1
1 / (1 + sserr(eis, Gamma.beta, gr))
ge.seq$ts.z[, 1]

210 gemIntertemporal_TimeCircle_2_2

gemIntertemporal_TimeCircle_2_2

Some Examples of a 2-by-2 Time Circle Equilibrium Model

Description

Some examples of a 2-by-2 (intertemporal) time circle equilibrium model. In a time circle model,
the economy borrows some resources from the outside in the beginning, and will repay it after the
economy ends.

In these examples, there is an np-period-lived consumer maximizing intertemporal utility, and there
is a type of firm which produces from period 1 to np. There are two commodities, i.e. product and
labor. Suppose the firm can borrow some product from outside in the first period and return them
in the (np+1)-th period. And the supply of product in the first period can be regarded as the output
of the firm in the (np+1)-th period. Hence the product supply in the first period is an endogenous
variable. Suppose that the amount returned is zeta times the amount borrowed.

Usage

gemIntertemporal_TimeCircle_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemOLG_TimeCircle

Examples

an example with a Cobb-Douglas intertemporal utility function
np <- 5 # the number of economic periods, firms.
gr <- 0 # the growth rate of the labor supply
zeta <- 1.25 # the ratio of repayments to loans
zeta <- (1 + gr)^np
Gamma.beta <- 1 # the subjective discount factor

n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr)^(0:(np - 1)) # the supply of labor

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))

gemIntertemporal_TimeCircle_2_2 211

for (k in 1:(np - 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1

}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("lab", k), paste0("prod", k)

)
}

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

an example with a Leontief intertemporal utility function
dst.consumer <- node_new(

"util",
type = "Leontief", a = rep(1, np),
paste0("prod", 1:np)

)

ge2 <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

212 gemIntertemporal_TimeCircle_2_2

ge2$p
ge2$z
ge2$D
ge2$S
ge2$DV
ge2$SV

Use a mean-value policy function to accelerate convergence.
ge3 <- sdm2(

A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = c(paste0("prod", 1:np), paste0("lab", 1:np)),
names.agent = c(paste0("firm", 1:np), "consumer"),
numeraire = "lab1",
ts = TRUE,
policy = makePolicyMeanValue(30)

)

an example with a linear intertemporal utility function (e.g. beta1 * x1 + beta2 * x2)
The demand structure of the consumer will be adjusted sluggishly to accelerate convergence.
np <- 5 # the number of economic periods, firms.
rho <- 0.9 # the subjective discount factor

beta.consumer <- rep(rho^(0:(np - 1)))
zeta <- (1 / rho)^np

n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 # the supply of labor

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("lab", k), paste0("prod", k)

)
}

gemIntertemporal_TimeCircle_3_3 213

dst.consumer <- node_new(
"util",
type = "FUNC",
last.a = rep(1, np),
func = function(p) {
value.marginal.utility <- beta.consumer / p
ratio <- value.marginal.utility / mean(value.marginal.utility)
a <- dst.consumer$last.a
a <- prop.table(a * ratio_adjust(ratio, 0.15))
dst.consumer$last.a <- a
a

},
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE,
priceAdjustmentVelocity = 0.1

)

ge$p
ge$z
ge$D
ge$S
growth_rate(ge$p[1:np])
growth_rate(ge$p[(np + 1):(2 * np)])

gemIntertemporal_TimeCircle_3_3

A Time Circle Model with One Consumer and Two Types of Firms

Description

An (intertemporal) time circle model with one consumer and two types of firms.

Usage

gemIntertemporal_TimeCircle_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

214 gemIntertemporal_TimeCircle_3_3

Examples

an example with a Cobb-Douglas intertemporal utility function
np <- 5 # the number of economic periods, firms.
zeta <- 1.25 # the ratio of repayments to loans

n <- 3 * np # the number of commodity kinds
m <- 2 * np + 1 # the number of agent kinds

names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:np)

)
names.agent <- c(

paste0("firm.corn", 1:np),
paste0("firm.iron", 1:np),
"consumer"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 # the supply of labor

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("corn", k + 1), paste0("firm.corn", k)] <- 1
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1

}
B["corn1", paste0("firm.corn", np)] <- 1 / zeta
B["iron1", paste0("firm.iron", np)] <- 1 / zeta

dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:np) {

dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,

gemIntertemporal_TimeCircle_3_4 215

beta = prop.table(rep(1, np)),
paste0("corn", 1:np)

)

ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporal_TimeCircle_3_4

A Time Circle Model with Two Consumers and Two Types of Firms

Description

An (intertemporal) time circle model with two consumers and two types of firms. There are three
commodities in the model, namely wheat, iron, and labor.

Usage

gemIntertemporal_TimeCircle_3_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with a Cobb-Douglas intertemporal utility function
np <- 5 # the number of economic periods, firms.
zeta <- 1.25 # the ratio of repayments to loans

n <- 3 * np # the number of commodity kinds
m <- 2 * np + 2 # the number of agent kinds

names.commodity <- c(
paste0("wheat", 1:np),

216 gemIntertemporal_TimeCircle_3_4

paste0("iron", 1:np),
paste0("lab", 1:np)

)
names.agent <- c(

paste0("firm.wheat", 1:np), paste0("firm.iron", 1:np),
"consumer1", "consumer2"

)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), c("consumer1", "consumer2")] <- 100 # the supply of labor

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("wheat", k + 1), paste0("firm.wheat", k)] <- 1
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1

}
B["wheat1", paste0("firm.wheat", np)] <- 1 / zeta
B["iron1", paste0("firm.iron", np)] <- 1 / zeta

dstl.firm.wheat <- dstl.firm.iron <- list()
for (k in 1:np) {

dstl.firm.wheat[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)

dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)

)
}

dst.consumer1 <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("wheat", 1:np)

)

dst.consumer2 <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("cc", 1:np)

)
for (k in 1:np) {

node_set(
dst.consumer2, paste0("cc", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("wheat", k), paste0("iron", k)

)

gemIntertemporal_TimeCircle_Bank_1_2 217

}

ge <- sdm2(
A = c(dstl.firm.wheat, dstl.firm.iron, dst.consumer1, dst.consumer2),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemIntertemporal_TimeCircle_Bank_1_2

Some Examples of a Time Circle Model with a Consumer and a Type
of Bank

Description

Some examples of a time circle model with a consumer and a type of bank. These models can be
used to solve some intertemporal savings problems.

In these example, an np-period-lived consumer gets some payoff (or cash etc.) in each period. In
each period the consumer can use payoff for consumption, save payoff into bank or get a loan from
the bank. The interest rate is given. The consumer has a CES intertemporal utility function and
attempts to maximize intertemporal utility by saving and borrowing.

Usage

gemIntertemporal_TimeCircle_Bank_1_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with a 5-period-lived consumer (see Zhang, 2008, section 1.3)
np <- 5 # the number of economic periods
interest.rate <- 0.1
zeta <- (1 + interest.rate)^np # the ratio of repayments to loans

218 gemIntertemporal_TimeCircle_Bank_1_2

n <- np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- paste0("payoff", 1:np)
names.agent <- c(paste0("bank", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("payoff", 1:np), "consumer"] <- 100 / (1:np)

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("payoff", k + 1), paste0("bank", k)] <- 1
}
B["payoff1", paste0("bank", np)] <- 1 / zeta

dstl.bank <- list()
for (k in 1:np) {

dstl.bank[[k]] <- node_new(
"output",
type = "Leontief", a = 1 / (1 + interest.rate),
paste0("payoff", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 0.5, alpha = 1, beta = prop.table(1:np),
paste0("payoff", 1:np)

)

ge <- sdm2(
A = c(dstl.bank, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
ts = TRUE,
policy = makePolicyMeanValue(30)

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
growth_rate(ge$p)

####
dst.consumer$es <- 0

gemIntertemporal_TimeCircle_Stochastic_2_2 219

ge <- sdm2(
A = c(dstl.bank, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1",
ts = TRUE,
policy = makePolicyMeanValue(30)

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
growth_rate(ge$p)

gemIntertemporal_TimeCircle_Stochastic_2_2

Some 2-by-2 Time Circle Models with Uncertainty

Description

Some time circle models with uncertainty. In these models, there is a consumer who will live for two
periods and has a von Neumann-Morgenstern expected utility function. There is one natural state
in the first period, and two natural states in the second period. In the economy, there are two types
of commodities: product and labor. In the first period, the economy can borrow a certain amount
of product from an external source, such as a bank, and repay it after the economic operation is
complete. The amount of product to be repaid is zeta times the amount borrowed. zeta is an
exogenous variable.

Usage

gemIntertemporal_TimeCircle_Stochastic_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

Assume that the consumer supplies labor only in the first period,
and the firm produces only in the first period.
zeta <- 1.25 # the ratio of repayments to loans
dst.firm <- node_new(

220 gemIntertemporal_TimeCircle_Stochastic_2_2

"prod2",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"prod1", "lab1"

)

dst.bank <- node_new(
"prod1",
type = "Leontief",
a = c(1, 1) * zeta,
"prod2.1", "prod2.2"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(0.5, 0.25, 0.25),
"prod1", "prod2.1", "prod2.2"

)

ge <- sdm2(
A = c(dst.firm, dst.bank, dst.consumer),
B = matrix(c(

0, 1, 0,
2, 0, 0,
1, 0, 0,
0, 0, 0

), 4, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, NA,
NA, NA, 100

), 4, 3, TRUE),
names.commodity = c("prod1", "prod2.1", "prod2.2", "lab1"),
names.agent = c("firm", "bank", "consumer"),
numeraire = "lab1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

Assume that the consumer supplies labor in both periods and
firms produce in both periods.
zeta <- 1.25 # the ratio of repayments to loans
dst.firm1 <- node_new(

"prod2",
type = "CD", alpha = 2,
beta = c(0.5, 0.5),

gemIntertemporal_TimeCircle_Stochastic_2_2 221

"lab1", "prod1"
)

dst.firm2.1 <- node_new(
"prod3.1",
type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"lab2.1", "prod2.1"

)

dst.firm2.2 <- node_new(
"prod3.2",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"lab2.2", "prod2.2"

)

dst.bank <- node_new(
"prod1",
type = "Leontief",
a = c(1, 1) * zeta,
"prod3.1", "prod3.2"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(1 / 3, 1 / 3, 1 / 3),
"prod1", "prod2.1", "prod2.2"

)

ge <- sdm2(
A = c(

dst.firm1, dst.firm2.1, dst.firm2.2,
dst.bank, dst.consumer

),
B = matrix(c(

0, 0, 0, 1, 0,
1, 0, 0, 0, 0,
1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 8, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, NA, NA, 100,

222 gemLand_Labor

NA, NA, NA, NA, 100,
NA, NA, NA, NA, 100

), 8, 5, TRUE),
names.commodity = c(

"prod1", "prod2.1", "prod2.2",
"prod3.1", "prod3.2",
"lab1", "lab2.1", "lab2.2"

),
names.agent = c(

"firm1", "firm2.1", "firm2.2",
"bank", "consumer"

),
numeraire = "lab1",
policy = makePolicyMeanValue(30),
ts = TRUE

)

ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV

gemLand_Labor Some Examples of Spot Equilibrium Paths Involving Land and Labor

Description

Some examples of spot equilibrium paths involving land and labor. The labor supply may begin to
increase starting from the fifth period.

Usage

gemLand_Labor(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a 3-by-3 economy
f <- function(GRLabor = 0,

es.land.labor = 1) {
dst.firm <- node_new("output",

type = "SCES",
es = es.land.labor, alpha = 1,
beta = c(0.5, 0.5),

gemLand_Labor 223

"land", "lab"
)

dst.landowner <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dst.laborer <- Clone(dst.landowner)

dstl <- list(dst.firm, dst.landowner, dst.laborer)

ge <- sdm2(
A = dstl,
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "land", "lab"),
names.agent = c("firm", "landowner", "laborer"),
maxIteration = 1,
numberOfPeriods = 30,
numeraire = "lab",
ts = TRUE,
policy = list(

function(time, state) {
if (time >= 5) {

state$S[3, 3] <- 100 * (1 + GRLabor)^(time - 4)
}
state

},
policyMarketClearingPrice

),
z0 = c(200, 100, 100),
p0 = c(1, 1, 1)

)

par(mfrow = c(1, 2))
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)

ge
}

ge <- f()
ge$p
ge$z

f(GRLabor = 0.03)

224 gemLand_Labor

f(GRLabor = -0.03)
f(GRLabor = 0.03, es.land.labor = 0.5)
f(GRLabor = 0.03, es.land.labor = 1.5)

a 4-by-3 economy
GRLabor <- 0.03

dst.agri <- node_new("agri",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.75, 0.25),
"land", "lab"

)

dst.manu <- node_new("manu",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.25, 0.75),
"land", "lab"

)

dst.consumer <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.5, 0.5),
"agri", "manu"

)

dstl <- list(dst.agri, dst.manu, dst.consumer)

ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE),
S0Exg = {

S0Exg <- matrix(NA, 4, 3)
S0Exg[3:4, 3] <- 100
S0Exg

},
names.commodity = c("agri", "manu", "land", "lab"),
names.agent = c("agri", "manu", "consumer"),
numeraire = c("manu"),
ts = TRUE,
policy = list(

function(time, state) {
if (time >= 5) {

state$S[4, 3] <- 100 * (1 + GRLabor)^(time - 4)
}
state

},
policyMarketClearingPrice

),

gemLand_Labor_Capital_4_3 225

numberOfPeriods = 40,
maxIteration = 1,
z0 = c(100, 100, 200),
p0 = c(1, 1, 1, 1)

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)

gemLand_Labor_Capital_4_3

Some Examples of Spot Equilibrium Paths Involving Land, Labor and
Capital

Description

Some examples of spot equilibrium paths involving land, labor and capital.

Usage

gemLand_Labor_Capital_4_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

depreciation.rate <- 0.05

dst.firm.production <- node_new("prod",
type = "CD",
alpha = 1, beta = c(0.4, 0.4, 0.2),
"lab", "cap", "land"

)

dst.firm.capital.leasing <- node_new("cap",
type = "Leontief", a = 1,
"prod"

)

dst.consumer <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dstl <- list(dst.firm.production, dst.consumer, dst.firm.capital.leasing)

226 gemLand_Labor_Capital_4_3

f <- function(policy = policyMarketClearingPrice,
p0 = c(1, 1, 1, 1),
z0 = c(10, 10, 10),
numberOfPeriods = 100) {

sdm2(
A = dstl,
B = matrix(c(

1, 0, 1 - depreciation.rate,
0, 0, 0,
0, 0, 1,
0, 0, 0

), 4, 3, TRUE),
S0Exg = {

S0Exg <- matrix(NA, 4, 3)
S0Exg[2, 2] <- S0Exg[4, 2] <- 1
S0Exg

},
names.commodity = c("prod", "lab", "cap", "land"),
names.agent = c("firm.production", "consumer", "firm.capital.leasing"),
numeraire = "prod",
maxIteration = 1,
numberOfPeriods = numberOfPeriods,
p0 = p0,
z0 = z0,
policy = policy,
ts = TRUE

)
}

ge1 <- f()
ge1$p
ge1$DV
ge1$SV
matplot(ge1$ts.z, type = "l")

a spot equilibrium path with population growth
policy.population.growth <- function(time, state) {

if (time >= 5) {
state$S[2, 2] <- 1.01^(time - 4)

}
state

}

ge2 <- f(
policy = list(

policy.population.growth,
policyMarketClearingPrice

),
p0 = ge1$p, z0 = ge1$z,
numberOfPeriods = 30

)
matplot(ge2$ts.z, type = "o", pch = 40)
matplot(growth_rate(ge2$ts.z), type = "o", pch = 20)

gemMarketClearingPath_2_2 227

a spot equilibrium path with technology progress
policy.technology.progress <- function(time, A) {

if (time >= 5) {
A[[1]]$alpha <- 1.02^(time - 4)

}
}

ge3 <- f(
policy = list(

policy.technology.progress,
policyMarketClearingPrice

),
p0 = ge1$p, z0 = ge1$z,
numberOfPeriods = 30

)

matplot(ge3$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge3$ts.z), type = "o", pch = 20)

a spot equilibrium path with population growth and technology progress
ge4 <- f(

policy = list(
policy.population.growth,
policy.technology.progress,
policyMarketClearingPrice

),
p0 = ge1$p, z0 = ge1$z,
numberOfPeriods = 30

)

matplot(ge4$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge4$ts.z), type = "o", pch = 20)

gemMarketClearingPath_2_2

Some Examples of Spot Equilibrium Paths

Description

Some examples of zero-dividend spot equilibrium paths, involving a firm and a laborer (consumer)

Usage

gemMarketClearingPath_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

228 gemMarketClearingPath_2_2

Examples

the benchmark equilibrium
dst.firm <- node_new(

"prod",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dstl <- list(dst.firm, dst.consumer)

f <- function(policy = NULL) {
sdm2(
A = dstl,
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(1, 1),
ts = TRUE,
policy = policy,
numberOfPeriods = 40,
maxIteration = 1

)
}

ge <- f(policy = policyMarketClearingPrice)
matplot(ge$ts.S[1, 1,], type = "o", pch = 20)
matplot(ge$ts.z, type = "o", pch = 20)

labor supply change
ge.LSC <- f(policy = list(

function(time, state) {
if (time >= 21) state$S[2, 2] <- state$S[2, 2] * 2
state

},
policyMarketClearingPrice

))

matplot(ge.LSC$ts.z, type = "o", pch = 20)

gemMarketClearingPath_2_2 229

technology progress
ge.TP <- f(policy = list(

makePolicyTechnologyChange(
adjumentment.ratio = 2,
agent = "firm",
time.win = c(21, 21)

),
policyMarketClearingPrice

))

matplot(ge.TP$ts.z, type = "o", pch = 20)

the same as above
ge.TP2 <- f(policy = list(

function(time, A) {
if (time >= 21) {

A[[1]]$alpha <- 10
} else {

A[[1]]$alpha <- 5
}

},
policyMarketClearingPrice

))

matplot(ge.TP2$ts.z, type = "o", pch = 20)

A timeline model, the equilibrium of which is the same as the benchmark equilibrium.
In this model, in terms of form, firms are treated as consumer-type agents rather than
producer-type agents. Firms hold products. The utility level of each firm determines
the quantity of the product that the firm owns in the subsequent economic period.
np <- 5 # the number of economic periods
y1 <- 1 # the initial product supply
eis <- 1 # elasticity of intertemporal substitution
Gamma.beta <- 1 # the subjective discount factor

n <- 2 * np # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 1
for (k in 1:np) {

S0Exg[paste0("prod", k), paste0("firm", k)] <- y1
}

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",

230 gemMoney_3_2

type = "CD",
alpha = 5, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)

)
}

dst.consumer.CD <- node_new(
"util",
type = "CD",
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

dst.consumer <- node_new(
"util",
type = "CES", es = eis,
alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
paste0("prod", 1:np)

)

ge.timeline <- sdm2(
A = c(dstl.firm, dst.consumer),
B = matrix(0, n, m),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE,
policy = function(time, state) {

names(state$last.z) <- state$names.agent
dimnames(state$S) <- list(names.commodity, names.agent)

for (k in 2:np) {
state$S[paste0("prod", k), paste0("firm", k)] <- state$last.z[paste0("firm", k - 1)]

}

return(state)
}

)

head(ge.timeline$p, np) / tail(ge.timeline$p, np)
ge$ts.p[1:5, 1] # the same as above

ge.timeline$z[1:np]
ge$ts.z[1:np, 1] # the same as above

ge.timeline$D
ge.timeline$S

gemMoney_3_2 A General Equilibrium Model with Money

gemMoney_3_2 231

Description

A general equilibrium model with money as a medium of exchange and a means of payment.

Usage

gemMoney_3_2(
dstl,
supply.labor = 100,
supply.money = 300,
names.commodity = c("product", "labor", "money"),
names.agent = c("firm", "household"),
...

)

Arguments

dstl the demand structure tree list.

supply.labor the supply of labor.

supply.money the supply of money.
names.commodity

names of commodities.

names.agent names of agents.

... arguments to be passed to the function sdm2.

Details

A general equilibrium model with 3 commodities (i.e. product, labor, and money) and 2 agents (i.e.
a firm and a household). To produce, the firm needs product, labor and money. The household only
consumes the product. But money is also needed to buy the product. The household supplies labor
and money.

In the calculation results, the price of the currency is the interest per unit of currency (i.e., the rental
price). It should be noted that the unit of currency can be arbitrarily selected. For example, a unit of
currency may be two dollars or ten dollars. The rental price divided by the interest rate is the asset
price of 1 unit of the currency.

Value

A general equilibrium (see sdm2)

Examples

Leontief-type firm
interest.rate <- 0.25
vm <- 1 # the velocity of money

dst.Leontief.firm <- node_new("output",
type = "FIN", rate = c(1, interest.rate / vm),

232 gemMoney_3_3

"cc1", "money"
)
node_set(dst.Leontief.firm, "cc1",

type = "Leontief", a = c(0.6, 0.2),
"product", "labor"

)

dst.household <- node_new("utility",
type = "FIN", rate = c(1, interest.rate / vm),
"product", "money"

)

dstl.Leontief <- list(dst.Leontief.firm, dst.household)

ge.Leontief <- gemMoney_3_2(dstl.Leontief)
ge.Leontief$p

SCES-type firm
dst.SCES.firm <- Clone(dst.Leontief.firm)
node_set(dst.SCES.firm, "cc1",

type = "SCES", alpha = 1, beta = c(0.6, 0.2),
es = 0 # es is the elasticity of substitution.

)

node_plot(dst.SCES.firm, TRUE)

dstl.SCES <- list(dst.SCES.firm, dst.household)

ge.SCES <- gemMoney_3_2(dstl.SCES)
ge.SCES$p
p.money <- ge.SCES$p
p.money["money"] <- p.money["money"] / interest.rate
p.money <- p.money / p.money["money"] # prices in terms of the asset price of the currency
p.money

The price of money is the interest rate.
The other prices are in terms of the asset price of the currency.
gemMoney_3_2(dstl.SCES,

numeraire = c("money" = interest.rate)
)

gemMoney_3_3 Some 3-by-3 General Equilibrium Models with Money and Exogenous
Interest Rate

Description

Some 3-by-3 general equilibrium models with money as a medium of exchange and a means of
payment. Here, the interest rate is an exogenous variable.

gemMoney_3_3 233

In these examples, the price of money refers to its rental price, which is the interest amount gener-
ated per unit of money. The value of a unit of currency (i.e., its selling price or asset price) is its
rental price divided by the interest rate. When the rental price of money equals the interest rate, the
value of the currency equals 1, which implies that money is used as the numeraire (i.e. the unit of
account).

Usage

gemMoney_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Examples

a monetary pure exchange model
interest.rate <- 0.25
vm <- 1 # the velocity of money

dst.consumer1 <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"cc1", "wheat"

)
node_set(dst.consumer1, "cc1",

type = "FIN", rate = c(1, interest.rate / vm),
"iron", "money"

)

dst.consumer2 <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"cc1", "iron"

)
node_set(dst.consumer2, "cc1",

type = "FIN", rate = c(1, interest.rate / vm),
"wheat", "money"

)

dst.consumer3 <- node_new("util",
type = "FIN", rate = c(1, interest.rate / vm),
"cc1", "money"

)
node_set(dst.consumer3, "cc1",

type = "CD",
alpha = 1, beta = c(0.5, 0.5),

234 gemMoney_3_3

"wheat", "iron"
)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2, dst.consumer3),
B = matrix(0, 3, 3),
S0Exg = matrix(c(
100, 0, 0,
0, 100, 0,
0, 0, 100

), 3, 3, TRUE),
names.commodity = c("wheat", "iron", "money"),
names.agent = c("consumer1", "consumer2", "consumer3"),
numeraire = c(money = interest.rate)

)
ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$DV)
addmargins(ge$SV)

Here are a few examples of calculating demand coefficients.
node_plot(dst.consumer1, TRUE)

In the following example, the rental price of money is 0.25,
which equals the interest rate of the money,
thus it is known that the value of one unit of money is 1.
demand_coefficient(dst.consumer1, p = c(wheat = 1, iron = 1, money = 0.25))

demand_coefficient(dst.consumer1, p = c(wheat = 1, iron = 2, money = 0.25))

In the following example, the rental price of money is 0.5,
and the value of one unit of money is 0.5/0.25=2.
demand_coefficient(dst.consumer1, p = c(wheat = 1, iron = 2, money = 0.5))

a monetary model with production
interest.rate <- 0.25
vm <- 1 # the velocity of money

dst.firm <- node_new("prod",
type = "FIN", rate = c(1, interest.rate / vm),
"cc1", "money"

)
node_set(dst.firm, "cc1",

type = "CD", alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- dst.moneyOwner <-
node_new("util",

type = "FIN", rate = c(1, interest.rate / vm),
"prod", "money"

)

gemMoney_3_3 235

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.moneyOwner),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(
NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "money"),
names.agent = c("firm", "laborer", "moneyOwner"),
numeraire = "prod"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

Take money as numeraire, that is, let the asset price of money equal to 1,
and let the interest per unit of money equal to the exogenous interest rate.
ge2 <- sdm2(

A = list(dst.firm, dst.laborer, dst.moneyOwner),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "money"),
names.agent = c("firm", "laborer", "moneyOwner"),
numeraire = c(money = interest.rate)

)

ge2$p
ge2$z
addmargins(ge2$D, 2)
addmargins(ge2$S, 2)
addmargins(ge2$DV)
addmargins(ge2$SV)

another model (Li, 2019, example 7.2)
interest.rate <- 0.25
vm <- 1 # the velocity of money

dst <- node_new("demand",
type = "FIN", rate = c(1, interest.rate / vm),
"cc1", "money"

)
node_set(dst, "cc1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),

236 gemNonexcludability

"prod", "lab"
)

ge <- sdm2(
A = list(dst, dst, dst),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(
NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "money"),
names.agent = c("firm", "laborer", "money.lender"),
numeraire = c(money = interest.rate)

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

gemNonexcludability Some Examples Illustrating Non-excludability

Description

Some examples illustrating non-rival goods with non-excludability.

Usage

gemNonexcludability(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemNonrivalry_Uncongestiblity

Examples

dst.firm0 <- node_new(
"non-rival services",
type = "Leontief", a = 1,
"labor"

)

gemNonexcludability 237

dst.consumer1 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.75, 0.25),
"serv1", "labor"

)

dst.consumer2 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.5, 0.5),
"serv2", "labor"

)

f.CD <- function(policy = NULL) {
ge <- sdm2(
A = list(dst.firm0, dst.consumer1, dst.consumer2),
B = matrix(c(

1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 60, 60

), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = policy

)

cat("ge$p:\n")
print(round(ge$p, 5))
cat("ge$z:\n")
print(round(ge$z, 5))
cat("ge$D:\n")
print(addmargins(round(ge$D, 5), 2))
cat("ge$S:\n")
print(addmargins(round(ge$S, 5), 2))

}

f.CD()

Suppose consumer 2 is a free rider.
policy.nonexcludability <- function(state) {

state$S[2, 3] <- state$S[2, 1]
state$S[2, 1] <- 0
state

}
f.CD(policy.nonexcludability)

238 gemNonexcludability

Assume that both consumers have the same linear utility
function x1 + 1.25 * x2, wherein x1 is the quantity
of service and x2 is the quantity of labor.

dst.firm1 <- node_new(
"serv1",
type = "Leontief", a = 0.8,
"labor"

)

dst.firm2 <- node_new(
"serv2",
type = "Leontief", a = 0.8,
"labor"

)

dst.consumer1 <- node_new(
"util",
type = "Leontief", a = 1,
"serv1"

)

dst.consumer2 <- node_new(
"util",
type = "Leontief", a = 1,
"serv2"

)

f.linear <- function(policy = NULL) {
ge <- sdm2(
A = list(

dst.firm0, dst.consumer1, dst.consumer2,
dst.firm1, dst.firm2

),
B = matrix(c(

1, 0, 0, 1, 0,
1, 0, 0, 0, 1,
0, 0, 0, 0, 0

), 3, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, 60, 60, NA, NA

), 3, 5, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm.public", "consumer1", "consumer2", "firm1", "firm2"),
numeraire = "labor",
policy = policy

)

cat("ge$p:\n")
print(round(ge$p, 5))

gemNonrivalry_Congestiblity 239

cat("ge$z:\n")
print(round(ge$z, 5))
cat("ge$D:\n")
print(addmargins(round(ge$D, 5), 2))
cat("ge$S:\n")
print(addmargins(round(ge$S, 5), 2))

}

f.linear()

Suppose consumer 2 is a free rider.
f.linear(policy.nonexcludability)

gemNonrivalry_Congestiblity

Some Examples Illustrating Congestible Non-rival Goods

Description

Some examples illustrating congestible non-rival goods (or services).

Usage

gemNonrivalry_Congestiblity(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemNonrivalry_Uncongestiblity

Examples

The firm supplies non-rival services.
dst.firm <- node_new(

"non-rival services",
type = "Leontief", a = 1,
"labor"

)

dst.consumer1 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.75, 0.25),
"serv1", "labor"

)

240 gemNonrivalry_Congestiblity

dst.consumer2 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.5, 0.5),
"serv2", "labor"

)

dst.consumer3 <- node_new(
"util",
type = "SCES", es = 1,
alpha = 1, beta = c(0.1, 0.9),
"serv3", "labor"

)

efficient.coef <- 0.6 # 0.8, 0.7

ge <- sdm2(
A = list(
dst.firm, dst.firm, dst.firm, dst.firm,
dst.consumer1, dst.consumer2, dst.consumer3

),
B = matrix(c(

1, 1, 0, efficient.coef, 0, 0, 0,
1, 0, 1, efficient.coef, 0, 0, 0,
0, 1, 1, efficient.coef, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0

), 4, 7, TRUE),
S0Exg = {

tmp <- matrix(NA, 4, 7)
tmp[4, 5:7] <- 100
tmp

},
names.commodity = c(paste0("serv", 1:3), "labor"),
names.agent = c(paste0("firm", 1:4), paste0("consumer", 1:3)),
numeraire = "labor"

)

ge$p
round(ge$z, 5)
round(ge$D, 5)
round(ge$S, 5)

##
efficient.coef <- 0.2

ge <- sdm2(
A = list(

dst.firm, dst.firm, dst.firm,
dst.consumer1, dst.consumer2, dst.consumer3

),
B = matrix(c(

1, efficient.coef, 0, 0, 0, 0,
1, efficient.coef, 0, 0, 0, 0,

gemNonrivalry_Congestiblity 241

0, efficient.coef, 0.5, 0, 0, 0,
0, 0, 0, 0, 0, 0

), 4, 6, TRUE),
S0Exg = {

tmp <- matrix(NA, 4, 6)
tmp[4, 4:6] <- 100
tmp

},
names.commodity = c(paste0("serv", 1:3), "labor"),
names.agent = c(paste0("firm", 1:3), paste0("consumer", 1:3)),
numeraire = "labor"

)

ge$p
round(ge$z, 5)
round(ge$D, 5)
round(ge$S, 5)

congested land services.
efficient.coef <- 0.6 # 0.8, 0.7

dst.firm <- node_new(
"non-rival services",
type = "Leontief", a = 1,
"land"

)

ge <- sdm2(
A = list(

dst.firm, dst.firm, dst.firm, dst.firm,
dst.consumer1, dst.consumer2, dst.consumer3

),
B = matrix(c(

1, 1, 0, efficient.coef, 0, 0, 0,
1, 0, 1, efficient.coef, 0, 0, 0,
0, 1, 1, efficient.coef, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0

), 5, 7, TRUE),
S0Exg = {

tmp <- matrix(NA, 5, 7)
tmp[4, 5:7] <- 55
tmp[5, 5:7] <- 45
tmp

},
names.commodity = c(paste0("serv", 1:3), "labor", "land"),
names.agent = c(paste0("firm", 1:4), paste0("consumer", 1:3)),
numeraire = "labor"

)

ge$p
round(ge$z, 5)
round(ge$D, 5)

242 gemNonrivalry_Uncongestiblity

round(ge$S, 5)

##
efficient.coef <- 0.2

ge <- sdm2(
A = list(
dst.firm, dst.firm, dst.firm,
dst.consumer1, dst.consumer2, dst.consumer3

),
B = matrix(c(

1, efficient.coef, 0, 0, 0, 0,
1, efficient.coef, 0, 0, 0, 0,
0, efficient.coef, 0.5, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0

), 5, 6, TRUE),
S0Exg = {

tmp <- matrix(NA, 5, 6)
tmp[4, 4:6] <- 55
tmp[5, 4:6] <- 45
tmp

},
names.commodity = c(paste0("serv", 1:3), "labor", "land"),
names.agent = c(paste0("firm", 1:3), paste0("consumer", 1:3)),
numeraire = "labor"

)

ge$p
round(ge$z, 5)
round(ge$D, 5)
round(ge$S, 5)

gemNonrivalry_Uncongestiblity

Some Examples Illustrating Uncongestible Non-rival Goods

Description

Some examples illustrating (uncongestible) non-rival goods (or services), Lindahl prices and the
uniform price. In general equilibrium models, non-rival services can be regarded as personalized
services, which are joint products of a production process (see Mas-Colell, Whinston, and Green,
1995, section 16.G).

Usage

gemNonrivalry_Uncongestiblity(...)

gemNonrivalry_Uncongestiblity 243

Arguments

... arguments to be passed to the function sdm2.

References

Mas-Colell, Andreu and Whinston, Michael Dennis and Green, Jerry R. (1995, ISBN: 0195073401)
Microeconomic Theory. Oxford University Press (New York).

Examples

The firm supplies non-rival services.
dst.firm <- node_new(

"non-rival services",
type = "Leontief", a = 1,
"labor"

)

dst.consumer1 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.75, 0.25),
"serv1", "labor"

)

dst.consumer2 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.5, 0.5),
"serv2", "labor"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(

1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 60, 60

), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor"

)

ge$p # Lindahl prices
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

244 gemNonrivalry_Uncongestiblity

addmargins(ge$DV)

Computing the uniform price of the non-rival services
by transfer payment between consumers.
ge <- sdm2(

A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 60, 60

), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = function(A, state) {

A[[1]]$last.s is the previous labor supply of consumer1.
if (is.null(A[[1]]$last.s)) A[[1]]$last.s <- 60

p <- state$p / state$p[3]
last.DV <- dg(p) %*% state$last.A %*% dg(state$last.z)
transfer.payment <- last.DV[1, 2] - mean(c(last.DV[1, 2], last.DV[2, 3]))

A[[1]]$last.s <- state$S[3, 2] <- A[[1]]$last.s *
ratio_adjust((60 + transfer.payment) / A[[1]]$last.s, 0.2)

state$S[3, 3] <- 120 - state$S[3, 2]

state
}

)

Taking transfer payment into account, the uniform price of the non-rival services is 0.5.
ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)

ge2 <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(

1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 80, 40

), 3, 3, TRUE),

gemNonrivalry_Uncongestiblity 245

names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor"

)

ge2$p
addmargins(ge2$D, 2)
addmargins(ge2$S, 2)
addmargins(ge2$DV)

Calculate a stationary state with price regulation.
Both services have the same price and service 2 is oversupplied.
pcss <- sdm2(

A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(

1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 60, 60

), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = function(state) {

state$p[2] <- state$p[1]
state

},
maxIteration = 1,
numberOfPeriods = 200,
depreciationCoef = 0,
ts = TRUE

)

pcss$p
addmargins(pcss$D, 2)
addmargins(pcss$S, 2)
matplot(pcss$ts.q, type = "l")
matplot(pcss$ts.z, type = "l")
matplot(pcss$ts.p, type = "l")

##
pcss <- sdm2(

A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(

1, 0, 0,
1, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

246 gemOLGF_OneFirm

NA, NA, NA,
NA, NA, NA,
NA, 50, 50

), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = list(

function(state) {
state$p[1:2] <- sum(state$p[1:2] * c(0.8, 0.2))
state

},
makePolicyMeanValue()

),
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE

)

pcss$p
addmargins(pcss$D, 2)
addmargins(pcss$S, 2)
addmargins(pcss$DV)
addmargins(pcss$SV)
matplot(pcss$ts.q, type = "l")
matplot(pcss$ts.z, type = "l")
matplot(pcss$ts.p, type = "l")

gemOLGF_OneFirm Overlapping Generations Financial Sequential Models with One Firm

Description

Some examples of overlapping generations financial sequential models with one firm.
When there is a population growth, we will take the security-split assumption (see gemOLGF_PureExchange).

Usage

gemOLGF_OneFirm(...)

Arguments

... arguments to be passed to the function sdm2.

References

Samuelson, P. A. (1958) An Exact Consumption-Loan Model of Interest with or without the Social
Contrivance of Money. Journal of Political Economy, vol. 66(6): 467-482.
de la Croix, David and Philippe Michel (2002, ISBN: 9780521001151) A Theory of Economic
Growth: Dynamics and Policy in Overlapping Generations. Cambridge University Press.

gemOLGF_OneFirm 247

See Also

gemOLG_PureExchange gemOLG_TimeCircle

Examples

an OLGF economy with a firm and two-period-lived consumers
beta.firm <- c(1 / 3, 2 / 3)
the population growth rate
GRExg <- 0.03
saving.rate <- 0.5
ratio.saving.consumption <- saving.rate / (1 - saving.rate)

dst.firm <- node_new(
"prod",
type = "CD", alpha = 5,
beta = beta.firm,
"lab", "prod"

)

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption),
"prod", "secy" # security, the financial instrument

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(
dst.firm, dst.age1, dst.age2

),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 1, NA,
NA, NA, 1

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "secy"),
names.agent = c("firm", "age1", "age2"),
numeraire = "lab",
GRExg = GRExg,
maxIteration = 1,
ts = TRUE

248 gemOLGF_OneFirm

)

ge$p
matplot(ge$ts.p, type = "l")
matplot(growth_rate(ge$ts.z), type = "l") # GRExg
addmargins(ge$D, 2) # the demand matrix of the current period
addmargins(ge$S, 2) # the supply matrix of the current period
addmargins(ge$S * (1 + GRExg), 2) # the supply matrix of the next period
addmargins(ge$DV)
addmargins(ge$SV)

Suppose consumers consume product and labor (i.e. service) and
age1 and age2 may have different period utility functions.
dst.age1 <- node_new(

"util",
type = "FIN",
rate = c(1, ratio.saving.consumption),
"cc1", "secy" # security, the financial instrument

)
node_set(dst.age1, "cc1",

type = "Leontief",
a = c(0.5, 0.5),
"prod", "lab"

)
node_plot(dst.age1)

dst.age2 <- node_new("util",
type = "Leontief",
a = c(0.2, 0.8),
"prod", "lab"

)

ge <- sdm2(
A = list(
dst.firm, dst.age1, dst.age2

),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 1, NA,
NA, NA, 1

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "secy"),
names.agent = c("firm", "age1", "age2"),
numeraire = "lab",
GRExg = GRExg,
priceAdjustmentVelocity = 0.05

)

gemOLGF_OneFirm 249

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

Aggregate the above consumers into one infinite-lived consumer,
who always spends the same amount on cc1 and cc2.
dst.consumer <- node_new("util",

type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"cc1", "cc2"

)
node_set(dst.consumer, "cc1",

type = "Leontief",
a = c(0.5, 0.5),
"prod", "lab"

)
node_set(dst.consumer, "cc2",

type = "Leontief",
a = c(0.2, 0.8),
"prod", "lab"

)

ge <- sdm2(
A = list(
dst.firm, dst.consumer

),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
GRExg = GRExg,
priceAdjustmentVelocity = 0.05

)

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

an OLGF economy with a firm and two-period-lived consumers
Suppose each consumer has a Leontief-type utility function min(c1, c2/a).
beta.firm <- c(1 / 3, 2 / 3)
the population growth rate, the equilibrium interest rate and profit rate

250 gemOLGF_OneFirm

GRExg <- 0.03
rho <- 1 / (1 + GRExg)
a <- 0.9

dst.firm <- node_new(
"prod",
type = "CD", alpha = 5,
beta = beta.firm,
"lab", "prod"

)

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = a * rho),
"prod", "secy" # security, the financial instrument

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(
dst.firm, dst.age1, dst.age2

),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 1, NA,
NA, NA, 1

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "secy"),
names.agent = c("firm", "age1", "age2"),
numeraire = "lab",
GRExg = GRExg,
maxIteration = 1,
ts = TRUE

)

ge$p
matplot(ge$ts.p, type = "l")
matplot(growth_rate(ge$ts.z), type = "l") # GRExg
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

gemOLGF_OneFirm 251

the corresponding time-cycle model
n <- 5 # the number of periods, consumers and firms.
S <- matrix(NA, 2 * n, 2 * n)

S.lab.consumer <- diag((1 + GRExg)^(0:(n - 1)), n)
S[(n + 1):(2 * n), (n + 1):(2 * n)] <- S.lab.consumer

B <- matrix(0, 2 * n, 2 * n)
B[1:n, 1:n] <- diag(n)[, c(2:n, 1)]
B[1, n] <- rho^n

dstl.firm <- list()
for (k in 1:n) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 5,
beta = beta.firm,
paste0("lab", k), paste0("prod", k)

)
}

dstl.consumer <- list()
for (k in 1:(n - 1)) {

dstl.consumer[[k]] <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = a * rho),
paste0("prod", k), paste0("prod", k + 1)

)
}

dstl.consumer[[n]] <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = a * rho),
paste0("prod", n), "cc1"

)
node_set(dstl.consumer[[n]], "cc1",

type = "Leontief", a = rho^n, # a discounting factor
"prod1"

)

ge2 <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S,
names.commodity = c(paste0("prod", 1:n), paste0("lab", 1:n)),
names.agent = c(paste0("firm", 1:n), paste0("consumer", 1:n)),
numeraire = "lab1",
policy = makePolicyMeanValue(30),
maxIteration = 1,
numberOfPeriods = 600,

252 gemOLGF_PureExchange

ts = TRUE
)

ge2$p
growth_rate(ge2$p[1:n]) + 1 # rho
growth_rate(ge2$p[(n + 1):(2 * n)]) + 1 # rho
ge2$D

gemOLGF_PureExchange Overlapping Generations Financial Sequential Models for Pure Ex-
change Economies

Description

Some examples of overlapping generations sequential models with security for pure exchange
economies.

In these examples, a security (e.g., fiat money, public bond, shares of a firm, etc) serves as a means
of saving (see Samuelson, 1958). Consumers use these securities to transfer value across time,
enabling intertemporal allocation of resources.

Here financial demand structure trees are used, which contain financial nodes. A financial demand
structure tree reflects the demand structure of a consumer who has a demand for financial instru-
ments.

When experiencing population growth, we adopt the security-split assumption. Specifically, we
assume that in each period, the security undergoes a split similar to a stock split, with the quantity
of the security growing at a rate equal to the population growth rate. Obviously, this assumption
will not affect the calculation results essentially. And with this assumption, the equilibrium price
vector can keep constant in each period, and the nominal rates of profit and interest will equal the
real rates of profit and interest (i.e. the population growth rate). In contrast, in the time circle model
the nominal rates of profit and interest equal zero and the real rates of profit and interest equal the
population growth rate.

Usage

gemOLGF_PureExchange(...)

Arguments

... arguments to be passed to the function sdm2.

Note

As can be seen from the first example below, in a pure exchange economy with two-period-lived
consumers, if the young (i.e., age 1) has labor and the old (i.e., age 2) does not, then the optimal
steady-state allocation can be obtained by introducing securities as a store of value.

gemOLGF_PureExchange 253

However, if the old (i.e., age 2) has 1 unit of labor and the young (i.e., age 1) does not, then the
optimal steady-state allocation cannot be obtained by introducing securities as a store of value.
Therefore, we need to introduce the family system, or in other words, grant the young the right to
tax the old.

See Also

gemOLG_PureExchange

Examples

(A) An OLG pure exchange economy with two-period-lived consumers.
To simplify the analysis, we assume that the savings rate of the
young consumer is an exogenous value. The consumer's utility
function that corresponds to this savings rate can be constructed
based on the steady-state equilibrium results.

sr <- 0.5

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption <- sr / (1 - sr)),
"lab", "secy"

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"lab"

)

ge <- sdm2(
A = list(
dst.age1, dst.age2

),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 0,
0, 100

), 2, 2, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2"),
numeraire = "secy"

)

ge$p
ge$D
ge$DV
ge$S

##

254 gemOLGF_PureExchange

sr <- 0.375
dst.age1 <- node_new(

"util",
type = "FIN",
rate = c(1, ratio.saving.consumption <- sr / (1 - sr)),
"lab", "secy"

)

ge <- sdm2(
A = list(
dst.age1, dst.age2

),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

80, 20,
0, 100

), 2, 2, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2"),
numeraire = "secy"

)

ge$p
ge$D
ge$DV
ge$S

##
sr <- 0.4
dst.age1 <- node_new(

"util",
type = "FIN",
rate = c(1, ratio.saving.consumption <- sr / (1 - sr)),
"lab", "secy"

)

ge <- sdm2(
A = list(

dst.age1, dst.age2
),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 20,
0, 100

), 2, 2, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2"),
numeraire = "secy"

)

ge$p
ge$D
ge$DV

gemOLGF_PureExchange 255

ge$S

(B) The population growth and demographic dividend.
Suppose each consumer has a SCES intertemporal utility function.
gr.lab <- 0.03 # the growth rate of population and labor supply

share parameters of the SCES function
beta2 <- 0.4
beta1 <- 1 - beta2
es <- 0.5 # the elasticity of substitution in the SCES function

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = 0.1),
"lab", "secy",
p.lab.last = 1,
p.lab.ratio.predicted.last = 1,
ts.saving.rate = numeric(0)

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"lab"

)

ge <- sdm2(
A = list(
dst.age1, dst.age2

),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2"),
numeraire = "secy",
policy = list(function(time, A, state) {

state$S[1, 1] <- 100 * (1 + gr.lab)^time
p.lab.current <- state$p[1] / state$p[2]

lambda <- 0.6
p.lab.ratio.predicted <- p.lab.current / A[[1]]$p.lab.last * lambda +

A[[1]]$p.lab.ratio.predicted.last * (1 - lambda)
A[[1]]$p.lab.last <- p.lab.current
A[[1]]$p.lab.ratio.predicted.last <- p.lab.ratio.predicted

ratio.saving.consumption <- beta2 / beta1 * (p.lab.ratio.predicted)^(1 - es)
A[[1]]$rate <- c(1, ratio.saving.consumption)
A[[1]]$ts.saving.rate <- c(A[[1]]$ts.saving.rate, ratio.saving.consumption /

(1 + ratio.saving.consumption))

256 gemOLGF_PureExchange

state
}, policyMarketClearingPrice),
maxIteration = 1,
numberOfPeriods = 50,
ts = TRUE

)

matplot(growth_rate(ge$ts.p), type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
ge$p
dst.age1$rate[2] # beta2 / beta1 * (1 + gr.lab)^(es - 1)
dst.age1$p.lab.ratio.predicted.last

plot(dst.age1$ts.saving.rate, type = "o", pch = 20)
tail(dst.age1$ts.saving.rate,1) # beta2 / (beta2 + beta1 * (1 + gr.lab)^(1 - es))

(C) The basic overlapping generations (inefficient) exchange model.
Here the lab2 is regarded as a financial instrument (saving instrument).
See gemOLG_PureExchange.
dst.age1 <- node_new(

"util",
type = "FIN",
rate = c(1, ratio.totalSaving.consumption = 2),
"lab1", "lab2"

)

dst.age2 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = 1),
"lab1", "lab2"

)

ge <- sdm2(
A = list(dst.age1, dst.age2),
B = matrix(0, 2, 2),
S0Exg = matrix(c(

50, 50,
50, 0

), 2, 2, TRUE),
names.commodity = c("lab1", "lab2"),
names.agent = c("age1", "age2"),
numeraire = "lab1",
policy = function(time, state) {

pension <- (state$last.A[, 2] * state$last.z[2])[2]
if (time > 1) state$S[1, 2] <- 1 - pension
state

}
)

ge$p
ge$S

gemOLGF_PureExchange 257

ge$D
ge$DV

(D) the basic financial overlapping generations exchange model (see Samuelson, 1958).
Suppose each consumer has a utility function log(c1) + log(c2) + log(c3).
GRExg <- 0.03 # the population growth rate
rho <- 1 / (1 + GRExg)

dst.age1 <- node_new(
"util",
type = "FIN",
rate = {
saving.rate <- (2 - rho) / 3
c(1, ratio.saving.consumption = saving.rate / (1 - saving.rate))

},
"lab", "secy"

)

dst.age2 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = 1),
"lab", "secy"

)

dst.age3 <- node_new(
"util",
type = "Leontief", a = 1,
"lab"

)

ge <- sdm2(
A = list(dst.age1, dst.age2, dst.age3),
B = matrix(0, 2, 3),
S0Exg = matrix(c(

1 + GRExg, 1, 0,
0, 0.5, 0.5

), 2, 3, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2", "age3"),
numeraire = "lab",
policy = function(time, state) {

Assume that unsold public bond will be void.
last.Demand <- state$last.A %*% dg(state$last.z)
secy.holding <- prop.table(last.Demand[2,])
if (time > 1) {

state$S[2, 2:3] <- secy.holding[1:2]
}
state

}
)

ge$p

258 gemOLGF_PureExchange

ge$S
ge$D

(E) a pure exchange economy with three-period-lived consumers.
Suppose each consumer has a Leontief-type utility function min(c1, c2, c3).
GRExg <- 0.03 # the population growth rate
igr <- 1 + GRExg

dst.age1 <- node_new(
"util",
type = "FIN",
rate = {
saving.rate <- 1 / (1 + igr + igr^2)
c(1, ratio.saving.consumption = saving.rate / (1 - saving.rate))

},
"lab", "secy"

)

dst.age2 <- node_new(
"util",
type = "FIN",
rate = {

saving.rate <- 1 / (1 + igr)
c(1, ratio.saving.consumption = saving.rate / (1 - saving.rate))

},
"lab", "secy"

)

dst.age3 <- node_new(
"util",
type = "Leontief", a = 1,
"lab"

)

ge <- sdm2(
A = list(dst.age1, dst.age2, dst.age3),
B = matrix(0, 2, 3),
S0Exg = matrix(c(

1 + GRExg, 1, 0,
0, 0.5, 0.5

), 2, 3, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2", "age3"),
numeraire = "lab",
policy = function(time, state) {

Assume that unsold security will be void.
last.Demand <- state$last.A %*% dg(state$last.z)
secy.holding <- prop.table(last.Demand[2,])
if (time > 1) {

state$S[2, 2:3] <- secy.holding[1:2]
}
state

}

gemOLGF_TwoFirms 259

)

ge$p
ge$S
ge$D

Assume that the unsold security of age3 will be void.
The calculation results are the same as above.
ge <- sdm2(

A = list(dst.age1, dst.age2, dst.age3),
B = matrix(0, 2, 3),
S0Exg = matrix(c(
1 + GRExg, 1, 0,
0, 0.5, 0.5

), 2, 3, TRUE),
names.commodity = c("lab", "secy"),
names.agent = c("age1", "age2", "age3"),
numeraire = "lab",
policy = function(time, state, state.history) {

secy.unsold <- state.history$S[2, , time - 1] * (1 - state.history$q[time - 1, 2])
last.Demand <- state$last.A %*% dg(state$last.z)
secy.purchased <- last.Demand[2,]

if (time > 1) {
Assume that the unsold security of age3 will be void.
state$S[2, 2:3] <- prop.table(secy.purchased[1:2] + secy.unsold[1:2])

}
state

},
maxIteration = 1

)

ge$p
ge$S
ge$D

gemOLGF_TwoFirms Overlapping Generations Financial Sequential Models with Two
Firms

Description

Some examples of overlapping generations financial sequential models with two firms.

Usage

gemOLGF_TwoFirms(...)

260 gemOLGF_TwoFirms

Arguments

... arguments to be passed to the function sdm2.

See Also

gemOLGF_PureExchange

Examples

an example with two-period-lived consumers
dst.firm.corn <- node_new(

"corn",
type = "CD", alpha = 5,
beta = c(1 / 2, 1 / 2),
"iron", "lab"

)

dst.firm.iron <- node_new(
"iron",
type = "CD", alpha = 5,
beta = c(1 / 2, 1 / 2),
"iron", "lab"

)

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = 1),
"corn", "secy" # security, the financial instrument

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"corn"

)

ge <- sdm2(
A = list(

dst.firm.corn, dst.firm.iron, dst.age1, dst.age2
),
B = matrix(c(

1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 1, NA,
NA, NA, NA, 1

gemOLGF_TwoFirms 261

), 4, 4, TRUE),
names.commodity = c("corn", "iron", "lab", "secy"),
names.agent = c("firm.corn", "firm.iron", "age1", "age2"),
numeraire = "lab"

)

ge$p
ge$D
ge$DV
ge$S

an example with three-period-lived consumers
dst.age1$rate <- c(1, ratio.saving.consumption = 1 / 2)

dst.age3 <- Clone(dst.age2)

dst.age2 <- Clone(dst.age1)
dst.age2$rate <- c(1, ratio.saving.consumption = 1)

ge <- sdm2(
A = list(

dst.firm.corn, dst.firm.iron, dst.age1, dst.age2, dst.age3
),
B = matrix(c(

1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0

), 4, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, 1, 1, NA,
NA, NA, NA, 1, 1

), 4, 5, TRUE),
names.commodity = c("corn", "iron", "lab", "secy"),
names.agent = c("firm.corn", "firm.iron", "age1", "age2", "age3"),
numeraire = "lab",
policy = function(time, state) {

Assume that unsold security will be void.
last.Demand <- state$last.A %*% dg(state$last.z)
secy.holding <- prop.table(last.Demand[4,])
if (time > 1) {

state$S[4, 4:5] <- secy.holding[3:4]
}
state

}
)

ge$p
ge$D
ge$DV
ge$S

262 gemOLG_Basic

gemOLG_Basic Some Examples of Basic (Timeline) OLG Models with Production

Description

Some examples of basic (timeline) OLG models with production. In these models there are two
types of commodities (i.e., labor and product) and two types of economic agents (i.e., laborers
and firms). Laborers (i.e., consumers) live for two or three periods. These models can be easily
extended to include more types of commodities, consumers and firms, and to allow consumers to
live for more periods.

Usage

gemOLG_Basic(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

When beta.consumer[1]==0, beta.consumer[2:3]>0, labor.first[1]>0, labor.first[2:3]==0,
this model is actually the Diamond model. However, the division of periods is
slightly different from the Diamond model.
ng <- 15 # the number of generations
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.4 # the product (i.e. capital) share parameter of firms
beta.consumer <- c(0, 0.8, 0.2) # the share parameter of consumers
gr.laborer <- 0.03 # the population growth rate
labor.first <- c(100, 0, 0) # the labor supply of the first generation
labor.last <- 100 * (1 + gr.laborer)^((ng - 1):ng) # the labor supply of the last generation
y1 <- 8 # the initial product supply

f <- function() {
names.commodity <- c(paste0("prod", 1:(ng + 2)), paste0("lab", 1:(ng + 1)))
names.agent <- c(paste0("firm", 1:(ng + 1)), paste0("consumer", 1:ng))

n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng - 1)) {
S0Exg[paste0("lab", k:(k + 2)), paste0("consumer", k)] <- labor.first * (1 + gr.laborer)^(k - 1)
}
S0Exg[paste0("lab", ng:(ng + 1)), paste0("consumer", ng)] <- labor.last
S0Exg["prod1", "consumer1"] <- y1

gemOLG_Basic 263

B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng + 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.consumer <- list()
for (k in 1:ng) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("prod", k:(k + 2))

)
}

dstl.firm <- list()
for (k in 1:(ng + 1)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(beta.prod.firm, 1 - beta.prod.firm),
paste0("prod", k), paste0("lab", k)

)
}

ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
priceAdjustmentVelocity = 0.05

)

cat("ge$p:\n")
print(ge$p)
cat("ge$z:\n")
print(ge$z)
invisible(ge)

}

ge <- f()

the growth rates of prices
growth_rate(ge$p[paste0("prod", 1:ng)]) + 1
growth_rate(ge$p[paste0("lab", 1:ng)]) + 1
the steady-state growth rate of prices in the Diamond model
beta.consumer[3] * (1 - beta.prod.firm) / beta.prod.firm / (1 + gr.laborer)

the output-labor ratios
ge$z[paste0("firm", 1:ng)] / rowSums(ge$S)[paste0("lab", 1:ng)]

264 gemOLG_Basic

the steady-state output-labor ratio in the Diamond model
alpha.firm^(1 / (1 - beta.prod.firm)) * (beta.consumer[3] * (1 - beta.prod.firm) /

(1 + gr.laborer))^(beta.prod.firm / (1 - beta.prod.firm))

the captial-labor ratios
rowSums(ge$D[paste0("prod", 1:ng), paste0("firm", 1:ng)]) /

rowSums(ge$S[paste0("lab", 1:ng), paste0("consumer", 1:ng)])
the steady-state captial-labor ratio in the Diamond model
alpha.firm^(1 / (1 - beta.prod.firm)) * (beta.consumer[3] * (1 - beta.prod.firm)

/ (1 + gr.laborer))^(1 / (1 - beta.prod.firm))

##
ng <- 15
alpha.firm <- 2
beta.prod.firm <- 0.5
beta.consumer <- c(1, 1, 1) / 3
labor.first <- c(50, 50, 0)
labor.last <- c(50, 50)
y1 <- 8
gr.laborer <- 0
f()

Assume that consumers live for two periods and consume labor (i.e., leisure).
ng <- 10 # the number of generations
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.5 # the product (i.e. capital) share parameter of firms
beta.consumer <- prop.table(c(

lab1 = 1, lab2 = 1,
prod1 = 1, prod2 = 1

)) # the share parameter of consumers
labor <- c(100, 0) # the labor supply of each generation
y1 <- 8 # the initial product supply

names.commodity <- c(paste0("lab", 1:(ng + 1)), paste0("prod", 1:(ng + 1)))
names.agent <- c(paste0("consumer", 1:ng), paste0("firm", 1:ng))

n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:ng) {

S0Exg[paste0("lab", k:(k + 1)), paste0("consumer", k)] <- labor
}
if (labor[2] == 0) S0Exg[paste0("lab", ng + 1), paste0("consumer", ng)] <- labor[1]
S0Exg["prod1", "consumer1"] <- y1

B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:ng) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

gemOLG_Basic 265

dstl.consumer <- list()
for (k in 1:ng) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer, # prop.table(c(1e-5,1e-5,0.5,0.5)),
paste0("lab", k:(k + 1)), paste0("prod", k:(k + 1))

)
}

Assume that consumers live for three periods.
dstl.consumer <- list()
for (k in 1:(ng - 1)) {
dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 6, 6),
paste0("lab", k:(k + 2)), paste0("prod", k:(k + 2))
)
}
#
dstl.consumer[[ng]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 4, 4),
paste0("lab", ng:(ng + 1)), paste0("prod", ng:(ng + 1))
)

dstl.firm <- list()
for (k in 1:ng) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(1 - beta.prod.firm, beta.prod.firm),
paste0("lab", k), paste0("prod", k)

)
}

ge <- sdm2(
A = c(dstl.consumer, dstl.firm),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1"

)

ge$z
growth_rate(ge$p[paste0("prod", 1:ng)]) + 1
growth_rate(ge$p[paste0("lab", 1:ng)]) + 1
ge$p[paste0("prod", 1:ng)] / ge$p[paste0("lab", 1:ng)]

266 gemOLG_PrivateFirm

gemOLG_PrivateFirm Overlapping Generations Models with Private Firm

Description

Some examples of overlapping generations models with private firm. A public (i.e. publicly held)
firm exists permanently and operates independently. If a public firm ownership transfers between
generations, this transfer will be done through the exchange of shares. In contrast, here a private
firm is established by a consumer and only runs before she retires.

In the first example, there are some two-period-lived consumers and a private firm. Suppose age1
has a unit of labor and age2 has not. In each period age1 establishes a private firm and the firm gets
some labor as investment from age1 and will sell it in the market to buy some inputs for production.
In the next period, age2 (i.e. age1 in the previous period) gets the output of the firm. Age2 consumes
product and labor (i.e. service). Hence age1 and the firm can sell labor to age2 and buy product
from age2.

In the second example with three-period-lived consumers, there are two private firms (i.e. firm1
and firm2). In each period age1 establishes a new firm1 and age2 establishes a new firm2. Firm1
gets some labor as investment from age1 and firm2 gets some product and labor as investment from
age2. The output of firm1 belongs to age2 in the next period and the output of firm2 belongs to age3
in the next period. In each period age2 (i.e. age1 in the previous period) takes away the output of
firm1 and age3 (i.e. age2 in the previous period) takes away the output of firm2.

Usage

gemOLG_PrivateFirm(...)

Arguments

... arguments to be passed to the function sdm2.

References

Acemoglu, D. (2009, ISBN: 9780691132921) Introduction to Modern Economic Growth. Princeton
University Press.

See Also

gemOLGF_PureExchange

Examples

an example with a private firm and two-period-lived consumers
saving.rate <- 0.5
beta.consumer <- c(1 / 2, 1 / 2) # c(9 / 10, 1 / 10)

dst.firm <- node_new(
"prod",

gemOLG_PrivateFirm 267

type = "CD", alpha = 5,
beta = c(2 / 3, 1 / 3),
"prod", "lab"

)

dst.age1 <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
"prod", "lab"

)

dst.age2 <- Clone(dst.age1)

ge <- sdm2(
A = list(

dst.firm, dst.age1, dst.age2
),
B = matrix(c(

1, 0, 0,
0, 0, 0

), 2, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 1, NA

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "age1", "age2"),
numeraire = "lab",
policy = function(time, state) {

if (time > 1) {
supply.prod <- state$S[1, 1]
supply.lab <- state$S[2, 2]
state$S <- 0 * state$S
state$S[1, 3] <- supply.prod # age2 supplies prod.
state$S[2, 1] <- saving.rate * supply.lab # The firm gets investment from age1.
state$S[2, 2] <- (1 - saving.rate) * supply.lab

}
state

}
)

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

an example with two private firm and three-period-lived consumers
saving.rate.age1 <- 1 / 3
saving.rate.age2 <- 0.95

dst.firm1 <- dst.firm2 <- node_new(

268 gemOLG_PrivateFirm

"prod",
type = "CD", alpha = 5,
beta = c(2 / 3, 1 / 3),
"prod", "lab"

)

dst.age1 <- dst.age2 <- dst.age3 <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(

dst.firm1, dst.firm2, dst.age1, dst.age2, dst.age3
),
B = matrix(c(

1, 1, 0, 0, 0,
0, 0, 0, 0, 0

), 2, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, 1, 1, NA

), 2, 5, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm1", "firm2", "age1", "age2", "age3"),
numeraire = "lab",
policy = function(time, state) {

if (time > 1) {
state$S[1, 5] <- state$S[1, 2] # Age3 takes away the output of firm2.
state$S[1, 2] <- 0

Age2 takes away the output of firm1.
prod.age2 <- state$S[1, 1]
state$S[1, 1] <- 0
Age2 establishes a new firm2.
lab.age2 <- state$S[2, 4]
state$S[2, 2] <- lab.age2 * saving.rate.age2 # Firm2 sells labor.
state$S[1, 2] <- prod.age2 * saving.rate.age2 # Firm2 sells product.

state$S[2, 4] <- lab.age2 * (1 - saving.rate.age2) # Age2 sells labor.
state$S[1, 4] <- prod.age2 * (1 - saving.rate.age2) # Age2 sells product.

Age1 establishes a new firm1.
state$S[2, 1] <- state$S[2, 3] * saving.rate.age1 # Firm1 sells labor.
state$S[2, 3] <- state$S[2, 3] * (1 - saving.rate.age1) # Age1 sells labor.

}
state

}
)

ge$p
ge$z

gemOLG_PublicFirm 269

addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

gemOLG_PublicFirm Some Examples of (Timeline) OLG Models with Production and Public
Firms

Description

Some examples of (timeline) OLG models with production and public firms (see gemIntertempo-
ral_PublicFirm).

Usage

gemOLG_PublicFirm(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemIntertemporal_PublicFirm

Examples

ng <- 8 # the number of generations
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.5 # the product (i.e. capital) share parameter of firms
beta.consumer <- c(1 / 3, 1 / 3, 1 / 3) # the share parameter of consumers
gr.laborer <- 0 # the population growth rate
labor.first <- c(50, 50, 0) # the labor supply of the first generation
the labor supply of the last generation.
labor.last <- 50 * (1 + gr.laborer)^((ng - 1):(ng + 1))
y1 <- 100 # the initial product supply

policy.PublicFirm <- function(state) {
for (k in 1:(ng + 1)) {

state$S[k + 1, k + 1] <- state$S[k + 1, k]
state$S[k + 1, k] <- 0

}
state

}

f <- function(policy = policy.PublicFirm) {
names.commodity <- c(paste0("prod", 1:(ng + 2)), paste0("lab", 1:(ng + 2)))
names.agent <- c(paste0("firm", 1:(ng + 2)), paste0("consumer", 1:ng))

270 gemOLG_PublicFirm

n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng - 1)) {

S0Exg[paste0("lab", k:(k + 2)), paste0("consumer", k)] <-
labor.first * (1 + gr.laborer)^(k - 1)

}
S0Exg[paste0("lab", ng:(ng + 2)), paste0("consumer", ng)] <- labor.last
S0Exg["prod1", "firm1"] <- y1

B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng + 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.consumer <- list()
for (k in 1:ng) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("prod", k:(k + 2))

)
}

dstl.firm <- list()
for (k in 1:(ng + 2)) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(beta.prod.firm, 1 - beta.prod.firm),
paste0("prod", k), paste0("lab", k)

)
}

ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
priceAdjustmentVelocity = 0.05,
policy = policy

)

cat("ge$p:\n")
print(ge$p)
cat("ge$z:\n")
print(ge$z)

gemOLG_PureExchange 271

invisible(ge)
}

ge <- f()

the growth rates of prices
growth_rate(ge$p[paste0("prod", 1:ng)]) + 1
growth_rate(ge$p[paste0("lab", 1:ng)]) + 1

##
labor.first <- c(100 / 3, 100 / 3, 100 / 3) # the labor supply of the first generation
ge <- f()

##
tax.rate <- 0.1
policy.PublicFirm.Tax <- function(state) {

for (k in 1:(ng + 1)) {
state$S[k + 1, k + 1] <- state$S[k + 1, k] * (1 - tax.rate)
state$S[k + 1, k + ng] <- state$S[k + 1, k] * tax.rate
state$S[k + 1, k] <- 0

}
state

}

ge <- f(policy.PublicFirm.Tax)

##
beta.consumer <- c(1 / 2, 1 / 2, 0) # the share parameter of consumers
labor.first <- c(90, 10, 0) # the labor supply of the first generation
ge <- f()

gemOLG_PureExchange The Basic Overlapping Generations Pure Exchange Model (see
Samuelson, 1958)

Description

This is the basic overlapping generations pure exchange model.

Usage

gemOLG_PureExchange(...)

Arguments

... arguments to be passed to the function sdm2.

272 gemOLG_PureExchange

Details

As Samuelson (1958) wrote, break each life up into thirds. Agents get 50 units of payoff in period
1 and 50 units in period 2; in period 3 they retire and get nothing. Suppose there are three agents
in each period, namely age1, age2 and age3. In the next period, the present age1 will become age2,
the present age2 will become age3, the present age3 will disappear and a new age1 will appear. Let
c1, c2 and c3 denote the consumption of an agent in each period. Suppose the utility function is (c1
* c2 * c3)^(1 / 3), which is actually the same as log(c1) + log(c2) + log(c3). In each period, age1
and age2 will exchange their payoffs of the present period and the next period. Age2 will sell some
present payoff and buy some future payoff as pension, and for age1, it’s the opposite. Age3 simply
receives the pension and need not take part in the exchange. Hence only two agents participate in
the pure exchange economy. In the exchange process, the utility function of age1 is c1^(1 / 3) *
x2^(2 / 3), wherein x2 is the revenue of the next period, and the utility function of age2 is c2^(1 /
2) * c3^(1 / 2).

Note

We can also suppose only age2 gets payoff and age1 does not.

References

Samuelson, P. A. (1958) An Exact Consumption-Loan Model of Interest with or without the Social
Contrivance of Money. Journal of Political Economy, vol. 66(6): 467-482.

See Also

gemOLG_TimeCircle

Examples

the basic overlapping generations (inefficient) exchange model in sequential form.
dst.age1 <- node_new(

"util",
type = "CD", alpha = 1, beta = c(1 / 3, 2 / 3),
"payoff1", "payoff2"

)

dst.age2 <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 2, 1 / 2),
"payoff1", "payoff2"

)

policy.supply <- function(time, state) {
pension <- (state$last.A[, 2] * state$last.z[2])[2]
if (time > 1) state$S[1, 2] <- 50 - pension
state

}

ge <- sdm2(
A = list(dst.age1, dst.age2),
B = matrix(0, 2, 2),

gemOLG_PureExchange 273

S0Exg = matrix(c(
50, 50,
50, 0

), 2, 2, TRUE),
names.commodity = c("payoff1", "payoff2"),
names.agent = c("age1", "age2"),
numeraire = "payoff1",
policy = list(policy.supply, policyMarketClearingPrice),
maxIteration = 1,
numberOfPeriods = 20,
ts = TRUE

)

ge$p # c(1, 3 / 2 + sqrt(13) / 2)
ge$ts.p
ge$S
ge$D
ge$DV

the basic overlapping generations exchange model in timeline form.
m <- 15 # the number of generations
n <- m + 1 # the number of commodity kinds

names.commodity <- paste0("payoff", 1:n)
names.agent <- paste0("gen", 1:m)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:m) {

S0Exg[k:(k + 1), k] <- 50
}

dstl.consumer <- list()
for (k in 1:(m - 1)) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 3, 3),
paste0("payoff", k:(k + 2))

)
}

dstl.consumer[[m]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
paste0("payoff", m:(m + 1))

)

ge <- sdm2(
A = dstl.consumer,
B = matrix(0, n, m),
S0Exg = S0Exg,

274 gemOLG_PureExchange_Bank

names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

round(addmargins(ge$D, 2), 2)
round(addmargins(ge$S, 2), 2)
growth_rate(ge$p) + 1 # 3 / 2 + sqrt(13) / 2

Assume that in the timeline model, each consumer lives for four periods or more.
nl <- 4 # the number of life periods
payoff <- c(rep(100 / (nl - 1), nl - 1), 1e-10) # the lifetime payoffs
m <- 20 # the number of generations
n <- m + nl - 1 # the number of commodity kinds

names.commodity <- paste0("payoff", 1:n)
names.agent <- paste0("gen", 1:m)

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:m) {

S0Exg[k:(k + nl - 1), k] <- payoff
}

dstl.consumer <- list()
for (k in 1:m) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / nl, nl),
paste0("payoff", k:(k + nl - 1))

)
}

ge <- sdm2(
A = dstl.consumer,
B = matrix(0, n, m),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

round(addmargins(ge$D, 2), 2)
round(addmargins(ge$S, 2), 2)
growth_rate(ge$p) + 1

gemOLG_PureExchange_Bank

Overlapping Generations Pure Exchange Models with Bank

gemOLG_PureExchange_Bank 275

Description

Some examples of overlapping generations pure exchange models with bank. Under a pay-as-you-
go system, banks may only redistribute payoffs among consumers in each period. This is, in each
period a bank can get a part of payoff of age1 and pay it to age2 immediately. From the consumer’s
point of view, the bank converts the current period’s payoff into the next period’s payoff. Each
consumer only transacts with the bank, and she can assume that there are no other consumers.

Usage

gemOLG_PureExchange_Bank(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemOLG_PureExchange

Examples

an example with a two-period-lived consumer
dst.bank <- node_new(

"payoff2",
type = "Leontief", a = 1,
"payoff1"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 2, 1 / 2),
"payoff1", "payoff2"

)

ge <- sdm2(
A = list(dst.bank, dst.consumer),
B = matrix(c(

0, 0,
1, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, 100,
NA, NA

), 2, 2, TRUE),
names.commodity = c("payoff1", "payoff2"),
names.agent = c("bank", "consumer"),
numeraire = "payoff1"

)

ge$p
ge$D

276 gemOLG_PureExchange_Bank

ge$S

an example with a three-period-lived consumer.
dst.bank1 <- node_new(

"payoff2",
type = "Leontief", a = 1,
"payoff1"

)

dst.bank2 <- node_new(
"payoff3",
type = "Leontief", a = 1,
"payoff2"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(1 / 3, 1 / 3, 1 / 3),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.bank1, dst.bank2, dst.consumer),
B = matrix(c(
0, 0, 0,
1, 0, 0,
0, 1, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, 50,
NA, NA, 50,
NA, NA, NA

), 3, 3, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank1", "bank2", "consumer"),
numeraire = "payoff1"

)

ge$p
ge$S
ge$D

Assume that banks can earn interest through foreign investment.
dst.bank1$a <- 0.8
dst.bank2$a <- 0.8
ge <- sdm2(

A = list(dst.bank1, dst.bank2, dst.consumer),
B = matrix(c(

0, 0, 0,
1, 0, 0,
0, 1, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

gemOLG_StochasticSequential_3_3 277

NA, NA, 50,
NA, NA, 50,
NA, NA, NA

), 3, 3, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank1", "bank2", "consumer"),
numeraire = "payoff1"

)

ge$p
ge$S
ge$D
ge$DV

gemOLG_StochasticSequential_3_3

A 3-by-3 OLG Stochastic Sequential General Equilibrium Model

Description

A 3-by-3 OLG stochastic sequential general equilibrium model. There are two-period lived con-
sumers and a type of firm. There are three types of commodities, i.e. product, labor and security
(i.e. paper asset, store of value).

In each period there are a young (i.e. age1), an old (i.e. age2) and a firm. The young supplies a unit
of labor and the old supplies a unit of security.

Consumers only consume products. The young buys the security to save.

The firm inputs labor to produce the product. Productivity is random. The amount of labor required
to produce 1 unit of product is equal to 0.1 or 0.2, both of which occur with equal probability.

All labor is used in production. Therefore, it can be known that the product output in each period
(that is, the product supply in the next period) is equal to 10 or 5, that is to say, there are two natural
states with equal probability of occurrence in each period: good state and bad state. The states
are denoted as a and b, respectively. There are then four cases of natural states experienced by a
consumer in two periods: aa, bb, ab and ba.

Take the product as numeraire. The ratio of the security price in the latter period to the previous
period of the two periods is the gross rate of return. The gross rates of return on the savings of the
young in the four cases is denoted as Raa, Rbb, Rab and Rba, respectively.

The utility function of the young is -0.5*x1^-1 - 0.25*x2^-1 - 0.25*x3^-1, where x1, x2 and x3 are
the (expected) consumption in the current period and the next two natural states, respectively. It can
be seen that the intertemporal substitution elasticity and the inter-natural-state substitution elasticity
in the utility function are both 0.5, that is, the relative risk aversion coefficient is 2.

In each period, the young determines the saving rate based on the expected gross rates of return on
the security and the utility function.

In each period the young adopts the following anticipation method for the gross rate of return of the
savings: First, determine the two types of gross rates of return (Raa, Rab or Rbb, Rba) that need to

278 gemOLG_StochasticSequential_3_3

be predicted according to the current state. Both interest rates are then forecasted using the adaptive
expectation method.

A spot equilibrium path and a disequilibrium path will be calculated below. The spot equilibrium
path will converge to the stochastic equilibrium consisting of two equilibrium states, and the dise-
quilibrium paths not.

Usage

gemOLG_StochasticSequential_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a function to find the optimal saving rate given the expected gross rates of return.
osr <- function(Ra, Rb, es = 0.5, beta = c(0.5, 0.25, 0.25)) {

sigma <- 1 - 1 / es
((beta[2] * Ra^sigma / beta[1] + beta[3] * Rb^sigma / beta[1])^-es + 1)^-1

}

dst.firm <- node_new(
"prod",
type = "Leontief", a = 0.2,
"lab"

)

dst.age1 <-
node_new("util",

type = "FIN", rate = c(1, 1),
"prod", "secy",
last.price = c(1, 1, 1),
last.output = 10,
Raa = 1, Rbb = 1, Rab = 1, Rba = 1,
REbb = 1, REba = 1, REab = 1, REaa = 1,
sr.ts.1 = vector(),
sr.ts.2 = vector()

)

dst.age2 <-
node_new("util",

type = "Leontief", a = 1,
"prod"

)

policyStochasticTechnology <- function(time, A) {
A[[1]]$a <- sample(c(0.1, 0.2), 1)

}

policySaving <- function(time, A, state) {
output <- state$S[1, 1]

gemOLG_StochasticSequential_3_3 279

lambda <- 0.9

if (output < 8) {
A[[2]]$REba <- lambda * tail(A[[2]]$Rba, 1) + (1 - lambda) * A[[2]]$REba
A[[2]]$REbb <- lambda * tail(A[[2]]$Rbb, 1) + (1 - lambda) * A[[2]]$REbb

saving.rate <- osr(A[[2]]$REba, A[[2]]$REbb)
A[[2]]$sr.ts.1 <- c(A[[2]]$sr.ts.1, saving.rate)

}

if (output >= 8) {
A[[2]]$REaa <- lambda * tail(A[[2]]$Raa, 1) + (1 - lambda) * A[[2]]$REaa
A[[2]]$REab <- lambda * tail(A[[2]]$Rab, 1) + (1 - lambda) * A[[2]]$REab

saving.rate <- osr(A[[2]]$REaa, A[[2]]$REab)
A[[2]]$sr.ts.2 <- c(A[[2]]$sr.ts.2, saving.rate)

}

A[[2]]$rate <- c(1, saving.rate / (1 - saving.rate))
}

policyRecord <- function(time, A, state) {
last.p <- A[[2]]$last.price
p <- state$p / state$p[1]

last.output <- A[[2]]$last.output
output <- A[[2]]$last.output <- state$S[1, 1]

if ((last.output < 8) && (output < 8)) A[[2]]$Rbb <- c(A[[2]]$Rbb, p[3] / last.p[3])
if ((last.output < 8) && (output >= 8)) A[[2]]$Rba <- c(A[[2]]$Rba, p[3] / last.p[3])
if ((last.output >= 8) && (output < 8)) A[[2]]$Rab <- c(A[[2]]$Rab, p[3] / last.p[3])
if ((last.output >= 8) && (output >= 8)) A[[2]]$Raa <- c(A[[2]]$Raa, p[3] / last.p[3])

A[[2]]$last.price <- p
}

dstl <- list(dst.firm, dst.age1, dst.age2)

B <- matrix(c(
1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE)

S0Exg <- matrix(c(
NA, NA, NA,
NA, 1, NA,
NA, NA, 1

), 3, 3, TRUE)

a spot equilibrium path.

280 gemOLG_StochasticSequential_3_3

set.seed(1)
ge <- sdm2(

A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab", "secy"),
names.agent = c("firm", "age1", "age2"),
numeraire = "prod",
policy = list(
policyStochasticTechnology,
policySaving,
policyMarketClearingPrice,
policyRecord

),
z0 = c(5, 1, 1),
maxIteration = 1,
numberOfPeriods = 40,
ts = TRUE

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

a disequilibrium path.
set.seed(1)
de <- sdm2(

A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab", "secy"),
names.agent = c("firm", "age1", "age2"),
numeraire = "prod",
policy = list(

policyStochasticTechnology,
policySaving,
policyRecord

),
maxIteration = 1,
numberOfPeriods = 400,
ts = TRUE

)

matplot(de$ts.z, type = "o", pch = 20)
matplot(de$ts.p, type = "o", pch = 20)

an equilibrium model for solving the optimal saving
rate based on the expected gross rates of return.
Ra <- 1
Rb <- 0.4

ge <- sdm2(
A = function(state) {

a.bank <- c(1, 0, 0)
a.consumer <- CES_A(

sigma = (1 - 1 / 0.5), alpha = 1,
Beta = c(0.5, 0.25, 0.25), p = state$p

)

gemOLG_StochasticSequential_3_3 281

cbind(a.bank, a.consumer)
},
B = matrix(c(

0, 0,
Ra, 0,
Rb, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, 1,
NA, 0,
NA, 0

), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("bank", "consumer"),
numeraire = "payoff1",

)

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)

ge$z[1]
osr(Ra, Rb)

a pure exchange model.
dst.age1 <- node_new("util",

type = "FIN", rate = c(1, 1),
"payoff", "secy",
last.price = c(1, 1),
last.payoff = 1,
Rbb = 1, Rba = 1, Rab = 1, Raa = 1,
REbb = 1, REba = 1, REab = 1, REaa = 1,
sr.ts.1 = vector(),
sr.ts.2 = vector()

)

dst.age2 <- node_new("util",
type = "Leontief", a = 1,
"payoff"

)

policyStochasticSupply <- function(state) {
state$S[1, 1] <- sample(c(5, 10), 1)
state

}

policySaving <- function(time, A, state) {
payoff <- state$S[1, 1]

lambda <- 0.9
if (time >= 5) {

if (payoff == 5) {
A[[1]]$REba <- lambda * tail(A[[1]]$Rba, 1) + (1 - lambda) * A[[1]]$REba

282 gemOLG_StochasticSequential_3_3

A[[1]]$REbb <- lambda * tail(A[[1]]$Rbb, 1) + (1 - lambda) * A[[1]]$REbb

saving.rate <- osr(A[[1]]$REba, A[[1]]$REbb)
A[[1]]$sr.ts.1 <- c(A[[1]]$sr.ts.1, saving.rate)

}

if (payoff == 10) {
A[[1]]$REaa <- lambda * tail(A[[1]]$Raa, 1) + (1 - lambda) * A[[1]]$REaa
A[[1]]$REab <- lambda * tail(A[[1]]$Rab, 1) + (1 - lambda) * A[[1]]$REab

saving.rate <- osr(A[[1]]$REaa, A[[1]]$REab)
A[[1]]$sr.ts.2 <- c(A[[1]]$sr.ts.2, saving.rate)

}

A[[1]]$rate <- c(1, saving.rate / (1 - saving.rate))
}

}

policyRecord <- function(time, A, state) {
last.p <- A[[1]]$last.price
p <- state$p / state$p[1]

last.payoff <- A[[1]]$last.payoff
payoff <- state$S[1, 1]

if ((last.payoff == 5) && (payoff == 5)) A[[1]]$Rbb <- c(A[[1]]$Rbb, p[2] / last.p[2])
if ((last.payoff == 5) && (payoff == 10)) A[[1]]$Rba <- c(A[[1]]$Rba, p[2] / last.p[2])
if ((last.payoff == 10) && (payoff == 5)) A[[1]]$Rab <- c(A[[1]]$Rab, p[2] / last.p[2])
if ((last.payoff == 10) && (payoff == 10)) A[[1]]$Raa <- c(A[[1]]$Raa, p[2] / last.p[2])

A[[1]]$last.price <- p
A[[1]]$last.payoff <- state$S[1, 1]

}

set.seed(1)
ge <- sdm2(

A = list(dst.age1, dst.age2),
B = matrix(0, 2, 2),
S0Exg = matrix(c(
1, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("payoff", "secy"),
names.agent = c("age1", "age2"),
numeraire = "payoff",
policy = list(

policyStochasticSupply,
policySaving,
policyMarketClearingPrice,
policyRecord

),
maxIteration = 1,

gemOLG_StochasticSpotEquilibrium_3_3 283

numberOfPeriods = 40,
ts = TRUE

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)
dst.age1$last.payoff
dst.age1$last.price
dst.age1$Rbb

gemOLG_StochasticSpotEquilibrium_3_3

An Example Illustrating OLG Stochastic Spot Equilibrium Paths

Description

An example illustrating OLG stochastic spot equilibrium paths. The economy includes consumers
with a lifespan of two periods and a type of spot-trading firm (i.e., a spot-trading enterprise). The
economy features three types of commodities: products, labor, and public bonds, with the latter
serving as a means of storing value.

Consumers in the economy live for two periods: youth and old age. Consumers only consume the
product.

Young people save by purchasing public bonds. The savings rate of young consumers is an exoge-
nous variable. This savings rate determines how each young person’s income is distributed between
their youth and old age.

Young people supply a total of 100 units of labor each period; old people supply a total of 100 units
of public bonds each period.

The spot-trading enterprise operates independent of consumers, requiring products and labor for
production, with a production function of α

√
x1x2. Assume α follows a first-order autoregressive

process. The enterprise’s objective is to maximize output, without making forecasts for the future.

Usage

gemOLG_StochasticSpotEquilibrium_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

Note

The savings rate of the youth in the program is set to 0.5, meaning the savings-to-consumption ratio
is 1.

Public bonds are used as the numeraire.

The initial output (i.e., initial product supply) is set to 20 in the parameter z0.

284 gemOLG_StochasticSpotEquilibrium_3_3

Examples

set.seed(1)
dst.firm <- node_new(

"prod",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.age1 <- node_new(
"util",
type = "FIN",
rate = c(1, ratio.saving.consumption = 1),
"prod", "publicBond"

)

dst.age2 <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

policy.technology <- function(time, A) {
A[[1]]$alpha <- exp(0.95 * log(A[[1]]$alpha) +

rnorm(1, sd = 0.01))
}

set.seed(1)
ge <- sdm2(

A = list(
dst.firm, dst.age1, dst.age2

),
B = matrix(c(

1, 0, 0,
0, 0, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "publicBond"),
names.agent = c("firm", "age1", "age2"),
numeraire = "publicBond",
maxIteration = 1,
numberOfPeriods = 20,
policy = list(

policy.technology,
policyMarketClearingPrice

),
z0 = c(20, 1, 1),

gemOLG_TimeCircle 285

ts = TRUE
)

matplot(ge$ts.z, type = "o", pch = 20)

gemOLG_TimeCircle Time-Circle Models (Closed Loop Overlapping Generations Models)

Description

Some examples of time-circle models, which usually contain overlapping generations. When we
connect together the head and tail of time of a dynamic model, we get a time-circle model which
treats time as a circle of finite length instead of a straight line of infinite length. The (discounted)
output of the final period will enter the utility function and the production function of the first
period, which implies the influence mechanism of the past on the present is just like the influence
mechanism of the present on the future. A time-circle OLG model may be called a reincarnation
model.

In a time-circle model, time can be thought of as having no beginning and no end. And we can
assume all souls meet in a single market (see Shell, 1971), or there are implicit financial instruments
that facilitate transactions between adjacent generations.

As in the Arrow–Debreu approach, in the following examples with production, we assume that
firms operate independently and are not owned by consumers. That is, there is no explicit property
of firms as the firms do not make pure profit at equilibrium (constant return to scale) (see de la Croix
and Michel, 2002, page 292).

Usage

gemOLG_TimeCircle(...)

Arguments

... arguments to be passed to the function sdm2.

References

de la Croix, David and Philippe Michel (2002, ISBN: 9780521001151) A Theory of Economic
Growth: Dynamics and Policy in Overlapping Generations. Cambridge University Press.

Diamond, Peter (1965) National Debt in a Neoclassical Growth Model. American Economic Re-
view. 55 (5): 1126-1150.

Samuelson, P. A. (1958) An Exact Consumption-Loan Model of Interest with or without the Social
Contrivance of Money. Journal of Political Economy, vol. 66(6): 467-482.

Shell, Karl (1971) Notes on the Economics of Infinity. Journal of Political Economy. 79 (5):
1002–1011.

286 gemOLG_TimeCircle

See Also

gemOLG_PureExchange

Examples

a time-circle pure exchange economy with two-period-lived consumers.
In this example, each agent sells some payoff to the previous
generation and buys some payoff from the next generation.

Here np can tend to infinity.
np <- 4 # the number of economic periods, commodity kinds and generations

names.commodity <- c(paste0("payoff", 1:np))
names.agent <- paste0("gen", 1:np)

index.comm <- c(1:np, 1)
payoff <- c(100, 0) # the payoffs of lifetime
the exogenous supply matrix.
S0Exg <- matrix(0, np, np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

S0Exg[index.comm[k:(k + 1)], k] <- payoff
}

Suppose each consumer has a utility function log(c1) + log(c2).
beta.consumer <- c(0.5, 0.5)
index.comm <- c(1:np, 1)
dstl.consumer <- list()
for (k in 1:np) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("payoff", index.comm[k]), paste0("payoff", index.comm[k + 1])

)
}

ge <- sdm2(
A = dstl.consumer,
B = matrix(0, np, np),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

ge$p
ge$D
ge$S

Introduce population growth into the above pure exchange economy.
GRExg <- 0.03 # the population growth rate

gemOLG_TimeCircle 287

S0Exg <- S0Exg %*% diag((1 + GRExg)^(0:(np - 1)))
S0Exg[1, np] <- S0Exg[1, np] * (1 + GRExg)^-np

dstl.consumer[[np]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("payoff", np), "cc1"

)
node_set(dstl.consumer[[np]],

"cc1",
type = "Leontief", a = (1 + GRExg)^(-np), # a discounting factor
"payoff1"

)

ge2 <- sdm2(
A = dstl.consumer,
B = matrix(0, np, np),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

ge2$p
ge2$D
ge2$DV
ge2$S

a time-circle pure exchange economy with three-period-lived consumers
Suppose each consumer has a utility function log(c1) + log(c2) + log(c3).
See gemOLG_PureExchange.
np <- 5 # the number of economic periods, commodity kinds and generations

names.commodity <- c(paste0("payoff", 1:np))
names.agent <- paste0("gen", 1:np)

index.comm <- c(1:np, 1:2)
payoff <- c(50, 50, 0) # the payoffs of lifetime
the exogenous supply matrix.
S0Exg <- matrix(0, np, np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

S0Exg[index.comm[k:(k + 2)], k] <- payoff
}

dstl.consumer <- list()
for (k in 1:np) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 3, 3),
paste0("payoff", index.comm[k:(k + 2)])

)

288 gemOLG_TimeCircle

}

ge <- sdm2(
A = dstl.consumer,
B = matrix(0, np, np),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

ge$p
ge$D

Introduce population growth into the above pure exchange economy.
GRExg <- 0.03 # the population growth rate
df <- (1 + GRExg)^-np # a discounting factor

the exogenous supply matrix.
S0Exg <- matrix(0, np, np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

S0Exg[paste0("payoff", index.comm[k:(k + 2)]), paste0("gen", k)] <-
payoff * (1 + GRExg)^(k - 1)

}
S0Exg[paste0("payoff", 1:2), paste0("gen", np)] <-

S0Exg[paste0("payoff", 1:2), paste0("gen", np)] * df
S0Exg[paste0("payoff", 1), paste0("gen", np - 1)] <-

S0Exg[paste0("payoff", 1), paste0("gen", np - 1)] * df

dstl.consumer[[np - 1]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 3, 3),
paste0("payoff", (np - 1):(np + 1))

)
node_set(dstl.consumer[[np - 1]], paste0("payoff", np + 1),

type = "Leontief", a = df,
"payoff1"

)

dstl.consumer[[np]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = rep(1 / 3, 3),
paste0("payoff", np:(np + 2))

)
node_set(dstl.consumer[[np]], paste0("payoff", np + 1),

type = "Leontief", a = df,
"payoff1"

)
node_set(dstl.consumer[[np]], paste0("payoff", np + 2),

type = "Leontief", a = df,
"payoff2"

gemOLG_TimeCircle 289

)

ge2 <- sdm2(
A = dstl.consumer,
B = matrix(0, np, np),
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "payoff1"

)

ge2$p
growth_rate(ge2$p) + 1 # 1 / (1 + GRExg)
ge2$D
ge2$DV

a time-circle model with production and two-period-lived consumers
Suppose each consumer has a utility function log(c1) + log(c2).
np <- 5 # the number of economic periods, consumers and firms.
names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), paste0("consumer", 1:np))

index.comm <- c(1:np, 1)
labor.supply <- c(100, 0) # the labor supply of lifetime
the exogenous supply matrix.
S0Exg <- matrix(NA, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

S0Exg[paste0("lab", index.comm[k:(k + 1)]), paste0("consumer", k)] <- labor.supply
}

B <- matrix(0, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

B[paste0("prod", index.comm[k + 1]), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 5,
beta = c(1 / 3, 2 / 3),
paste0("lab", k), paste0("prod", k)

)
}

dstl.consumer <- list()
for (k in 1:np) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(1 / 2, 1 / 2),
paste0("prod", index.comm[k:(k + 1)])

)

290 gemOLG_TimeCircle

}

ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1"

)

ge$p
ge$D

Introduce population growth into the above economy.
GRExg <- 0.03 # the population growth rate
df <- (1 + GRExg)^-np # a discounting factor

for (k in 1:np) {
S0Exg[paste0("lab", index.comm[k:(k + 1)]), paste0("consumer", k)] <-
labor.supply * (1 + GRExg)^(k - 1)

}

B[1, np] <- df

dstl.consumer[[np]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(1 / 2, 1 / 2),
paste0("prod", np), "cc1"

)
node_set(dstl.consumer[[np]], "cc1",

type = "Leontief", a = df,
"prod1"

)

ge2 <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
policy = makePolicyMeanValue(30),
maxIteration = 1,
numberOfPeriods = 600,
ts = TRUE

)

ge2$p
growth_rate(ge2$p[1:np]) + 1 # 1 / (1 + GRExg)
growth_rate(ge2$p[(np + 1):(2 * np)]) + 1 # 1 / (1 + GRExg)
ge2$D

gemOLG_TimeCircle 291

ge2$DV

a time-circle model with production and one-period-lived consumers.
These consumers also can be regarded as infinite-lived agents maximizing
their per period utility subject to their disposable income per period.
np <- 5 # the number of economic periods, consumers and firms.
GRExg <- 0.03 # the population growth rate
df <- (1 + GRExg)^-np # a discounting factor
df <- 0.5

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), paste0("consumer", 1:np))

the exogenous supply matrix.
S0Exg <- matrix(NA, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

S0Exg[paste0("lab", k), paste0("consumer", k)] <- 100 * (1 + GRExg)^(k - 1)
}

B <- matrix(0, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", index.comm[k + 1]), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- df

beta.firm <- c(1 / 3, 2 / 3)
beta.consumer <- c(1 / 2, 1 / 2)

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = 5,
beta = beta.firm,
paste0("lab", k), paste0("prod", k)

)
}

dstl.consumer <- list()
for (k in 1:np) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("lab", k), paste0("prod", k)

)
}

ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,

292 gemOLG_TimeCircle

names.agent = names.agent,
numeraire = "lab1",
policy = makePolicyMeanValue(30),
maxIteration = 1,
numberOfPeriods = 600,
ts = TRUE

)

ge$p
growth_rate(ge$p[1:np]) + 1 # 1 / (1 + GRExg)
growth_rate(ge$p[(np + 1):(2 * np)]) + 1 # 1 / (1 + GRExg)
ge$D

the sequential form of the above model.
dst.firm <- node_new(

"prod",
type = "CD", alpha = 5,
beta = beta.firm,
"lab", "prod"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
"lab", "prod"

)

ge2 <- sdm2(
A = list(

dst.firm,
dst.consumer

),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100 / (1 + GRExg)

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(ge$S[1, np], 0),
GRExg = GRExg,
policy = policyMarketClearingPrice,
maxIteration = 1,
numberOfPeriods = 20,
ts = TRUE

)

ge2$p

gemOLG_TimeCircle 293

ge2$D
ge2$ts.z[, 1]
ge$z

a time-circle OLG model with production and three-period-lived consumers.
np <- 6 # the number of economic periods, consumers and firms
gr.laborer <- 0.03 # the population growth rate
df <- (1 + gr.laborer)^-np # a discounting factor
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.4 # the product (i.e. capital) share parameter of firms
beta.consumer <- c(0, 0.8, 0.2) # the share parameter of consumers
labor.supply <- c(100, 0, 0) # the labor supply of lifetime

f <- function() {
names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np))
names.agent <- c(paste0("firm", 1:np), paste0("consumer", 1:np))

index.comm <- c(1:np, 1:2)

the exogenous supply matrix.
S0Exg <- matrix(NA, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {
S0Exg[paste0("lab", index.comm[k:(k + 2)]), paste0("consumer", k)] <-

labor.supply * (1 + gr.laborer)^(k - 1)
}
S0Exg[paste0("lab", 1:2), paste0("consumer", np)] <-

S0Exg[paste0("lab", 1:2), paste0("consumer", np)] * df
S0Exg[paste0("lab", 1), paste0("consumer", np - 1)] <-

S0Exg[paste0("lab", 1), paste0("consumer", np - 1)] * df

B <- matrix(0, 2 * np, 2 * np, dimnames = list(names.commodity, names.agent))
for (k in 1:np) {

B[paste0("prod", index.comm[k + 1]), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- df

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(beta.prod.firm, 1 - beta.prod.firm),
paste0("prod", k), paste0("lab", k)

)
}

dstl.consumer <- list()
for (k in 1:np) {

dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,

294 gemOpenEconomy_4_4

paste0("prod", k:(k + 2))
)

}

node_set(dstl.consumer[[np - 1]], paste0("prod", np + 1),
type = "Leontief", a = df,
"prod1"

)

node_set(dstl.consumer[[np]], paste0("prod", np + 1),
type = "Leontief", a = df,
"prod1"

)
node_set(dstl.consumer[[np]], paste0("prod", np + 2),

type = "Leontief", a = df,
"prod2"

)

ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1"

)
invisible(ge)

}

ge <- f()
growth_rate(ge$p[1:np]) + 1 # 1 / (1 + gr.laborer)
growth_rate(ge$p[(np + 1):(2 * np)]) + 1 # 1 / (1 + gr.laborer)
ge$D
ge$DV

##
beta.consumer <- c(1 / 3, 1 / 3, 1 / 3) # the share parameter of consumers
labor.supply <- c(50, 50, 0) # the labor supply of lifetime
ge <- f()
ge$D
ge$DV

##
gr.laborer <- 0
df <- (1 + gr.laborer)^-np
beta.prod.firm <- 0.5
ge <- f()
ge$z

gemOpenEconomy_4_4 A 4-by-4 Open Economy with Bond

gemOpenEconomy_4_4 295

Description

Some examples of a 4-by-4 open economy with bond.

Usage

gemOpenEconomy_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an open economy with foreign bond (bond.ROW)
dst.firm <- node_new(

"output",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = 1,
"prod.CHN", "lab.CHN"

)

dst.consumer <- node_new(
"util",
type = "FIN", beta = c(0.8, 0.2),
"cc1", "bond.ROW"

)
node_set(dst.consumer, "cc1",

type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = 1,
"prod.CHN", "prod.ROW"

)

dst.FT <- node_new(
"prod.ROW",
type = "SCES", alpha = 1, beta = c(2/3, 1/3), es = 1,
"prod.CHN", "lab.CHN"

)

dst.ROW <- node_new(
"util",
type = "SCES", alpha = 1, beta = c(2/3, 1/3), es = 1,
"prod.CHN", "lab.CHN"

)

ge.open <- sdm2(
A = list(dst.firm, dst.consumer, dst.FT, dst.ROW),
B = matrix(c(
1, 0, 0, 0,
0, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,

296 gemOpenEconomy_4_4

NA, 300, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, 60

), 4, 4, TRUE),
names.commodity = c("prod.CHN", "lab.CHN", "prod.ROW", "bond.ROW"),
names.agent = c("firm", "consumer", "FT", "ROW"),
numeraire = "lab.CHN"

)

ge.open$p
addmargins(ge.open$D, 2)
addmargins(ge.open$S, 2)

a corresponding two-country model
dst.firm.CHN <- node_new(

"output",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = 1,
"prod.CHN", "lab.CHN"

)

dst.consumer.CHN <- node_new(
"util",
type = "FIN", beta = c(0.8, 0.2),
"cc1", "bond.ROW"

)
node_set(dst.consumer.CHN, "cc1",

type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = 1,
"prod.CHN", "prod.ROW"

)

dst.firm.ROW <- node_new(
"prod.ROW",
type = "SCES", alpha = 1, beta = c(0.25, 0.25, 0.5), es = 1,
"prod.CHN", "prod.ROW", "lab.ROW"

)

dst.consumer.ROW <- node_new(
"util",
type = "SCES", alpha = 1, beta = c(0.25, 0.25, 0.25, 0.25), es = 1,
"prod.CHN", "prod.ROW", "lab.CHN", "lab.ROW"

)

ge.TC <- sdm2(
A = list(dst.firm.CHN, dst.consumer.CHN, dst.firm.ROW, dst.consumer.ROW),
B = matrix(c(
1, 0, 0, 0,
0, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0

), 5, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,

gemOpenEconomy_4_4 297

NA, 300, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, 180,
NA, NA, NA, 60

), 5, 4, TRUE),
names.commodity = c("prod.CHN", "lab.CHN", "prod.ROW", "lab.ROW", "bond.ROW"),
names.agent = c("firm.CHN", "consumer.CHN", "firm.ROW", "consumer.ROW"),
numeraire = "lab.CHN"

)

ge.TC$p
addmargins(ge.TC$D, 2)
addmargins(ge.TC$S, 2)

an open economy with domestic bond (bond.CHN)
dst.firm <- node_new(

"output",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"prod.CHN", "lab.CHN"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod.CHN", "prod.ROW"

)

dst.FT <- node_new(
"prod.ROW",
type = "Leontief", a = 2,
"prod.CHN"

)

dst.ROW <- node_new(
"prod.ROW",
type = "Leontief", a = 1,
"bond.CHN"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer, dst.FT, dst.ROW),
B = matrix(c(

1, 0, 0, 0,
0, 0, 0, 0,
0, 0, 1, 1,
0, 0, 0, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, 1, NA, NA,
NA, NA, NA, NA,
NA, 0.2, NA, NA

), 4, 4, TRUE),

298 gemOpenEconomy_6_6

names.commodity = c("prod.CHN", "lab.CHN", "prod.ROW", "bond.CHN"),
names.agent = c("firm", "consumer", "FT", "ROW"),
numeraire = "lab.CHN"

)

ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)

gemOpenEconomy_6_6 A 6-by-6 Open Economy with Bond

Description

Some examples of a 6-by-6 open economy with bond.

Usage

gemOpenEconomy_6_6(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an open economy with foreign bond (bond.ROW)
dst.firm1 <- node_new(

"prod1.CHN",
type = "SCES", es=1, alpha = 1, beta = c(0.4, 0.4, 0.2),
"prod2.CHN", "prod2.ROW", "lab.CHN"

)

dst.firm2 <- node_new(
"prod2.CHN",
type = "SCES", es=1, alpha = 1, beta = c(0.4, 0.4, 0.2),
"prod2.CHN", "prod2.ROW", "lab.CHN"

)

dst.consumer <- node_new(
"util",
type = "FIN", beta = c(0.8, 0.2),
"cc1", "bond.ROW"

)
node_set(dst.consumer, "cc1",

type = "SCES", es=1, alpha = 1, beta = c(0.5, 0.5),
"prod1.CHN", "prod1.ROW"

)

gemOpenEconomy_6_6 299

dst.FT1 <- node_new(
"prod1.ROW",
type = "SCES", es=1, alpha = 1, beta = c(0.5, 0.5),
"prod1.CHN", "prod2.CHN"

)

dst.FT2 <- node_new(
"prod2.ROW",
type = "SCES", es=1, alpha = 1, beta = c(0.5, 0.5),
"prod1.CHN", "prod2.CHN"

)

dst.Bond <- node_new(
"util",
type = "SCES", es=1, alpha = 1, beta = c(0.5, 0.5),
"prod1.CHN", "prod2.CHN"

)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.consumer, dst.FT1, dst.FT2, dst.Bond),
B = matrix(c(
1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0

), 6, 6, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA,
NA, NA, 100, NA, NA, NA,
NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 20

), 6, 6, TRUE),
names.commodity = c(

"prod1.CHN", "prod2.CHN", "lab.CHN",
"prod1.ROW", "prod2.ROW", "bond.ROW"

),
names.agent = c("firm1", "firm2", "consumer", "FT1", "FT2", "Bond"),
numeraire = "lab.CHN"

)

ge$D
ge$p
ge$z

Suppose the domestic consumer owns some foreign product by borrowing.
ge <- sdm2(

A = list(dst.firm1, dst.firm2, dst.consumer, dst.FT1, dst.FT2, dst.Bond),
B = matrix(c(

1, 0, 0, 0, 0, 0,

300 gemPersistentTechnologicalProgress

0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0

), 6, 6, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA,
NA, NA, 100, NA, NA, NA,
NA, NA, 10, NA, NA, NA,
NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 20

), 6, 6, TRUE),
names.commodity = c(

"prod1.CHN", "prod2.CHN", "lab.CHN",
"prod1.ROW", "prod2.ROW", "bond.ROW"

),
names.agent = c("firm1", "firm2", "consumer", "FT1", "FT2", "Bond"),
numeraire = "lab.CHN"

)

ge$D
ge$p
ge$z

gemPersistentTechnologicalProgress

Some Examples of Spot Equilibrium Paths with Persistent Technologi-
cal Progress

Description

Some examples of spot equilibrium paths with persistent technological progress. Technological
progress starts from the fifth period.

Usage

gemPersistentTechnologicalProgress(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemCapitalAccumulation

gemPersistentTechnologicalProgress 301

Examples

a 2-by-2 example with labor-saving technological progress
tpr <- 0.03 # technological progress rate

dst.firm <- node_new(
"prod",
type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.5, 0.5),
"prod", "cc1"

)
node_set(dst.firm, "cc1",

type = "Leontief", a = 1,
"lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

dstl <- list(dst.firm, dst.consumer)

ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod",
ts = TRUE,
policy = list(

function(time, A) {
if (time >= 5) {

node_set(A[[1]], "cc1",
a = (1 + tpr)^-(time - 4)

)
}

},
policyMarketClearingPrice

),
numberOfPeriods = 40,
maxIteration = 1,
z0 = c(200, 100),
p0 = c(1, 1)

302 gemPersistentTechnologicalProgress

)

matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)

a 3-by-3 example with labor-saving technological progress
tpr <- 0.03 # technological progress rate

dst.manu <- node_new("manu",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.6, 0.4),
"manu", "cc1"

)
node_set(dst.manu, "cc1",

type = "Leontief", a = 1,
"lab"

)

dst.serv <- node_new("serv",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.4, 0.6),
"manu", "lab"

)

dst.consumer <- node_new("util",
type = "SCES", es = 0.5, alpha = 1,
beta = c(0.4, 0.6),
"manu", "serv"

)

dstl <- list(dst.manu, dst.serv, dst.consumer)

ge <- sdm2(
A = dstl,
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = {

S0Exg <- matrix(NA, 3, 3)
S0Exg[3, 3] <- 100
S0Exg

},
names.commodity = c("manu", "serv", "lab"),
names.agent = c("manu", "serv", "consumer"),
numeraire = c("manu"),
ts = TRUE,
policy = list(

function(time, A) {
if (time >= 5) {

node_set(A[[1]], "cc1",
a = (1 + tpr)^-(time - 4)

gemPersistentTechnologicalProgress 303

)
}

},
policyMarketClearingPrice

),
numberOfPeriods = 40,
maxIteration = 1,
z0 = c(160, 60, 100),
p0 = c(1, 1, 1)

)

matplot(ge$ts.z, type = "o", pch = 20)
matplot(growth_rate(ge$ts.z), type = "o", pch = 20)
matplot(growth_rate(ge$ts.p), type = "o", pch = 20)

a 3-by-3 example with labor-saving technological
progress and capital accumulation
dst.firm1 <- node_new(

"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"cap", "cc1"

)
node_set(dst.firm1, "cc1",

type="Leontief", a=1,
"lab")

dst.consumer <- dst.firm2 <- node_new(
"util",
type = "Leontief",
a= 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm1, dst.consumer, dst.firm2),
B = matrix(c(
1, 0, 0.5,
0, 0, 1,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 100,NA

), 3, 3, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "laborer","firm2"),
numeraire = "prod",
z0=c(400,200,400),
policy = list(

function(time, A) {
if (time >= 5) {

304 gemPureExchange

node_set(A[[1]],"cc1", a = (1 + 0.03)^-(time - 4))
}

},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 30,
ts=TRUE

)

matplot(growth_rate(ge$ts.z), type="l")

gemPureExchange Some Simple Pure Exchange Equilibrium Models

Description

Some simple pure exchange general equilibrium models.

Usage

gemPureExchange(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.consumer1 <- dst.consumer2 <- node_new("util",
type = "CD", alpha = 1, beta = c(0.5, 0.25, 0.25),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 3, 2),
S0Exg = matrix(c(

1, 1,
0, 2,
2, 2

), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("consumer1", "consumer2"),
numeraire = "payoff1"

)

ge$p
ge$D

gemPureExchange 305

##
dst.consumer2 <- node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.1, 0.4),
"payoff1", "payoff2", "payoff3"

)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 3, 2),
S0Exg = matrix(c(
1, 1,
0, 2,
2, 2

), 3, 2, TRUE),
names.commodity = c("payoff1", "payoff2", "payoff3"),
names.agent = c("consumer1", "consumer2"),
numeraire = "payoff1"

)

ge$p
ge$D

####
dst.consumer1 <- node_new("util",

type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"cc1", "cc2"

)
node_set(dst.consumer1, "cc2",

type = "CD", alpha = 1,
beta = c(0.2, 0.8),
"cc2.1", "cc2.2"

)
node_set(dst.consumer1, "cc1",

type = "Leontief",
a = c(0.5, 0.5),
"corn1", "iron1"

)

node_set(dst.consumer1, "cc2.1",
type = "Leontief", a = c(0.5, 0.5),
"corn2.1", "iron2.1"

)
node_set(dst.consumer1, "cc2.2",

type = "Leontief", a = c(0.5, 0.5),
"corn2.2", "iron2.2"

)

dst.consumer2 <- node_new("util",
type = "CD", alpha = 1,
beta = prop.table(c(

0.5 * c(1, 1),

306 gemQuasilinearPureExchange_2_2

0.5 * 0.2 * c(1, 1), 0.5 * 0.8 * c(1, 1)
)),
"corn1", "iron1", "corn2.1",
"iron2.1", "corn2.2", "iron2.2"

)

node_plot(dst.consumer1, TRUE)

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 6, 2),
S0Exg = matrix(c(

2, 2,
2, 2,
3, 2,
1, 2,
1, 2,
3, 2

), 6, 2, TRUE),
names.commodity = c(

"corn1", "iron1", "corn2.1",
"iron2.1", "corn2.2", "iron2.2"

),
names.agent = c("consumer1", "consumer2"),
numeraire = "corn1"

)

ge$D
ge$DV

gemQuasilinearPureExchange_2_2

A Pure Exchange Economy with a Quasilinear Utility Function

Description

An example of a pure exchange economy with a quasilinear utility function (Karaivanov, see the
reference).

Usage

gemQuasilinearPureExchange_2_2(
A,
Endowment = matrix(c(3, 4, 7, 0), 2, 2, TRUE),
policy = NULL

)

gemQuasilinearPureExchange_2_2 307

Arguments

A a demand structure tree list, a demand coefficient 2-by-2 matrix (alias demand
structure matrix) or a function A(state) which returns a 2-by-2 matrix (see sdm2).

Endowment a 2-by-2 matrix.

policy a policy function (see sdm2).

Details

Suppose there are only two goods (bananas and fish) and 2 consumers (Annie and Ben) in an
exchange economy. Annie has a utility function x_1^(1/3) * x_2^(2/3) where x_1 is the amount of
fish she eats and x_2 is the amount of bananas she eats. Annie has an endowment of 3 kilos of fish
and 7 bananas. Ben has a utility function x_1 + 1.5 * log(x_2) and endowments of 4 kilos of fish
and 0 bananas. Assume the price of bananas is 1. See the reference for more details.

Value

A general equilibrium.

References

http://www.sfu.ca/~akaraiva/CE_example.pdf

Examples

demand_consumer2 <- function(w, p) {
QL_demand(w = w, p = p, alpha = 1.5, type = "log")

}

A <- function(state) {
a1 <- CD_A(1, rbind(1 / 3, 2 / 3), state$p)
a2 <- demand_consumer2(state$w[2], state$p)
cbind(a1, a2)

}

ge.mat <- gemQuasilinearPureExchange_2_2(A = A)
ge.mat

Use a dstl and a policy function to compute the general equilibrium above.
dst.consumer1 <- node_new("util",

type = "CD", alpha = 1, beta = c(1 / 3, 2 / 3),
"fish", "banana"

)
dst.consumer2 <- node_new("util",

type = "Leontief", a = c(1, 1),
"fish", "banana"

)

dstl <- list(dst.consumer1, dst.consumer2)

policy.quasilinear <- function(A, state) {

308 gemQuasilinearPureExchange_2_2

wealth <- t(state$p) %*% state$S
A[[2]]$a <- demand_consumer2(wealth[2], state$p)

}

ge.dstl <- gemQuasilinearPureExchange_2_2(
A = dstl,
policy = policy.quasilinear

)
ge.dstl

Another example. Now Ben has a utility function x_1 + sqrt(x_2).
demand_consumer2 <- function(w, p) {

QL_demand(w = w, p = p, alpha = 1, beta = 0.5, type = "power")
}

A <- function(state) {
a1 <- CD_A(1, rbind(1 / 3, 2 / 3), state$p)
a2 <- demand_consumer2(state$w[2], state$p)
cbind(a1, a2)

}

ge.2_2 <- gemQuasilinearPureExchange_2_2(A = A)
ge.2_2

another computation method for the economy above
A <- function(state) {

a1 <- CD_A(1, rbind(1 / 3, 2 / 3, 0, 0), state$p)
a2 <- c(0, 0, 1, 0)
a3 <- c(1, 0, 0, 0) # firm 1
a4 <- CD_A(1, rbind(0, 1 / 2, 0, 1 / 2), state$p) # firm 2
cbind(a1, a2, a3, a4)

}

ge.4_4 <- sdm2(
A = A,
B = {

B <- matrix(0, 4, 4)
B[3, 3] <- 1
B[3, 4] <- 1
B

},
S0Exg = {

S0Exg <- matrix(NA, 4, 4)
S0Exg[1:2, 1] <- c(3, 7)
S0Exg[1:2, 2] <- c(4, 0)
S0Exg[4, 1:2] <- c(0, 1)
S0Exg

},
names.commodity = c("fish", "banana", "util2", "land"),
names.agent = c("Annie", "Ben", "firm1", "firm2"),
numeraire = "banana"

)
ge.4_4

gemQuasilinearPureExchange_2_2 309

another example
n.fish.demander <- 21
wealth <- 20 # the wealth (or income) of each fish demander
fish.supply <- 12
aggregare.demand <- function(p) {

result <- 0
for (alpha in seq(5, 15, length.out = n.fish.demander)) {
result <- result + QL_demand(w = wealth, p = p, alpha = alpha, beta = 1, type = "min")

}
result

}

ge <- sdm2(
A = function(state) {

a1 <- aggregare.demand(state$p / state$p[1])
a2 <- c(1, 0)
cbind(a1, a2)

},
B = matrix(0, 2, 2),
S0Exg = matrix(c(

n.fish.demander * wealth, 0,
0, fish.supply

), 2, 2, TRUE),
names.commodity = c("gold", "fish"),
names.agent = c("fish.demander", "fish.supplier"),
numeraire = "gold",
p0 = c(1, 1) # p0 = c(1, 9.25)

)

ge$p
ge$z
ge$D
ge$S

aggregare.demand.fish <- c()
p2.set <- seq(0, 16, 0.01)
for (p2 in p2.set) {

aggregare.demand.fish <- c(
aggregare.demand.fish,
aggregare.demand(c(1, p2))[2]

)
}

plot(aggregare.demand.fish,
p2.set,
xlab = "demand for fish", ylab = "price of fish", pch = 20

)
abline(v = fish.supply)
grid()
points(ge$D[2, 1], ge$p[2], pch = 8, col = "red")

310 gemResearchDevelopmentIntensity

gemResearchDevelopmentIntensity

Some Examples of Spot Equilibrium Paths Illustrating Research and
Development Intensity

Description

Some examples of spot equilibrium paths illustrating R&D intensity. R&D intensity of a firm is the
ratio of expenditures by the firm on R&D to the firm’s sales.

Usage

gemResearchDevelopmentIntensity(...)

Arguments

... arguments to be passed to the function sdm2.

Details

The first example contains two kinds of commodities (namely product and labor) and three eco-
nomic agents (namely a firm, an R&D center of the firm and a laborer). Since the R&D center
does not produce products, the R&D center is regarded as a consumer-type agent in the model. The
utility level of the R&D center (that is, the R&D level) will affect the technological progress rate of
the firm. In the model, the firm allocates part of its output to the R&D centers for sale according to
a given R&D intensity, which is equivalent to allocating part of the firm’s sales revenue to the R&D
center. Initially, the economy is in steady-state equilibrium without R&D activity. R&D activities
begin in the fifth period.

Value

A spot equilibrium path.

Examples

a 2-by-3 example.
RDIntensity <- 0.3
RDEffectivenessCoefficient <- 0.001

dst.firm <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "cc1"

)
node_set(dst.firm, "cc1",

type = "Leontief", a = 1,
"lab"

)

gemResearchDevelopmentIntensity 311

dst.RDCenter <- node_new(
"util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new(
"util",
type = "Leontief",
a = 1,
"prod"

)

a function calculating the rate of technological progress according to the level of R&D.
f.TPR <- function(RDLevel) RDEffectivenessCoefficient * RDLevel

f <- function() {
sdm2(
A = list(dst.firm, dst.RDCenter, dst.laborer),
B = matrix(c(

1, 0, 0,
0, 0, 0

), 2, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, 100

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "RDCenter", "laborer"),
numeraire = "prod",
z0 = c(200, 0, 100),
policy = list(

function(time, A, state) {
if (time >= 5) {

state$S[1, 2] <- state$S[1, 1] * RDIntensity
state$S[1, 1] <- state$S[1, 1] * (1 - RDIntensity)
last.a <- node_set(A[[1]], "cc1")$a
last.RDLevel <- state$last.z[2]
technology.progress.rate <- f.TPR(last.RDLevel)
node_set(A[[1]], "cc1", a = last.a / (1 + technology.progress.rate))

}

state
},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 50,
ts = TRUE

)
}

312 gemResearchDevelopmentIntensity

ge <- f()
matplot((ge$ts.z), type = "o", pch = 20)
ge$z

change the R&D intensity.
node_set(dst.firm, "cc1", a = 1)
RDIntensity <- 0.8
ge <- f()
matplot((ge$ts.z), type = "o", pch = 20)
ge$z

random rate of technological progress.
set.seed(1)
RDIntensity <- 0.3
node_set(dst.firm, "cc1", a = 1)
f.TPR <- function(RDLevel) max(0, rnorm(1, RDEffectivenessCoefficient * RDLevel,

sqrt(RDEffectivenessCoefficient * RDLevel)))
ge <- f()
matplot((ge$ts.z), type = "o", pch = 20)
ge$z

two firms with different R&D intensity.
node_set(dst.firm, "cc1", a = 1)
RDIntensity1 <- 0.1
RDIntensity2 <- 0.05
RDEffectivenessCoefficient <- 0.002

dst.firm2 <- Clone(dst.firm)
dst.RDCenter2 <- Clone(dst.RDCenter)
ge <- sdm2(

A = list(dst.firm, dst.RDCenter, dst.laborer, dst.firm2, dst.RDCenter2),
B = matrix(c(
1, 0, 0, 1, 0,
0, 0, 0, 0, 0

), 2, 5, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, 200, NA, NA

), 2, 5, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm1", "RDCenter1", "laborer", "firm2", "RDCenter2"),
numeraire = "prod",
z0 = c(200, 0, 200, 200, 0),
policy = list(

function(time, A, state) {
if (time >= 5) {

state$S[1, 2] <- state$S[1, 1] * RDIntensity1
state$S[1, 1] <- state$S[1, 1] * (1 - RDIntensity1)
last.a1 <- node_set(A[[1]], "cc1")$a
last.RDLevel1 <- state$last.z[2]
technology.progress.rate1 <- RDEffectivenessCoefficient * last.RDLevel1
node_set(A[[1]], "cc1", a = last.a1 / (1 + technology.progress.rate1))

gemResearchDevelopmentIntensity 313

state$S[1, 5] <- state$S[1, 4] * RDIntensity2
state$S[1, 4] <- state$S[1, 4] * (1 - RDIntensity2)
last.a2 <- node_set(A[[4]], "cc1")$a
last.RDLevel2 <- state$last.z[5]
technology.progress.rate2 <- RDEffectivenessCoefficient * last.RDLevel2
node_set(A[[4]], "cc1", a = last.a2 / (1 + technology.progress.rate2))

}

state
},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 50,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
ge$z

Assume that the R&D center is owned by the government and
receives revenue through taxation on firms.
The technologies developed by the R&D center are public goods.
node_set(dst.firm, "cc1", a = 1)
RDIntensity <- 0.1
RDEffectivenessCoefficient <- 0.002

dst.firm2 <- Clone(dst.firm)

ge <- sdm2(
A = list(dst.firm, dst.RDCenter, dst.laborer, dst.firm2),
B = matrix(c(

1, 0, 0, 1,
0, 0, 0, 0

), 2, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, 200, NA

), 2, 4, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm1", "RDCenter", "laborer", "firm2"),
numeraire = "prod",
z0 = c(200, 0, 200, 200),
policy = list(

function(time, A, state) {
if (time >= 5) {

last.RDLevel <- state$last.z[2]
technology.progress.rate <- RDEffectivenessCoefficient * last.RDLevel

state$S[1, 2] <- (state$S[1, 1] + state$S[1, 4]) * RDIntensity
state$S[1, 1] <- state$S[1, 1] * (1 - RDIntensity)
state$S[1, 4] <- state$S[1, 4] * (1 - RDIntensity)

314 gemRobinson_3_2

last.a1 <- node_set(A[[1]], "cc1")$a
node_set(A[[1]], "cc1", a = last.a1 / (1 + technology.progress.rate))

last.a2 <- node_set(A[[4]], "cc1")$a
node_set(A[[4]], "cc1", a = last.a2 / (1 + technology.progress.rate))

}

state
},
policyMarketClearingPrice

),
maxIteration = 1,
numberOfPeriods = 30,
ts = TRUE

)

matplot((ge$ts.z), type = "o", pch = 20)
ge$z

gemRobinson_3_2 A Robinson Crusoe Economy

Description

Compute the general equilibrium of a Robinson Crusoe economy.

Usage

gemRobinson_3_2(dstl, endowment)

Arguments

dstl the demand structure tree list.
endowment the endowment 3-vector. The endowment of the product is a non-negative num-

ber. The endowments of labor and land are positive numbers.

Details

A general equilibrium model with 3 commodities (i.e. product, labor, and land) and 2 agents (i.e. a
firm and a consumer). The numeraire is labor.

Value

A general equilibrium.

References

http://essentialmicroeconomics.com/ChapterY5/SlideChapter5-1.pdf

http://homepage.ntu.edu.tw/~josephw/MicroTheory_Lecture_11a_RobinsonCrusoeEconomy.pdf

gemRobinson_3_2 315

Examples

a general equilibrium model with 2 basic commodities (i.e. labor and land)
and 1 agent (see the first reference)
dst.Robinson <- node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)
node_set(dst.Robinson, "prod",

type = "CD", alpha = 8, beta = c(0.5, 0.5),
"lab", "land"

)

node_plot(dst.Robinson)

ge <- sdm2(
A = list(dst.Robinson),
names.commodity = c("lab", "land"),
names.agent = c("Robinson"),
B = matrix(0, 2, 1),
S0Exg = matrix(c(
12,
1

), 2, 1, TRUE),
numeraire = "lab"

)
ge

the same economy as above
dst.Robinson <- node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)
dst.firm <- node_new("output",

type = "CD", alpha = 8, beta = c(0.5, 0.5),
"lab", "land"

)

dstl <- list(dst.firm, dst.Robinson)

ge <- gemRobinson_3_2(dstl, endowment = c(0, 12, 1))
ge

another example (see the second reference)
dst.firm$alpha <- 1

ge <- gemRobinson_3_2(dstl, endowment = c(3, 144, 1))
ge

a Robinson Crusoe economy with labor and two types of land
dst.Robinson <- node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.5),

316 gemRobinson_3_2

"prod1", "prod2"
)
node_set(dst.Robinson, "prod1",

type = "CD", alpha = 1, beta = c(0.2, 0.8),
"lab", "land1"

)
node_set(dst.Robinson, "prod2",

type = "CD", alpha = 1, beta = c(0.8, 0.2),
"lab", "land2"

)
node_plot(dst.Robinson)

dstl <- list(dst.Robinson)

ge.3_1 <- sdm2(dstl,
names.commodity = c("lab", "land1", "land2"),
names.agent = c("Robinson"),
B = matrix(0, 3, 1),
S0Exg = matrix(c(

100,
100,
100

), 3, 1, TRUE),
numeraire = "lab"

)
ge.3_1

the same economy as above
ge.5_3 <- sdm2(

A = list(
dst.firm1 = node_new("output",

type = "CD", alpha = 1, beta = c(0.2, 0.8),
"lab", "land1"

),
dst.firm2 = node_new("output",

type = "CD", alpha = 1, beta = c(0.8, 0.2),
"lab", "land2"

),
dst.Robinson = node_new("util",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod1", "prod2"

)
),
names.commodity = c("prod1", "prod2", "lab", "land1", "land2"),
names.agent = c("firm1", "firm2", "Robinson"),
B = {

B <- matrix(0, 5, 3)
B[1, 1] <- B[2, 2] <- 1
B

},
S0Exg = {

S0Exg <- matrix(NA, 5, 3)
S0Exg[3:5, 3] <- 100

gemShortTermInvestment_2_3 317

S0Exg
},
numeraire = "lab"

)
ge.5_3

gemShortTermInvestment_2_3

Some Examples Illustrating Short-Term Investment

Description

Some examples illustrating short-term investment.

Usage

gemShortTermInvestment_2_3(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

an example with an exogenous investment rate
investment.rate <- 0.2
dst.firm <- node_new("output",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new("laborer.util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.investor <- node_new("investor.util",
type = "Leontief",
a = 1,
"prod"

)

dstl <- list(dst.firm, dst.laborer, dst.investor)

ge <- sdm2(
A = dstl,

318 gemSkill

B = diag(c(1, 0), 2, 3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100 * (1 - investment.rate), 100 * investment.rate

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer", "investor"),
numeraire = "prod"

)

addmargins(ge$D, 2)

an example with an exogenous investment level
dst.investor$current.investment.rate <- 0.5
investment.level <- 20

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.investor),
B = diag(c(1, 0), 2, 3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, 0

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer", "investor"),
numeraire = "prod",
policy = function(time, A, state) {

A[[3]]$current.investment.rate <- A[[3]]$current.investment.rate *
(investment.level / state$last.z[3])

state$S[2, 2] <- 100 * (1 - A[[3]]$current.investment.rate)
state$S[2, 3] <- 100 * A[[3]]$current.investment.rate
state

}
)

addmargins(ge$D, 2)

gemSkill Some General Equilibrium Models with Skill (i.e. Human Capital)

Description

Some general equilibrium models with skill (i.e. human capital).

Usage

gemSkill(...)

gemSkill 319

Arguments

... arguments to be passed to the function sdm2.

Examples

depreciation.rate <- 0.05 # the depreciation rate of skill
skill.density <- 10
relative.efficiency.coef <- 2
efficiency.coef <- skill.density * relative.efficiency.coef

dst.efficiency.unit <- node_new("efficiency unit",
type = "Leontief",
a = 1 / efficiency.coef,
"complex labor"

)

dst.firm <- node_new(
"product",
type = "SCES", alpha = 1,
beta = c(0.4, 0.6), es = 0.5,
"product", "labor"

)
node_set(dst.firm, "labor",

type = "SCES", alpha = 1,
beta = c(0.5, 0.5), es = 1.5,
"simple labor", dst.efficiency.unit

)

dst.school <- node_new(
"skill",
type = "Leontief",
a = c(0.1, 1, 0.1),
"product", "simple labor", dst.efficiency.unit

)

dst.complex.laborer <- node_new(
"complex labor",
type = "Leontief", a = c(skill.density, 1),
"skill", "simple labor"

)

dst.simple.laborer <- node_new(
"util",
type = "Leontief", a = 1,
"product"

)

ge <- sdm2(
A = list(dst.firm, dst.school, dst.complex.laborer, dst.simple.laborer),
B = matrix(c(

1, 0, 0, 0,
0, 1, skill.density * (1 - depreciation.rate), 0,

320 gemSkill

0, 0, 1, 0,
0, 0, 0, 0

), 4, 4, TRUE),
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[4, 4] <- 100
tmp

},
names.commodity = c("product", "skill", "complex labor", "simple labor"),
names.agent = c("firm", "school", "complex laborer", "simple laborer"),
numeraire = "simple labor",
policy = makePolicyMeanValue(50),
priceAdjustmentVelocity = 0.05,
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
matplot(ge$ts.p, type = "l")

Assumed that the amount of education and training purchased by laborers is
determined primarily by their preferences rather than their investment motives.
depreciation.rate <- 0.05
skill.density <- 10
relative.efficiency.coef <- 2
efficiency.coef <- skill.density * relative.efficiency.coef

dst.efficiency.unit <- node_new("efficiency unit",
type = "Leontief",
a = c(skill.density / efficiency.coef, 1 / efficiency.coef),
"skill service", "simple labor"

)

dst.firm <- node_new(
"product",
type = "SCES", alpha = 1,
beta = c(0.4, 0.6), es = 0.5,
"product", "labor"

)
node_set(dst.firm, "labor",

type = "SCES", alpha = 1,
beta = c(0.5, 0.5), es = 1.5,
"simple labor", dst.efficiency.unit

)

dst.school <- node_new(
"skill",
type = "Leontief",
a = c(0.1, 1, 0.1),

gemSpotEquilibriumPath_StickyDecisions 321

"product", "simple labor", dst.efficiency.unit
)

dst.laborer <- node_new(
"util",
type = "CD", alpha = 1,
beta = c(0.7887, 0.2113),
beta <- c(0.9, 0.1),
beta <- c(0.6, 0.4),
"product", "skill",
skill.stock = 0

)

ge <- sdm2(
A = list(dst.firm, dst.school, dst.laborer),
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE),
S0Exg = {

tmp <- matrix(NA, 4, 3)
tmp[4, 3] <- 100
tmp

},
names.commodity = c("product", "skill", "skill service", "simple labor"),
names.agent = c("firm", "school", "laborer"),
numeraire = "simple labor",
policy = function(A, state) {

last.D <- state$last.A %*% dg(state$last.z)
new.skill <- last.D[2, 3]
state$S[3, 3] <- A[[3]]$skill.stock <-

A[[3]]$skill.stock * (1 - depreciation.rate) + new.skill
state

},
priceAdjustmentVelocity = 0.05,
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
matplot(log(ge$ts.p), type = "l")

322 gemSpotEquilibriumPath_StickyDecisions

gemSpotEquilibriumPath_StickyDecisions

Some Examples of Spot Equilibrium Paths with Sticky Decisions

Description

Some examples of spot equilibrium paths with sticky decisions of a firm, that is, the firm sluggishly
adjusts its technology in response to price changes.

Under the assumption of (complete) rationality, economic agents will make decisions that are most
beneficial to them based on the information they have. If the information does not change, then
the decision will not change. However, under the assumption of bounded rationality, the decisions
made by economic agents may not be optimal. They may follow some simple rules-of-thumb,
and might adjust their previous decisions sluggishly according to the changes in information, even
though they have the capability to adjust flexibly, so that the new decisions are better than the
old ones under the new information. Hence the current decision is not necessarily the optimal
decision. Even if the information does not change, it is still possible for agents to make further
improvements to this decision in the next period. It can also be said that in this case, the decision
maker’s decision is sticky, that is, it only makes limited improvements to the previous decision
based on new information, rather than directly adjusting to the optimal decision.

Usage

gemSpotEquilibriumPath_StickyDecisions(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

policyMarketClearingPrice

Examples

f <- function(stickiness.firm = 0) {
dst.firm <- node_new("output",

type = "Leontief", a = c(1 - stickiness.firm, stickiness.firm),
"cc1", "cc2"

)
node_set(dst.firm, "cc1",

type = "CD", alpha = 5,
beta = c(0.5, 0.5),
"prod", "lab"

)
node_set(dst.firm, "cc2",

type = "CD", alpha = 5,
beta = c(0.5, 0.5),
"prod", "lab"

)

gemstEndogenousLaborSupply_2_2 323

dst.consumer <- node_new("utility",
type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"prod", "lab"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = diag(c(1, 0)),
S0Exg = {

S0Exg <- matrix(NA, 2, 2)
S0Exg[2, 2] <- 100
S0Exg

},
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
maxIteration = 1,
numberOfPeriods = 20,
policy = list(

function(time, A, state) {
if (time > 1) {

node_set(A[[1]], "cc2",
type = "Leontief", a = state$last.A[, 1]

)
}

},
policyMarketClearingPrice

),
ts = TRUE

)

print(ge$p)
print(ge$z)
par(mfrow = c(1, 2))
matplot(ge$ts.p, type = "l")
matplot(ge$ts.z, type = "l")

}

f()
f(stickiness.firm = 0.8)

gemstEndogenousLaborSupply_2_2

A General Equilibrium Model with Endogenous Labor Supply

324 gemstEndogenousLaborSupply_2_2

Description

This is an example of the spot equilibrium path with endogenous labor supply. Assume that as the
level of utility increases, laborer will purchase or receive more education and training, resulting in
an increase in human capital, which can be regarded as an increase in labor supply. That is to say,
the utility level as an endogenous variable will affect the supply of labor. Therefore, labor supply
becomes an endogenous variable.

Usage

gemstEndogenousLaborSupply_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

f <- function(z0 = c(20, 1)) {
ge <- sdm2(

A = function(state) {
a.firm <- CD_A(alpha = 5, Beta = c(0.5, 0.5), p = state$p)
a.consumer <- c(1, 0)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = z0,
ts = TRUE,
policy = list(

function(state) {
state$S[2, 2] <- structural_function(state$last.z[2], c(6.5, 7), 1, 2)
state

},
policyMarketClearingPrice

),
numberOfPeriods = 20,
maxIteration = 1

)
matplot(ge$ts.z, type = "o", pch = 20)
print(ge$z)
print(ge$S)

}

gemstEndogenousProductionFunction_2_2 325

f()

f(c(10,1))

gemstEndogenousProductionFunction_2_2

A General Equilibrium Model with Endogenous Production Function

Description

These are examples of spot-trading dynamic equilibria with endogenous production functions. In
these models, the parameters of the production functions vary with the output level in the previous
period.

To address locally or globally increasing returns to scale, we can use an endogenous CES-type
production function with constant returns to scale, instead of adopting a more complex functional
form.

Usage

gemstEndogenousProductionFunction_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemstIntertemporal_EndogenousProductionFunction_2_2

Examples

dst.firm <- node_new(
"output",
type = "CD", alpha = NA, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,

326 gemstEndogenousProductionFunction_2_2

0, 0
), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(1, 1),
p0 = c(1, 1),
ts = TRUE,
policy = list(

function(A, state) {
A[[1]]$alpha <- 5 * state$last.z[1]^0.1

},
policyMarketClearingPrice

),
numberOfPeriods = 40,
maxIteration = 1

)

matplot(ge$ts.z, type = "o", pch = 20)

An example of a spot-trading dynamic equilibrium with corrective taxation.
tau <- 0.2
#
dst.firm <- node_new(
"output",
type = "CD", alpha = NA, beta = c(0.5, 0.5),
"prod", "lab"
)
#
dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"
)
#
ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(
1, 0,
0, 0
), 2, 2, TRUE),
S0Exg = matrix(c(
NA, NA,
100 * tau, 100 * (1 - tau)
), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(100, 100),

gemstEndogenousUtilityFunction 327

p0 = c(1, 1),
ts = TRUE,
policy = list(
function(A, state) {
A[[1]]$alpha <- 2 * state$last.z[1]^0.1
},
policyMarketClearingPrice
),
numberOfPeriods = 40,
maxIteration = 1
)
#
matplot(ge$ts.z, type = "o", pch = 20)
ge$z

gemstEndogenousUtilityFunction

Some General Equilibrium Models with Endogenous Utility Function

Description

Some examples of the spot equilibrium path with an endogenous utility function. The parameters
of the utility function will change with the utility level.

To deal with non-homothetic preferences, we can simply use an endogenous CES-type utility func-
tion instead of a utility function with a more complex form.

Usage

gemstEndogenousUtilityFunction(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a 2-by-2 example
dst.firm <- node_new(

"output",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

328 gemstEndogenousUtilityFunction

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(
1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(0.01, 1),
p0 = c(1, 1),
ts = TRUE,
policy = list(

function(A, state) {
util <- state$last.z[2]
beta2 <- 0.95 * plogis(util, location = 2, scale = 2)
A[[2]]$beta <- c(1 - beta2, beta2)

},
policyMarketClearingPrice

),
numberOfPeriods = 20,
maxIteration = 1

)

matplot(ge$ts.z, type = "o", pch = 20)
ge$z
dst.consumer$beta

a 3-by-3 example with 100 laborers
Assume that each laborer desires to consume one unit of
corn per period, regardless of her level of utility.
dst.firm.corn <- node_new(

"corn",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"iron", "lab"

)

dst.firm.iron <- node_new(
"iron",
type = "CD", alpha = 5, beta = c(0.5, 0.5),
"iron", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief",
a = c(0.5, 0.5),
"corn", "iron"

gemstEndogenousUtilityFunction 329

)

ge <- sdm2(
A = list(dst.firm.corn, dst.firm.iron, dst.consumer),
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer"),
numeraire = "lab",
ts = TRUE,
policy = list(

function(A, state) {
last.util <- state$last.z[3] / 100 # the previous utility level of each laborer
a1 <- min(1 / last.util, 1)
A[[3]]$a <- c(a1, 1 - a1)

},
policyMarketClearingPrice

),
numberOfPeriods = 40,
maxIteration = 1

)

matplot(ge$ts.z, type = "o", pch = 20)
ge$z
ge$A
ge$D

a 4-by-4 example with 100 homogeneous laborers
dst.agri <- node_new(

"output",
type = "SCES",
es = 0.5, alpha = 2, beta = c(0.2, 0.8),
"manu", "lab"

)

dst.manu <- node_new(
"output",
type = "SCES",
es = 0.5, alpha = 3, beta = c(0.6, 0.4),
"manu", "lab"

)

dst.serv <- node_new(
"output",
type = "SCES",

330 gemStickyDecisionPath_2_2

es = 0.5, alpha = 2, beta = c(0.4, 0.6),
"manu", "lab"

)

dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = c(0.6, 0.3, 0.1),
"agri", "manu", "serv"

)

ge <- sdm2(
A = list(dst.agri, dst.manu, dst.serv, dst.consumer),
B = diag(c(1, 1, 1, 0)),
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[4, 4] <- 100
tmp

},
names.commodity = c("agri", "manu", "serv", "lab"),
names.agent = c("agri", "manu", "serv", "consumer"),
numeraire = "lab",
z0 = c(1, 1, 1, 0),
ts = TRUE,
policy = list(

function(A, state) {
util <- state$last.z[4] / 100
beta1 <- structural_function(util, c(1, 6), 0.6, 0.1)
beta3 <- structural_function(util, c(1, 6), 0.1, 0.5)
beta2 <- 1 - beta1 - beta3
A[[4]]$beta <- c(beta1, beta2, beta3)

},
policyMarketClearingPrice

),
numberOfPeriods = 20,
maxIteration = 1

)

matplot(ge$ts.z, type = "o", pch = 20)
ge$z
dst.consumer$beta

gemStickyDecisionPath_2_2

An Example Illustrating the Sticky-Decision Path and Business Cycles

Description

This is an 2-by-2 example that illustrates the sticky-decision path and business cycles. Assume that
the consumer has a linear utility function x1 + 0.8 * x2.

gemStickyPricePath_2_2 331

Usage

gemStickyDecisionPath_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

stickiness <- 0.1 # 0.5
ge <- sdm2(

A = function(state) {
a.firm <- CD_A(alpha = 2, Beta = c(0.5, 0.5), state$p)
if (1.25 * state$p[2] < state$p[1]) {

a.consumer <- c(0, 1)
} else {

a.consumer <- c(1, 0)
}

a.consumer <- state$last.A[, 2] * stickiness + a.consumer * (1 - stickiness)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod",
z0 = c(80, 100),
maxIteration = 1,
numberOfPeriods = 100,
ts = TRUE

)

matplot(ge$ts.z, type = "o", pch = 20)

gemStickyPricePath_2_2

Some Examples Illustrating the Sticky-Price Path and Business Cycles

Description

These are some examples that illustrate the sticky-price path and business cycles.

332 gemStickyPricePath_2_2

Usage

gemStickyPricePath_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

stickiness <- 0.7

dst.firm <- node_new(
"output",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,
0, 1

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(100, 100),
p0 = c(1, 1),
ts = TRUE,
policy = list(

makePolicyTechnologyChange(
adjumentment.ratio = 2,
agent = "firm",
time.win = c(30, 30)

),
makePolicyStickyPrice(stickiness = stickiness)

),
priceAdjustmentVelocity = 0,
numberOfPeriods = 60,
maxIteration = 1

)

gemstIntertemporal_EndogenousProductionFunction_2_2 333

matplot(ge$ts.z, type = "b", pch = 20)

another example.
When the stickiness is 0, there will be business cycles.
stickiness <- 0.5

dst.firm <- node_new(
"output",
type = "Leontief", a = 0.2,
"lab"

)

dst.consumer <- node_new(
"util",
type = "CES", es = 0.3, alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(
1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(100, 100),
p0 = c(1, 1),
ts = TRUE,
policy = makePolicyStickyPrice(stickiness = stickiness),
priceAdjustmentVelocity = 0,
numberOfPeriods = 40,
maxIteration = 1

)

matplot(ge$ts.z, type = "b", pch = 20)

gemstIntertemporal_EndogenousProductionFunction_2_2

An Intertemporal Equilibrium Model with Endogenous Production
Function

Description

This is an example of an intertemporal equilibrium model with an endogenous production function.

334 gemstIntertemporal_EndogenousProductionFunction_2_2

Usage

gemstIntertemporal_EndogenousProductionFunction_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

See Also

gemstEndogenousProductionFunction_2_2

Examples

np <- 50 # the number of economic periods
y1 <- 100 # the initial product supply
#
n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds
#
names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")
#
the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["prod1", "consumer"] <- y1
#
the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
#
dstl.firm <- list()
for (k in 1:(np - 1)) {
dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), paste0("lab", k)
)
}
dstl.firm[[1]]$alpha <- y1^0.1 * dstl.firm[[1]]$alpha
#
dst.consumer.CD <- node_new(
"util",
type = "CD",
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)
)
#
ge <-sdm2(

gemstStructuralMultipleEquilibria_2_2 335

A = c(dstl.firm, dst.consumer.CD),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
maxIteration = 1,
numberOfPeriods = 2000,
policy = list(
function(A, state) {
for (k in 2:(np - 1)) {
A[[k]]$alpha <- 2 * state$last.z[k - 1]^0.1
}
}
),
ts = TRUE
)
#
plot(ge$z[1:(np - 1)], type = "o", xlab = "time", ylab = "output")
grid()

gemstStructuralMultipleEquilibria_2_2

Structural Multiple Equilibria and Structural Transition Policy

Description

Some examples of structural multiple equilibria and structural transition policy. In these examples
it is assumed that the firm has a structural production function (see Li, Fu, 2020), e.g.

structural_function(last.output, c(0.3, 0.4), 1, 2) * x1^0.35 * x2^0.65

wherein last.output is the output of the firm in the previous period.

Usage

gemstStructuralMultipleEquilibria_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

References

Li Wu, Fu Caihui (2020) A Simulation Study on the Economic Structure Transition Policy. Journal
of Shanghai University (Social Sciences). 37(2), pp: 33-45. (In Chinese)

336 gemstStructuralMultipleEquilibria_2_2

Examples

dst.firm <- node_new("output",
type = "CD", alpha = 1,
beta = c(0.35, 0.65),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "CD", alpha = 1,
beta = c(0.4, 0.6),
"prod", "lab"

)

policy.technology <- function(time, state, A) {
state$last.z[1] is the previous output.
A[[1]]$alpha <- structural_function(state$last.z[1], c(0.3, 0.4), 1, 2)

}

policy.tax <- function(time, state) {
if ((time >= 15) && state$last.z[1] < 0.4) {
state$S[2, 2] <- 0.8
state$S[2, 1] <- 0.2

} else {
state$S[2, 2] <- 1
state$S[2, 1] <- 0

}

state
}

f <- function(z0 = c(0.1, 1),
policy = list(

policy.technology,
policyMarketClearingPrice

)) {
ge <- sdm2(

A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = z0,
p0 = c(1, 1),
maxIteration = 1,
numberOfPeriods = 30,

gemstStructuralMultipleEquilibria_2_2 337

policy = policy,
ts = TRUE

)

matplot(ge$ts.z, type = "o", pch = 20)
invisible(ge)

}

geLow <- f()
geLow$z

geHigh <- f(z0 = c(0.5, 1))
geHigh$z

f(policy = list(
policy.technology,
policy.tax,
policyMarketClearingPrice

))

structural transition: disequilibrium path and
a spot equilibrium path
dst.firm <- node_new("output",

type = "CD", alpha = 5,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "Leontief", a = 1,
"prod"

)

policy.technology <- function(time, state, A) {
state$last.z[1] is last output.
A[[1]]$alpha <- structural_function(state$last.z[1], c(15, 20), 5, 15)
return(NULL)

}

policy.tax <- function(time, state) {
if ((time >= 100) && (time <= 109)) {

state$S[2, 2] <- 0.6
state$S[2, 1] <- 0.4

} else {
state$S[2, 2] <- 1
state$S[2, 1] <- 0

}

state
}

f <- function(z0 = c(1, 1),
p0 = c(1, 1),

338 gemstStructuralMultipleEquilibria_2_2

policy = policy.technology) {
ge <- sdm2(

A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,
0, 1

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = z0,
p0 = p0,
maxIteration = 1,
numberOfPeriods = 200,
policy = policy,
priceAdjustmentVelocity = 0.4,
ts = TRUE

)

matplot(ge$ts.z, type = "l", pch = 20)
invisible(ge)

}

geLow <- f()
geLow$z

geHigh <- f(z0 = c(18, 1), p0 = c(1, 9))
geHigh$z

structural transition: a disequilibrium path
f(policy = list(

policy.technology,
policy.tax

))$z

structural transition: a spot equilibrium path
f(policy = list(

policy.technology,
policy.tax,
policyMarketClearingPrice

))$z

structural transition through foreign aid
policy.foreign_aid <- function(time, state) {

if ((time >= 100) && (time <= 109)) {
state$S[2, 2] <- 3

} else {
state$S[2, 2] <- 1

gemstStructuralMultipleEquilibria_2_2 339

}

state
}

f(policy = list(
function(time, state, A) { # technology policy

state$last.z[1] is last output.
A[[1]]$alpha <- structural_function(state$last.z[1], c(30, 35), 5, 15)

},
policy.foreign_aid

))

another example
dst.firm <- node_new("prod",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new("util",
type = "Leontief", a = 1,
"prod"

)

policy.technology <- function(time, state, A) {
state$last.z[1] is the previous output.
A[[1]]$alpha <- structural_function(state$last.z[1], c(220, 250), 2, 4)

}

policy.tax <- function(time, state) {
if ((time >= 15) && state$last.z[1] < 240) {

state$S[2, 2] <- 80
state$S[2, 1] <- 20

} else {
state$S[2, 2] <- 100
state$S[2, 1] <- 0

}

state
}

ge <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),

340 gemTax_3_3

names.agent = c("firm", "consumer"),
numeraire = "lab",
z0 = c(100, 100),
maxIteration = 1,
numberOfPeriods = 30,
policy = list(

policy.technology,
policy.tax,
policyMarketClearingPrice

),
ts = TRUE

)

matplot(ge$ts.z, type = "b", pch = 20)

gemTax_3_3 Some General Equilibrium Models with Tax

Description

Some general equilibrium models with tax.

Usage

gemTax_3_3(...)

Arguments

... arguments to be passed to the function sdm2.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Examples

turnover tax.
dst.firm <- node_new("prod",

type = "FIN",
rate = c(1, tax.rate = 0.25),
"cc1", "tax"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

gemTax_3_3 341

dst.laborer <- dst.government <-
node_new("util",
type = "Leontief",
a = 1,
"prod"

)

ge.TT <- sdm2(
A = list(dst.firm, dst.laborer, dst.government),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "tax"),
names.agent = c("firm", "laborer", "government"),
numeraire = "prod"

)

ge.TT$p
ge.TT$z
ge.TT$D
ge.TT$S

product tax.
dst.taxed.prod <- node_new("taxed.prod",

type = "FIN",
rate = c(1, tax.rate = 0.25),
"prod", "tax"

)

dst.firm <- node_new("prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
dst.taxed.prod, "lab"

)

dst.laborer <- dst.government <-
node_new("util",
type = "Leontief",
a = 1,
dst.taxed.prod

)

ge.PT <- sdm2(
A = list(dst.firm, dst.laborer, dst.government),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),

342 gemTax_3_3

names.commodity = c("prod", "lab", "tax"),
names.agent = c("firm", "laborer", "government"),
numeraire = "prod"

)

ge.PT$p
ge.PT$z
ge.PT$D
ge.PT$S

consumption tax.
dst.firm <- node_new("output",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- node_new("util",
type = "FIN",
rate = c(1, consumption.tax.rate = 1/3),
"prod", "tax"

)

dst.government <- node_new("utility",
type = "Leontief",
a = 1,
"prod"

)

ge.CT <- sdm2(
A = list(dst.firm, dst.laborer, dst.government),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "tax"),
names.agent = c("firm", "laborer", "government"),
numeraire = "prod"

)

ge.CT$p
ge.CT$z
ge.CT$D
ge.CT$S

value added tax.
dst.firm <- node_new("output",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
"prod", "taxed.lab"

)

gemTax_3_3 343

node_set(dst.firm, "taxed.lab",
type = "FIN",
rate = c(1, vat.rate = 1/3),
"lab", "tax"

)

dst.laborer <- dst.government <-
node_new("util",
type = "Leontief",
a = 1,
"prod"

)

ge.VAT <- sdm2(
A = list(dst.firm, dst.laborer, dst.government),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "tax"),
names.agent = c("firm", "laborer", "government"),
numeraire = "prod"

)

ge.VAT$p
ge.VAT$z
ge.VAT$D
ge.VAT$S

income tax.
income.tax.rate <- 1 / 4

dst.firm <- node_new("output",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer <- dst.government <-
node_new("util",
type = "Leontief",
a = 1,
"prod"

)

ge.IT <- sdm2(
A = list(dst.firm, dst.laborer, dst.government),
B <- diag(c(1, 0), 2, 3),
S0Exg = matrix(c(

NA, NA, NA,
NA, 100 * (1 - income.tax.rate), 100 * income.tax.rate

344 gemTax_3_3

), 2, 3, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer", "government"),
numeraire = "prod"

)

ge.IT$p
ge.IT$z
ge.IT$D
ge.IT$S

turnover tax (Li, 2019, example 4.11).
dst.firm <- node_new("output",

type = "FIN",
rate = c(1, turnover.tax.rate = 1),
"cc1", "tax"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer1 <- node_new("util",
type = "CD",
alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.laborer2 <- node_new("utility",
type = "Leontief",
a = 1,
"prod"

)

ge.TT2 <- sdm2(
A = list(dst.firm, dst.laborer1, dst.laborer2),
B = diag(c(1, 0, 0)),
S0Exg = matrix(c(
NA, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("prod", "lab", "tax"),
names.agent = c("firm", "laborer1", "laborer2"),
numeraire = "lab"

)

ge.TT2$p
ge.TT2$z

commodity tax in a pure exchange economy.
tax.rate <- 0.25

gemTax_4_4 345

es.consumer1 <- 0.5
es.consumer2 <- 2

dst.consumer1 <- node_new("util",
type = "SCES", es = es.consumer1,
alpha = 1, beta = c(0.5, 0.5),
"comm1", "comm2"

)

dst.consumer2 <- node_new("util",
type = "SCES", es = es.consumer2,
alpha = 1, beta = c(0.5, 0.5),
"taxed.comm1", "comm2"

)
node_set(dst.consumer2, "taxed.comm1",

type = "FIN",
rate = c(1, tax.rate = tax.rate),
"comm1", "tax"

)

dst.gov <- node_new("util",
type = "SCES", es = 0,
alpha = 1, beta = c(0.5, 0.5),
"comm1", "comm2"

)

ge.CT <- sdm2(
A = list(dst.consumer1, dst.consumer2, dst.gov),
B = matrix(0, 3, 3),
S0Exg = matrix(c(
100, NA, NA,
NA, 100, NA,
NA, NA, 100

), 3, 3, TRUE),
names.commodity = c("comm1", "comm2", "tax"),
names.agent = c("consumer1", "consumer2", "gov"),
numeraire = "comm1"

)

ge.CT$p
ge.CT$z
ge.CT$D

gemTax_4_4 Some General Equilibrium Models with Endogenous Tax Rates

Description

Some general equilibrium models with endogenous tax rates.

346 gemTax_4_4

Usage

gemTax_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

ge <- sdm2(
A = function(state) {

a.firm <- CD_A(alpha = 2, Beta = c(0.5, 0.5, 0, 0), state$p)
a.laborer <- CD_A(alpha = 1, Beta = c(0.75, 0.25, 0, 0), state$p)
a.government <- c(1, 0, 0, 0)
a.planner <- c(0, 0, 2, 1)
cbind(a.firm, a.laborer, a.government, a.planner)

},
B = matrix(c(

1, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, 100,
NA, NA, NA, NA,
NA, NA, NA, NA

), 4, 4, TRUE),
names.commodity = c("prod", "lab", "util1", "util2"),
names.agent = c("firm", "laborer", "government", "planner"),
numeraire = "prod"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

an equivalent 2-by-2 model.
dst.firm <- node_new("output",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.planner <- node_new("util",
type = "Leontief",
a = c(2, 1),
"util1", "util2"

gemTax_5_4 347

)

node_set(dst.planner, "util1",
type = "CD",
alpha = 1, beta = c(0.75, 0.25),
"prod", "lab"

)
node_set(dst.planner, "util2",

type = "Leontief",
a = 1,
"prod"

)

ge <- sdm2(
A = list(dst.firm, dst.planner),
B = matrix(c(
1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "planner"),
numeraire = "prod"

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
addmargins(ge$SV)

gemTax_5_4 A General Equilibrium Model with Tax (see Cardenete et al., 2012).

Description

A general equilibrium model with tax (see chapter 4, Cardenete et al., 2012), wherein there are 5
commodities (i.e. product 1, product 2, labor, capital goods, and tax receipt) and 4 agents (i.e. 2
firms and 2 consumers).

Usage

gemTax_5_4(
dstl,
names.commodity = c("prod1", "prod2", "lab", "cap", "tax"),

348 gemTax_5_4

names.agent = c("taxed.firm1", "taxed.firm2", "consumer1", "consumer2"),
delta = 1,
supply.lab.consumer1 = 30,
supply.cap.consumer1 = 20,
supply.lab.consumer2 = 20,
supply.cap.consumer2 = 5,
policy.tax = NULL

)

Arguments

dstl the demand structure tree list.
names.commodity

names of commodities.

names.agent names of agents.

delta the proportion of tax revenue allocated to consumer 1. 1-delta is the proportion
of tax revenue allocated to consumer 2.

supply.lab.consumer1

the labor supply of consumer 1.
supply.cap.consumer1

the capital supply of consumer 1.
supply.lab.consumer2

the labor supply of consumer 2.
supply.cap.consumer2

the capital supply of consumer 2.

policy.tax a tax policy function (see sdm2).

Value

A general equilibrium (see sdm2), wherein labor is the numeraire.

References

Manuel Alejandro Cardenete, Ana-Isabel Guerra, Ferran Sancho (2012, ISBN: 9783642247453)
Applied General Equilibrium: An Introduction. Springer-Verlag Berlin Heidelberg.

Examples

dst.consumer1 <- node_new("utility",
type = "CD",
alpha = 1,
beta = c(0.3, 0.7),
"prod1", "prod2"

)

dst.consumer2 <- Clone(dst.consumer1)
dst.consumer2$beta <- c(0.6, 0.4)

dst.firm1 <- node_new("output",

gemTax_5_4 349

type = "Leontief",
a = c(0.5, 0.2, 0.3),
"VA", "prod1", "prod2"

)
node_set(dst.firm1, "VA",

type = "CD",
alpha = 0.8^-0.8 * 0.2^-0.2,
beta = c(0.8, 0.2),
"lab", "cap"

)

dst.firm2 <- Clone(dst.firm1)
node_set(dst.firm2, "output",

a = c(0.25, 0.5, 0.25)
)
node_set(dst.firm2, "VA",

alpha = 0.4^-0.4 * 0.6^-0.6,
beta = c(0.4, 0.6)

)

no taxation
dstl <- list(dst.firm1, dst.firm2, dst.consumer1, dst.consumer2)
ge <- gemTax_5_4(dstl, delta = 1)

ad valorem output tax (see Table 4.1)
output.tax.rate <- 0.1
dst.taxed.firm1 <- node_new("taxed.output",

type = "FIN", rate = c(1, output.tax.rate),
dst.firm1, "tax"

)
node_plot(dst.taxed.firm1)

dst.taxed.firm2 <- node_new("taxed.output",
type = "FIN", rate = c(1, output.tax.rate),
dst.firm2, "tax"

)
node_plot(dst.taxed.firm2)

dstl <- list(dst.taxed.firm1, dst.taxed.firm2, dst.consumer1, dst.consumer2)

ge.output.tax1 <- gemTax_5_4(dstl, delta = 1)
ge.output.tax2 <- gemTax_5_4(dstl, delta = 0.5)
ge.output.tax3 <- gemTax_5_4(dstl, delta = 0)

labor tax (see Table 4.3)
lab.tax.rate <- 0.1

dst.taxed.lab <- node_new("taxed.lab",
type = "FIN",
rate = c(1, lab.tax.rate),
"lab",
"tax"

)

350 gemTax_5_4

dst.labor.taxed.firm1 <- Clone(dst.firm1)
node_prune(dst.labor.taxed.firm1, "lab", "cap")
node_set(

dst.labor.taxed.firm1, "VA",
dst.taxed.lab,
"cap"

)

dst.labor.taxed.firm2 <- Clone(dst.labor.taxed.firm1)
node_set(dst.labor.taxed.firm2, "output",

a = c(0.25, 0.5, 0.25)
)
node_set(dst.labor.taxed.firm2, "VA",

alpha = 0.4^-0.4 * 0.6^-0.6,
beta = c(0.4, 0.6)

)

dstl.labor.tax <- list(dst.labor.taxed.firm1, dst.labor.taxed.firm2, dst.consumer1, dst.consumer2)

ge.lab.tax <- gemTax_5_4(dstl.labor.tax, delta = 0.5)

ge.lab.tax$p
ge.lab.taxz / gez - 1

income tax (see Table 4.3)
income.tax.rate <- 0.2
consumption.tax.rate <- income.tax.rate / (1 - income.tax.rate)
dst.taxed.consumer1 <- node_new("taxed.utility",

type = "FIN",
rate = c(1, consumption.tax.rate),
dst.consumer1,
"tax"

)

dst.taxed.consumer2 <- node_new("taxed.utility",
type = "FIN",
rate = c(1, consumption.tax.rate),
dst.consumer2,
"tax"

)

dstl <- list(dst.firm1, dst.firm2, dst.taxed.consumer1, dst.taxed.consumer2)

ge.income.tax <- gemTax_5_4(dstl, delta = 0.5)
ge.income.taxz / gez - 1

labor tax (see Table 4.3)
lab.tax.rate <- 0.3742
node_set(dst.labor.taxed.firm1, "taxed.lab",

rate = c(1, lab.tax.rate)
)
node_set(dst.labor.taxed.firm2, "taxed.lab",

gemTax_5_5 351

rate = c(1, lab.tax.rate)
)

ge.lab.tax <- gemTax_5_4(list(
dst.labor.taxed.firm1,
dst.labor.taxed.firm2,
dst.consumer1,
dst.consumer2

), delta = 0.5)
ge.lab.taxz / gez - 1

variable labor tax rate
policy.var.tax.rate <- function(time, A, state) {

current.tax.rate <- NA
if (time >= 200) {

tax.amount <- (state$p / state$p[3])[5]
adjustment.ratio <- ratio_adjust(tax.amount / 18.7132504, coef = 0.1)
last.tax.rate <- node_set(A[[1]], "taxed.lab")$rate[2]
current.tax.rate <- last.tax.rate / adjustment.ratio

} else {
current.tax.rate <- 0.1

}
node_set(A[[1]], "taxed.lab", rate = c(1, current.tax.rate))
node_set(A[[2]], "taxed.lab", rate = c(1, current.tax.rate))

state$current.policy.data <- c(time, current.tax.rate)
state

}

ge.var.lab.tax <- gemTax_5_4(dstl.labor.tax, policy = policy.var.tax.rate)
matplot(ge.var.lab.tax$ts.z, type = "l")
matplot(ge.var.lab.tax$ts.p / ge.var.lab.tax$p[3], type = "l")
plot(ge.var.lab.tax$policy.data[, 1], ge.var.lab.tax$policy.data[, 2],

ylab = "labor tax rate"
)
ge.var.lab.tax$p / ge.var.lab.tax$p[3]

gemTax_5_5 A General Equilibrium Model with Tax

Description

A general equilibrium model with tax. The model contains 5 types of commodities (i.e. prod1,
prod2, labor, capital and tax payment receipts) and 5 agents (i.e. firm1, firm2, laborer, capital
owner and government).

Usage

gemTax_5_5(...)

352 gemTax_5_5

Arguments

... arguments to be passed to the function sdm2.

Examples

tax.rate.cap1 <- 0.25
tax.rate.lab1 <- 0.25

tax.rate.cap2 <- 0.25
tax.rate.lab2 <- 0.25

es.prod <- 0.5
es.cap.lab <- 0.5

beta.firm1 <- c(0.2, 0.8)
beta.firm2 <- c(0.8, 0.2)

beta.laborer <- c(0.5, 0.5)
beta.capitalOwner <- c(0.5, 0.5)
beta.government <- c(0.8, 0.2)

dst.firm1 <- node_new("prod",
type = "SCES",
alpha = 1, beta = beta.firm1, es = es.cap.lab,
"cc1", "cc2"

)
node_set(dst.firm1, "cc1",

type = "FIN",
rate = c(1, tax.rate = tax.rate.lab1),
"lab", "tax"

)
node_set(dst.firm1, "cc2",

type = "FIN",
rate = c(1, tax.rate = tax.rate.cap1),
"cap", "tax"

)

node_plot(dst.firm1, TRUE)

dst.firm2 <- node_new("prod",
type = "SCES",
alpha = 1, beta = beta.firm2, es = es.cap.lab,
"cc1", "cc2"

)
node_set(dst.firm2, "cc1",

type = "FIN",
rate = c(1, tax.rate = tax.rate.lab2),
"lab", "tax"

)
node_set(dst.firm2, "cc2",

type = "FIN",
rate = c(1, tax.rate = tax.rate.cap2),

gemTax_QuasilinearPreference_4_4 353

"cap", "tax"
)

dst.laborer <- node_new("util",
type = "SCES",
alpha = 1, beta = beta.laborer, es = es.prod,
"prod1", "prod2"

)

dst.capitalOwner <- node_new("util",
type = "SCES",
alpha = 1, beta = beta.capitalOwner, es = es.prod,
"prod1", "prod2"

)

dst.government <- node_new("util",
type = "SCES",
alpha = 1, beta = beta.government, es = es.prod,
"prod1", "prod2"

)

ge <- sdm2(
A = list(dst.firm1, dst.firm2, dst.laborer, dst.capitalOwner, dst.government),
B = diag(c(1, 1, 0, 0, 0)),
S0Exg = matrix(c(

NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA,
NA, NA, 100, NA, NA,
NA, NA, NA, 100, NA,
NA, NA, NA, NA, 100

), 5, 5, TRUE),
names.commodity = c("prod1", "prod2", "lab", "cap", "tax"),
names.agent = c("firm1", "firm2", "laborer", "capitalOwner", "government"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S
addmargins(ge$DV)
addmargins(ge$SV)

gemTax_QuasilinearPreference_4_4

A General Equilibrium Model with Tax and Quasilinear Utility Func-
tions.

354 gemTax_QuasilinearPreference_4_4

Description

This model is essentially a pure exchange economy. The model contains 4 types of commodities
(i.e. corn, iron, taxed iron and tax payment receipts) and 4 agents (i.e. consumer 1, consumer 2, a
firm and the government). Consumer 1 has corn and the utility function is x1 + beta1 * (alpha1 * x3
- 0.5 * x3^2) wherein x1 is corn and x3 is taxed iron. Consumer 2 has iron and the utility function
is x1 + beta2 * (alpha2 * x2 - 0.5 * x2^2) wherein x1 is corn and x2 is iron. Consumer 1 (i.e. the
iron demander) wants to buy iron from consumer 2 (i.e. the iron supplier) and the government will
tax the transaction. The firm (i.e. a tax agency) inputs iron and tax payment receipts (similar to tax
stamp) to output taxed iron, and due to government taxation requirements consumer 1 have to buy
taxed iron from the firm and consumer 2 have to sell iron through the firm. Government has tax
payment receipts and the utility function is x1.

Usage

gemTax_QuasilinearPreference_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

tax.rate <- 1

beta1 <- 0.05
alpha1 <- 3 / beta1 + 60

iron.endowment <- 100
beta2 <- 0.05
alpha2 <- iron.endowment - 60 + (3 / beta2)

ge <- sdm2(
A = function(state) {

a1 <- QL_demand(
w = state$w[1],
p = c(state$p[1], state$p[3]),
alpha = alpha1, beta = beta1,
type = "quadratic2"

)
a1 <- c(a1[1], 0, a1[2], 0)

a2 <- QL_demand(
w = state$w[2],
p = state$p[1:2],
alpha = alpha2, beta = beta2,
type = "quadratic2"

)
a2 <- c(a2, 0, 0)

a.firm <- c(0, 1, 0, tax.rate * state$p[2] / state$p[4])

gemTax_QuasilinearPreference_4_4 355

a.gov <- c(1, 0, 0, 0)

cbind(a1, a2, a.firm, a.gov)
},
B = matrix(c(

0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 1, 0,
0, 0, 0, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

1000, NA, NA, NA,
NA, iron.endowment, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, 1

), 4, 4, TRUE),
names.commodity = c("corn", "iron", "taxed.iron", "tax"),
names.agent = c("consumer1", "consumer2", "firm", "gov"),
numeraire = "corn",
priceAdjustmentVelocity = 0.05

)

ge$p
ge$D
ge$S
addmargins(ge$DV)
addmargins(ge$SV)

ge.x <- ge$D[3, 1]
ge.pl <- ge$p[2]
ge.ph <- ge$p[3]
plot(function(x) (alpha1 - x) * beta1, 0, alpha1,

xlim = c(0, 100), ylim = c(0, 6), xlab = "iron", ylab = "price"
)
curve((alpha2 - iron.endowment + x) * beta2, 0,

alpha1,
add = TRUE

)
grid()
points(ge.x, ge.ph, col = "red", pch = 20) # pch=8
points(ge.x, ge.pl, col = "red", pch = 20)

polygon(c(0, ge.x, ge.x, 0), c(ge.ph, ge.ph, ge.pl, ge.pl))
segments(0, 3, x1 = 60, y1 = 3, col = "red")
text(c(0, ge.x, ge.x, 0) + 3, c(

ge.ph + 0.3, ge.ph + 0.3,
ge.pl - 0.3, ge.pl - 0.3

), c("A", "B", "C", "D"))
text(c(3, ge.x + 3, 60), 3.3, c("E", "F", "G"))

u.consumer1 <- function(x) x[1] + beta1 * (alpha1 * x[2] - 0.5 * x[2]^2)
u.consumer2 <- function(x) x[1] + beta2 * (alpha2 * x[2] - 0.5 * x[2]^2)

356 gemTax_VAT_IncomeTax_5_4

u.consumer1(ge$D[c(1, 3), 1]) + u.consumer2(ge$D[c(1:2), 2]) + ge$z[4]
The value above is 1430 when the tax rate is 0.

gemTax_VAT_IncomeTax_5_4

A General Equilibrium Model with Value-added Tax and Income Tax

Description

A general equilibrium model with value-added tax and income tax.

Usage

gemTax_VAT_IncomeTax_5_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

vat.rate <- 0.2 # value-added tax rate
income.tax.rate <- 0.2

dst.manu <- node_new("output",
type = "FIN",
rate = c(5 / 6, vat.rate),
"cc1", "vat"

)
node_set(dst.manu, "cc1",

type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.25, 0.75),
"lab", "cap"

)

dst.serv <- node_new("output",
type = "FIN",
rate = c(5 / 6, vat.rate),
"cc1", "vat"

)
node_set(dst.serv, "cc1",

type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.75, 0.25),
"lab", "cap"

)

dst.household <- node_new("util",

gemTax_VAT_IncomeTax_5_4 357

type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.2, 0.8),
"manu", "serv"

)

dst.government <- node_new("util",
type = "SCES",
es = 0.5, alpha = 1,
beta = c(0.5, 0.5),
"manu", "serv"

)

dstl <- list(dst.manu, dst.serv, dst.household, dst.government)

ge <- sdm2(
A = dstl,
B = diag(c(1, 1, 0, 0), 5, 4),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 360 * (1 - income.tax.rate), 360 * income.tax.rate,
NA, NA, 240 * (1 - income.tax.rate), 240 * income.tax.rate,
NA, NA, NA, 120

), 5, 4, TRUE),
names.commodity = c("manu", "serv", "lab", "cap", "vat"),
names.agent = c("manu", "serv", "household", "government"),
numeraire = "lab"

)

ge$p
ge$z
addmargins(ge$DV)
addmargins(ge$SV)

VAT rate reduction
dst.manu$rate <- dst.serv$rate <- c(5 / 6, vat.rate = 0.1)

ge.new <- sdm2(
A = dstl,
B = diag(c(1, 1, 0, 0), 5, 4),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, 360 * (1 - income.tax.rate), 360 * income.tax.rate,
NA, NA, 240 * (1 - income.tax.rate), 240 * income.tax.rate,
NA, NA, NA, 120

), 5, 4, TRUE),
names.commodity = c("manu", "serv", "lab", "cap", "vat"),
names.agent = c("manu", "serv", "household", "government"),
numeraire = "lab"

)

358 gemTechnologyProgress_PopulationGrowth

ge.new$p
ge.new$z
addmargins(ge.new$DV)
addmargins(ge.new$SV)

gemTechnologyProgress_PopulationGrowth

Some General Equilibrium Models with Technology Progress and Pop-
ulation Growth

Description

Some examples illustrating technology Progress and population growth.

Usage

gemTechnologyProgress_PopulationGrowth(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

a financial sequential model
gr.e <- 0.03 # the population growth rate
tpr <- 0.02 # the rate of technological progress
gr <- (1 + gr.e) * (1 + tpr) - 1
eis <- 0.8 # the elasticity of intertemporal substitution
Gamma.beta <- 0.8 # the subjective discount factor
yield.rate <- (1 + gr)^(1 / eis - 1) / Gamma.beta - 1 # the dividend rate
y1 <- 143.18115 # the initial product supply

dst.firm <- node_new("output",
type = "FIN",
rate = c(1, dividend.rate = yield.rate),
"cc1", "equity.share"

)
node_set(dst.firm, "cc1",

type = "CD",
alpha = 2, beta = c(0.5, 0.5),
"prod", "cc1.1"

)
node_set(dst.firm, "cc1.1",

type = "Leontief", a = 1,
"lab"

)

dst.laborer <- node_new("util",

gemTechnologyProgress_PopulationGrowth 359

type = "Leontief", a = 1,
"prod"

)

dst.shareholder <- Clone(dst.laborer)

ge <- sdm2(
A = list(dst.firm, dst.laborer, dst.shareholder),
B = diag(c(1, 0, 0)),
S0Exg = {

S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- S0Exg[3, 3] <- 100 / (1 + gr.e)
S0Exg

},
names.commodity = c("prod", "lab", "equity.share"),
names.agent = c("firm", "laborer", "shareholder"),
numeraire = "prod",
maxIteration = 1,
numberOfPeriods = 20,
policy = list(function(time, A) {

node_set(A[[1]], "cc1.1", a = 1 / (1 + tpr)^(time - 1))
}, policyMarketClearingPrice),
z0 = c(y1, 0, 0),
GRExg = gr.e,
ts = TRUE

)

matplot(growth_rate(ge$ts.p), type = "l")
matplot(growth_rate(ge$ts.z), type = "l")
ge$ts.z

a timeline model
np <- 5 # the number of economic periods.

n <- 2 * np - 1 # the number of commodity kinds
m <- np # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:(np - 1)))
names.agent <- c(paste0("firm", 1:(np - 1)), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100 * (1 + gr.e)^(0:(np - 2))
S0Exg["prod1", "consumer"] <- y1

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}

dstl.firm <- list()
for (k in 1:(np - 1)) {

360 gemTechnologyProgress_PopulationGrowth

dstl.firm[[k]] <- node_new(
"prod",
type = "CD",
alpha = 2, beta = c(0.5, 0.5),
paste0("prod", k), "cc1"

)
node_set(dstl.firm[[k]], "cc1",

type = "Leontief", a = 1 / ((1 + tpr)^(k - 1)),
paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES",
alpha = 1, beta = prop.table(Gamma.beta^(1:np)), es = eis,
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
maxIteration = 1,
numberOfPeriods = 40,
ts = TRUE,
policy = list(
makePolicyTailAdjustment(ind = c(np - 1, np), gr = gr),
policyMarketClearingPrice

)
)

ge$z
ge$D
ge$S
ge$p[1:3] / ge$p[2:4] - 1 # the steady-state equilibrium return rate
sserr(eis = eis, Gamma.beta = Gamma.beta, gr = gr) # the steady-state equilibrium return rate

a financial time-circle model
zeta <- (1 + gr)^np # the ratio of repayments to loans

n <- 2 * np + 1 # the number of commodity kinds
m <- np + 1 # the number of agent kinds

names.commodity <- c(paste0("prod", 1:np), paste0("lab", 1:np), "claim")
names.agent <- c(paste0("firm", 1:np), "consumer")

the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:np), "consumer"] <- 100 * (1 + gr.e)^(0:(np - 1))

gemTemporaryEquilibriumPath 361

S0Exg["claim", "consumer"] <- 100

the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {

B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
B["prod1", paste0("firm", np)] <- 1 / zeta

dstl.firm <- list()
for (k in 1:np) {

dstl.firm[[k]] <- node_new("output",
type = "FIN", rate = c(1, yield.rate),
"cc1", "claim"

)
node_set(dstl.firm[[k]], "cc1",

type = "CD", alpha = 2,
beta = c(0.5, 0.5),
paste0("prod", k), "cc1.1"

)
node_set(dstl.firm[[k]], "cc1.1",

type = "Leontief", a = 1 / ((1 + tpr)^(k - 1)),
paste0("lab", k)

)
}

dst.consumer <- node_new(
"util",
type = "CES", es = 1,
alpha = 1, beta = prop.table(rep(1, np)),
paste0("prod", 1:np)

)

ge <- sdm2(
A = c(dstl.firm, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "prod1",
ts = TRUE

)

ge$z
growth_rate(ge$z)
ge$D
ge$S

362 gemTemporaryEquilibriumPath

gemTemporaryEquilibriumPath

Some Examples of Temporary Equilibrium Paths

Description

Some examples of temporary equilibrium paths. The temporary equilibrium path consists of a series
of temporary equilibria. Each temporary equilibrium achieves market clearing and may involve
futures markets in addition to spot markets. A spot equilibrium path is a temporary equilibrium
path that only involves spot market transactions.

Usage

gemTemporaryEquilibriumPath(...)

Arguments

... arguments to be passed to the function sdm2.

References

Grandmont, J.M. (1977). Temporary General Equilibrium Theory. Econometrica 45, 535-572.

See Also

policyMarketClearingPrice

Examples

A pure exchange economy.
Consumers 1 and 2 each supply 50 units of payoff each period.
Consumers have limited foresight into the future and always expect
that the supply of consumer 1 will be 50 and the supply of
consumer 2 will be 40 in the next period.
dst.consumer1 <- node_new("util",

type = "SCES", es = 2,
alpha = 1, beta = c(0.5, 0.5),
"payoff1", "payoff2"

)

dst.consumer2 <- node_new("util",
type = "SCES", es = 1,
alpha = 1, beta = c(0.5, 0.5),
"payoff1", "payoff2"

)

result <- list()
for (time in 1:20) {

if (time == 1) {
S0Exg <- matrix(c(

50, 50,

gemTemporaryEquilibriumPath 363

50, 40
), 2, 2, TRUE)

} else {
S0Exg <- rbind(ge$D[2,] + c(0, 10), c(50, 40))

}

ge <- sdm2(
A = list(dst.consumer1, dst.consumer2),
B = matrix(0, 2, 2),
S0Exg = S0Exg,
names.commodity = c("payoff1", "payoff2"),
names.agent = c("consumer1", "consumer2"),
numeraire = "payoff1"

)

result[[time]] <- ge
}

sapply(result, function(x) x$p)
sapply(result, function(x) x$z)
lapply(result, function(x) x$D)
lapply(result, function(x) x$S)

An economy with production.
dst.consumer <- node_new("util",

type = "CD",
alpha = 1,
beta = c(1 / 3, 2 / 3), # beta = c(1/2, 1/2)
"prod1", "prod2"

)

dst.firm <- node_new("prod2",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
"prod1", "lab"

)

result <- list()
for (time in 1:20) {

if (time == 1) {
S0Exg <- matrix(c(

10, 0,
0, NA,
100, 0

), 3, 2, TRUE)
} else {

S0Exg <- matrix(c(
ge$D[2, 1], 0,
0, NA,
100, 0

), 3, 2, TRUE)
}

ge <- sdm2(

364 gemTemporaryEquilibriumPath

A = list(dst.consumer, dst.firm),
B = matrix(c(

0, 0,
0, 1,
0, 0

), 3, 2, TRUE),
S0Exg = S0Exg,
names.commodity = c("prod1", "prod2", "lab"),
names.agent = c("consumer", "firm"),
numeraire = "prod1"

)

result[[time]] <- ge
}

sapply(result, function(x) x$p)
sapply(result, function(x) x$z)
lapply(result, function(x) x$D)
lapply(result, function(x) x$S)

##
result <- list()
last.output <- 10
for (time in 1:30) {

if (time == 1) {
S0Exg <- matrix(c(

10, 0,
0, last.output,
100, 0

), 3, 2, TRUE)
} else {

S0Exg <- rbind(
c(ge$D[2, 1], max(ge$z[2] - last.output, 0)),
c(0, last.output),
c(100, 0)

)

last.output <- ge$z[2]
}

ge <- sdm2(
A = list(dst.consumer, dst.firm),
B = matrix(c(

0, 0,
0, 1,
0, 0

), 3, 2, TRUE),
B = matrix(0, 3, 2),
S0Exg = S0Exg,
names.commodity = c("prod1", "prod2", "lab"),
names.agent = c("consumer", "firm"),
numeraire = "prod1"

gemTwoCountryForeignExchangeRate_6_6 365

)

result[[time]] <- ge
}
sapply(result, function(x) x$p)
sapply(result, function(x) x$z)
lapply(result, function(x) x$D)
lapply(result, function(x) x$S)

gemTwoCountryForeignExchangeRate_6_6

Example 7.6 (Foreign Exchange Rate) in Li (2019)

Description

This is Example 7.6 in Li (2019), which illustrates foreign exchange rates.

Usage

gemTwoCountryForeignExchangeRate_6_6(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

dst.firm1 <- node_new("output",
type = "FIN", rate = c(1, interest.rate = 0.1),
"cc1", "money1"

)
node_set(dst.firm1, "cc1",

type = "CD", alpha = 1,
beta = c(0.5, 0.5),
"iron", "lab1"

)

dst.firm2 <- Clone(dst.firm1)
node_replace(dst.firm2, "money1", "money2")
node_replace(dst.firm2, "lab1", "lab2")
node_plot(dst.firm2)

dst.laborer1 <- node_new("util",
type = "FIN", rate = c(1, interest.rate = 0.1),
"cc1", "money1"

)
node_set(dst.laborer1, "cc1",

type = "Leontief", a = 1,
"wheat"

366 gemTwoCountryPureExchange

)

dst.moneyOwner1 <- Clone(dst.laborer1)

dst.laborer2 <- Clone(dst.laborer1)
node_replace(dst.laborer2, "money1", "money2")

dst.moneyOwner2 <- Clone(dst.laborer2)

ge <- sdm2(
A = list(
dst.firm1, dst.laborer1, dst.moneyOwner1,
dst.firm2, dst.laborer2, dst.moneyOwner2

),
B = diag(c(1, 0, 0, 1, 0, 0)),
S0Exg = {

tmp <- matrix(NA, 6, 6)
tmp[2, 2] <- 100
tmp[3, 3] <- 600
tmp[5, 5] <- 100
tmp[6, 6] <- 100
tmp

},
names.commodity = c(

"wheat", "lab1", "money1",
"iron", "lab2", "money2"

),
names.agent = c(

"firm1", "laborer1", "moneyOwner1",
"firm2", "laborer2", "moneyOwner2"

),
numeraire = c("money1" = 0.1) # interest.rate

)

ge$p[6] / ge$p[3] # foreign exchange rate

gemTwoCountryPureExchange

Some Examples of Two-Country Pure Exchange Economy

Description

Some general equilibrium examples of two-country pure exchange economy.

Usage

gemTwoCountryPureExchange(...)

gemTwoCountryPureExchange 367

Arguments

... arguments to be passed to the function sdm2.

Value

A general equilibrium.

Examples

es.DFProd <- 0.8 # substitution elasticity between domestic and foreign products
technology.level.CHN <- 0.9

dst.CHN <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.DFProd,
"prod.CHN", "prod.USA"

)
node_set(dst.CHN, "prod.CHN",

type = "Leontief", a = 1 / technology.level.CHN,
"lab.CHN"

)
node_set(dst.CHN, "prod.USA",

type = "Leontief", a = 1,
"lab.USA"

)
node_plot(dst.CHN)

dst.USA <- Clone(dst.CHN)

dstl <- list(dst.CHN, dst.USA)

ge <- sdm2(dstl,
names.commodity = c("lab.CHN", "lab.USA"),
names.agent = c("CHN", "USA"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 0,
0, 100

), 2, 2, TRUE),
numeraire = "lab.CHN"

)
ge$p[2]
the same as above
technology.level.CHN^(1 / es.DFProd - 1)

supply change
geSC <- sdm2(dstl,

names.commodity = c("lab.CHN", "lab.USA"),
names.agent = c("CHN", "USA"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

200, 0,
0, 100

368 gemTwoCountryPureExchange

), 2, 2, TRUE),
numeraire = "lab.CHN"

)
geSC$p[2]

preference change
dst.CHN$beta <- c(0.6, 0.4)
gePC <- sdm2(dstl,

names.commodity = c("lab.CHN", "lab.USA"),
names.agent = c("CHN", "USA"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 0,
0, 100

), 2, 2, TRUE),
numeraire = "lab.CHN"

)

gePC$p[2]

Add currencies to the example above.
interest.rate <- 1e-4
es.DFProd <- 0.8
technology.level.CHN <- 0.9

prod_money.CHN <- node_new("prod_money.CHN",
type = "FIN", rate = c(1, interest.rate),
"prod.CHN", "money.CHN"

)
node_set(prod_money.CHN, "prod.CHN",

type = "Leontief", a = 1 / technology.level.CHN,
"lab.CHN"

)

prod_money.USA <- node_new("prod_money.USA",
type = "FIN", rate = c(1, interest.rate),
"prod.USA", "money.USA"

)
node_set(prod_money.USA, "prod.USA",

type = "Leontief", a = 1,
"lab.USA"

)

dst.CHN <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.DFProd,
prod_money.CHN, prod_money.USA

)

dst.USA <- Clone(dst.CHN)

dstl <- list(dst.CHN, dst.USA)

ge <- sdm2(dstl,

gemTwoCountryPureExchange 369

names.commodity = c(
"lab.CHN", "money.CHN",
"lab.USA", "money.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
0, 100,
0, 100

), 4, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)

ge$p["money.USA"] / ge$p["money.CHN"] # the exchange rate

supply change
geSC <- sdm2(dstl,

names.commodity = c(
"lab.CHN", "money.CHN",
"lab.USA", "money.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

200, 0,
100, 0,
0, 100,
0, 100

), 4, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)
geSC$p["money.USA"] / geSC$p["money.CHN"]

preference change
dst.CHN$beta <- c(0.6, 0.4)
gePC <- sdm2(dstl,

names.commodity = c(
"lab.CHN", "money.CHN",
"lab.USA", "money.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
0, 100,
0, 100

), 4, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)

370 gemTwoCountryPureExchange

gePC$p["money.USA"] / gePC$p["money.CHN"]

the exchange rate under a high substitution elasticity
between domestic and foreign products.
interest.rate <- 1e-4
es.DFProd <- 3
technology.level.CHN <- 0.9

prod_money.CHN <- node_new("prod_money.CHN",
type = "FIN", rate = c(1, interest.rate),
"prod.CHN", "money.CHN"

)
node_set(prod_money.CHN, "prod.CHN",

type = "Leontief", a = 1 / technology.level.CHN,
"lab.CHN"

)

prod_money.USA <- node_new("prod_money.USA",
type = "FIN", rate = c(1, interest.rate),
"prod.USA", "money.USA"

)
node_set(prod_money.USA, "prod.USA",

type = "Leontief", a = 1,
"lab.USA"

)

dst.CHN <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.DFProd,
prod_money.CHN, prod_money.USA

)

dst.USA <- Clone(dst.CHN)

dstl <- list(dst.CHN, dst.USA)

ge <- sdm2(dstl,
names.commodity = c(
"lab.CHN", "money.CHN",
"lab.USA", "money.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
0, 100,
0, 100

), 4, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)

ge$p["money.USA"] / ge$p["money.CHN"] # the exchange rate

gemTwoCountryPureExchange_Bond 371

supply change and high substitution elasticity
geSC <- sdm2(dstl,

names.commodity = c(
"lab.CHN", "money.CHN",
"lab.USA", "money.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

200, 0,
100, 0,
0, 100,
0, 100

), 4, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)
geSC$p["money.USA"] / geSC$p["money.CHN"]

gemTwoCountryPureExchange_Bond

Some Examples of Two-Country Pure Exchange Economy with Bond

Description

Some general equilibrium examples of two-country pure exchange economy with bond.

Usage

gemTwoCountryPureExchange_Bond(...)

Arguments

... arguments to be passed to the function sdm2.

Value

A general equilibrium.

Examples

es.DFProd <- 0.8 # substitution elasticity between domestic and foreign products
technology.level.CHN <- 1
the amount of outbound investment corresponding to each unit of consumption
outbound.investment.rate <- 0.1

dst.consumption <- node_new("consumption",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.DFProd,
"prod.CHN", "prod.USA"

372 gemTwoCountryPureExchange_Bond

)
node_set(dst.consumption, "prod.CHN",

type = "Leontief", a = 1 / technology.level.CHN,
"lab.CHN"

)
node_set(dst.consumption, "prod.USA",

type = "Leontief", a = 1,
"lab.USA"

)
dst.CHN <- node_new("CHN",

type = "FIN", rate = c(1, outbound.investment.rate),
dst.consumption, "bond.USA"

)
node_plot(dst.CHN)

dst.USA <- Clone(dst.consumption)

dstl <- list(dst.CHN, dst.USA)

ge <- sdm2(dstl,
names.commodity = c("lab.CHN", "lab.USA", "bond.USA"),
names.agent = c("CHN", "USA"),
B = matrix(0, 3, 2, TRUE),
S0Exg = matrix(c(
100, 0,
0, 100,
0, 100

), 3, 2, TRUE),
numeraire = "lab.CHN"

)
ge$p[2]

Add currencies to the example above.
es.DFProd <- 0.8
technology.level.CHN <- 1
outbound.investment.rate <- 0.1
interest.rate <- 1e-4

prod_money.CHN <- node_new("prod_money.CHN",
type = "FIN", rate = c(1, interest.rate),
"prod.CHN", "money.CHN"

)
node_set(prod_money.CHN, "prod.CHN",

type = "Leontief", a = 1 / technology.level.CHN,
"lab.CHN"

)

prod_money.USA <- node_new("prod_money.USA",
type = "FIN", rate = c(1, interest.rate),
"prod.USA", "money.USA"

)
node_set(prod_money.USA, "prod.USA",

type = "Leontief", a = 1,

gemTwoCountry_Bond_7_4 373

"lab.USA"
)

dst.CHN <- node_new("CHN",
type = "FIN",
rate = c(

1, outbound.investment.rate,
outbound.investment.rate * interest.rate

),
"consumption", "bond.USA", "money.USA"

)
node_set(dst.CHN, "consumption",

type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.DFProd,
prod_money.CHN, prod_money.USA

)

node_plot(dst.CHN)

dst.USA <- Clone(node_set(dst.CHN, "consumption"))
node_plot(dst.USA)

dstl <- list(dst.CHN, dst.USA)

ge <- sdm2(dstl,
names.commodity = c(

"lab.CHN", "money.CHN",
"lab.USA", "money.USA",
"bond.USA"

),
names.agent = c("CHN", "USA"),
B = matrix(0, 5, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
0, 100,
0, 100,
0, 100

), 5, 2, TRUE),
numeraire = c("money.CHN" = interest.rate)

)

ge$p["money.USA"] / ge$p["money.CHN"] # the exchange rate

gemTwoCountry_Bond_7_4

An Example of Two-Country Economy with Bond

Description

A general equilibrium example of two-country economy with bond.

374 gemTwoCountry_Bond_7_4

Usage

gemTwoCountry_Bond_7_4(...)

Arguments

... arguments to be passed to the function sdm2.

Value

A general equilibrium.

See Also

gemTwoCountry_Tariff_9_5

Examples

es.DFProd <- 0.8 # the substitution elasticity between domestic and foreign products
es.CL <- 0.8 # the substitution elasticity between capital and labor

dst.firm.CHN <- node_new("output",
type = "SCES", alpha = 1, beta = c(0.78, 0.22), es = es.CL,
"lab.CHN", "cap.CHN"

)

dst.household.CHN <- node_new("util",
type = "FIN", rate = c(1, outbound.investment.rate = 0.028),
"cc1", "bond.ROW"

)
node_set(dst.household.CHN, "cc1",

type = "SCES", alpha = 1, beta = c(0.93, 0.07), es = es.DFProd,
"prod.CHN", "prod.ROW"

)

node_plot(dst.household.CHN)

dst.firm.ROW <- node_new("output",
type = "SCES", alpha = 1, beta = c(0.75, 0.25), es = es.CL,
"lab.ROW", "cap.ROW"

)

dst.household.ROW <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.02, 0.98), es = es.DFProd,
"prod.CHN", "prod.ROW"

)

dstl <- list(dst.firm.CHN, dst.household.CHN, dst.firm.ROW, dst.household.ROW)

ge <- sdm2(dstl,
names.commodity = c(

"prod.CHN", "lab.CHN", "cap.CHN",
"prod.ROW", "lab.ROW", "cap.ROW", "bond.ROW"

gemTwoCountry_Bond_7_4 375

),
names.agent = c(

"firm.CHN", "household.CHN",
"firm.ROW", "household.ROW"

),
B = {

tmp <- matrix(0, 7, 4, TRUE)
tmp[1, 1] <- tmp[4, 3] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 7, 4, TRUE)
tmp[2, 2] <- 53 # the supply of lab.CHN
tmp[3, 2] <- 15 # the supply of cap.CHN
tmp[5, 4] <- 240 # the supply of lab.ROW
tmp[6, 4] <- 77 # the supply of cap.ROW
tmp[7, 4] <- 2 # the supply of bond.ROW
tmp

},
numeraire = "lab.CHN"

)

ge$p
ge$z

Determine the parameters in the
example based on an input-output table.
IT <- matrix(c(

0, 61.44, 0, 6.498,
53, 0, 0, 0,
14.94, 0, 0, 0,
0, 4.647, 0, 320,
0, 0, 242.9, 0,
0, 0, 81.74, 0,
0, 1.85, 0, 0

), 7, 4, TRUE)

OT <- matrix(c(
67.94, 0, 0, 0,
0, 53, 0, 0,
0, 14.94, 0, 0,
0, 0, 324.64, 0,
0, 0, 0, 242.9,
0, 0, 0, 81.74,
0, 0, 0, 1.85

), 7, 4, TRUE)

dimnames(IT) <- dimnames(OT) <- list(
c("prod.CHN", "lab.CHN", "cap.CHN", "prod.ROW", "lab.ROW", "cap.ROW", "bond.ROW"),
c("firm.CHN", "household.CHN", "firm.ROW", "household.ROW")

)

es.DFProd <- 0.8 # the substitution elasticity between domestic and foreign products

376 gemTwoCountry_Bond_7_4

es.CL <- 0.8 # the substitution elasticity between capital and labor

dst.firm.CHN <- node_new("output",
type = "SCES",
alpha = OT["prod.CHN", "firm.CHN"] /

sum(IT[c("lab.CHN", "cap.CHN"), "firm.CHN"]),
beta = prop.table(IT[c("lab.CHN", "cap.CHN"), "firm.CHN"]),
es = es.CL,
"lab.CHN", "cap.CHN"

)

the amount of outbound investment corresponding to
each unit of composite commodity 1 used by household.
outbound.investment.rate <- IT["bond.ROW", "household.CHN"] /

sum(IT[c("prod.CHN", "prod.ROW"), "household.CHN"])

dst.household.CHN <- node_new("util",
type = "FIN",
rate = c(1, outbound.investment.rate),
"cc1", "bond.ROW"

)

node_set(dst.household.CHN, "cc1",
type = "SCES", alpha = 1,
beta = prop.table(IT[c("prod.CHN", "prod.ROW"), "household.CHN"]),
es = es.DFProd,
"prod.CHN", "prod.ROW"

)

dst.firm.ROW <- node_new("output",
type = "SCES", alpha = 1,
beta = prop.table(IT[c("lab.ROW", "cap.ROW"), "firm.ROW"]),
es = es.CL,
"lab.ROW", "cap.ROW"

)

dst.household.ROW <- node_new("util",
type = "SCES", alpha = 1,

beta = prop.table(IT[c("prod.CHN", "prod.ROW"), "household.ROW"]),
es = es.DFProd,
"prod.CHN", "prod.ROW"

)

dstl <- list(dst.firm.CHN, dst.household.CHN, dst.firm.ROW, dst.household.ROW)

ge <- sdm2(dstl,
names.commodity = c(
"prod.CHN", "lab.CHN", "cap.CHN",
"prod.ROW", "lab.ROW", "cap.ROW", "bond.ROW"

),
names.agent = c(

"firm.CHN", "household.CHN",
"firm.ROW", "household.ROW"

gemTwoCountry_RealExchangeRateIndex_7_4 377

),
B = {

tmp <- matrix(0, 7, 4, TRUE)
tmp[1, 1] <- tmp[4, 3] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 7, 4, TRUE)
tmp[2, 2] <- OT["lab.CHN", "household.CHN"]
tmp[3, 2] <- OT["cap.CHN", "household.CHN"]
tmp[5, 4] <- OT["lab.ROW", "household.ROW"]
tmp[6, 4] <- OT["cap.ROW", "household.ROW"]
tmp[7, 4] <- OT["bond.ROW", "household.ROW"]
tmp

},
numeraire = "lab.CHN"

)

ge$p
ge$z

gemTwoCountry_RealExchangeRateIndex_7_4

Calculating Real Exchange Rate Index

Description

Some examples of calculating the real exchange rate index in a two-country economy.

Usage

gemTwoCountry_RealExchangeRateIndex_7_4(...)

Arguments

... arguments to be passed to the function sdm2.

Value

A real exchange rate index.

See Also

gemTwoCountry_Bond_7_4

378 gemTwoCountry_RealExchangeRateIndex_7_4

Examples

es.DFProd is the substitution elasticity between domestic and foreign products.
makeDstl <- function(es.DFProd = 0.5,

alpha.firm.CHN = 1,
beta.household.CHN = c(0.75, 0.25),
outbound.investment.rate = 0.25) {

es.CL <- 0.8 # substitution elasticity between capital and labor

dst.firm.CHN <- node_new("output",
type = "SCES", alpha = alpha.firm.CHN, beta = c(0.75, 0.25), es = es.CL,
"lab.CHN", "cap.CHN"

)

dst.household.CHN <- node_new("util",
type = "FIN", rate = c(1, outbound.investment.rate),
"cc1", "bond.ROW"

) # 0.1 is the amount of foreign investment corresponding to
each unit of cc1 (i.e. composite commodity 1).

node_set(dst.household.CHN, "cc1",
type = "SCES", alpha = 1, beta = beta.household.CHN, es = es.DFProd,
"prod.CHN", "prod.ROW"

)

node_plot(dst.household.CHN)

dst.firm.ROW <- node_new("output",
type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = es.CL,
"lab.ROW", "cap.ROW"

)

dst.household.ROW <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.05, 0.95), es = es.DFProd,
"prod.CHN", "prod.ROW"

)

list(dst.firm.CHN, dst.household.CHN, dst.firm.ROW, dst.household.ROW)
}

dstl <- makeDstl()

SExg <- {
tmp <- matrix(NA, 7, 4, TRUE)
tmp[2, 2] <- 30 # the supply of lab.CHN
tmp[3, 2] <- 10 # the supply of cap.CHN
tmp[5, 4] <- 156 # the supply of lab.ROW
tmp[6, 4] <- 156 # the supply of cap.ROW
tmp[7, 4] <- 8 # the supply of bond.ROW
tmp

}

f <- function(A = dstl,

gemTwoCountry_RealExchangeRateIndex_7_4 379

S0Exg = SExg) {
sdm2(

A = A,
names.commodity = c(

"prod.CHN", "lab.CHN", "cap.CHN",
"prod.ROW", "lab.ROW", "cap.ROW", "bond.ROW"

),
names.agent = c(

"firm.CHN", "household.CHN",
"firm.ROW", "household.ROW"

),
B = {

tmp <- matrix(0, 7, 4, TRUE)
tmp[1, 1] <- tmp[4, 3] <- 1
tmp

},
S0Exg = S0Exg,
numeraire = "lab.CHN"

)
}

ge.benchmark <- f()

real exchange rate index
reri <- function(ge.new, ge.benchmark) {

weight.CHN <- rowSums(ge.benchmark$SV)[c("prod.CHN", "lab.CHN", "cap.CHN")]
weight.ROW <- rowSums(ge.benchmark$SV)[c("prod.ROW", "lab.ROW", "cap.ROW")]

weighted.mean(ge.new$p[c("prod.ROW", "lab.ROW", "cap.ROW")], weight.ROW) /
weighted.mean(ge.new$p[c("prod.CHN", "lab.CHN", "cap.CHN")], weight.CHN)

}

technology progress in CHN
reri(f(A = makeDstl(es.DFProd = 5, alpha.firm.CHN = 2)), ge.benchmark)
reri(f(A = makeDstl(es.DFProd = 0.5, alpha.firm.CHN = 2)), ge.benchmark)

labor supply change in CHN
SExg.LSC <- SExg
SExg.LSC[2, 2] <- SExg.LSC[2, 2] * 2

reri(f(A = makeDstl(es.DFProd = 5), S0Exg = SExg.LSC), ge.benchmark)

reri(f(S0Exg = SExg.LSC), ge.benchmark)

capital accumulation in CHN
SExg.CA <- SExg
SExg.CA[3, 2] <- SExg.CA[3, 2] * 3

reri(f(A = makeDstl(es.DFProd = 5), S0Exg = SExg.CA), ge.benchmark)

reri(f(S0Exg = SExg.CA), ge.benchmark)

380 gemTwoCountry_Tariff_9_5

preference change in China
reri(f(A = makeDstl(es.DFProd = 5, beta.household.CHN = c(0.5, 0.5))), ge.benchmark)
reri(f(A = makeDstl(beta.household.CHN = c(0.5, 0.5))), ge.benchmark)

outbound-investment-rate change in China
reri(f(A = makeDstl(es.DFProd = 5, outbound.investment.rate = 0.1)), ge.benchmark)
reri(f(A = makeDstl(outbound.investment.rate = 0.1)), ge.benchmark)

gemTwoCountry_Tariff_9_5

An Example of Two-Country Economy with Tariff

Description

A general equilibrium example of two-country economy with tariff.

Usage

gemTwoCountry_Tariff_9_5(...)

Arguments

... arguments to be passed to the function sdm2.

Value

A general equilibrium.

See Also

gemTwoCountry_Bond_7_4

Examples

es.DFProd <- 0.8 # substitution elasticity between domestic and foreign products
es.CL <- 0.8 # substitution elasticity between capital and labor

dst.firm.CHN <- node_new("output",
type = "SCES", alpha = 1, beta = c(0.78, 0.22), es = es.CL,
"lab.CHN", "cap.CHN"

)

dst.household.CHN <- node_new("util",
type = "FIN", rate = c(1, outbound.investment.rate = 0.028),
"cc1", "bond.ROW"

)

node_set(dst.household.CHN, "cc1",
type = "SCES", alpha = 1, beta = c(0.93, 0.07), es = es.DFProd,

gemTwoCountry_Tariff_9_5 381

"prod.CHN", "imported.prod.CHN"
)

node_plot(dst.household.CHN)

dst.foreign.trade.CHN <- node_new("imported.product",
type = "FIN",
rate = c(1, 0.016),
"prod.ROW", "tariff.CHN"

)

dst.firm.ROW <- node_new("output",
type = "SCES", alpha = 1, beta = c(0.75, 0.25), es = es.CL,
"lab.ROW", "cap.ROW"

)

dst.household.ROW <- node_new("util",
type = "SCES", alpha = 1, beta = c(0.02, 0.98), es = es.DFProd,
"prod.CHN", "prod.ROW"

)

dstl <- list(
dst.firm.CHN, dst.household.CHN, dst.foreign.trade.CHN,
dst.firm.ROW, dst.household.ROW

)

ge <- sdm2(dstl,
names.commodity = c(

"prod.CHN", "lab.CHN", "cap.CHN", "imported.prod.CHN", "tariff.CHN",
"prod.ROW", "lab.ROW", "cap.ROW", "bond.ROW"

),
names.agent = c(

"firm.CHN", "household.CHN", "foreign.trade.CHN",
"firm.ROW", "household.ROW"

),
B = {

tmp <- matrix(0, 9, 5, TRUE)
tmp[1, 1] <- tmp[6, 4] <- 1
tmp[4, 3] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 9, 5, TRUE)
tmp[2, 2] <- 53 # the supply of lab.CHN
tmp[3, 2] <- 15 # the supply of cap.CHN
tmp[5, 2] <- 0.29 # the supply of tariff.CHN
tmp[7, 5] <- 240 # the supply of lab.ROW
tmp[8, 5] <- 77 # the supply of cap.ROW
tmp[9, 5] <- 2 # the supply of bond.ROW
tmp

},
numeraire = "lab.CHN"

)

382 gemTwoIndustries_4_3

ge$p
ge$z

gemTwoIndustries_4_3 A 4-by-3 Economy with Two Industries

Description

A 4-by-3 economy with two industries.

Usage

gemTwoIndustries_4_3(...)

Arguments

... arguments to be passed to the function sdm2.

References

Ju, Jiandong, Justin Yifu Lin, Qing Liu, Kang Shi (2020) Structural Changes and the Real Exchange
Rate Dynamics. Journal of International Money and Finance, Vol. 107, pp: 102192.

Examples

dst.manu <- node_new("output",
type = "SCES", es = 1,
alpha = 1, beta = c(0.2, 0.8),
"lab", "cap"

)

dst.serv <- node_new("output",
type = "SCES", es = 1,
alpha = 1, beta = c(0.8, 0.2),
"lab", "cap"

)

dst.consumer <- node_new("util",
type = "SCES", es = 1,
alpha = 1, beta = c(0.5, 0.5),
"manu", "serv"

)

dstl <- list(dst.manu, dst.serv, dst.consumer)

S0Exg <- matrix(c(
NA, NA, NA,
NA, NA, NA,

gemTwoIndustries_4_3 383

NA, NA, 100,
NA, NA, 100

), 4, 3, TRUE)

f <- function(dstl, S0Exg) {
sdm2(

A = dstl,
B = matrix(c(

1, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE),
S0Exg = S0Exg,
names.commodity = c("manu", "serv", "lab", "cap"),
names.agent = c("manu", "serv", "consumer"),
numeraire = c("manu")

)
}

ge <- f(dstl = dstl, S0Exg = S0Exg)

ge$D
ge$p

##
dstl2 <- lapply(dstl, Clone)
dstl2[[1]]$alpha <- 2

ge <- f(dstl = dstl2, S0Exg = S0Exg)
ge$D
ge$p

##
S0Exg2 <- S0Exg
S0Exg2[3, 3] <- 200 # labor supply
ge <- f(dstl = dstl, S0Exg = S0Exg2)
ge$D
ge$p

##
S0Exg3 <- S0Exg
S0Exg3[4, 3] <- 200 # capital supply
ge <- f(dstl = dstl, S0Exg = S0Exg3)
ge$D
ge$p

##
dstl3 <- lapply(dstl, Clone)
dstl3[[3]]$beta <- c(0.2, 0.8)
ge <- f(dstl = dstl3, S0Exg = S0Exg)
ge$D
ge$p

384 gem_2_2

exogenous wage rate
S0Exg4 <- S0Exg
S0Exg4[3, 3] <- 300 # labor supply

Compute the price-control stationary state.
pcss <- sdm2(

A = dstl2,
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0,
0, 0, 0

), 4, 3, TRUE),
S0Exg = S0Exg4,
names.commodity = c("manu", "serv", "lab", "cap"),
names.agent = c("manu", "serv", "consumer"),
numeraire = c("manu"),
pExg = c(1, NA, 1, NA),
maxIteration = 1,
ts = TRUE

)

matplot(pcss$ts.z, type = "l")
matplot(pcss$ts.q, type = "l")
tail(pcss$ts.q)
pcss$p

gem_2_2 Some Simple 2-by-2 General Equilibrium Models

Description

Some simple 2-by-2 general equilibrium models with a firm and a laborer.

Usage

gem_2_2(...)

Arguments

... arguments to be passed to the function sdm2.

References

http://www.econ.ucla.edu/riley/MAE/Course/SolvingForTheWE.pdf

gem_2_2 385

Examples

a 2-by-2 general equilibrium model with a Leontief production function.
ge.Leontief <- sdm2(

A = matrix(c(
0.5, 1,
0.5, 0

), 2, 2, TRUE),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge.Leontief$p
ge.Leontief$z
addmargins(ge.Leontief$D, 2)
addmargins(ge.Leontief$S, 2)

the same as above.
ge2.Leontief <- sdm2(

A = list(
dst.firm = node_new(

"output",
type = "Leontief",
a = c(0.5, 0.5),
"prod", "lab"

),
dst.consumer = node_new(

"util",
type = "Leontief", a = 1,
"prod"

)
),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

386 gem_2_2

ge2.Leontief$p
ge2.Leontief$z
addmargins(ge2.Leontief$D, 2)
addmargins(ge2.Leontief$S, 2)

a 2-by-2 general equilibrium model with a CD production function.
ge.CD <- sdm2(

A = function(state) {
the vector of demand coefficients of the firm
a1 <- CD_A(alpha = 2, Beta = c(0.5, 0.5), state$p)
the vector of demand coefficients of the laborer
a2 <- c(1, 0)
cbind(a1, a2)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge.CD$p
ge.CD$z
addmargins(ge.CD$D, 2)
addmargins(ge.CD$S, 2)

the same as above.
ge2.CD <- sdm2(

A = list(
dst.firm = node_new(

"output",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
"prod", "lab"

),
dst.consumer = node_new(

"util",
type = "Leontief", a = 1,
"prod"

)
),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,

gem_2_2 387

NA, 100
), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge2.CD$p
ge2.CD$z
addmargins(ge2.CD$D, 2)
addmargins(ge2.CD$S, 2)

a 2-by-2 general equilibrium model with a SCES production function.
ge.SCES <- sdm2(

A = function(state) {
a1 <- SCES_A(es = 0.5, alpha = 1, Beta = c(0.5, 0.5), p = state$p)
a2 <- c(1, 0)
cbind(a1, a2)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge.SCES$p
ge.SCES$z
addmargins(ge.SCES$D, 2)
addmargins(ge.SCES$S, 2)

the same as above.
ge2.SCES <- sdm2(

A = list(
dst.firm = node_new(

"output",
type = "SCES",
es = 0.5, alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

),
dst.consumer = node_new(

"util",
type = "Leontief", a = 1,
"prod"

)
),
B = matrix(c(

388 gem_2_2

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge2.SCES$p
ge2.SCES$z
addmargins(ge2.SCES$D, 2)
addmargins(ge2.SCES$S, 2)

a 2-by-2 general equilibrium model with a CESAK production function.
ge.CESAK <- sdm2(

A = function(state) {
a.firm <- CESAK_dc(alpha = 2, betaK = 0.5, alphaK = 0.5, p = state$p, es = 1)
a.consumer <- c(1, 0)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge.CESAK$p
ge.CESAK$z
addmargins(ge.CESAK$D, 2)
addmargins(ge.CESAK$S, 2)

the same as above.
ge2.CESAK <- sdm2(

A = list(
dst.firm = node_new(

"output",
type = "CESAK", es = 1,
alpha = 2, betaK = 0.5, alphaK = 0.5,
"prod", "lab"

),
dst.consumer = node_new(

"util",

gem_2_2 389

type = "Leontief", a = 1,
"prod"

)
),
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge2.CESAK$p
ge2.CESAK$z
addmargins(ge2.CESAK$D, 2)
addmargins(ge2.CESAK$S, 2)

Example 1 in the ucla reference.
ge3.SCES <- sdm2(

A = function(state) {
a.firm <- c(0, 0.25)
a.consumer <- SCES_A(es = 0.5, alpha = 1, Beta = c(0.5, 0.5), p = state$p)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 30

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge3.SCES$p
ge3.SCES$z
ge3.SCES$D
ge3.SCES$S

The laborer has some product.
ge <- sdm2(

A = function(state) {
a.firm <- c(0, 1) # c(0, 2)
a.consumer <- SCES_A(es = 0.5, alpha = 1, Beta = c(0.5, 0.5), p = state$p)
cbind(a.firm, a.consumer)

390 gem_3_2

},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, 50, # 500
NA, 100

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "laborer"),
numeraire = "prod"

)

ge$p
ge$z
ge$D
ge$S

gem_3_2 Some Simple 3-by-2 General Equilibrium Models

Description

Some simple 3-by-2 general equilibrium models with a firm and a consumer.

Usage

gem_3_2(...)

Arguments

... arguments to be passed to the function sdm2.

References

http://www.econ.ucla.edu/riley/MAE/Course/SolvingForTheWE.pdf

He Zhangyong, Song Zheng (2010, ISBN: 9787040297270) Advanced Macroeconomics. Beijing:
Higher Education Press.

Examples

ge.CD <- sdm2(
A = function(state) {

the vector of demand coefficients of the firm
a1 <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5), state$p)
the vector of demand coefficients of the consumer
a2 <- c(1, 0, 0)

gem_3_2 391

cbind(a1, a2)
},
B = matrix(c(

1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100,
NA, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge.CD$p
ge.CD$z
ge.CD$D
ge.CD$S

Example 2 in the ucla reference
By introducing a new factor of production (called land here)
a firm with diminishing returns to scale can be converted into
a firm with constant returns to scale.
ge2.CD <- sdm2(

A = function(state) {
a.firm <- CD_A(alpha = 6, Beta = c(0, 0.5, 0.5), state$p)
a.consumer <- CD_A(alpha = 1, Beta = c(0.2, 0.8, 0), state$p)
cbind(a.firm, a.consumer)

},
B = matrix(c(

1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 81,
NA, 1

), 3, 2, TRUE),
names.commodity = c("prod", "lab", "land"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge2.CD$p
ge2.CD$z
ge2.CD$D
ge2.CD$S

####

392 gem_3_2

ge.SCES <- sdm2(
A = function(state) {
a1 <- SCES_A(es = 0.5, alpha = 1, Beta = c(0, 0.5, 0.5), p = state$p)
a2 <- c(1, 0, 0)
cbind(a1, a2)

},
B = matrix(c(

1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100,
NA, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge.SCES$p
ge.SCES$z
ge.SCES$D
ge.SCES$S

####
ge2.SCES <- sdm2(

A = function(state) {
a1 <- SCES_A(es = 0.5, alpha = 1, Beta = c(0.2, 0.4, 0.4), p = state$p)
a2 <- c(1, 0, 0)
cbind(a1, a2)

},
B = matrix(c(

1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100,
NA, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge2.SCES$p
ge2.SCES$z
ge2.SCES$D
ge2.SCES$S

gem_3_2 393

nested production function
dst.firm <- node_new(

"prod",
type = "Leontief",
a = c(0.2, 0.8),
"prod", "cc1"

)
node_set(dst.firm, "cc1",

type = "SCES",
es = 0.5, alpha = 1, beta = c(0.5, 0.5),
"cap", "lab"

)

dst.consumer <- node_new(
"util",
type = "Leontief", a = 1,
"prod"

)

ge3.SCES <- sdm2(
A = list(dst.firm, dst.consumer),
B = matrix(c(
1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 100,
NA, 100

), 3, 2, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge3.SCES$p
ge3.SCES$z
ge3.SCES$D
ge3.SCES$S

a model with a quasilinear utility function (see He and Song, 2010, page 19).
alpha.firm <- 2
beta.cap.firm <- 0.6
beta.lab.firm <- 1 - beta.cap.firm
theta.consumer <- 0.8
lab.supply <- 2
cap.supply <- 1

ge <- sdm2(
A = function(state) {

a1 <- CD_A(alpha.firm, rbind(0, beta.lab.firm, beta.cap.firm), state$p)

394 gem_3_3

demand.lab.prod <- QL_demand(
w = state$w[2], p = state$p[2:1], # the prices of lab and prod
alpha = 1, beta = theta.consumer, type = "CRRA"

)
a2 <- c(demand.lab.prod[2:1], 0)
cbind(a1, a2)

},
B = matrix(c(

1, 0,
0, 0,
0, 0

), 3, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, lab.supply,
NA, cap.supply

), 3, 2, TRUE),
names.commodity = c("prod", "lab", "cap"),
names.agent = c("firm", "consumer"),
numeraire = "prod"

)

ge$p
ge$z
ge$D
ge$S

the equilibrium leisure
lab.supply - (beta.lab.firm * (alpha.firm * cap.supply^beta.cap.firm)^(1 - theta.consumer))^

(1 / (beta.cap.firm + beta.lab.firm * theta.consumer))

the equilibrium price of labor
w <- ((1 - beta.cap.firm)^(1 - beta.cap.firm) * (alpha.firm * cap.supply^beta.cap.firm))^

(theta.consumer / (beta.cap.firm + (1 - beta.cap.firm) * theta.consumer))

the equilibrium price of capital goods
beta.cap.firm * w^(1 / theta.consumer) / cap.supply

gem_3_3 Some Simple 3-by-3 General Equilibrium Models

Description

Some simple 3-by-3 general equilibrium models with two firms and a consumer.

Usage

gem_3_3(...)

gem_3_3 395

Arguments

... arguments to be passed to the function sdm2.

See Also

gemCapitalAccumulation

Examples

####
ge <- sdm2(

A = function(state) {
the vector of demand coefficients of the firm
a.firm.corn <- CD_A(alpha = 1, Beta = c(0, 0.5, 0.5), p = state$p)
a.firm.iron <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5), p = state$p)
the vector of demand coefficients of the consumer
a.consumer <- CD_A(alpha = 1, Beta = c(0.5, 0.5, 0), p = state$p)
cbind(a.firm.corn, a.firm.iron, a.consumer)

},
B = diag(c(1, 1), 3),
S0Exg = {

tmp <- matrix(NA, 3, 3)
tmp[3, 3] <- 100
tmp

},
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

####
ge <- sdm2(

A = function(state) {
the vector of demand coefficients of the firm
a.firm.corn <-

SCES_A(es = 1,
alpha = 1,
Beta = c(0, 0.5, 0.5),
p = state$p)

a.firm.iron <-
SCES_A(es = 1,

alpha = 2,
Beta = c(0, 0.5, 0.5),
p = state$p)

the vector of demand coefficients of the consumer
a.consumer <- CD_A(alpha = 1, Beta = c(0.5, 0.5, 0), p = state$p)
cbind(a.firm.corn, a.firm.iron, a.consumer)

396 gem_3_4

},
B = diag(c(1, 1), 3),
S0Exg = {

tmp <- matrix(NA, 3, 3)
tmp[3, 3] <- 100
tmp

},
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

a general equilibrium model containing a production firm
and a capital-goods-leasing firm
ge <- sdm2(

A = function(state) {
a.firm1 <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5), state$p)
a.consumer <- c(1, 0, 0)
a.firm2 <- c(1, 0, 0)
cbind(a.firm1, a.consumer, a.firm2)

},
B = matrix(c(

1, 0, 0.5,
0, 0, 1,
0, 0, 0

), 3, 3, TRUE),
S0Exg = matrix(c(

NA, NA, NA,
NA, NA, NA,
NA, 100,NA

), 3, 3, TRUE),
names.commodity = c("prod", "cap", "lab"),
names.agent = c("firm1", "consumer","firm2"),
numeraire = "prod",
priceAdjustmentVelocity = 0.05

)
ge$p
ge$z
ge$D

gem_3_4 Some Simple 3-by-4 General Equilibrium Models

Description

Some simple 3-by-4 general equilibrium models with two firms and two consumers.

gem_3_4 397

Usage

gem_3_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

####
ge <- sdm2(

A = function(state) {
a.firm.corn <- CD_A(alpha = 1, Beta = c(0, 0.5, 0.5), state$p)
a.firm.iron <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5), state$p)
a.consumer1 <- c(1, 0, 0)
a.consumer2 <- CD_A(alpha = 1, Beta = c(0.5, 0.5, 0), state$p)

cbind(a.firm.corn, a.firm.iron, a.consumer1, a.consumer2)
},
B = diag(c(1, 1, 0), 3, 4),
S0Exg = {

tmp <- matrix(NA, 3, 4)
tmp[3, 3:4] <- 100
tmp

},
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer1", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

####
ge <- sdm2(

A = function(state) {
a.firm.corn <-

SCES_A(
es = 1,
alpha = 1,
Beta = c(0, 0.5, 0.5),
p = state$p

)
a.firm.iron <-

SCES_A(
es = 1,
alpha = 2,
Beta = c(0, 0.5, 0.5),
p = state$p

)

398 gem_3_4

a.consumer1 <- c(1, 0, 0)
a.consumer2 <- CD_A(alpha = 1, Beta = c(0.5, 0.5, 0), state$p)

cbind(a.firm.corn, a.firm.iron, a.consumer1, a.consumer2)
},
B = diag(c(1, 1, 0), 3, 4),
S0Exg = {

tmp <- matrix(NA, 3, 4)
tmp[3, 3:4] <- 100
tmp

},
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer1", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

an example at
https://web.stanford.edu/~jdlevin/Econ%20202/General%20Equilibrium.pdf
ge <- sdm2(

A = function(state) {
a.firm.1 <- c(0, 1, 0)
a.firm.2 <- c(0, 0, 1)
a.consumer1 <- CD_A(alpha = 1, Beta = c(1 / 3, 1 / 3, 1 / 3), state$p)
a.consumer2 <- CD_A(alpha = 1, Beta = c(1 / 3, 1 / 3, 1 / 3), state$p)

cbind(a.firm.1, a.firm.2, a.consumer1, a.consumer2)
},
B = matrix(c(

2, 0, 0, 0,
0, 1, 0, 0,
0.5, 0, 0, 0

), 3, 4, TRUE),
S0Exg = matrix(c(

NA, NA, 1, 2,
NA, NA, 2, 2,
NA, NA, 3, 2

), 3, 4, TRUE),
names.agent = c("firm1", "firm2", "consumer1", "consumer2"),
numeraire = 3

)

ge$p
ge$z
ge$D
ge$S

gem_4_4 399

gem_4_4 Some Simple 4-by-4 General Equilibrium Models

Description

Some simple 4-by-4 general equilibrium models.

Usage

gem_4_4(...)

Arguments

... arguments to be passed to the function sdm2.

Examples

A general equilibrium model containing a capital good with service-life
wear-and-tear. The new product can be used as a capital good with a service
life of two periods, and the used old capital good is the old product.
ge <- sdm2(

A = function(state) {
a.firm1 <- CD_A(alpha = 2, Beta = c(0, 0.5, 0.5, 0), state$p)
a.consumer <- c(1, 0, 0, 0)
a.firm2 <- c(1, 0, 0, 0)
a.firm3 <- c(0, 0, 0, 1)
cbind(a.firm1, a.consumer, a.firm2, a.firm3)

},
B = matrix(c(

1, 0, 0, 0,
0, 0, 1, 1,
0, 0, 0, 0,
0, 0, 1, 0

), 4, 4, TRUE),
S0Exg = matrix(c(

NA, NA, NA, NA,
NA, NA, NA, NA,
NA, 100, NA, NA,
NA, NA, NA, NA

), 4, 4, TRUE),
names.commodity = c("prod.new", "cap", "lab", "prod.old"),
names.agent = c("firm1", "consumer", "firm2", "firm3"),
numeraire = "prod.new",
priceAdjustmentVelocity = 0.05

)

ge$p
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)

400 gem_4_4

the Shoven-Whalley model at
https://lexjansen.com/nesug/nesug03/st/st002.pdf
ge <- sdm2(

A = function(state) {
a.firm.corn <- CES_A(sigma = 1 - 1 / 2, alpha = 1.5, Beta = c(0, 0, 0.4, 0.6), state$p)
a.firm.iron <- CES_A(sigma = 1 - 1 / 0.5, alpha = 2, Beta = c(0, 0, 0.3, 0.7), state$p)
a.consumer1 <- SCES_A(alpha = 1, Beta = c(0.5, 0.5, 0, 0), es = 1.5, p = state$p)
a.consumer2 <- SCES_A(alpha = 1, Beta = c(0.3, 0.7, 0, 0), es = 0.75, p = state$p)

cbind(a.firm.corn, a.firm.iron, a.consumer1, a.consumer2)
},
B = diag(c(1, 1, 0, 0), 4, 4),
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[3, 3] <- 25
tmp[4, 4] <- 60
tmp

},
names.commodity = c("corn", "iron", "cap", "lab"),
names.agent = c("firm.corn", "firm.iron", "consumer1", "consumer2"),
numeraire = "lab"

)

ge$p
ge$z
ge$D
ge$S

an n-by-n general equilibrium model with Cobb-Douglas functions.
f <- function(n, policy = NULL, z0 = rep(100 * n, n), numberOfPeriods = 30,

Beta = matrix(1 / n, n, n), n.firm = n - 1) {
ge <- sdm2(

A = function(state) {
CD_A(alpha = rep(n, n), Beta = Beta, p = state$p)

},
B = {

tmp <- diag(n)
tmp[, (n.firm + 1):n] <- 0
tmp

},
S0Exg = {

tmp <- matrix(NA, n, n)
for (k in (n.firm + 1):n) tmp[k, k] <- 100 * n
tmp

},
numeraire = n,
policy = policy,
z0 = z0,
maxIteration = 1,
numberOfPeriods = numberOfPeriods,
names.agent = c(paste0("firm", 1:n.firm), paste0("consumer", 1:(n - n.firm))),
ts = TRUE

ge_tidy 401

)
print(ge$z)
print(ge$p)
invisible(ge)

}

n <- 4
f(n, n.firm = n - 2)
a spot equilibrium path
ge <- f(n, policy = policyMarketClearingPrice, z0 = runif(n, 10 * n, 100 * n), n.firm = n - 2)
matplot(ge$ts.z, type = "b", pch = 20)
matplot(ge$ts.p, type = "b", pch = 20)

ge_tidy Tidy a General Equilibrium

Description

Add names to the matrices and vectors of a general equilibrium, and add demand matrix, demand
value matrix and supply value matrix to it.

Usage

ge_tidy(ge, names.commodity, names.agent)

Arguments

ge a general equilibrium.

names.commodity

a character vector consisting of names of commodities.

names.agent a character vector consisting of names of agents.

Value

A tidied general equilibrium.

402 iterate

growth_rate Compute the Growth Rate

Description

Compute the growth rates for a vector or each column of a matrix.

Usage

growth_rate(x, log = FALSE, first.na = TRUE)

Arguments

x a vector or a matrix.
log If log==TRUE, the logarithmic growth rate will be computed.
first.na If first.na==FALSE, the result doesn’t contain the first NA.

Value

a vector or a matrix consisting of growth rates.

Examples

x <- matrix(1:8, 4, 2)
growth_rate(x)

iterate Iteration Function

Description

Iteration function

Usage

iterate(x, f, times = 100, tol = NA, ...)

Arguments

x the initial state vector. If x has a name attribute, the names will be used to label
the output matrix.

f a user-supplied function that computes the values of the next time.
times the iteration times.
tol the tolerance for stopping calculation. If the canberra distance of the last two

state vectors is less than tol the calculation will stop.
... optional arguments passed to the f function.

makeCountercyclicalProductTax 403

Value

A matrix consisting of state vectors.

Examples

x <- c(1, 2)
f <- function(x, a) prop.table(c(sum(x), a * prod(x)^(1 / 2)))
iterate(x, f, 100, a = 3)
iterate(x, f, 100, tol = 1e-5, a = 3)

Heron's method for finding square roots
x <- 1
f <- function(x, n) (x + n / x) / 2
iterate(x, f, 10, n = 5)

Find a root of the equation x^3-x-1==0.
x <- 1.5
f <- function(x) (x + 1)^(1 / 3)
iterate(x, f, 10)

####
x <- c(1, 2, 3)
f <- function(x) {

n <- length(x)
sigma <- seq(-1, 1, length.out = n)
result <- rep(NA, n)
for (k in 1:n) result[k] <- CES(sigma[k], 1, rep(1 / n, n), x, rep(1 / n, n))
prop.table(result)

}
iterate(x, f, 100)

makeCountercyclicalProductTax

Make a Countercyclical Product Tax Policy Function

Description

This function returns a countercyclical product tax policy function to accelerate convergence when
calculating general equilibrium. In some cases this tax policy with variable tax rates can stabilize
the economy (see Li, 2019, section 9.4.5.4) . When a firm’s output is higher than the average output
in previous periods, a tax is imposed on the firm to reduce the output of the product. Tax revenue
will be used for implicit public spending. The way of taxation is to directly deduct a part of the
supply of the firm.

Usage

makeCountercyclicalProductTax(agent = 1, time.win = c(100, Inf), span = 50)

404 makePolicyHeadAdjustment

Arguments

agent a vector specifying the indices or names of firms to be taxed.

time.win the time window vector, i.e. a 2-vector specifying the start time and end time of
policy implementation.

span a positive integer which indicates the number of periods when calculating the
average output.

Value

A countercyclical product tax policy function.

See Also

CGE::Example9.10.policy.tax

Examples

ge <- gemCanonicalDynamicMacroeconomic_4_3(
numberOfPeriods = 1000

)

ge <- gemCanonicalDynamicMacroeconomic_4_3(
numberOfPeriods = 1000,
policy = makeCountercyclicalProductTax(time.win = c(500, Inf))

)

makePolicyHeadAdjustment

Make a Policy of Head Adjustment for a Timeline Model

Description

Make a policy of head adjustment for a timeline model. Head adjustment refers to the adjustment
of the initial product supply to a steady-state value.

Usage

makePolicyHeadAdjustment(ind, gr = 0)

Arguments

ind a 4-column matrix or a numeric 4-vector that will be converted into a 4-column
matrix. In each row of the matrix, the first element corresponds to the index
number of a type of product supplied in the first period, the second element
corresponds to the index number of its supplier, the third element corresponds

makePolicyHeadTailAdjustment 405

to the index number of the type of product supplied in the second period, and
the fourth element corresponds corresponds to the index number of its supplier.
Head adjustments are usually made simultaneously with tail adjustments to com-
pute the steady-state equilibrium path. There is usually no need to make head
adjustments alone.

gr the growth rate.

Value

A policy, which is often used as an argument of the function sdm2.

See Also

makePolicyHeadTailAdjustment; makePolicyTailAdjustment

makePolicyHeadTailAdjustment

Make a Policy of Head and/or Tail Adjustment for a Timeline Model

Description

Make a policy of head and/or tail adjustment for a timeline model. A timeline model is an in-
tertemporal non-sequential model that includes production and a given initial product supply. Head
adjustment refers to the adjustment of the initial product supply to a steady-state value. Similarly,
tail adjustment refers to the adjustment of the share coefficient of the last period of the consumer in
the timeline model in order to let the model run in a steady-state equilibrium path.

Usage

makePolicyHeadTailAdjustment(
type = c("both", "tail", "head", "none"),
gr = 0,
np

)

Arguments

type a character string specifying the type of the policy, must be one of "both" (de-
fault), "head", "tail" or "none". If type=="none", NULL will be returned.

gr the growth rate.

np the number of economic periods.

Value

A policy, which is often used as an argument of the function sdm2.

406 makePolicyIncomeTax

Note

The statement policy = makePolicyHeadTailAdjustment(gr = gr, np = np) is equivalent to policy
= list(makePolicyHeadAdjustment(ind = c(1, np, 2, 1), gr = gr), makePolicyTailAdjustment(ind =
c(np - 1, np), gr = gr)).

See Also

gemIntertemporal_Dividend; gemIntertemporal_Money_Dividend_Example7.5.1

makePolicyIncomeTax Make a Policy of Income Tax

Description

This function returns a policy function that redistributes the supplies of economic agents, and the
effect is equivalent to the collection of income tax.

Usage

makePolicyIncomeTax(agent, tax.rate, redistribution, time.win = c(1, Inf))

Arguments

agent a vector specifying the indices or names of taxed agents.

tax.rate a vector specifying the income tax rates for agents, which has the same length
with the argument agent.

redistribution a vector specifying the proportions of tax revenue received by agents, which has
the same length with the argument agent.

time.win the time window vector, i.e. a 2-vector specifying the start time and end time of
policy implementation.

Value

A policy function, which is often used as an argument of the function sdm2.

References

Manuel Alejandro Cardenete, Ana-Isabel Guerra, Ferran Sancho (2012, ISBN: 9783642247453)
Applied General Equilibrium: An Introduction. Springer-Verlag Berlin Heidelberg.

See Also

gemTax_5_4

makePolicyIncomeTax 407

Examples

an exmaple of income tax (see Cardenete et al., 2012, Table 4.3)
dst.consumer1 <- node_new("utility",

type = "CD",
alpha = 1,
beta = c(0.3, 0.7),
"prod1", "prod2"

)

dst.consumer2 <- Clone(dst.consumer1)
dst.consumer2$beta <- c(0.6, 0.4)

dst.firm1 <- node_new("output",
type = "Leontief",
a = c(0.5, 0.2, 0.3),
"VA", "prod1", "prod2"

)
node_set(dst.firm1, "VA",

type = "CD",
alpha = 0.8^-0.8 * 0.2^-0.2,
beta = c(0.8, 0.2),
"lab", "cap"

)

dst.firm2 <- Clone(dst.firm1)
node_set(dst.firm2, "output",

a = c(0.25, 0.5, 0.25)
)
node_set(dst.firm2, "VA",

alpha = 0.4^-0.4 * 0.6^-0.6,
beta = c(0.4, 0.6)

)
dstl <- list(dst.firm1, dst.firm2, dst.consumer1, dst.consumer2)
ge <- sdm2(dstl,

names.commodity = c("prod1", "prod2", "lab", "cap"),
names.agent = c("firm1", "firm2", "consumer1", "consumer2"),
numeraire = "lab",
B = {
tmp <- matrix(0, 4, 4)
tmp[1, 1] <- 1
tmp[2, 2] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[3:4, 3] <- c(30, 20)
tmp[3:4, 4] <- c(20, 5)
tmp

},
maxIteration = 1,
policy = makePolicyIncomeTax(

agent = c(3, 4),

408 makePolicyMeanValue

tax.rate = c(0.2, 0.2),
redistribution = c(0.5, 0.5)

)
)

makePolicyMeanValue Make a Mean Value Policy Function

Description

This function returns a mean value policy function with a given span to accelerate convergence when
calculating general equilibrium. We can observe the number of periods included in the economic
cycle of the time series, and then set the number of periods as the parameter (i.e. span) of this
function. See policyMeanValue

Usage

makePolicyMeanValue(span = 200)

Arguments

span a positive integer. When the time index is an integer multiple of span, the mean
value policy sets the current prices and supplies to the averages of the previous
span-1 periods.

Value

A mean value policy function.

See Also

policyMeanValue gemDualLinearProgramming.

Examples

See the function gemDualLinearProgramming.
A <- matrix(c(

0, 0, 0, 1,
8, 6, 1, 0,
4, 2, 1.5, 0,
2, 1.5, 0.5, 0

), 4, 4, TRUE)
B <- matrix(c(

60, 30, 20, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0

makePolicyStickyPrice 409

), 4, 4, TRUE)
S0Exg <- {

S0Exg <- matrix(NA, 4, 4)
S0Exg[2:4, 4] <- c(48, 20, 8)
S0Exg

}

ge <- sdm2(
A = A, B = B, S0Exg = S0Exg,
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE

)
matplot(ge$ts.q, type = "l")

ge2 <- sdm2(
A = A, B = B, S0Exg = S0Exg,
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE,
policy = makePolicyMeanValue(150)

)
matplot(ge2$ts.q, type = "l")

makePolicyStickyPrice Make a Policy of Sticky Price

Description

Given a stickiness value and a time window vector, this function returns a policy function that sets
the current prices equal to the weighted mean of the market-clearing prices and the current prices
during this time window. When the stickiness value is 0, the prices will be set to the market-clearing
prices. When the stickiness value is 1, the current prices will keep unchanged.

Usage

makePolicyStickyPrice(stickiness = 0.5, time.win = c(1, Inf), tolCond = 1e-06)

Arguments

stickiness a stickiness value between 0 and 1.

time.win the time window vector, i.e. a 2-vector specifying the start time and end time of
policy implementation.

tolCond the tolerance condition for computing the market-clearing price vector.

Value

A policy function, which is often used as an argument of the function sdm2.

410 makePolicySupply

Note

Three major price adjustment methods can be used in the structural dynamic model. The corre-
sponding three kinds of prices are exploratory prices (the default case), market clearing prices, and
sticky prices. The exploratory prices are computed based on the prices and sales rates of the previ-
ous period. In economic reality, the market clearing prices are unknown, so exploratory prices are
more realistic.

When the stickiness value is positive and the priceAdjustmentVelocity parameter in sdm2 is set to
0 (indicating that current prices remain unchanged from the previous period), implementing the
sticky-price policy results in current prices that are the weighted average of the market-clearing
prices and the prices from the previous period. Typically, this function should be utilized in this
manner.

See Also

sdm2

Examples

InitialEndowments <- {
tmp <- matrix(0, 3, 2)
tmp[1, 1] <- 0.01
tmp[2, 2] <- tmp[3, 2] <- 1
tmp

}

ge <- gemCanonicalDynamicMacroeconomic_3_2(
priceAdjustmentVelocity = 0,
policy.supply = makePolicySupply(InitialEndowments),
policy.price = makePolicyStickyPrice(stickiness = 0.5),
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 50

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

makePolicySupply Make a Policy of Supply

Description

Given a supply matrix and a time window vector, this function returns a policy function that sets
the supply during this time window. By default, the time window of this function is c(1, 1), which
means that this function will set the initial supply.

makePolicyTailAdjustment 411

Usage

makePolicySupply(S, time.win = c(1, 1))

Arguments

S a supply matrix.

time.win the time window vector, i.e. a 2-vector specifying the start time and end time of
policy implementation.

Value

A policy function, which is often used as an argument of the function sdm2.

See Also

sdm2

Examples

InitialEndowments <- {
tmp <- matrix(0, 3, 2)
tmp[1, 1] <- 0.01
tmp[2, 2] <- tmp[3, 2] <- 1
tmp

}

ge <- gemCanonicalDynamicMacroeconomic_3_2(
policy.supply = makePolicySupply(InitialEndowments),
policy.price = policyMarketClearingPrice,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 50

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

makePolicyTailAdjustment

Make a Policy of Tail Adjustment for a Timeline Model

Description

Make a policy of tail adjustment for a timeline model. Tail adjustment refers to the adjustment
of the share coefficient of the last period of the consumer in the timeline model in order to let the
model run in a steady-state equilibrium path.

412 makePolicyTechnologyChange

Usage

makePolicyTailAdjustment(ind, gr = 0)

Arguments

ind a 2-column matrix or a numeric 2-vector that will be converted into a 2-column
matrix. In each row of the matrix, the first element corresponds to the index
number of the last activity level of producing the product, and the second ele-
ment corresponds to the index number of a consumer who demands the product
in the final period.

gr the growth rate.

Value

A policy, which is often used as an argument of the function sdm2.

See Also

makePolicyHeadTailAdjustment; makePolicyHeadAdjustment

makePolicyTechnologyChange

Make a Policy of Technology Change

Description

This function returns a policy function that changes the attributes alpha and a of the demand struc-
ture trees of agents specified. An attribute alpha is usually a parameter of a CES or CD function.
An attribute a is usually a parameter of a Leontief function. For demand structure trees that do not
contain these two attributes, this function has no effect.

Usage

makePolicyTechnologyChange(
adjumentment.ratio = 1.1,
agent = 1,
time.win = c(20, 20)

)

Arguments

adjumentment.ratio

a scalar. The attributes alpha will be multiplied by adjumentment.ratio. The
attributes a will be divided by adjumentment.ratio.

agent a vector specifying the indices or names of agents.

time.win the time window vector, i.e. a 2-vector specifying the start time and end time of
policy implementation.

makePolicyTechnologyChange 413

Value

A policy function, which is often used as an argument of the function sdm2.

See Also

sdm2

Examples

dst.firm <- node_new("output",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "Leontief", a = 1, "prod"

)

B <- matrix(c(
1, 0,
0, 0

), 2, 2, TRUE)
S0Exg <- matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE)

ge <- sdm2(
A = list(dst.firm, dst.consumer), B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
priceAdjustmentVelocity = 0,
policy = list(
makePolicyTechnologyChange(agent = "firm"),
makePolicyStickyPrice(stickiness = 0, time.win = c(1, 20)),
makePolicyStickyPrice(stickiness = 0.9, time.win = c(20, Inf))

),
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 40

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

414 marginal_utility

marginal_utility Marginal Utility

Description

If the argument price is null, this function computes the (delta) marginal utility. By default, delta
is set to 1e-10. Otherwise this function computes the (delta) value marginal utility. For a utility
function U(x), two vector x, y and a scalar price, the marginal utility is (U(x + delta * y) - U(x)) /
delta, and the value marginal utility is (U(x + delta * y / price) - U(x)) / delta. For a marginal utility
function M(x), three vector x, y, wt and a scalar price, the marginal utility is sum(M(x) * y * wt),
and the value marginal utility is sum(M(x) * y * wt / price).

Usage

marginal_utility(x, y, uf, price = NULL, delta = 1e-10, muf = NULL)

Arguments

x a numeric k-by-m matrix or a numeric vector (i.e. a k-by-1 matrix).

y a numeric k-by-n matrix or a numeric vector (i.e. a k-by-1 matrix).

uf a utility function or a list consisting of m utility functions.

price NULL or a numeric n-vector consisting of prices of each column of y.

delta a scalar.

muf a marginal utility function or a list consisting of m marginal utility functions. A
marginal utility function is the gradient of a utility function. When the compo-
nents in the marginal utility vector are the same, a marginal utility function may
calculate only one of the components.

Value

An n-by-m marginal utility matrix. Its (i,j)-th element corresponds to the i-th column of y and the
j-th column of x.

References

Sharpe, William F. (2008, ISBN: 9780691138503) Investors and Markets: Portfolio Choices, Asset
Prices, and Investment Advice. Princeton University Press.

Examples

marginal_utility(1:2, cbind(1:2, 1:1), AMV)
marginal_utility(1:2, cbind(1:2, 1:1), AMV, delta = 100)
marginal_utility(cbind(1:2, 3:4), cbind(1:2, 1:1), AMV)
marginal_utility(

cbind(1:2, 3:4), cbind(1:2, 1:1),
list(AMV, function(x) AMV(x, gamma = 0.5))

)

matrix_add_by_name 415

####
wt <- 1:2
uf <- function(x) (x - x^2 / 400) %*% wt
muf <- function(x) (1 - 1 / 200 * x) * wt
marginal_utility(1:2, cbind(1:2, 1:1), uf)
marginal_utility(1:2, cbind(1:2, 1:1), muf = muf)

####
marginal_utility(

1:2, cbind(1:2, 1:1),
function(x, gamma = 1, p = rep(1, length(x))) CRRA(x, gamma, p)$CE

)
marginal_utility(1:2, cbind(1:2, 1:1), function(x) sqrt(prod(x)))

gamma <- 0.8
wt <- c(0.25, 0.75)
marginal_utility(

1:2, cbind(1:2, 1:1),
function(x) CRRA(x, gamma = gamma, prob = wt)$CE

)
the same as above. CRRA and CES utility funcitons are essentially the same.
es <- 1 / gamma
beta <- wt^es
marginal_utility(

1:2, cbind(1:2, 1:1),
function(x) CES(x = x, sigma = 1 - 1 / es, alpha = 1, beta = wt)

)

prop.table(marginal_utility(
1:2, cbind(1:2, 1:1),
function(x) CRRA(x, gamma = gamma, prob = wt)$CE

))
prop.table(marginal_utility(

1:2, cbind(1:2, 1:1),
function(x) CRRA(x, gamma = gamma, prob = wt)$u

))

matrix_add_by_name Add Matrices by Names of Columns and Rows

Description

Add together some matrices by names of columns and rows. Those matrices may have distinct sizes.
All matrices should not have column names and row names other than those of the first matrix.

Usage

matrix_add_by_name(M, ...)

416 matrix_aggregate

Arguments

M a matrix with column names and row names.

... some matrices with column names and row names which constitute subsets of
those of M. If there is a vector, it will be converted to a matrix of one column
and the column will be named after the vector.

Value

A matirx.

Examples

M <- matrix(0, 5, 5)
colnames(M) <- paste("c", 1:5, sep = "")
rownames(M) <- paste("r", 1:5, sep = "")

M2 <- matrix(1:9, 3, 3)
colnames(M2) <- c("c2", "c3", "c5")
rownames(M2) <- c("r1", "r2", "r4")

matrix_add_by_name(M, M2)

c1 <- c(r1 = 1, r3 = 2)
matrix_add_by_name(M, c1)
matrix_add_by_name(M, c1, M2)

matrix_aggregate Aggregate Some Rows and Columns of a Matrix

Description

Aggregate some rows and columns of a matrix to obtain a matrix with smaller dimensions. This
function can be used for aggregating some rows and columns of an input-output table.

Usage

matrix_aggregate(
M,
row.index = NULL,
col.index = NULL,
row.name = NULL,
col.name = NULL

)

matrix_to_dstl 417

Arguments

M a numeric matrix without NA.
row.index a numeric vector or a list of numeric vectors indicating the index numbers of

rows to be aggregated. The default value is is NULL.
col.index a numeric vector or a list of numeric vectors indicating the index numbers of

columns to be aggregated. The default value is is NULL.
row.name a character vector or a list of character vectors indicating the names of rows to be

aggregated. The default value is NULL. If row.index or col.index is not NULL,
row.name and col.name will be ignored.

col.name a character vector or a list of character vectors indicating the names of columns
to be aggregated. The default value is NULL.

Examples

M <- matrix(1:16,4,4,TRUE)
colnames(M) <- paste0("c",1:4)
rownames(M) <- paste0("r",1:4)
addmargins(M)

M2 <- matrix_aggregate(M, list(c(1,3),c(2, 4)), 2:3)
addmargins(M2)

M3 <- matrix_aggregate(M, row.name = list(c("r1","r3"),c("r2","r4")), col.name = c("c2","c3"))
addmargins(M3)

matrix_to_dstl Convert a Matrix into a Demand Structural Tree List

Description

Convert a demand coefficient matrix into a demand structural tree list.

Usage

matrix_to_dstl(
x,
names.commodity = paste("comm", 1:nrow(x), sep = ""),
names.agent = paste("agt", 1:ncol(x), sep = "")

)

Arguments

x a matrix.
names.commodity

names of commodities. They will be the names of leaf nodes of each demand
structural tree.

names.agent names of agents. They will be the names of root nodes of those demand struc-
tural trees.

418 MDCES_demand

Value

A demand structural tree list.

Examples

A <- matrix(c(
0, 0, 0, 1,
8, 6, 1, 0,
4, 2, 1.5, 0,
2, 1.5, 0.5, 0

), 4, 4, TRUE)

dstl <- matrix_to_dstl(A)
node_print(dstl[[1]])

MDCES_demand Modified Displaced CES Demand Function

Description

Compute the modified displaced CES demand function. Firstly, the (unmodified) DCES demand
vector and the (unmodified) utility level are computed under the given income and prices. Secondly,
the modified beta and es are computed under the unmodified utility level. Finally, the DCES demand
vector (namely the modified DCES demand vector) and the utility level (namely the modified DCES
utility) are computed under the modified beta, the modified es, the given income and prices.

Usage

MDCES_demand(es, beta, xi, w, p, betaMod = NULL, esMod = NULL, detail = FALSE)

Arguments

es the elasticity of substitution.

beta an n-vector consisting of the marginal expenditure share coefficients (Fullerton,
1989).

xi an n-vector. Each element of xi parameterizes whether the particular good is a
necessity for the household (Acemoglu, 2009, page 152). For example, xi[i] >
0 may mean that the household needs to consume at least a certain amount of
good i to survive.

w a scalar indicating the income.

p an n-vector indicating the prices.

betaMod a function with the unmodified utility level u.unmod as the argument.

esMod a function with the unmodified utility level u.unmod as the argument.

MDCES_demand 419

detail If detail==FALSE, the modified demand vector is returned. If detail==TRUE,
the returned vector consists of the modified demand vector, the modified utility,
the modified es, the modified beta, the unmodified utility and the unmodified
demand vector.

References

Acemoglu, D. (2009, ISBN: 9780691132921) Introduction to Modern Economic Growth. Princeton
University Press.

Fullerton, D. (1989) Notes on Displaced CES Functional Forms. Available at: https://works.bepress.com/don_fullerton/39/

Examples

MDCES_demand(
es = 1.7, beta = c(0.9, 0.1), xi = c(12, 48),
w = 24, p = c(1, 1 / 400),
betaMod = function(u.unmod) {

beta2 <- min(0.1, 10 / u.unmod)
c(1 - beta2, beta2)

},
detail = TRUE

)

An example of computing the daily
labor supply at various wage rates.
result <- c()

for (real.wage in 4:400) {
x <- MDCES_demand(

es = 1.7, beta = c(0.9, 0.1),
xi = c(12, 48), w = 24,
p = c(1, 1 / real.wage),
betaMod = function(u.unmod) {

beta2 <- min(0.1, 10 / u.unmod)
c(1 - beta2, beta2)

},
detail = TRUE

)

lab.supply <- unname(24 - x[1])
result <- rbind(

result,
c(real.wage, lab.supply, x)

)
}

plot(result[, 1:2],
type = "o", pch = 20,
xlab = "hourly real wage",
ylab = "daily labor supply"

)

420 node_insert

A 2-by-2 general equilibrium model
with a MDCES demand function
ge <- sdm2(

A = function(state) {
a.firm <- CD_A(alpha = 5, Beta = c(0.5, 0.5), state$p)
a.consumer <-

MDCES_demand(
es = 1, beta = c(0.5, 0.5), xi = c(0, 0), w = state$w[2], p = state$p,
betaMod = function(u.unmod) {

beta2 <- 0.95 * plogis(u.unmod, location = 2, scale = 2)
c(1 - beta2, beta2)

}
)

cbind(a.firm, a.consumer)
},
B = matrix(c(

1, 0,
0, 0

), 2, 2, TRUE),
S0Exg = matrix(c(

NA, NA,
NA, 1

), 2, 2, TRUE),
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
numeraire = "lab"

)

ge$z
ge$D
MDCES_demand(

es = 1, beta = c(0.5, 0.5), xi = c(0, 0),
w = 1, p = ge$p,
betaMod = function(u.unmod) {

beta2 <- 0.95 * plogis(u.unmod, location = 2, scale = 2)
c(1 - beta2, beta2)

}
)

node_insert Insert Nodes into a Tree

Description

Scan the tree and insert nodes before the first non-root node having the name specified.
This function is based on the package data.tree and has side-effects. It modifies the tree given by
the argument (see the package data.tree).

node_new 421

Usage

node_insert(tree, node.name, ...)

Arguments

tree a tree (i.e. a Node object).

node.name a character string specifying the name of a node. Some nodes will be inserted
before it.

... some Node objects or character strings. A character string will be treated as the
name of a new node to be created. Those nodes will be inserted into the tree.

Value

Invisibly returns the parent node of those new nodes.

Examples

dst.firm <- node_new(
"output",
"prod1", "prod2"

)
plot(dst.firm)

dst.VA <- node_new(
"VA",
"lab", "cap"

)

node_insert(
dst.firm, "prod1",
dst.VA, "prod3"

)
node_set(

dst.firm, "output",
"prod4"

)
plot(dst.firm)

node_new Create a Tree

Description

Create a tree by the node_set function and the package data.tree.

As the package data.tree says:

"One of most important things to note about data.tree is that it exhibits reference semantics. In a
nutshell, this means that you can modify your tree along the way, without having to reassign it to

422 node_new

a variable after each modification. By and large, this is a rather exceptional behavior in R, where
value-semantics is king most of the time."

Usage

node_new(root.name, ...)

Arguments

root.name a character string specifying the name of the root node.

... attribute names and values (e.g. alpha=1). The parameter name of a value will
be treated as the name of an attribute.
A value without a parameter name will be treated as a child node or the name of
a child node. If the class of the value is Node, it will be added as a child. If the
class of the value is character, a child node (or some child nodes) will be created
with the value as the name (or names).

Value

A tree (i.e. a Node object).

Examples

create a tree
dst1 <- node_new("firm1")
print(dst1)

create a tree with children
dst <- node_new(

"firm",
"lab", "cap", dst1

)
print(dst)

the same as above
dst <- node_new(

"firm",
c("lab", "cap"), dst1

)
print(dst)

create a tree with attributes
dst <- node_new("firm",

type = "CD", alpha = 1, beta = c(0.5, 0.5)
)
node_print(dst)

create a tree with attributes and children
dst <- node_new("firm",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"lab", "cap"

node_plot 423

)
node_plot(dst)
node_plot(dst, TRUE)

node_plot Plot a Tree and Show the Type Attribute

Description

A wrapper of the function plot.Node of the packages data.tree. If a non-leaf node has a type attribute,
then the attribute will be shown.

Usage

node_plot(node, param = FALSE, ...)

Arguments

node a tree (i.e. a Node object).

param If TRUE, those parameters such as alpha, beta, es etc. will be shown.

... arguments to be passed to the function plot.Node.

See Also

demand_coefficient

node_print Print a Tree and Its Fields

Description

A wrapper of the function print.Node of the package data.tree. Print a tree and its fields except the
func field.

Usage

node_print(node, ...)

Arguments

node a Node object.

... arguments passed to print.Node.

424 node_prune

Examples

dst <- node_new("firm",
type = "SCES",
alpha = 2, beta = c(0.8, 0.2),
es = 0.5,
"wheat", "iron"

)

node_print(dst)

####
dst <- node_new("firm",

type = "FUNC",
func = min,
"wheat", "iron"

)

node_print(dst)

node_prune Prune Nodes off a Tree by Names

Description

A wrapper of data.tree::Prunes. Prune nodes off a tree by names. This function has side-effects, it
modifies the tree given by the argument (see the package data.tree).

Usage

node_prune(tree, ...)

Arguments

tree a tree (i.e. a Node object).

... some character strings specifies the names of nodes to be pruned.

Value

Invisibly returns the tree.

Examples

dst <- node_new(
"firm",
"lab", "cap", "land"

)
node_prune(

node_replace 425

dst,
"cap", "land"

)
plot(dst)

node_replace Replace a Node of a Tree

Description

Scan the tree and replace the first non-root node having the name specified.
This function is based on the package data.tree and has side-effects. It modifies the tree given by
the argument (see the package data.tree).

Usage

node_replace(tree, node.name, ...)

Arguments

tree a tree (i.e. a Node object).

node.name a character string specifying the name of the node to be pruned off.

... some Node objects or character strings. A character string will be treated as the
name of a new node to be created. Those nodes will be added to the tree.

Value

Invisibly returns the parent node of those new nodes.

Examples

dst.firm <- node_new(
"output",
"prod1", "prod2"

)
plot(dst.firm)

dst.VA <- node_new(
"VA",
"lab", "cap"

)

node_replace(
dst.firm, "prod2",
dst.VA, "prod3"

)
plot(dst.firm)

426 node_set

node_replace(
dst.firm, "lab",
"labor"

)
plot(dst.firm)

node_replace(
dst.firm, "VA",
"prod2"

)
plot(dst.firm)

node_set Create a Tree or Set Attributes for a Node

Description

Create a tree or set attributes for a node by the package data.tree. This function can also be used to
add child nodes to a node. This function has side-effects, it modifies the tree given by the argument
(see the package data.tree).

Usage

node_set(tree, node.name = NA, ...)

Arguments

tree a tree (i.e. a Node object) or a character string. If it is a character string, a tree
will be created and the string will be the name of the root. And in this case, if
you need to use the following parameters to set the attributes of the root node,
then the second parameter node.name should be set to NA.

node.name a character string, the name of a node. If the first parameter is a tree, the value
of this parameter should be the name of a node in the tree.

... attribute names and values (e.g. alpha=1). The parameter name of a value will
be treated as the name of an attribute. If a value is NULL, the corresponding
attribute should exist and will be deleted.

A value without a parameter name will be treated as a child node or the name of
a child node. If the class of the value is Node, it will be added as a child. If the
class of the value is character, a child node (or some child nodes) will be created
with the value as the name (or names).

Value

Invisibly returns the node.

node_set 427

See Also

node_new

Examples

create a tree
dst1 <- node_set("firm1")
print(dst1)

create a tree with children
dst <- node_set(

"firm", NA,
"lab", "cap", dst1

)
print(dst)

the same as above
dst <- node_set(

"firm", NA,
c("lab", "cap"), dst1

)
print(dst)

create a tree with attributes
dst <- node_set("firm", NA,

type = "CD", alpha = 1, beta = c(0.5, 0.5)
)
print(dst, "type", "alpha", "beta")

create a tree with attributes and children
dst <- node_set("firm", NA,

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"lab", "cap"

)
print(dst, "type", "alpha", "beta")

set attributes for a node
dst.firm <- node_set("firm", NA, "VA")
node_set(dst.firm, "VA",

type = "CD",
alpha = 0.8^-0.8 * 0.2^-0.2,
beta = c(0.8, 0.2),
"lab",
"cap"

)
print(dst.firm, "alpha", "beta")

set attributes and add a child for a node
node_set(dst.firm, "VA",

type = "SCES",
alpha = 1,
beta = c(0.1, 0.8, 0.1),

428 output

es = 0,
"land"

)
print(dst.firm, "type", "alpha", "beta", "es")

find a node
x <- node_set(dst.firm, "VA")
node_print(x)

output Compute the Utility of a Consumer or the Output of a Firm by the
Demand Structural Tree

Description

Given a demand structural tree and an input vector, this function computes the utility of a consumer
or the output of a firm. If the demand structural tree has a FUNC-type node, the node should has an
attribute named fun that is a function computing the output.

Usage

output(node, input)

Arguments

node a demand structural tree.

input an input vector with names of commodities.

Value

A scalar.

Examples

dst <- node_new("output",
type = "SCES", es = 0, alpha = 1, beta = c(0.5, 0.5),
"cc1", "cc2"

)
node_set(dst, "cc1",

type = "Leontief", a = c(0.6, 0.4),
"wheat", "iron"

)
node_set(dst, "cc2",

type = "SCES", sigma = -1, alpha = 1, beta = c(0.5, 0.5),
"labor", "capital"

)

policyMarketClearingPrice 429

node_plot(dst, TRUE)

p <- c(wheat = 1, iron = 3, labor = 2, capital = 4)
x <-demand_coefficient(dst, p)
output(dst, x)

output(dst, c(wheat = 3, iron = 3, labor = 3, capital = 3))
SCES(

es = 0, alpha = 1, beta = c(0.5, 0.5),
x = c(
min(3 / 0.6, 3 / 0.4),
SCES(es = 0.5, alpha = 1, beta = c(0.5, 0.5), x = c(3, 3))

)
)

policyMarketClearingPrice

Market-Clearing-Price Policy Function

Description

This policy is to make the market clear every period. In this case, the path of the economy is the
spot equilibrium path. Generally, this function is passed to the function sdm2 as an argument to
compute the spot equilibrium path.

Usage

policyMarketClearingPrice(time, A, state, ...)

Arguments

time the current time.

A a demand structure tree list (i.e. dstl, see demand_coefficient), a demand co-
efficient n-by-m matrix (alias demand structure matrix) or a function A(state)
which returns an n-by-m matrix.

state the current state.

... optional arguments to be passed to the function sdm2.

Value

A list consisting of p, S and B which specify the prices, supplies and supply coefficient matrix after
adjustment.

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

Grandmont, J.M. (1977). Temporary General Equilibrium Theory. Econometrica 45, 535-572.

430 policyMarketClearingPrice

See Also

CGE::iep and sdm2, gemTemporaryEquilibriumPath. The market clearing prices are the prices
with a stickiness value equal to zero. Therefore, this function can actually be replaced by makePolicyStickyPrice
in the calculation.

Examples

an iep of the example (see Table 2.1 and 2.2) of the canonical dynamic
macroeconomic general equilibrium model in Torres (2016).
ge <- gemCanonicalDynamicMacroeconomic_3_2(

policy.price = policyMarketClearingPrice,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 50,
z0 = c(0.5, 1)

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

the same as above
ge <- gemCanonicalDynamicMacroeconomic_3_2(

policy.price = makePolicyStickyPrice(stickiness = 0),
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 50,
z0 = c(0.5, 1)

)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

TFP shock in the economy above (see Torres, 2016, section 2.8).
numberOfPeriods <- 200

discount.factor <- 0.97
depreciation.rate <- 0.06
beta1.firm <- 0.35
return.rate <- 1 / discount.factor - 1

set.seed(1)
alpha.shock <- rep(1, 100)
alpha.shock[101] <- exp(0.01)
for (t in 102:numberOfPeriods) {

alpha.shock[t] <- exp(0.95 * log(alpha.shock[t - 1]))
}

policyTechnologyChange <- function(time, A) {
A[[1]]$func <- function(p) {
result <- CD_A(

policyMarketClearingPrice 431

alpha.shock[time], rbind(beta1.firm, 1 - beta1.firm, 0),
c(p[1] * (return.rate + depreciation.rate), p[2:3])

)
result[3] <- p[1] * result[1] * return.rate / p[3]
result

}
}

InitialEndowments <- {
tmp <- matrix(0, 3, 2)
tmp[1, 1] <- tmp[2, 2] <- tmp[3, 2] <- 1
tmp

}

ge <- gemCanonicalDynamicMacroeconomic_3_2(
policy.supply = makePolicySupply(InitialEndowments),
policy.technology = policyTechnologyChange,
policy.price = policyMarketClearingPrice,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 200

)

c <- ge$A[1, 2] * ge$ts.z[, 2] # consumption
par(mfrow = c(2, 2))
matplot(ge$ts.z, type = "l")
x <- 100:140
plot(x, ge$ts.z[x, 1] / ge$ts.z[x[1], 1], type = "o", pch = 20)
plot(x, ge$ts.z[x, 2] / ge$ts.z[x[1], 2], type = "o", pch = 20)
plot(x, c[x] / c[x[1]], type = "o", pch = 20)

an iep of example 7.2 (a monetary economy) in Li (2019). See CGE::Example7.2.
interest.rate <- 0.25
dst.firm <- node_new("cc", #composite commodity

type = "FIN",
rate = c(1, interest.rate),
"cc1", "money"

)
node_set(dst.firm, "cc1",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"wheat", "labor"

)

dst.laborer <- Clone(dst.firm)
dst.money.lender <- Clone(dst.firm)

dstl <- list(dst.firm, dst.laborer, dst.money.lender)

B <- matrix(0, 3, 3)
B[1, 1] <- 1

S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- 100

432 policyMeanValue

S0Exg[3, 3] <- 100

InitialEndowments <- {
tmp <- matrix(0, 3, 3)
tmp[1, 1] <- 10
tmp[2, 2] <- tmp[3, 3] <- 100
tmp

}

ge <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("wheat", "labor", "money"),
names.agent = c("firm", "laborer", "money.lender"),
numeraire = c(money = interest.rate),
numberOfPeriods = 20,
maxIteration = 1,
ts = TRUE,
policy = list(
makePolicySupply(S = InitialEndowments),
policyMarketClearingPrice

)
)

par(mfrow = c(1, 2))
matplot(ge$ts.z, type = "o", pch = 20)
matplot(ge$ts.p, type = "o", pch = 20)

policyMeanValue Mean Value Policy Function

Description

When the time index is an integer multiple of 200, this policy sets the current prices and supplies to
the averages of the previous 199 periods. This policy function is mainly used as an argument of the
function sdm2 in order to accelerate convergence when calculating general equilibrium.

Usage

policyMeanValue(time, state, state.history)

Arguments

time the current time.

state the current state.

state.history the state history, which is a list consisting of the time series of p, S, q, and z.

QL_demand 433

Value

A list consisting of p, S and B which specify the prices, supplies and supply coefficient matrix after
adjustment.

See Also

makePolicyMeanValue sdm2 gemDualLinearProgramming.

QL_demand Quasilinear Demand Functions

Description

Some quasilinear demand functions. The corresponding utility functions are as follows:
power: x1 + alpha * x2^beta, wherein alpha>0, 0<beta<1.
log: x1 + alpha * log(x2), wherein alpha>0.
quadratic1: x1 + alpha * x2 - 0.5 * beta * x2^2, wherein alpha>0, beta>0.
quadratic2: x1 + beta * (alpha * x2 - 0.5 * x2^2), wherein alpha>0, beta>0.
min: x1 + alpha * min(x2, beta), wherein alpha>0, beta>0.
CRRA: x1 + alpha * (x2^(1 - beta) - 1) / (1 - beta), wherein alpha>0, beta>0. If beta==1, the
function becomes x1 + alpha * log(x2).

Usage

QL_demand(
w,
p,
alpha,
beta,
type = c("power", "log", "quadratic1", "quadratic2", "min", "CRRA")

)

Arguments

w a scalar indicating the income.

p a 2-vector indicating the prices.

alpha a scalar.

beta a scalar.

type a character string specifying the type of the function. The default type is "power".
Other possible values are "log", "quadratic1", "quadratic2" and "min".

Value

A 2-by-1 matrix indicating demands.

434 rate_to_beta

Examples

QL_demand(w = 0.5, p = c(1, 1), alpha = 1, type = "log")
QL_demand(w = 2, p = c(1, 1), alpha = 1, type = "log")

QL_demand(w = 1, p = c(1, 5), alpha = 2, beta = 0.5)

rate_to_beta Conversion between a Rate Vector and a Beta Vector

Description

Conversion between an expenditure rate vector and a beta vector (i.e. an expenditure proportion
vector). For an economic agent, the rate vector indicates the ratios between expenditures on fi-
nancial instruments and the physical commodity. The first element of the rate vector indicates the
quantity of the physical commodity needed to obtain a unit of output. Other elements indicate the
ratio of expenditures on various financial instruments to that of the physical commodity, which
may be equal to the interest rate, the tax rate, the dividend rate, etc. The beta vector indicates the
proportions of expenditures on various commodities.

Usage

rate_to_beta(x)

beta_to_rate(x)

Arguments

x a numeric vector, which is usually positive.

Value

A numeric vector.

Functions

• rate_to_beta(): Convert a rate vector to a beta vector.

• beta_to_rate(): Convert a beta vector to a rate vector. When converting the beta vector into
a rate vector, it will be assumed that the first element of these two vectors is the same.

See Also

demand_coefficient

ratio_adjust 435

Examples

rate_to_beta(c(1, 1 / 3, 1 / 4))
rate_to_beta(c(0.5, 1 / 3, 1 / 4))

x <- beta_to_rate(c(0.7, 0.1, 0.2))
rate_to_beta(x)

ratio_adjust Ratio Adjustment

Description

Adjust ratios to new values.

Usage

ratio_adjust(
ratio,
coef = 0.8,
method = c("log", "left.linear", "trunc.log", "linear")

)

Arguments

ratio a numeric vector or a positive numeric n-by-m matrix.

coef a positive number, a positive numeric vector or a positive numeric n-by-m ma-
trix. The smaller this value, the closer the adjusted ratio will be to one.

method a character string specifying the adjustment method.

Details

For a positive ratio and the following methods, the return values are as follows:

• log : coef * log(ratio) + 1, if ratio >= 1; 1 / (coef * log(1 / ratio) + 1), if ratio < 1.

• left.linear : 1 / (coef * (1 / ratio - 1) + 1), if ratio >= 1; 1 + coef * (ratio - 1), if ratio < 1.

• trunc.log : max(coef * log(ratio) + 1, 0).

• linear : coef * (ratio - 1) + 1.

Value

A vector or a matrix with dimensions the same as the argument ratio.

436 SCES

Examples

ratio_adjust(10, 0.8)
ratio_adjust(0.1, 0.8)

x <- seq(0.01, 2, 0.01)
plot(x, x, type = "l")
lines(x, ratio_adjust(x, 0.8, method = "log"), col = "red")
lines(x, ratio_adjust(x, 0.8, method = "left.linear"), col = "blue")
lines(x, ratio_adjust(x, 0.8, method = "trunc.log"), col = "green")

X <- replicate(3, x)
Y <- ratio_adjust(X, c(0.8, 1, 1.2))
matplot(x, Y, type = "l")

SCES Standard CES Function

Description

Standard CES function, e.g. alpha * (beta1 * (x1 / beta1)^sigma + beta2 * (x2 / beta2)^sigma)^(1 /
sigma) wherein beta1 + beta2 == 1.

Usage

SCES(sigma = 1 - 1/es, alpha, beta, x, es = NA)

Arguments

sigma the sigma coefficient.

alpha the alpha coefficient.

beta a vector consisting of the beta coefficients.

x a vector consisting of the inputs.

es the elasticity of substitution. If es is not NA, the value of sigma will be ignored.

Value

The output or utility level.

Examples

beta <- c(0.6, 0.4)
SCES(alpha = 1, beta = beta, x = beta, es = 0.5)

SCES_A 437

SCES_A Standard CES Demand Coefficient Matrix

Description

This function computes the standard CES demand coefficient matrix (i.e. Theta==Beta), which is a
wrapper of CES_A of CGE package.

Usage

SCES_A(sigma = 1 - 1/es, alpha, Beta, p, es = NA)

Arguments

sigma a numeric m-vector or m-by-1 matrix. 1/(1-sigma) is the elasticity of substitu-
tion.

alpha a nonnegative numeric m-vector or m-by-1 matrix.

Beta a nonnegative numeric n-by-m matrix, where the sum of each column is equal to
1. If a vector is provided, then it will be converted into a single-column matrix.

p a nonnegative numeric n-vector or n-by-1 matrix.

es a numeric m-vector or m-by-1 matrix of elasticity of substitution. If es is not
NA, the value of sigma will be ignored.

Value

A demand coefficient n-by-m matrix.

Examples

SCES_A(-1, 1, c(0.9, 0.1), c(1, 1))
SCES_A(alpha = 1, Beta = c(0.9, 0.1), p = c(1, 1), es = 0.5)
SCES_A(0, 1, c(0.9, 0.1), c(1, 1))
beta <- c(0.9, 0.1)
CD_A(prod(beta^-beta), c(0.9, 0.1), c(1, 1))

####
SCES_A(0, 1, c(0.9, 0.1, 0), c(1, 1, 1))

####
input <- matrix(c(

200, 300, 100,
150, 320, 530,
250, 380, 0

), 3, 3, TRUE)
Beta <- prop.table(input, 2)
SCES_A(sigma = rep(0, 3), alpha = c(1, 1, 1), Beta = Beta, p = c(1, 1, 1))
SCES_A(sigma = rep(-Inf, 3), alpha = c(1, 1, 1), Beta = Beta, p = c(1, 1, 1))

438 sdm2

sdm2 Structural Dynamic Model (alias Structural Growth Model) Version 2

Description

A new version of the sdm function in the package CGE. Now the parameter A can be a demand
structure tree list. Hence we actually no longer need the function sdm_dstl. Some rarely used
parameters in the function sdm have been deleted. This function is the core of this package.

Usage

sdm2(
A,
B,
S0Exg = matrix(NA, nrow(B), ncol(B)),
names.commodity = paste("comm", 1:nrow(B), sep = ""),
names.agent = paste("agt", 1:ncol(B), sep = ""),
p0 = matrix(1, nrow = nrow(B), ncol = 1),
z0 = matrix(100, nrow = ncol(B), ncol = 1),
GRExg = NA,
pExg = NULL,
numeraire = NULL,
tolCond = 1e-05,
maxIteration = 200,
numberOfPeriods = 300,
depreciationCoef = 0.8,
priceAdjustmentFunction = NULL,
priceAdjustmentVelocity = 0.15,
trace = TRUE,
ts = FALSE,
policy = NULL,
exchangeFunction = F_Z

)

Arguments

A a demand structure tree list (i.e. dstl, see demand_coefficient), a demand
coefficient n-by-m matrix (alias demand structure matrix) or a function A(state)
which returns an n-by-m matrix. n is the number of commodity types. m is the
number of economic agents. The argument state is a list consisting of time (the
current time), p (the current price vector), last.z (the output and utility vector
of the previous period), w (the current wealth vector) and last.A (the demand
coefficient matrix of the previous period).

B an n-by-m matrix containing of the output coefficients of producers. Each pro-
ducer produces one or more commodities. The output of each producer is equal

sdm2 439

to its activity level multiplied by the output coefficients. Columns correspond-
ing to consumers are usually zeros. If the (i,j)-th element of S0Exg is not NA,
the value of the (i,j)-th element of B will be useless and ignored.

S0Exg an initial exogenous supply n-by-m matrix. If the (i,j)-th element of S0Exg is
zero, it means there is no supply, and NA means the exogenous part of the supply
is zero and there may be an endogenous supply part. In most cases, this matrix
contains NA values but no zeros.

names.commodity

names of commodities. If the parameter A is a demand structure tree list, the
values in names.commodity should be the names of those leaf nodes.

names.agent names of agents.

p0 an initial price n-vector.

z0 an m-vector consisting of the initial purchase levels (i.e. exchange levels) which
indicate production levels or utility levels.

GRExg an exogenous growth rate of the exogenous supplies in S0Exg. If GRExg is NA
and some commodities have exogenous supply, then GRExg will be set to 0.

pExg an n-vector indicating the exogenous prices (if any).

numeraire the name, index or price of the numeraire commodity. If it is a character string,
then it is assumed to be the name of the numeraire commodity. If it is a number
without a name, then it is assumed to be the index of the numeraire commodity.
If it is a number with a name, e.g. c("lab" = 0.5), then the name is assumed to be
the name of the numeraire commodity and the number is assumed to be the price
of the numeraire commodity, even though the price of the numeraire commodity
usually is 1.

tolCond the relative tolerance condition.

maxIteration the maximum number of (outer) iterations. If the main purpose of running this
function is to do simulation instead of calculating equilibrium, then maxIteration
should be set to 1.

numberOfPeriods

the period number (i.e. the number of inner iterations) in each (outer) iteration,
which should not be less than 20.

depreciationCoef

the depreciation coefficient (i.e. 1 minus the depreciation rate) of the unsold
products.

priceAdjustmentFunction

the price adjustment function. The arguments are a price n-vector p and a sales
rate n-vector q. The return value is a price n-vector. The default price adjustment
method is p * (1 - priceAdjustmentVelocity * (1 - q)).

priceAdjustmentVelocity

a scalar or an n-vector specifying the price adjustment velocity.

trace if TRUE, information is printed during the running of sdm2.

ts if TRUE, the time series of the last outer iteration are returned.

policy a policy function or a list consisting of policy functions and/or policy function
lists. A policy function has the following optional parameters:

440 sdm2

• time - the current time.
• A - the same as the parameter A of sdm2. When A is a demand structure

tree list, it needs not be returned after it is adjusted.
• state - the current state, which is a list. state$p is the current price vector

with names. state$S is the current supply matrix. state$last.z is the out-
put and utility vector of the previous period. state$B is the current supply
coefficient matrix. state$last.A is the demand coefficient matrix of the pre-
vious period. state$names.commodity contains the names of commodities.
state$names.agent contains the names of agents.

• state.history - the state history, which is a list consisting of the time series
of p, S, q, and z.

The return value of the policy function other than a list will be ignored. If the
return value is a list, it should have elements p, S and B which specify the prices,
supplies and supply coefficient matrix after adjustment. A vector with the name
current.policy.data can be put into the state list as well, which will be put into
the return value of the sdm2.

exchangeFunction

the exchange function.

Details

In each period of the structural dynamic model, the economy runs as follows.
Firstly, the new price vector emerges on the basis of the price vector and sales rates of the previous
period, which indicates the current market prices.
Secondly, outputs and depreciated inventories of the previous period constitute the current supplies.
Thirdly, policy functions (if any) are implemented.
Fourthly, the current input coefficient matrix is computed and the supplies are exchanged under
market prices. The exchange vector and sales rate vector are obtained. Unsold goods constitute
the inventories, which will undergo depreciation and become a portion of the supplies of the next
period. The exchange vector determines the current outputs and utility levels.

Value

A list usually containing the following components:

• tolerance - the relative tolerance of the results.

• p - equilibrium prices.

• z - equilibrium purchase levels (i.e. production levels or utility levels).

• S - the equilibrium supply matrix at the initial period.

• growthRate - the endogenous equilibrium growth rate in a pure production economy.

• A - the equilibrium demand coefficient matrix.

• B - the supply coefficient matrix.

• S0Exg - the initial exogenous supply n-by-m matrix.

• D - the demand matrix.

• DV - the demand value matrix.

• SV - the supply value matrix.

sdm2 441

• ts.p - the time series of prices in the last outer iteration.

• ts.z - the time series of purchase levels (i.e. production levels or utility levels) in the last outer
iteration.

• ts.S - the time series of supply matrix in the last outer iteration.

• ts.q - the time series of sales rates in the last outer iteration.

• policy.data - the policy data.

Note

In the package CGE, the spot equilibrium path (alias instantaneous equilibrium path) is computed
by the function iep. The spot equilibrium path includes only spot market transactions, with no in-
tertemporal transactions. In this package, the spot equilibrium path can be computed by the function
sdm2 with the parameter policy equal to policyMarketClearingPrice.

The order of implementation of various policies is critical. When a policy list contains a supply
policy, a technology (i.e. dstl) policy, a price policy (e.g. a market-clearing-price policy) and a B
policy (i.e. a policy adjusting the argument B), both the supply policy and the technology policy
should be placed before the price policy, and the B policy should be placed after the price policy.
The reason is that the calculation of the current prices may require the use of supply and technology,
while the calculation of B may require the use of the current prices.

In general equilibrium models, decreasing returns to scale can be transformed into constant returns
to scale; therefore, we usually assume constant returns to scale. The decreasing-returns-to-scale
feature of the technology is presumably due to the presence of a fixed factor. This factor is often
referred to as "land" and measured in units so that the total amount of land is 1 (Varian, 1992, p.
353).

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

LI Wu (2010) A Structural Growth Model and its Applications to Sraffa’s System. http://www.iioa.org/conferences/18th/papers/files/104_20100729011_AStructuralGrowthModelanditsApplicationstoSraffasSstem.pdf

Varian, Hal R. (1992, ISBN: 0393957357) Microeconomic Analysis. W. W. Norton & Company.

Examples

dst.firm <- node_new("output",
type = "Leontief", a = c(0.5, 1),
"prod", "lab"

)

dst.consumer <- node_new("utility",
type = "Leontief", a = 1, "prod"

)

dstl <- list(dst.firm, dst.consumer)

B <- matrix(c(
1, 0,

442 sdm2

0, 0
), 2, 2, TRUE)
S0Exg <- matrix(c(

NA, NA,
NA, 100

), 2, 2, TRUE)

variable dst and technology progress
policy.TP <- function(time, state, A) {

if (time >= 200) {
A[[1]]$a <- c(0.5, 0.8)

} else {
A[[1]]$a <- c(0.5, 1)

}
state

}

ge.TP <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.TP,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000

)
matplot(ge.TP$ts.z, type = "l")
plot(ge.TP$ts.p[, 1] / ge.TP$ts.p[, 2], type = "l")

variable supply coefficient matrix and technology progress
policy.TP <- function(time, state) {

if (time >= 200) {
state$B[1, 1] <- 2

} else {
state$B[1, 1] <- 1

}
state

}

ge.TP <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.TP,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000

)
matplot(ge.TP$ts.z, type = "l")
plot(ge.TP$ts.p[, 1] / ge.TP$ts.p[, 2], type = "l")

variable dst and disequilibrium
policy.DE <- function(time, A) {

sdm2 443

if (time >= 200) {
A[[1]]$a[2] <- A[[1]]$a[2] * 0.999

} else {
A[[1]]$a[2] <- 1

}
}

ge.DE <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.DE,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000

)
matplot(ge.DE$ts.z, type = "l")
plot(ge.DE$ts.p[, 1] / ge.DE$ts.p[, 2], type = "l")

structural equilibria and structural transition
policy.SE <- function(time, state, A) {

A[[1]]$a[2] <- structural_function(state$last.z[1], c(105, 125), 1, 0.5)
}

ge.low.level <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.SE,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000,
z0 = c(100, 0)

)
matplot(ge.low.level$ts.z, type = "l")

ge.high.level <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.SE,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000,
z0 = c(150, 0)

)
matplot(ge.high.level$ts.z, type = "l")

policy.ST <- function(time, state, A) {
A[[1]]$a[2] <- structural_function(state$last.z[1], c(105, 125), 1, 0.5)
if (time >= 200 && time <= 210) state$S[2, 2] <- 125 # Introduce foreign labor.
state

444 sdm2

}

ge.ST <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("prod", "lab"),
names.agent = c("firm", "consumer"),
policy = policy.ST,
ts = TRUE,
maxIteration = 1,
numberOfPeriods = 1000,
z0 = c(100, 0)

)
matplot(ge.ST$ts.z, type = "l")

economic cycles and an interest rate policy for the firm
dst.firm <- node_new("cc", # composite commodity

type = "FIN",
rate = c(1, 0.25),
"cc1", "money"

)
node_set(dst.firm, "cc1",

type = "Leontief",
a = c(0.5, 0.5),
"wheat", "labor"

)

dst.laborer <- Clone(dst.firm)
dst.money.lender <- Clone(dst.firm)

dstl <- list(dst.firm, dst.laborer, dst.money.lender)

policy.interest.rate <- function(time, state, A, state.history) {
upsilon <- NA
if (time >= 600) {
upsilon <- state.history$z[time - 1, 1] / mean(state.history$z[(time - 50):(time - 1), 1])
A[[1]]$rate[2] <- max(0.25 + 0.5 * log(upsilon), 0)

} else {
A[[1]]$rate[2] <- 0.25

}

state$current.policy.data <- c(time, A[[1]]$rate[2], upsilon)
state

}

B <- matrix(0, 3, 3)
B[1, 1] <- 1

S0Exg <- matrix(NA, 3, 3)
S0Exg[2, 2] <- 100
S0Exg[3, 3] <- 100

de <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,

sdm2 445

names.commodity = c("wheat", "labor", "money"),
names.agent = c("firm", "laborer", "money.lender"),
p0 = rbind(0.625, 0.375, 0.25),
z0 = rbind(95, 0, 0),
priceAdjustmentVelocity = 0.3,
numberOfPeriods = 1000,
maxIteration = 1,
trace = FALSE,
ts = TRUE

)
matplot(de$ts.z, type = "l")

ge.policy <- sdm2(
A = dstl, B = B, S0Exg = S0Exg,
names.commodity = c("wheat", "labor", "money"),
names.agent = c("firm", "laborer", "money.lender"),
p0 = rbind(0.625, 0.375, 0.25),
z0 = rbind(95, 0, 0),
priceAdjustmentVelocity = 0.3,
numberOfPeriods = 1000,
maxIteration = 1,
trace = FALSE,
ts = TRUE,
policy = policy.interest.rate

)
matplot(ge.policy$ts.z, type = "l")

Example 9.3 in Li (2019): fixed-ratio price adjustment method
and disequilibrium (business cycles) in a pure production economy
fixedRatioPriceAdjustmentFunction <- function(p, q) {

thresholdForPriceAdjustment <- 0.99
priceAdjustmentVelocity <- 0.02
result <- ifelse(q <= thresholdForPriceAdjustment,

p * (1 - priceAdjustmentVelocity),
p

)
return(prop.table(result))

}

de.Sraffa <- sdm2(
A = matrix(c(

56 / 115, 6,
12 / 575, 2 / 5

), 2, 2, TRUE),
B = diag(2),
maxIteration = 1,
numberOfPeriods = 100,
p0 = rbind(1 / 15, 1),
z0 = rbind(575, 20),
priceAdjustmentFunction = fixedRatioPriceAdjustmentFunction,
ts = TRUE

)
matplot(growth_rate(de.Sraffa$ts.z), type = "l")

446 sdm_dstl

sdm_dstl Structural Dynamic Model (alias Structural Growth Model) with a De-
mand Structure Tree List

Description

This is a wrapper of the function CGE::sdm. The parameter A of CGE::sdm is replaced with a
demand structure tree list. This function can be replaced by the more comprehensive function sdm2,
so it is not recommended.

Usage

sdm_dstl(dstl, names.commodity, names.agent, ...)

Arguments

dstl a demand structure tree list.
names.commodity

names of commodities.

names.agent names of agents.

... arguments to be passed to the function CGE::sdm.

Value

A general equilibrium, which is a list with the following elements:

• D - the demand matrix.

• DV - the demand value matrix.

• SV - the supply value matrix.

• ... - some elements returned by the CGE::sdm function

References

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives
of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

LI Wu (2010) A Structural Growth Model and its Applications to Sraffa’s System. http://www.iioa.org/conferences/18th/papers/files/104_20100729011_AStructuralGrowthModelanditsApplicationstoSraffasSstem.pdf

Manuel Alejandro Cardenete, Ana-Isabel Guerra, Ferran Sancho (2012, ISBN: 9783642247453)
Applied General Equilibrium: An Introduction. Springer-Verlag Berlin Heidelberg.

Torres, Jose L. (2016, ISBN: 9781622730452) Introduction to Dynamic Macroeconomic General
Equilibrium Models (Second Edition). Vernon Press.

See Also

sdm2

sdm_dstl 447

Examples

a pure exchange economy with two agents and two commodities
dst.CHN <- node_new("util.CHN",

type = "SCES", alpha = 1, beta = c(0.8, 0.2), es = 2,
"lab.CHN", "lab.ROW"

)
node_plot(dst.CHN)

dst.ROW <- node_new("util.ROW",
type = "SCES", alpha = 1, beta = c(0.05, 0.95), es = 2,
"lab.CHN", "lab.ROW"

)

dstl <- list(dst.CHN, dst.ROW)

ge <- sdm_dstl(dstl,
names.commodity = c("lab.CHN", "lab.ROW"),
names.agent = c("CHN", "ROW"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 0,
0, 600

), 2, 2, TRUE)
)

supply change
geSC <- sdm_dstl(dstl,

names.commodity = c("lab.CHN", "lab.ROW"),
names.agent = c("CHN", "ROW"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

200, 0,
0, 600

), 2, 2, TRUE)
)

geSCp / gep

preference change
dst.CHN$beta <- c(0.9, 0.1)
gePC <- sdm_dstl(dstl,

names.commodity = c("lab.CHN", "lab.ROW"),
names.agent = c("CHN", "ROW"),
B = matrix(0, 2, 2, TRUE),
S0Exg = matrix(c(

100, 0,
0, 600

), 2, 2, TRUE)
)

gePCp / gep

448 sdm_dstl

a pure exchange economy with two agents and four basic commodities
prod.CHN <- node_new("prod.CHN",

type = "SCES", alpha = 1, beta = c(0.5, 0.5), es = 0.75,
"lab.CHN", "cap.CHN"

)

node_plot(prod.CHN)

prod.ROW <- node_new("prod.ROW",
type = "SCES", alpha = 2, beta = c(0.4, 0.6), es = 0.75,
"lab.ROW", "cap.ROW"

)

dst.CHN <- node_new("CHN",
type = "SCES", alpha = 1, beta = c(0.8, 0.2), es = 2,
prod.CHN, prod.ROW

)

node_plot(dst.CHN)
node_print(dst.CHN)
p <- c("lab.CHN" = 1, "cap.CHN" = 1, "lab.ROW" = 1, "cap.ROW" = 1)
demand_coefficient(dst.CHN, p)

dst.ROW <- node_new("ROW",
type = "SCES", alpha = 1, beta = c(0.05, 0.95), es = 2,
prod.CHN, prod.ROW

)

node_plot(dst.ROW)
node_print(dst.ROW)

dstl <- list(dst.CHN, dst.ROW)

ge <- sdm_dstl(dstl,
names.commodity = c("lab.CHN", "cap.CHN", "lab.ROW", "cap.ROW"),
names.agent = c("CHN", "ROW"),
B = matrix(0, 4, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
0, 600,
0, 800

), 4, 2, TRUE)
)

Add currencies to the example above.
prod_money.CHN <- node_new("prod_money.CHN",

type = "FIN", rate = c(1, 0.1), # 0.1 is the interest rate.
prod.CHN, "money.CHN"

)

sdm_dstl 449

prod_money.ROW <- node_new("prod_money.ROW",
type = "FIN", rate = c(1, 0.1),
prod.ROW, "money.ROW"

)

dst.CHN <- node_new("util.CHN",
type = "SCES", alpha = 1, beta = c(0.8, 0.2), es = 2,
prod_money.CHN, prod_money.ROW

)

dst.ROW <- node_new("util.ROW",
type = "SCES", alpha = 1, beta = c(0.05, 0.95), es = 2,
prod_money.CHN, prod_money.ROW

)

dstl <- list(dst.CHN, dst.ROW)

ge <- sdm_dstl(dstl,
names.commodity = c(

"lab.CHN", "cap.CHN", "money.CHN",
"lab.ROW", "cap.ROW", "money.ROW"

),
names.agent = c("CHN", "ROW"),
B = matrix(0, 6, 2, TRUE),
S0Exg = matrix(c(

100, 0,
100, 0,
100, 0,
0, 600,
0, 800,
0, 100

), 6, 2, TRUE)
)

ge$p["money.ROW"] / ge$p["money.CHN"] # the exchange rate

Example 7.6 in Li (2019), which illustrates foreign exchange rates.
interest.rate.CHN <- 0.1
interest.rate.ROW <- 0.1

firm.CHN <- node_new("output.CHN",
type = "FIN", rate = c(1, interest.rate.CHN),
"cc1.CHN", "money.CHN"

)
node_set(firm.CHN, "cc1.CHN",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"lab.CHN", "iron"

)

household.CHN <- node_new("util",
type = "FIN", rate = c(1, interest.rate.CHN),

450 sdm_dstl

"wheat", "money.CHN"
)

moneylender.CHN <- Clone(household.CHN)

firm.ROW <- node_new("output.ROW",
type = "FIN", rate = c(1, interest.rate.ROW),
"cc1.ROW", "money.ROW"

)
node_set(firm.ROW, "cc1.ROW",

type = "CD", alpha = 1, beta = c(0.5, 0.5),
"iron", "lab.ROW"

)

household.ROW <- node_new("util",
type = "FIN", rate = c(1, interest.rate.ROW),
"wheat", "money.ROW"

)

moneylender.ROW <- Clone(household.ROW)

dstl <- list(
firm.CHN, household.CHN, moneylender.CHN,
firm.ROW, household.ROW, moneylender.ROW

)

ge <- sdm_dstl(dstl,
names.commodity = c(

"wheat", "lab.CHN", "money.CHN",
"iron", "lab.ROW", "money.ROW"

),
names.agent = c(

"firm.CHN", "household.CHN", "moneylender.CHN",
"firm.ROW", "household.ROW", "moneylender.ROW"

),
B = {

tmp <- matrix(0, 6, 6)
tmp[1, 1] <- 1
tmp[4, 4] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 6, 6)
tmp[2, 2] <- 100
tmp[3, 3] <- 600
tmp[5, 5] <- 100
tmp[6, 6] <- 100
tmp

}
)

sdm_dstl 451

ge$p.money <- ge$p
ge$p.money["money.CHN"] <- ge$p["money.CHN"] / interest.rate.CHN
ge$p.money["money.ROW"] <- ge$p["money.ROW"] / interest.rate.ROW
ge$p.money <- ge$p.money / ge$p.money["money.CHN"]

ge$p.money["money.ROW"] / ge$p.money["money.CHN"] # the exchange rate

the example (see Table 2.1 and 2.2) of the canonical dynamic
macroeconomic general equilibrium model in Torres (2016).
discount.factor <- 0.97
return.rate <- 1 / discount.factor - 1
depreciation.rate <- 0.06

production.firm <- node_new("output",
type = "CD", alpha = 1, beta = c(0.65, 0.35),
"labor", "capital.goods"

)

household <- node_new("util",
type = "CD", alpha = 1, beta = c(0.4, 0.6),
"product", "labor"

)

leasing.firm <- node_new("output",
type = "FIN", rate = c(1, return.rate),
"product", "dividend"

)

dstl <- list(
production.firm, household, leasing.firm

)

ge <- sdm_dstl(dstl,
names.commodity = c("product", "labor", "capital.goods", "dividend"),
names.agent = c("production.firm", "household", "leasing.firm"),
B = matrix(c(

1, 0, 1 - depreciation.rate,
0, 1, 0,
0, 0, 1,
0, 1, 0

), 4, 3, TRUE),
S0Exg = {

tmp <- matrix(NA, 4, 3)
tmp[2, 2] <- 1
tmp[4, 2] <- 1
tmp

},
priceAdjustmentVelocity = 0.03,
maxIteration = 1,
numberOfPeriods = 15000,
ts = TRUE

)

452 sdm_dstl

ge$D # the demand matrix
gep / gep[1]

plot(ge$ts.z[, 1], type = "l")

an example of applied general equilibrium (see section 3.4, Cardenete et al., 2012).
dst.consumer1 <- node_new("util",

type = "CD", alpha = 1, beta = c(0.3, 0.7),
"prod1", "prod2"

)

dst.consumer2 <- node_new("util",
type = "CD", alpha = 1, beta = c(0.6, 0.4),
"prod1", "prod2"

)

dst.firm1 <- node_new("output",
type = "Leontief", a = c(0.5, 0.2, 0.3),
"VA", "prod1", "prod2"

)
node_set(dst.firm1, "VA",

type = "CD",
alpha = 0.8^-0.8 * 0.2^-0.2, beta = c(0.8, 0.2),
"lab", "cap"

)

dst.firm2 <- Clone(dst.firm1)
dst.firm2$a <- c(0.25, 0.5, 0.25)
node_set(dst.firm2, "VA",

alpha = 0.4^-0.4 * 0.6^-0.6, beta = c(0.4, 0.6)
)

node_print(dst.firm2)

dstl <- list(dst.firm1, dst.firm2, dst.consumer1, dst.consumer2)

ge <- sdm_dstl(dstl,
names.commodity = c("prod1", "prod2", "lab", "cap"),
names.agent = c("firm1", "firm2", "consumer1", "consumer2"),
B = {

tmp <- matrix(0, 4, 4)
tmp[1, 1] <- 1
tmp[2, 2] <- 1
tmp

},
S0Exg = {

tmp <- matrix(NA, 4, 4)
tmp[3, 3] <- 30
tmp[4, 3] <- 20
tmp[3, 4] <- 20
tmp[4, 4] <- 5

sserr 453

tmp
}

)

sserr Compute the Return Rate in the Steady State Equilibrium

Description

Compute the (postpaid) return rate in the steady state equilibrium.

Usage

sserr(eis, Gamma.beta, gr = 0, type = "CES", prepaid = FALSE)

Arguments

eis a positive scalar indicating the elasticity of intertemporal substitution in the in-
tertemporal utility function.

Gamma.beta a positive scalar indicating the subjective discount factor, which is typically no
greater than 1.

gr a non-negative scalar indicating the growth rate in the steady state equilibrium.

type a character indicating the type of the intertemporal utility function, which may
be CES (i.e. CRRA) or SCES.

prepaid a logical value. If prepaid is FALSE, the return rate is returned. Otherwise
the prepaid steady-state equilibrium return rate (i.e. the current yield rate) is
returned.

Examples

sserr(eis = 1, Gamma.beta = 0.97, gr = 0)
sserr(eis = 1, Gamma.beta = 1.25, gr = 0)
sserr(eis = 1, Gamma.beta = 0.97, gr = 0, type = "SCES")

sserr(eis = 0.5, Gamma.beta = 0.97, gr = 0)
sserr(eis = 0.5, Gamma.beta = 0.97, gr = 0, type = "SCES")

454 structural_function

structural_function Structural Function

Description

A structured function is a kind of kinked (piecewise) function generated by connecting two func-
tions through a transition region. This function calculates the value of a structured function.

Usage

structural_function(theta, transition.interval, f1, f2, ...)

Arguments

theta the track switching parameter, which is a scalar.
transition.interval

a 2-vector.

f1 the first function (or a value).

f2 the second function (or a value).

... parameters of f1 and f2.

Value

The value of the structural function.

Examples

x <- seq(1, 5, 0.1)
y <- c()
for (theta in x) y <- c(y, structural_function(theta, c(2, 3), log, sqrt, theta))
plot(x, y)
lines(x, log(x), col = "blue")
lines(x, sqrt(x), col = "red")

####
f <- function(theta) {

p <- c(1, 1)
structural_function(

theta,
c(15, 20),
function(p) CD_A(alpha = 5, Beta = c(0.6, 0.4), p),
function(p) CD_A(alpha = 15, Beta = c(0.3, 0.7), p),
p

)
}

tmp <- sapply(1:25, f)
matplot(t(tmp), type = "l")

var.p 455

var.p Population Variance and Population Standard Deviation

Description

The function var.p computes a population variance. The function sd.p computes a population stan-
dard deviation.

Usage

var.p(x, wt = rep(1, length(x)), na.rm = FALSE)

sd.p(x, wt = rep(1, length(x)), na.rm = FALSE)

Arguments

x a numeric vector.

wt a numeric vector of weights. By default all elements of x are given the same
weight.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

Functions

• var.p(): Population variance.

• sd.p(): Population standard deviation.

Examples

var.p(1:6)

var.p(x = 1:5, wt = 6:10)
var.p(x = rep(1:5, 6:10))

sd.p(x = 1:5, wt = 6:10)
sd.p(x = rep(1:5, 6:10))

Index

AMSD, 5, 7
AMSDP, 6
AMV (AMSD), 5
apply_expand.grid, 8

beta_to_rate (rate_to_beta), 434

CARA, 9
CES, 10
CESAK_dc, 10, 18
convert_ir, 11
CRRA, 12

DCES, 13
DCES_compensated_demand (DCES), 13
DCES_demand (DCES), 13
DCES_indirect (DCES), 13
demand_coefficient, 17, 423, 434, 438
demCreditPolicy, 20
demInsufficientDemand_3_3, 23

ge_tidy, 401
gem_2_2, 384
gem_3_2, 390
gem_3_3, 394
gem_3_4, 396
gem_4_4, 399
gemAssetExchange_MatthewEffect_2_2, 25
gemAssetPricing_CUF, 28, 33, 40
gemAssetPricing_PUF, 26, 39
gemAssetPricingExample, 27, 34
gemBalancedGrowthPath, 45
gemCanonicalDynamicMacroeconomic_3_2,

48
gemCanonicalDynamicMacroeconomic_4_3,

50
gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3,

53, 56, 59, 81
gemCanonicalDynamicMacroeconomic_TimeCircle_2_2,

54, 55, 59, 81

gemCanonicalDynamicMacroeconomic_Timeline_2_2,
54, 56, 58, 81

gemCapitalAccumulation, 62, 300, 395
gemCESAK_Timeline_2_2, 66
gemCoffeeProblem_3_3, 68
gemConstantGrowthPath_TechnologyProgress_3_3,

70
gemDCES_5_3, 71
gemDualLinearProgramming, 72, 408, 433
gemDynamicMacroeconomic_SpotTrading_3_2,

54, 56, 59, 79
gemEquityShare_3_3, 81
gemEquityShare_Bond_4_4, 84
gemExogenousPrice, 85, 89
gemExogenousPrice_EndogenousLaborSupply_3_3,

85, 89
gemExogenousUtilityLevel_EndogenousLaborSupply_3_3,

90
gemExternality_Negative, 92
gemExternality_Positive, 98
gemFirmAsConsumer, 101
gemHeterogeneousFirms_2_3, 104
gemInformation_ProductQuality, 106
gemInputOutputTable_2_2, 107
gemInputOutputTable_2_7_2, 109
gemInputOutputTable_2_7_4, 112
gemInputOutputTable_2_8_4, 116
gemInputOutputTable_5_4, 120
gemInputOutputTable_5_5, 125
gemInputOutputTable_7_4, 129
gemInputOutputTable_8_8, 132
gemInputOutputTable_easy_5_4, 136
gemInputOutputTable_Leontief_3_3, 138
gemInputOutputTable_SCES_3_3, 139
gemIntertemporal_1_2, 149
gemIntertemporal_2_2, 102, 151
gemIntertemporal_3_3, 153
gemIntertemporal_3_4, 158
gemIntertemporal_4_4, 160

456

INDEX 457

gemIntertemporal_5_5, 167
gemIntertemporal_AdValoremClaim, 175
gemIntertemporal_Bank_1_2, 179, 182
gemIntertemporal_Bank_1_3, 181
gemIntertemporal_Dividend, 183, 189, 406
gemIntertemporal_Dividend_TechnologicalProgress,

188
gemIntertemporal_EndogenousEquilibriumInterestRate,

193, 199
gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate,

198
gemIntertemporal_ExhaustibleResources_3_2,

201
gemIntertemporal_Money_Dividend_Example7.5.1,

203, 406
gemIntertemporal_PublicFirm, 207, 269
gemIntertemporal_TimeCircle_2_2, 210
gemIntertemporal_TimeCircle_3_3, 213
gemIntertemporal_TimeCircle_3_4, 215
gemIntertemporal_TimeCircle_Bank_1_2,

217
gemIntertemporal_TimeCircle_Stochastic_2_2,

219
gemIntertemporalStochastic_Bank_ThreePeriods,

140
gemIntertemporalStochastic_Bank_TwoPeriods,

142
gemIntertemporalStochastic_ThreePeriods_2_2,

145
gemIntertemporalStochastic_TwoPeriods,

147
gemLand_Labor, 222
gemLand_Labor_Capital_4_3, 225
gemMarketClearingPath_2_2, 227
gemMoney_3_2, 230
gemMoney_3_3, 232
gemNonexcludability, 236
gemNonrivalry_Congestiblity, 239
gemNonrivalry_Uncongestiblity, 236, 239,

242
gemOLG_Basic, 262
gemOLG_PrivateFirm, 266
gemOLG_PublicFirm, 269
gemOLG_PureExchange, 247, 253, 271, 275,

286
gemOLG_PureExchange_Bank, 274
gemOLG_StochasticSequential_3_3, 277
gemOLG_StochasticSpotEquilibrium_3_3,

283
gemOLG_TimeCircle, 210, 247, 272, 285
gemOLGF_OneFirm, 246
gemOLGF_PureExchange, 246, 252, 260, 266
gemOLGF_TwoFirms, 259
gemOpenEconomy_4_4, 294
gemOpenEconomy_6_6, 298
gemPersistentTechnologicalProgress, 63,

300
gemPureExchange, 304
gemQuasilinearPureExchange_2_2, 306
gemResearchDevelopmentIntensity, 310
gemRobinson_3_2, 314
gemShortTermInvestment_2_3, 317
gemSkill, 318
gemSpotEquilibriumPath_StickyDecisions,

321
gemstEndogenousLaborSupply_2_2, 323
gemstEndogenousProductionFunction_2_2,

325, 334
gemstEndogenousUtilityFunction, 327
gemStickyDecisionPath_2_2, 330
gemStickyPricePath_2_2, 331
gemstIntertemporal_EndogenousProductionFunction_2_2,

325, 333
gemstStructuralMultipleEquilibria_2_2,

335
gemTax_3_3, 340
gemTax_4_4, 345
gemTax_5_4, 347, 406
gemTax_5_5, 351
gemTax_QuasilinearPreference_4_4, 353
gemTax_VAT_IncomeTax_5_4, 356
gemTechnologyProgress_PopulationGrowth,

358
gemTemporaryEquilibriumPath, 361, 430
gemTwoCountry_Bond_7_4, 373, 377, 380
gemTwoCountry_RealExchangeRateIndex_7_4,

377
gemTwoCountry_Tariff_9_5, 374, 380
gemTwoCountryForeignExchangeRate_6_6,

365
gemTwoCountryPureExchange, 366
gemTwoCountryPureExchange_Bond, 371
gemTwoIndustries_4_3, 382
growth_rate, 402

iterate, 402

458 INDEX

makeCountercyclicalProductTax, 403
makePolicyHeadAdjustment, 404, 412
makePolicyHeadTailAdjustment, 405, 405,

412
makePolicyIncomeTax, 406
makePolicyMeanValue, 408, 433
makePolicyStickyPrice, 409, 430
makePolicySupply, 410
makePolicyTailAdjustment, 405, 411
makePolicyTechnologyChange, 412
marginal_utility, 414
matrix_add_by_name, 415
matrix_aggregate, 416
matrix_to_dstl, 417
MDCES_demand, 418

node_insert, 420
node_new, 421, 427
node_plot, 423
node_print, 423
node_prune, 424
node_replace, 425
node_set, 421, 426

output, 428

policyMarketClearingPrice, 49, 322, 362,
429, 441

policyMeanValue, 408, 432

QL_demand, 433

rate_to_beta, 434
ratio_adjust, 435

SCES, 17, 436
SCES_A, 17, 437
sd.p (var.p), 455
sdm2, 49, 51, 54, 56, 80, 110, 111, 114, 117,

118, 231, 307, 348, 410, 411, 413,
430, 433, 438, 446

sdm_dstl, 438, 446
sserr, 453
structural_function, 454

var.p, 455

	AMSD
	AMSDP
	apply_expand.grid
	CARA
	CES
	CESAK_dc
	convert_ir
	CRRA
	DCES
	demand_coefficient
	demCreditPolicy
	demInsufficientDemand_3_3
	gemAssetExchange_MatthewEffect_2_2
	gemAssetPricingExample
	gemAssetPricing_CUF
	gemAssetPricing_PUF
	gemBalancedGrowthPath
	gemCanonicalDynamicMacroeconomic_3_2
	gemCanonicalDynamicMacroeconomic_4_3
	gemCanonicalDynamicMacroeconomic_Sequential_WagePostpayment_4_3
	gemCanonicalDynamicMacroeconomic_TimeCircle_2_2
	gemCanonicalDynamicMacroeconomic_Timeline_2_2
	gemCapitalAccumulation
	gemCESAK_Timeline_2_2
	gemCoffeeProblem_3_3
	gemConstantGrowthPath_TechnologyProgress_3_3
	gemDCES_5_3
	gemDualLinearProgramming
	gemDynamicMacroeconomic_SpotTrading_3_2
	gemEquityShare_3_3
	gemEquityShare_Bond_4_4
	gemExogenousPrice
	gemExogenousPrice_EndogenousLaborSupply_3_3
	gemExogenousUtilityLevel_EndogenousLaborSupply_3_3
	gemExternality_Negative
	gemExternality_Positive
	gemFirmAsConsumer
	gemHeterogeneousFirms_2_3
	gemInformation_ProductQuality
	gemInputOutputTable_2_2
	gemInputOutputTable_2_7_2
	gemInputOutputTable_2_7_4
	gemInputOutputTable_2_8_4
	gemInputOutputTable_5_4
	gemInputOutputTable_5_5
	gemInputOutputTable_7_4
	gemInputOutputTable_8_8
	gemInputOutputTable_easy_5_4
	gemInputOutputTable_Leontief_3_3
	gemInputOutputTable_SCES_3_3
	gemIntertemporalStochastic_Bank_ThreePeriods
	gemIntertemporalStochastic_Bank_TwoPeriods
	gemIntertemporalStochastic_ThreePeriods_2_2
	gemIntertemporalStochastic_TwoPeriods
	gemIntertemporal_1_2
	gemIntertemporal_2_2
	gemIntertemporal_3_3
	gemIntertemporal_3_4
	gemIntertemporal_4_4
	gemIntertemporal_5_5
	gemIntertemporal_AdValoremClaim
	gemIntertemporal_Bank_1_2
	gemIntertemporal_Bank_1_3
	gemIntertemporal_Dividend
	gemIntertemporal_Dividend_TechnologicalProgress
	gemIntertemporal_EndogenousEquilibriumInterestRate
	gemIntertemporal_EndogenousEquilibriumInterestRate_ForeignExchangeRate
	gemIntertemporal_ExhaustibleResources_3_2
	gemIntertemporal_Money_Dividend_Example7.5.1
	gemIntertemporal_PublicFirm
	gemIntertemporal_TimeCircle_2_2
	gemIntertemporal_TimeCircle_3_3
	gemIntertemporal_TimeCircle_3_4
	gemIntertemporal_TimeCircle_Bank_1_2
	gemIntertemporal_TimeCircle_Stochastic_2_2
	gemLand_Labor
	gemLand_Labor_Capital_4_3
	gemMarketClearingPath_2_2
	gemMoney_3_2
	gemMoney_3_3
	gemNonexcludability
	gemNonrivalry_Congestiblity
	gemNonrivalry_Uncongestiblity
	gemOLGF_OneFirm
	gemOLGF_PureExchange
	gemOLGF_TwoFirms
	gemOLG_Basic
	gemOLG_PrivateFirm
	gemOLG_PublicFirm
	gemOLG_PureExchange
	gemOLG_PureExchange_Bank
	gemOLG_StochasticSequential_3_3
	gemOLG_StochasticSpotEquilibrium_3_3
	gemOLG_TimeCircle
	gemOpenEconomy_4_4
	gemOpenEconomy_6_6
	gemPersistentTechnologicalProgress
	gemPureExchange
	gemQuasilinearPureExchange_2_2
	gemResearchDevelopmentIntensity
	gemRobinson_3_2
	gemShortTermInvestment_2_3
	gemSkill
	gemSpotEquilibriumPath_StickyDecisions
	gemstEndogenousLaborSupply_2_2
	gemstEndogenousProductionFunction_2_2
	gemstEndogenousUtilityFunction
	gemStickyDecisionPath_2_2
	gemStickyPricePath_2_2
	gemstIntertemporal_EndogenousProductionFunction_2_2
	gemstStructuralMultipleEquilibria_2_2
	gemTax_3_3
	gemTax_4_4
	gemTax_5_4
	gemTax_5_5
	gemTax_QuasilinearPreference_4_4
	gemTax_VAT_IncomeTax_5_4
	gemTechnologyProgress_PopulationGrowth
	gemTemporaryEquilibriumPath
	gemTwoCountryForeignExchangeRate_6_6
	gemTwoCountryPureExchange
	gemTwoCountryPureExchange_Bond
	gemTwoCountry_Bond_7_4
	gemTwoCountry_RealExchangeRateIndex_7_4
	gemTwoCountry_Tariff_9_5
	gemTwoIndustries_4_3
	gem_2_2
	gem_3_2
	gem_3_3
	gem_3_4
	gem_4_4
	ge_tidy
	growth_rate
	iterate
	makeCountercyclicalProductTax
	makePolicyHeadAdjustment
	makePolicyHeadTailAdjustment
	makePolicyIncomeTax
	makePolicyMeanValue
	makePolicyStickyPrice
	makePolicySupply
	makePolicyTailAdjustment
	makePolicyTechnologyChange
	marginal_utility
	matrix_add_by_name
	matrix_aggregate
	matrix_to_dstl
	MDCES_demand
	node_insert
	node_new
	node_plot
	node_print
	node_prune
	node_replace
	node_set
	output
	policyMarketClearingPrice
	policyMeanValue
	QL_demand
	rate_to_beta
	ratio_adjust
	SCES
	SCES_A
	sdm2
	sdm_dstl
	sserr
	structural_function
	var.p
	Index

