Package ‘FRK’

January 16, 2026

Type Package

Title Fixed Rank Kriging

Version 2.3.2

Date 2026-01-15

Maintainer Andrew Zammit-Mangion <andrewzm@gmail . com>
VignetteBuilder knitr

Description A tool for spatial/spatio-temporal modelling and prediction with large datasets. The ap-
proach models the field, and hence the covariance function, using a set of basis func-
tions. This fixed-rank basis-function representation facilitates the mod-
elling of big data, and the method naturally allows for non-stationary, anisotropic covari-
ance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facili-
tates the use of observations with varying support (i.e., both point-referenced and areal sup-
ports, potentially simultaneously), and prediction over arbitrary user-specified re-
gions. ' FRK" also supports inference over various manifolds, includ-
ing the 2D plane and 3D sphere, and it provides helper functions to model, fit, pre-
dict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-
Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by em-
ploying a generalised linear mixed model (GLMM) framework. Zammit-
Mangion and Cressie <doi:10.18637/jss.v098.104> describe " FRK" in a Gaussian set-
ting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-
Mangion, and Cressie <doi:10.18637/jss.v108.i110> describe “FRK" in a non-Gaussian set-
ting; two vignettes are available that summarise these papers and provide additional examples.

URL https://andrewzm.github.io/FRK/, https://github.com/andrewzm/FRK/
BugReports https://github.com/andrewzm/FRK/issues/

Depends R (>=3.5.0)

Suggests covr, dggrids, gridExtra, gstat, knitr, Ime4, mapproj,
parallel, sf, spdep, splancs, testthat, verification

Imports digest, dplyr, fmesher, ggplot2, grDevices, Hmisc (>=4.1),
Matrix, methods, plyr, Repp (>= 0.12.12), sp, spacetime,
sparseinv, statmod, stats, TMB, utils, ggpubr, reshape?2, scales

Additional_repositories https://andrewzm.github.io/dggrids-repo/

1

https://doi.org/10.18637/jss.v098.i04
https://doi.org/10.18637/jss.v108.i10
https://andrewzm.github.io/FRK/
https://github.com/andrewzm/FRK/
https://github.com/andrewzm/FRK/issues/
https://andrewzm.github.io/dggrids-repo/

2 Contents

License GPL (>=2)
NeedsCompilation yes

LazyData true

RoxygenNote 7.3.2

LinkingTo Rcpp, TMB, RcppEigen
Encoding UTF-8

Author Andrew Zammit-Mangion [aut, cre],
Matthew Sainsbury-Dale [aut]

Repository CRAN
Date/Publication 2026-01-16 09:10:53 UTC

Contents
AIRS_05_2003 e e e e e e 3
Am_data. e 4
auto_basis 4
auto_ BAUS e 7
Basis e e e e 10
Basis_obj-class 11
BAUs_from_points e 12
coef_uncertainty e e e e e 13
combine basiS. e 13
data.frame<-. e e 14
df_to_SpatialPolygons 15
dist-matrix e e e e e e e e 16
distance e e 17
diStances e e e e e e e e e e e e 17
draw_world e 18
eval_basis 19
FRK . . . e e e 20
Info_fit. e 30
initialize,manifold-method 30
1sea3h . . oL L e e e e 31
local_basisS. e e e 31
loglik o e 33
manifold e 33
manifold-class e e e 34
measure-class L L e e e e 35
MODIS _cloud_df 35
NDASIS e e e e e e e e e e e e e e e 36
NOAA_df 1990 e 36
IIES . o v v v e e e e e e e e e e e e e e e 37
observed_BAUS e e 38
opts_FRK e e 39

plane Lo 40

AIRS_05_2003 3

PlOt . o e e 40
plotting-themes e e e 41
plot_spatial_or_ST e 42
real_line 44
remove_DbasiS e 45
show_basis e e 46
SpatialPolygonsDataFrame_to_df 47
sphere L e 47
SRE-class e 48
SRE.predict e 50
STplane 51
STsphere e e e e 51
TensorP L 52
LYPE . . e 53
worldmap 54

Index 55

AIRS_05_2003 AIRS data for May 2003
Description

Mid-tropospheric CO2 measurements from the Atmospheric InfraRed Sounder (AIRS). The data
are measurements between 60 degrees S and 90 degrees N at roughly 1:30 pm local time on 1 May
through to 15 May 2003. (AIRS does not release data below 60 degrees S.)

Usage

AIRS_05_2003

Format

A data frame with 209631 rows and 7 variables:

year year of retrieval

month month of retrieval

day day of retrieval

lon longitude coordinate of retrieval

lat latitude coordinate of retrieval

co2avgret CO2 mole fraction retrieval in ppm

co2std standard error of CO2 retrieval in ppm

References

Chahine, M. et al. (2006). AIRS: Improving weather forecasting and providing new data on green-
house gases. Bulletin of the American Meteorological Society 87, 911-26.

4 auto_basis

Am_data Americium soil data

Description
Americium (Am) concentrations in a spatial domain immediately surrounding the location at which
nuclear devices were detonated at Area 13 of the Nevada Test Site, between 1954 and 1963.

Usage

Am_data

Format

A data frame with 212 rows and 3 variables:

Easting Easting in metres
Northing Northing in metres

Am Americium concentration in 1000 counts per minute

References

Paul R, Cressie N (2011). “Lognormal block kriging for contaminated soil.” European Journal of
Soil Science, 62, 337-345.

auto_basis Automatic basis-function placement

Description

Automatically generate a set of local basis functions in the domain, and automatically prune in
regions of sparse data.

Usage

auto_basis(
manifold = plane(),
data,
regular = 1,
nres = 3,
prune = 0,
max_basis = NULL,
subsamp = 10000,
type = c("bisquare”, "Gaussian"”, "exp", "Matern32"),
isea3h_lo = 2,

auto_basis

bndary = NULL,
scale_aperture =

ifelse(is(manifold, "sphere"), 1, 1.25),

verbose = 0L,
buffer = 0,
tunit = NULL,
Arguments
manifold object of class manifold, for example, sphere or plane
data object of class SpatialPointsDataFrame or SpatialPolygonsDataFrame con-
taining the data on which basis-function placement is based, or a list of these;
see details
regular an integer indicating the number of regularly-placed basis functions at the first
resolution. In two dimensions, this dictates the smallest number of basis func-
tions in a row or column at the coarsest resolution. If regular=0, an irregular
grid is used, one that is based on the triangulation of the domain with increased
mesh density in areas of high data density; see details
nres the number of basis-function resolutions to use
prune a threshold parameter that dictates when a basis function is considered irrelevent
or unidentifiable, and thus removed; see details [deprecated]
max_basis maximum number of basis functions. This overrides the parameter nres
subsamp the maximum amount of data points to consider when carrying out basis-function
placement: these data objects are randomly sampled from the full dataset. Keep
this number fairly high (on the order of 10"5), otherwise fine-resolution basis
functions may be spuriously removed
type the type of basis functions to use; see details
isea3h_lo if manifold = sphere(), this argument dictates which ISEA3H resolution is the
coarsest one that should be used for the first resolution
bndary amatrix containing points containing the boundary. If regular == @ this can be

scale_aperture

verbose

buffer

tunit

used to define a boundary in which irregularly-spaced basis functions are placed

the aperture (in the case of the bisquare, but similar interpretation for other basis)
width of the basis function is the minimum distance between all the basis func-
tion centroids multiplied by scale_aperture. Typically this ranges between 1
and 1.5 and is defaulted to 1 on the sphere and 1.25 on the other manifolds.

a logical variable indicating whether to output a summary of the basis functions
created or not

a numeric between 0 and 0.5 indicating the size of the buffer of basis functions
along the boundary. The buffer is added by computing the number of basis func-
tions in each dimension, and increasing this number by a factor of buffer. A
buffer may be needed when the prior distribution of the basis-function coeffi-
cients is formulated in terms of a precision matrix

temporal unit, required when constructing a spatio-temporal basis. Should be
the same as used for the BAUs. Can be "secs", " years",

etc.

non

mins", "hours", "days",

6 auto_basis
unused

Details

This function automatically places basis functions within the domain of interest. If the domain is a
plane or the real line, then the object data is used to establish the domain boundary.

Let ¢(u) denote the value of a basis function evaluated at u = s — ¢, where s is a spatial coordinate
and c is the basis-function centroid. The argument type can be either “Gaussian”, in which case

2
o) =exp (55)

“bisquare”, in which case

“exp”, in which case

or “Matern32”, in which case

o(u) = <1 + \/iu||> exp <_\/§/L|UH> ,

where the parameters o, 2, 7 and are scale arguments.

If the manifold is the real line, the basis functions are placed regularly inside the domain, and the
number of basis functions at the coarsest resolution is dictated by the integer parameter regular
which has to be greater than zero. On the real line, each subsequent resolution has thrice as many
basis functions. The scale of the basis function is set based on the minimum distance between the
centre locations following placement. The scale is equal to the minimum distance if the type of
basis function is Gaussian, exponential, or Matern32, and is equal to 1.5 times this value if the
function is bisquare.

If the manifold is a plane, and regular > @, then basis functions are placed regularly within the
bounding box of data, with the smallest number of basis functions in each row or column equal

to three times the value of regular in the coarsest resolution. Subsequent resolutions have thrice the
number of basis functions in each row or column. If regular = 9, then the function fmesher: : fm_nonconvex_hull_inla()
is used to construct a (non-convex) hull around the data. The buffer and smoothness of the hull is de-
termined by the parameter convex. Once the domain boundary is found, fmesher: : fm_mesh_2d_inla()
is used to construct a triangular mesh such that the node vertices coincide with data locations, sub-

ject to some minimum and maximum triangular-side-length constraints. The result is a mesh that is
dense in regions of high data density and not dense in regions of sparse data. Even basis functions

are irregularly placed, the scale is taken to be a function of the minimum distance between basis
function centres, as detailed above. This may be changed in a future revision of the package.

auto_ BAUs 7

If the manifold is the surface of a sphere, then basis functions are placed on the centroids of the
discrete global grid (DGG), with the first basis resolution corresponding to the third resolution of
the DGG (ISEA3H resolution 2, which yields 92 basis functions globally). It is not recommended
to go above nres == 3 (ISEA3H resolutions 2—4) for the whole sphere; nres=3 yields a total of
1176 basis functions. Up to ISEA3H resolution 6 is available with FRK; for finer resolutions; please
install dggrids from https://github.com/andrewzm/dggrids using devtools.

Basis functions that are not influenced by data points may hinder convergence of the EM algorithm
when K_type = "unstructured”, since the associated hidden states are, by and large, unidentifi-
able. We hence provide a means to automatically remove such basis functions through the parameter
prune. The final set only contains basis functions for which the column sums in the associated ma-
trix S (which, recall, is the value/average of the basis functions at/over the data points/polygons) is
greater than prune. If prune == 0, no basis functions are removed from the original design.

See Also

remove_basis for removing basis functions and show_basis for visualising basis functions

Examples

Not run:
library(sp)
library(ggplot2)

Create a synthetic dataset

set.seed(1)

d <- data.frame(lon = runif(n=1000,min = -179, max = 179),
lat = runif(n=1000,min = -90, max = 90),
z = rnorm(5000))

coordinates(d) <- ~lon + lat

slot(d, "proj4string”) = CRS("+proj=longlat +ellps=sphere")

Now create basis functions over sphere
G <- auto_basis(manifold = sphere(),data=d,
nres = 2,prune=15,
type = "bisquare”,
subsamp = 20000)

Plot
show_basis(G,draw_world())

End(Not run)

auto_BAUs Automatic BAU generation

Description

This function calls the generic function auto_BAU (not exported) after a series of checks and is the
easiest way to generate a set of Basic Areal Units (BAUs) on the manifold being used; see details.

Usage

auto_BAUs(
manifold,
type = NULL,
cellsize = NULL,
isea3h_res = NULL,

auto_BAUs

data = NULL,
nonconvex_hull = TRUE,
convex = -0.05,
tunit = NULL,
xlims = NULL,
ylims = NULL,
spatial _BAUs = NULL,
)
Arguments
manifold object of class manifold
type either “grid” or “hex”, indicating whether gridded or hexagonal BAUs should
be used. If type is unspecified, “hex” will be used if we are on the sphere, and
“grid” will used otherwise
cellsize denotes size of gridcell when type = “grid”. Needs to be of length 1 (square-grid
case) or a vector of length dimensions(manifold) (rectangular-grid case)
isea3h_res resolution number of the isea3h DGGRID cells for when type is “hex” and man-
ifold is the surface of a sphere
data object of class SpatialPointsDataFrame, SpatialPolygonsDataFrame, STIDF,

nonconvex_hull

or STFDF. Provision of data implies that the domain is bounded, and is thus
necessary when the manifold is a real_line, plane, or STplane, but is not
necessary when the manifold is the surface of a sphere

flag indicating whether to use fmesher to generate a non-convex hull. Otherwise
a convex hull is used

convex convex parameter used for smoothing an extended boundary when working on
a bounded domain (that is, when the object data is supplied); see details

tunit temporal unit when requiring space-time BAUs. Can be "secs", "mins", "hours",
etc.

xlims limits of the horizontal axis (overrides automatic selection)

ylims limits of the vertical axis (overrides automatic selection)

spatial_BAUs

object of class SpatialPolygonsDataFrame or SpatialPixelsDataFrame rep-
resenting the spatial BAUs to be used in a spatio-temporal setting (if left NULL,
the spatial BAUs are constructed automatically using the data)

currently unused

auto_BAUSs 9

Details

auto_BAUs constructs a set of Basic Areal Units (BAUs) used both for data pre-processing and for
prediction. As such, the BAUs need to be of sufficienly fine resolution so that inferences are not
affected due to binning.

Two types of BAUs are supported by FRK: “hex” (hexagonal) and “grid” (rectangular). In order to
have a “grid” set of BAUSs, the user should specify a cellsize of length one, or of length equal to the
dimensions of the manifold, that is, of length 1 for real_line and of length 2 for the surface of a
sphere and plane. When a “hex” set of BAUs is desired, the first element of cellsize is used to
determine the side length by dividing this value by approximately 2. The argument type is ignored
with real_line and “hex” is not available for this manifold.

If the object data is provided, then automatic domain selection may be carried out by employing
the fmesher function fm_nonconvex_hull_inla, which finds a (non-convex) hull surrounding the
data points (or centroids of the data polygons). This domain is extended and smoothed using the pa-
rameter convex. The parameter convex should be negative, and a larger absolute value for convex
results in a larger domain with smoother boundaries.

See Also

auto_basis for automatically constructing basis functions.

Examples

First a 1D example
library(sp)
set.seed(1)
data <- data.frame(x = runif(10)*10, y = @, z= runif(10)*10)
coordinates(data) <- ~x+y
Grid1D_df <- auto_BAUs(manifold = real_line(),
cellsize = 1,
data=data)
Not run: spplot(GridiD_df)

Now a 2D example
data(meuse)
coordinates(meuse) = ~x+y # change into an sp object

Grid BAUs

GridPols_df <- auto_BAUs(manifold = plane(),
cellsize = 200,
type = "grid”,
data = meuse,
nonconvex_hull = @)

Not run: plot(GridPols_df)

Hex BAUs

HexPols_df <- auto_BAUs(manifold = plane(),
cellsize = 200,
type = "hex",
data = meuse,
nonconvex_hull = 9)

10

Basis

Not run: plot(HexPols_df)

Basis

Generic basis-function constructor

Description

This function is meant to be used for manual construction of arbitrary basis functions. For ‘local’
basis functions, please use the function local_basis instead.

Usage

Basis(manifold, n, fn, pars, df, regular = FALSE)

Arguments

manifold
n

fn

pars

df

regular

Details

object of class manifold, for example, sphere
number of basis functions (should be an integer)

a list of functions, one for each basis function. Each function should be encap-
sulated within an environment in which the manifold and any other parameters
required to evaluate the function are defined. The function itself takes a single
input s which can be of class numeric, matrix, or Matrix, and returns a vector
which contains the basis function evaluations at s.

A list containing a list of parameters for each function. For local basis functions
these would correspond to location and scale parameters.

A data frame containing one row per basis function, typically for providing in-
formative summaries.

logical indicating if the basis functions (of each resolution) are in a regular grid

This constructor checks that all parameters are valid before constructing the basis functions. The
requirement that every function is encapsulated is tedious, but necessary for FRK to work with a
large range of basis functions in the future. Please see the example below which exemplifies the
process of constructing linear basis functions from scratch using this function.

See Also

auto_basis for constructing basis functions automatically, local_basis for constructing ‘local’
basis functions, and show_basis for visualising basis functions.

Basis_obj-class 11

Examples

Construct two linear basis functions on [0, 1]
manifold <- real_line()
n <-2
lin_basis_fn <- function(manifold, grad, intercept) {
function(s) grad*s + intercept
}
pars <- list(list(grad = 1, intercept = 0),
list(grad = -1, intercept = 1))
fn <- list(lin_basis_fn(manifold, 1, @),
lin_basis_fn(manifold, -1, 1))
df <- data.frame(n = 1:2, grad = c(1, -1), m = c(1, -1))
G <- Basis(manifold = manifold, n = n, fn = fn, pars = pars, df = df)
Not run:
eval_basis(G, s = matrix(seq(@,1, by = 0.1), 11, 1))
End(Not run)

Basis_obj-class Basis functions

Description

An object of class Basis contains the basis functions used to construct the matrix S in FRK.

Details

Basis functions are a central component of FRK, and the package is designed to work with user-
defined specifications of these. For convenience, however, several functions are available to aid the
user to construct a basis set for a given set of data points. Please see auto_basis for more details.
The function local_basis helps the user construct a set of local basis functions (e.g., bisquare
functions) from a collection of location and scale parameters.

Slots
manifold an object of class manifold that contains information on the manifold and the distance
measure used on the manifold. See manifold-class for more details
n the number of basis functions in this set
fn alist of length n, with each item the function of a specific basis function

pars a list of parameters where the i-th item in the list contains the parameters of the ¢-th basis
function, fn[[i]]

df a data frame containing other attributes specific to each basis function (for example the geomet-
ric centre of the local basis function)

regular logical indicating if the basis functions (of each resolution) are in a regular grid

See Also

auto_basis for automatically constructing basis functions and show_basis for visualising basis
functions.

12 BAUSs_from_points

BAUs_from_points Creates pixels around points

Description

Takes a SpatialPointsDataFrame and converts it into SpatialPolygonsDataFrame by constructing a
tiny (within machine tolerance) BAU around each SpatialPoint.

Usage
BAUs_from_points(obj, offset = 1e-10)

S4 method for signature 'SpatialPoints'
BAUs_from_points(obj, offset = 1e-10)

S4 method for signature 'ST'
BAUs_from_points(obj, offset = 1e-10)

Arguments
obj object of class SpatialPointsDataFrame
offset edge size of the mini-BAU (default 1e-10)
Details

This function allows users to mimic standard geospatial analysis where BAUs are not used. Since
FRK is built on the concept of a BAU, this function constructs tiny BAUs around the observation
and prediction locations that can be subsequently passed on to the functions SRE and FRK. With
BAUs_from_points, the user supplies both the data and prediction locations accompanied with
covariates.

See Also

auto_BAUs for automatically constructing generic BAUs.

Examples

library(sp)

opts_FRK$set("parallel”, QL)

df <- data.frame(x = rnorm(10),
y = rnorm(10))

coordinates(df) <- ~x+y

BAUs <- BAUs_from_points(df)

coef_uncertainty 13

coef_uncertainty Uncertainty quantification of the fixed effects

Description

Compute confidence intervals for the fixed effects (upper and lower bound specifed by percentiles;
default 90% confidence central interval)

Usage

coef_uncertainty(
object,
percentiles = c(5, 95),
nsim = 400,
random_effects = FALSE

Arguments
object object of class SRE returned from the constructor SRE() containing all the pa-
rameters and information on the SRE model

percentiles (applicable only if method = "TMB") a vector of scalars in (0, 100) specify-
ing the desired percentiles of the posterior predictive distribution; if NULL, no
percentiles are computed

nsim number of Monte Carlo samples used to compute the confidence intervals

random_effects logical; if set to true, confidence intervals will also be provided for the random
effects random effects v (see ‘?SRE* for details on these random effects)

combine_basis Combine basis functions

Description

Takes a list of objects of class Basis and returns a single object of class Basis.

Usage

combine_basis(Basis_list)

S4 method for signature 'list'
combine_basis(Basis_list)
Arguments

Basis_list a list of objects of class Basis. Each element of the list is assumed to represent
a single resolution of basis functions

14 data.frame<-

See Also

auto_basis for automatically constructing basis functions and show_basis for visualising basis
functions

Examples

Construct two resolutions of basis functions using local_basis()
Basis1 <- local_basis(manifold = real_line(),

loc = matrix(seq(@, 1, length.out = 3), ncol = 1),
scale = rep(0.4, 3))

Basis2 <- local_basis(manifold = real_line(),
loc = matrix(seq(@, 1, length.out = 6), ncol = 1),

scale = rep(0.2, 6))

Combine basis-function resolutions into a single Basis object
combine_basis(list(Basis1, Basis2))

data.frame<- Basis-function data frame object

Description
Tools for retrieving and manipulating the data frame within Basis objects. Use the assignment
data. frame()<- with care; no checks are made to ensure the data frame conforms with the object.
Usage

data.frame(x) <- value

S4 method for signature 'Basis'
x$name

S4 replacement method for signature 'Basis'
x$name <- value

S4 replacement method for signature 'Basis’
data.frame(x) <- value

S4 replacement method for signature 'TensorP_Basis
data.frame(x) <- value

S3 method for class 'Basis'
as.data.frame(x, ...)

S3 method for class 'TensorP_Basis'
as.data.frame(x, ...)

df_to_SpatialPolygons 15

Arguments
X the obect of class Basis we are assigning the new data to or retrieving data from
value the new data being assigned to the Basis object
name the field name to which values will be retrieved or assigned inside the Basis
object’s data frame
unused
Examples

G <- local_basis()
df <- data.frame(G)
print(df$res)
df$res <- 2
data.frame(G) <- df

df_to_SpatialPolygons Convert data frame to SpatialPolygons

Description

Convert data frame to SpatialPolygons object.

Usage

df_to_SpatialPolygons(df, keys, coords, proj)

Arguments
df data frame containing polygon information, see details
keys vector of variable names used to group rows belonging to the same polygon
coords vector of variable names identifying the coordinate columns
proj the projection of the SpatialPolygons object. Needs to be of class CRS
Details

Each row in the data frame df contains both coordinates and labels (or keys) that identify to which
polygon the coordinates belong. This function groups the data frame according to keys and forms
a SpatialPolygons object from the coordinates in each group. It is important that all rings are
closed, that is, that the last row of each group is identical to the first row. Since keys can be of
length greater than one, we identify each polygon with a new key by forming an MDS5 hash made
out of the respective keys variables that in themselves are unique (and therefore the hashed key is
also unique). For lon-lat coordinates use proj = CRS("+proj=longlat +ellps=sphere”).

16

Examples

library(sp)
df <- data.frame(id = c(rep(1,4),rep(2,4)),
x = c(0,1,0,0,2,3,2,2),
y=c(0,0,1,0,0,1,1,0))
pols <- df_to_SpatialPolygons(df,”id",c("x","y"),CRS())
Not run: plot(pols)

dist-matrix

dist-matrix Distance Matrix Computation from Two Matrices

Description

This function extends dist to accept two arguments.

Usage

distR(x1, x2 = NULL)

Arguments
x1 matrix of size N1 x n
X2 matrix of size N2 x n
Details

Computes the distances between the coordinates in x1 and the coordinates in x2. The matrices x1
and x2 do not need to have the same number of rows, but need to have the same number of columns

(e.g., manifold dimensions).

Value

Matrix of size N1 x N2

Examples

A <- matrix(rnorm(50),5,10)
D <- distR(A,A[-3,])

distance 17

distance Compute distance

Description

Compute distance using object of class measure or manifold.

Usage

distance(d, x1, x2 = NULL)

S4 method for signature 'measure’
distance(d, x1, x2 = NULL)

S4 method for signature 'manifold’
distance(d, x1, x2 = NULL)

Arguments
d object of class measure or manifold
x1 first coordinate
X2 second coordinate

See Also

real_line, plane, sphere, STplane and STsphere for constructing manifolds, and distances
for the type of distances available.

Examples

distance(sphere(),matrix(0,1,2),matrix(10,1,2))
distance(plane(),matrix(@,1,2),matrix(10,1,2))

distances Pre-configured distances

Description

Useful objects of class distance included in package.

18 draw_world
Usage

measure(dist, dim)

Euclid_dist(dim = 2L)

gc_dist(R = NULL)

gc_dist_time(R = NULL)

Arguments
dist a function taking two arguments x1, x2
dim the dimension of the manifold (e.g., 2 for a plane)
R great-circle radius

Details

Initialises an object of class measure which contains a function dist used for computing the dis-
tance between two points. Currently the Euclidean distance and the great-circle distance are in-
cluded with FRK.

Examples

M1 <- measure(distR,2)
D <- distance(M1,matrix(rnorm(10),5,2))

draw_world Draw a map of the world with country boundaries.

Description

Layers a ggplot2 map of the world over the current ggplot?2 object.

Usage
draw_world(g = ggplot() + theme_bw() + xlab("") + ylab(""), inc_border = TRUE)

Arguments

g initial ggplot object

inc_border flag indicating whether a map border should be drawn or not; see details.
Details

This function uses ggplot2: :map_data() in order to create a world map. Since, by default, this
creates lines crossing the world at the (-180,180) longitude boundary, the function . homogenise_maps()
is used to split the polygons at this boundary into two. If inc_border is TRUE, then a border is
drawn around the lon-lat space; this option is most useful for projections that do not yield rectan-
gular plots (e.g., the sinusoidal global projection).

eval_basis 19

See Also

the help file for the dataset worldmap

Examples

Not run:
library(ggplot2)
draw_world(g = ggplot())
End(Not run)

eval_basis Evaluate basis functions

Description

Evaluate basis functions at points or average functions over polygons.
Usage
eval_basis(basis, s)

S4 method for signature 'Basis,matrix’
eval_basis(basis, s)

S4 method for signature 'Basis,SpatialPointsDataFrame'
eval_basis(basis, s)

S4 method for signature 'Basis,SpatialPolygonsDataFrame'
eval_basis(basis, s)

S4 method for signature 'Basis,STIDF'
eval_basis(basis, s)

S4 method for signature 'TensorP_Basis,matrix’
eval_basis(basis, s)

S4 method for signature 'TensorP_Basis,STIDF'
eval_basis(basis, s)

S4 method for signature 'TensorP_Basis,STFDF'
eval_basis(basis, s)

Arguments
basis object of class Basis
s object of class matrix, SpatialPointsDataFrame or SpatialPolygonsDataFrame

containing the spatial locations/footprints

20 FRK

Details

This function evaluates the basis functions at isolated points, or averages the basis functions over
polygons, for computing the matrix S. The latter operation is carried out using Monte Carlo inte-
gration with 1000 samples per polygon. When using space-time basis functions, the object must
contain a field t containing a numeric representation of the time, for example, containing the num-
ber of seconds, hours, or days since the first data point.

See Also

auto_basis for automatically constructing basis functions.

Examples

library(sp)

Create a synthetic dataset

set.seed(1)

d <- data.frame(lon = runif(n=500,min
lat = runif(n=500,min
z = rnorm(500))

coordinates(d) <- ~lon + lat

slot(d, "proj4string"”) = CRS("+proj=longlat”)

=179, max = 179),
-90, max = 90),

Now create basis functions on sphere

G <- auto_basis(manifold = sphere(),data=d,
nres = 2,prune=15,
type = "bisquare”,
subsamp = 20000)

Now evaluate basis functions at origin
S <- eval_basis(G,matrix(c(0,0),1,2))

FRK Construct SRE object, fit and predict

Description

The Spatial Random Effects (SRE) model is the central object in FRK. The function FRK() provides
a wrapper for the construction and estimation of the SRE object from data, using the functions SRE ()
(the object constructor) and SRE.fit() (for fitting it to the data). Please see SRE-class for more
details on the SRE object’s properties and methods.

Usage

FRK (
f,
data,
basis = NULL,

FRK

21

BAUs = NULL,

est_error = TRUE,

average_in_BAU = TRUE,

sum_variables = NULL,

normalise_wts = TRUE,

fs_model = "ind",

vgm_model = NULL,

K_type = c("block-exponential”, "precision”, "unstructured"),

n_EM = 100,

tol = 0.01,

method = c("EM", "TMB"),

lambda = 9,

print_lik = FALSE,

response = c("gaussian”, "poisson”, "gamma”, "inverse-gaussian”, "negative-binomial”,
"binomial"),

link = c("identity”, "log", "sqrt"”, "logit"”, "probit”, "cloglog"”, "inverse",
"inverse-squared"”),

optimiser = nlminb,

fs_by_spatial _BAU = FALSE,

known_sigma2fs = NULL,

taper = NULL,

simple_kriging_fixed = FALSE,

SRE(

f,

data,

basis,

BAUs,

est_error = TRUE,
average_in_BAU = TRUE,
sum_variables = NULL,
normalise_wts = TRUE,

fs_model = "ind",

vgm_model = NULL,

K_type = c("block-exponential”, "precision”, "unstructured"),

normalise_basis = TRUE,

response = c("gaussian”, "poisson”, "gamma", "inverse-gaussian”, "negative-binomial”,
"binomial"),

link = c("identity”, "log", "sqrt", "logit", "probit”, "cloglog”, "inverse",
"inverse-squared"),

include_fs = TRUE,

fs_by_spatial _BAU = FALSE,

SRE. fit(

22

object,
n_EM = 100L,
tol = 0.01,

method = c("EM", "TMB"),
lambda = 0,

print_lik = FALSE,
optimiser = nlminb,
known_sigma2fs = NULL,
taper = NULL,

simple_kriging_fixed = FALSE,

)

S4 method for signature
predict(
object,
newdata = NULL,
obs_fs = FALSE,
pred_time = NULL,
covariances = FALSE,
nsim = 400,
type = "mean”,
k = NULL,
percentiles = c(5, 95),
kriging = "simple",
new_BAU_data = NULL
)

S4 method for signature
loglLik(object)

S4 method for signature
nobs(object, ...)

S4 method for signature
coef(object, ...)

S4 method for signature
coef_uncertainty(
object,
percentiles = c(5, 95),
nsim = 400,
random_effects =

)

FALSE

simulate(object, newdata =

S4 method for signature

'SRE'

'SRE'

'SRE'

'SRE'

'SRE'

NULL, nsim = 400, conditional_fs = FALSE,

'SRE'

)

FRK

FRK 23

fitted(object, ...)

S4 method for signature 'SRE'
residuals(object, type = "pearson”)

S4 method for signature 'SRE'
AIC(object, k = 2)

S4 method for signature 'SRE'

BIC(object)
Arguments

f R formula relating the dependent variable (or transformations thereof) to covari-
ates

data list of objects of class SpatialPointsDataFrame, SpatialPolygonsDataFrame,
STIDF, or STFDF. If using space-time objects, the data frame must have another
field, t, containing the time index of the data point

basis object of class Basis (or TensorP_Basis)

BAUs object of class SpatialPolygonsDataFrame, SpatialPixelsDataFrame, STIDF,
or STFDF. The object’s data frame must contain covariate information as well as
a field f's describing the fine-scale variation up to a constant of proportionality.
If the function FRK() is used directly, then BAUs are created automatically, but
only coordinates can then be used as covariates

est_error (applicable only if response = "gaussian") flag indicating whether the measurement-

error variance should be estimated from variogram techniques. If this is set to 0,
then data must contain a field std. Measurement-error estimation is currently
not implemented for spatio-temporal datasets

average_in_BAU if TRUE, then multiple data points falling in the same BAU are averaged; the
measurement error of the averaged data point is taken as the average of the
individual measurement errors

sum_variables if average_in_BAU == TRUE, the string sum_variables indicates which data
variables (can be observations or covariates) are to be summed rather than aver-
aged

normalise_wts if TRUE, the rows of the incidence matrices C'z and C' p are normalised to sum to
1, so that the mapping represents a weighted average; if false, no normalisation
of the weights occurs (i.e., the mapping corresponds to a weighted sum)

fs_model if "ind" then the fine-scale variation is independent at the BAU level. Only
the independent model is allowed for now, future implementation will include
CAR/ICAR (in development)

vgm_model (applicable only if response = "gaussian") an object of class variogramModel
from the package gstat constructed using the function vgm. This object con-
tains the variogram model that will be fit to the data. The nugget is taken as
the measurement error when est_error = TRUE. If unspecified, the variogram
used is gstat::vgm(1, "Lin", d, 1), where d is approximately one third of
the maximum distance between any two data points

24

K_type

n_EM

tol
method

lambda

print_lik

response

link

optimiser

FRK

the parameterisation used for the basis-function covariance matrix, K. If method

= "EM", K_type can be "unstructured" or "block-exponential". If method =

"TMB", K_type can be "precision" or "block-exponential". The defaultis "block-
exponential", however if FRK() is used and method = "TMB", for computational

reasons K_type is set to "precision”

(applicable only if method = "EM") maximum number of iterations for the EM
algorithm

(applicable only if method = "EM") convergence tolerance for the EM algorithm

parameter estimation method to employ. Currently "EM" and "TMB" are sup-
ported

(applicable only if K_type = "unstructured") ridge-regression regularisation pa-
rameter (0 by default). Can be a single number, or a vector (one parameter for
each resolution)

(applicable only if method = "EM") flag indicating whether to plot log-likelihood
vs. iteration after convergence of the EM estimation algorithm

string indicating the assumed distribution of the response variable. It can be
"gaussian", "poisson", "negative-binomial”, "binomial", "gamma", or "inverse-
gaussian". If method = "EM", only "gaussian" can be used. Two distributions
considered in this framework, namely the binomial distribution and the negative-
binomial distribution, have an assumed-known ‘size’ parameter and a ‘probabil-
ity of success’ parameter; see the details below for the exact parameterisations
used, and how to provide these ‘size’ parameters

string indicating the desired link function. Can be "log", "identity", "logit", "pro-
bit", "cloglog", "reciprocal", or "reciprocal-squared”. Note that only sensible
link-function and response-distribution combinations are permitted. If method

="EM", only "identity" can be used

(applicable only if method = "TMB") the optimising function used for model
fitting when method = "TMB" (default is n1lminb). Users may pass in a function
object or a string corresponding to a named function. Optional parameters may
be passed to optimiser via The only requirement of optimiser is that the
first three arguments correspond to the initial parameters, the objective function,
and the gradient, respectively (this may be achieved by simply constructing a
wrapper function)

fs_by_spatial_BAU

known_sigma2fs

taper

(applicable only in a spatio-temporal setting and if method = "TMB") if TRUE,
then each spatial BAU is associated with its own fine-scale variance parameter;
otherwise, a single fine-scale variance parameter is used

known value of the fine-scale variance parameter. If NULL (the default), the fine-
scale variance parameter is estimated as usual. If known_sigma2f's is not NULL,
the fine-scale variance is fixed to the supplied value; this may be a scalar, or
vector of length equal to the number of spatial BAUs (if fs_by_spatial_BAU =
TRUE)

positive numeric indicating the strength of the covariance/partial-correlation ta-
pering. Only applicable if K_type = "block-exponential", or if K_type = "pre-
cision" and the the basis-functions are irregular or the manifold is not the plane.

FRK 25

If taper is NULL (default) and method = "EM", no tapering is applied; if method
="TMB", tapering must be applied (for computational reasons), and we set it to
3 if it is unspecified

simple_kriging_fixed
commit to simple kriging at the fitting stage? If TRUE, model fitting is faster, but
the option to conduct universal kriging at the prediction stage is removed

other parameters passed on to auto_basis() and auto_BAUs() when calling
FRK(), or the user specified function optimiser () when calling FRK() or SRE.fit()

normalise_basis
flag indicating whether to normalise the basis functions so that they reproduce a
stochastic process with approximately constant variance spatially

include_fs (applicable only if method = "TMB") flag indicating whether the fine-scale vari-
ation should be included in the model

object object of class SRE returned from the constructor SRE() containing all the pa-
rameters and information on the SRE model

newdata object of class SpatialPoylgons, SpatialPoints, or STI, indicating the re-
gions or points over which prediction will be carried out. The BAUs are used if
this option is not specified.

obs_fs flag indicating whether the fine-scale variation sits in the observation model
(systematic error; indicated by obs_f's = TRUE) or in the process model (process
fine-scale variation; indicated by obs_fs = FALSE, default). For non-Gaussian
data models, and/or non-identity link functions, if obs_f's = TRUE, then the fine-
scale variation is removed from the latent process Y; however, they are re-
introduced for prediction of the conditonal mean u and simulated data Z*

pred_time vector of time indices at which prediction will be carried out. All time points
are used if this option is not specified

covariances (applicable only for method = "EM") logical variable indicating whether predic-
tion covariances should be returned or not. If set to TRUE, a maximum of 4000
prediction locations or polygons are allowed

nsim number of i) MC samples at each location when using predict or ii) response
vectors when using simulate

type (applicable only if method = "TMB") vector of strings indicating the quanti-
ties for which inference is desired. If "link" is in type, inference on the latent
Gaussian process Y () is included; if "mean" is in type, inference on the mean
process () is included (and the probability process, 7 (+), if applicable); if "re-
sponse" is in type, inference on the noisy data Z* is included

k (applicable only if response is "binomial" or "negative-binomial") vector of
size parameters at each BAU

percentiles (applicable only if method = "TMB") a vector of scalars in (0, 100) specify-
ing the desired percentiles of the posterior predictive distribution; if NULL, no
percentiles are computed

kriging (applicable only if method = "TMB") string indicating the kind of kriging: "sim-
ple" ignores uncertainty due to estimation of the fixed effects, while "universal”
accounts for this source of uncertainty

26

FRK

new_BAU_data A data. frame containing updated covariate values at the BAU level. Must have
the same number of rows, column names (in the same order), and column types
as the original BAUs data. If NULL (default), the original BAUs data will be used.

random_effects logical; if set to true, confidence intervals will also be provided for the random
effects random effects v (see ‘?SRE* for details on these random effects)

conditional_fs condition on the fitted fine-scale random effects?

Details

The following details provide a summary of the model and basic workflow used in FRK. See
Zammit-Mangion and Cressie (2021) and Sainsbury-Dale, Zammit-Mangion and Cressie (2023)
for further details.

Model description

The hierarchical model implemented in FRK is a spatial generalised linear mixed model (GLMM),
which may be summarised as

Zi|pg, v~ EF(uz,,); j=1,...,m,
py =Czp
g(n) =Y
Y =Ta+~vG+Sn+¢§
n~ N(0,K)
£~ N(0,X),
v~ N(0,%,),

where Z; denotes a datum, E'F' corresponds to a probability distribution in the exponential fam-
ily with dispersion parameter 1), ft, is the vector containing the conditional expectations of each
datum, C'z is a matrix which aggregates the BAU-level mean process over the observation sup-
ports, p is the mean process evaluated over the BAUs, g is a link function, Y is a latent Gaussian
process evaluated over the BAUs, the matrix 7" contains regression covariates at the BAU level as-
sociated with the fixed effects «, the matrix G is a design matrix at the BAU level associated with
random effects ~y, the matrix .S contains basis-function evaluations over the BAUs associated with
basis-function random effects 7, and £ is a vector containing fine-scale variation at the BAU level.

The prior distribution of the random effects, =y, is a mean-zero multivariate Gaussian with diagonal
covariance matrix, with each group of random effects associated with its own variance parameter.
These variance parameters are estimated during model fitting.

The prior distribution of the basis-function coefficients, 7, is formulated using either a covariance
matrix K or precision matrix @, depending on the argument K_type. The parameters of these
matrices are estimated during model fitting.

The prior distribution of the fine-scale random effects, £, is a mean-zero multivariate Gaussian with
diagonal covariance matrix, 3. By default, X = agV, where V' is a known, positive-definite
diagonal matrix whose elements are provided in the field fs in the BAUs. In the absence of problem
specific fine-scale information, fs can simply be set to 1, so that V' = I. In a spatio-temporal
setting, another model for X¢ can be used by setting fs_by_spatial_BAU = TRUE, in which case
each spatial BAU is associated with its own fine-scale variance parameter (see Sainsbury-Dale et

FRK 27

al., 2023, Sec. 2.6). In either case, the fine-scale variance parameter(s) are either estimated during
model fitting, or provided by the user via the argument known_sigma2fs.

Gaussian data model with an identity link function

When the data is Gaussian, and an identity link function is used, the preceding model simplifies
considerably: Specifically,

Z:CZY—FCZ&'FG,

where Z is the data vector, § is systematic error at the BAU level, and e represents independent
measurement error.

Distributions with size parameters

Two distributions considered in this framework, namely the binomial distribution and the negative-
binomial distribution, have an assumed-known ‘size’ parameter and a ‘probability of success’ pa-
rameter. Given the vector of size parameters associated with the data, k7, the parameterisation used
in FRK assumes that Z; represents either the number of ‘successes’ from kz; trials (binomial data
model) or that it represents the number of failures before kzj successes (negative-binomial data
model).

When model fitting, the BAU-level size parameters k are needed. The user must supply these size
parameters either through the data or though the BAUs. How this is done depends on whether the
data are areal or point-referenced, and whether they overlap common BAUs or not. The simplest
case is when each observation is associated with a single BAU only and each BAU is associated with
at most one observation support; then, it is straightforward to assign elements from k to elements
of k and vice-versa, and so the user may provide either k or k. If each observation is associated
with exactly one BAU, but some BAUs are associated with multiple observations, the user must
provide kz, which is used to infer k; in particular, k; = Zani k:Zj ,i=1,..., N, where a; denotes
the indices of the observations associated with BAU A;. If one or more observations encompass
multiple BAUs, k must be provided with the BAUs, as we cannot meaningfully distribute %z,
over multiple BAUs associated with datum Z;. In this case, we infer kz using kz, = ZZ e ki,
J =1,...,m, where c; denotes the indices of the BAUs associated with observation Z;.

Set-up

SRE() constructs a spatial random effects model from the user-defined formula, data object (a list
of spatially-referenced data), basis functions and a set of Basic Areal Units (BAUs). It first takes
each object in the list data and maps it to the BAUs — this entails binning point-referenced data into
the BAUs (and averaging within the BAU if average_in_BAU = TRUE), and finding which BAUs
are associated with observations. Following this, the incidence matrix, C'z, is constructed. All
required matrices (S, T', C'z, etc.) are constructed within SRE() and returned as part of the SRE
object. SRE() also intitialises the parameters and random effects using sensible defaults. Please see
SRE-class for more details. The functions observed_BAUs () and unobserved_BAUs () return the
indices of the observed and unobserved BAUSs, respectively.

To include random effects in FRK please follow the notation as used in Imed4. For example, to
add a random effect according to a variable fct, simply add ‘(1 | fct)’ to the formula used when
calling FRK() or SRE(). Note that FRK only supports simple, uncorrelated random effects and
that a formula term such as *(1 + x | fct)’ will throw an error (since in Ime4 parlance this implies
that the random effect corresponding to the intercept and the slope are correlated). If one wishes to
model a an intercept and linear trend for each level in fct, then one can force the intercept and slope

28

FRK

terms to be uncorrelated by using the notation "(x || fct)", which is shorthand for "(1 | fct) +
(x=11]x2)"

Model fitting

SRE. fit() takes an object of class SRE and estimates all unknown parameters, namely the covari-
ance matrix K, the fine scale variance (ag or ag, depending on whether Case 1 or Case 2 is chosen;
see the vignette "FRK_intro") and the regression parameters cx. There are two methods of model
fitting currently implemented, both of which implement maximum likelihood estimation (MLE).

MLE via the expectation maximisation (EM) algorithm. This method is implemented only for
Gaussian data and an identity link function. The log-likelihood (given in Section 2.2 of the
vignette) is evaluated at each iteration at the current parameter estimate. Optimation continues
until convergence is reached (when the log-likelihood stops changing by more than tol), or
when the number of EM iterations reaches n_EM. The actual computations for the E-step and
M-step are relatively straightforward. The E-step contains an inverse of an r X r matrix,
where r is the number of basis functions which should not exceed 2000. The M-step first
updates the matrix K, which only depends on the sufficient statistics of the basis-function
coefficients 7. Then, the regression parameters o are updated and a simple optimisation
routine (a line search) is used to update the fine-scale variance ag or og. If the fine-scale errors
and measurement random errors are homoscedastic, then a closed-form solution is available
for the update of ¢ or 0. Irrespectively, since the updates of ¢, and o5 or o7, are dependent,
these two updates are iterated until the change in o2 is no more than 0.1%.

MLE via TMB. This method is implemented for all available data models and link functions offered
by FRK. Furthermore, this method facilitates the inclusion of many more basis function than
possible with the EM algorithm (in excess of 10,000). TMB applies the Laplace approximation
to integrate out the latent random effects from the complete-data likelihood. The resulting ap-
proximation of the marginal log-likelihood, and its derivatives with respect to the parameters,
are then called from within R using the optimising function optimiser (default nIminb()).

Wrapper for set-up and model fitting

The function FRK () acts as a wrapper for the functions SRE() and SRE.fit(). An added advantage
of using FRK() directly is that it automatically generates BAUs and basis functions based on the
data. Hence FRK() can be called using only a list of data objects and an R formula, although the R
formula can only contain space or time as covariates when BAUs are not explicitly supplied with
the covariate data.

Prediction

Once the parameters are estimated, the SRE object is passed onto the function predict() in order to
carry out optimal predictions over the same BAUs used to construct the SRE model with SRE(). The
first part of the prediction process is to construct the matrix S over the prediction polygons. This is
made computationally efficient by treating the prediction over polygons as that of the prediction over
a combination of BAUs. This will yield valid results only if the BAUs are relatively small. Once
the matrix S is found, a standard Gaussian inversion (through conditioning) using the estimated
parameters is used for prediction.

predict() returns the BAUs (or an object specified in newdata), which are of class SpatialPixelsDataFrame,

SpatialPolygonsDataFrame, or STFDF, with predictions and uncertainty quantification added. If
method = "TMB", the returned object is a list, containing the previously described predictions, and
a list of Monte Carlo samples. The predictions and uncertainties can be easily plotted using plot
or spplot from the package sp.

FRK 29

References

Zammit-Mangion, A. and Cressie, N. (2021). FRK: An R package for spatial and spatio-temporal
prediction with large datasets. Journal of Statistical Software, 98(4), 1-48. doi:10.18637/jss.v098.104.

Sainsbury-Dale, M. and Zammit-Mangion, A. and Cressie, N. (2024) Modelling Big, Heteroge-
neous, Non-Gaussian Spatial and Spatio-Temporal Data using FRK. Journal of Statistical Software,
108(10), 1-39. doi:10.18637/jss.v108.110.

See Also

SRE-class for details on the SRE object internals, auto_basis for automatically constructing basis
functions, and auto_BAUs for automatically constructing BAUs.

Examples

library("FRK")
library("sp")
Generate process and data

m <- 250 # Sample size

zdf <- data.frame(x = runif(m), y= runif(m)) # Generate random locs
zdf$Y <- 3 + sin(7 * zdf$x) + cos(9 * zdf$y) # Latent process

zdf$z <- rnorm(m, mean = zdf$Y) # Simulate data
coordinates(zdf) = ~x+y # Turn into sp object

Construct BAUs and basis functions
BAUs <- auto_BAUs(manifold = plane(), data = zdf,
nonconvex_hull = FALSE, cellsize = c(0.03, 0.03), type="grid")
BAUs$fs <- 1 # scalar fine-scale covariance matrix
basis <- auto_basis(manifold = plane(), data = zdf, nres = 2)

Construct the SRE model
S <= SRE(f = z ~ 1, list(zdf), basis = basis, BAUs = BAUs)

Fit with 2 EM iterations so to take as little time as possible
S <- SRE.fit(S, n_EM = 2, tol = 0.01, print_lik = TRUE)

Check fit info, final log-likelihood, and estimated regression coefficients
info_fit(S)

loglLik(S)

coef(S)

Predict over BAUs
pred <- predict(S)

Plot

Not run:

plotlist <- plot(S, pred)

ggpubr: :ggarrange(plotlist = plotlist, nrow = 1, align = "hv", legend = "top")
End(Not run)

30 initialize,manifold-method

info_fit Retrieve fit information for SRE model

Description
Takes an object of class SRE and returns a list containing all the relevant information on parameter
estimation

Usage

info_fit(object)

S4 method for signature 'SRE'
info_fit(object)

Arguments

object object of class SRE

See Also

See FRK for more information on the SRE model and available fitting methods.

Examples

See example in the help file for FRK

initialize,manifold-method
manifold

Description

Manifold initialisation. This function should not be called directly as manifold is a virtual class.

Usage
S4 method for signature 'manifold’
initialize(.Object)

Arguments

.Object manifold object passed up from lower-level constructor

isea3h 31

isea3h ISEA Aperture 3 Hexagon (ISEA3H) Discrete Global Grid

Description

The data used here were obtained from https://webpages.sou.edu/~sahrk/dgg/isea.old/gen/isea3h.html
and represent ISEA discrete global grids (DGGRIDs) generated using the DGGRID software. The
original .gen files were converted to a data frame using the function dggrid_gen_to_df, available
with the dggrids package. Only resolutions 0-6 are supplied with FRK and note that resolution 0
of ISEA3H is equal to resolution 1 in FRK. For higher resolutions dggrids can be installed from
https://github.com/andrewzm/dggrids/ using devtools.

Usage

isea3h

Format

A data frame with 284,208 rows and 5 variables:

id grid identification number within the given resolution
lon longitude coordinate

lat latitude coordinate

res DGGRID resolution (0 — 6)

centroid A 0-1 variable, indicating whether the point describes the centroid of the polygon, or
whether it is a boundary point of the polygon

References

Sahr, K. (2008). Location coding on icosahedral aperture 3 hexagon discrete global grids. Comput-
ers, Environment and Urban Systems, 32, 174-187.

local_basis Construct a set of local basis functions

Description

Construct a set of local basis functions based on pre-specified location and scale parameters.

32 local basis

Usage

local_basis(
manifold = sphere(),
loc = matrix(c(1, @), nrow = 1),
scale = 1,
type = c("bisquare”, "Gaussian"”, "exp", "Matern32"),
res =1,
regular = FALSE
)

radial_basis(
manifold = sphere(),
loc = matrix(c(1, @), nrow = 1),

scale = 1,
type = c("bisquare”, "Gaussian”, "exp", "Matern32")
)
Arguments
manifold object of class manifold, for example, sphere
loc a matrix of size n by dimensions(manifold) indicating centres of basis func-
tions
scale vector of length n containing the scale parameters of the basis functions; see
details
type either "bisquare”, "Gaussian", "exp"”, or "Matern32"
res vector of length n containing the resolutions of the basis functions
regular logical indicating if the basis functions (of each resolution) are in a regular grid
Details

This functions lays out local basis functions in a domain of interest based on pre-specified location
and scale parameters. If type is “bisquare”, then

9 2
() = (1 - (&)) I(Jul < B),

and scale is given by R, the range of support of the bisquare function. If type is “Gaussian”, then

s o (-,

and scale is given by o, the standard deviation. If type is “exp”, then

B(u) = exp (—”“”) ,

and scale is given by 7, the e-folding length. If type is “Matern32”, then

olu) = (1 + ﬁ“”) exp (— “ﬂ'“”) ,

loglik 33

and scale is given by x, the function’s scale.

See Also

auto_basis for constructing basis functions automatically, and show_basis for visualising basis
functions.

Examples

library(ggplot2)

G <- local_basis(manifold = real_line(),
loc=matrix(1:10,10,1),
scale=rep(2,10),
type="bisquare")

Not run: show_basis(G)

loglik (Deprecated) Retrieve log-likelihood

Description

This function is deprecated; please use loglLik

Usage

loglik(object)

S4 method for signature 'SRE'

loglik(object)
Arguments
object object of class SRE
manifold Retrieve manifold
Description

Retrieve manifold from FRK object.

34 manifold-class

Usage
manifold(.0Object)

S4 method for signature 'Basis'
manifold(.Object)

S4 method for signature 'TensorP_Basis'
manifold(.0Object)

Arguments

.Object FRK object

See Also

real_line, plane, sphere, STplane and STsphere for constructing manifolds.

Examples

G <~ local_basis(manifold = plane(),
loc=matrix(e,1,2),
scale=0.2,
type="bisquare”)

manifold(G)

manifold-class manifold

Description

The class manifold is virtual; other manifold classes inherit from this class.

Details

A manifold object is characterised by a character variable type, which contains a description of
the manifold, and a variable measure of type measure. A typical measure is the Euclidean distance.

FRK supports five manifolds; the real line (in one dimension), instantiated by using real_line();
the 2D plane, instantiated by using plane(); the 2D-sphere surface S2, instantiated by using
sphere(); the R2 space-time manifold, instantiated by using STplane(), and the S2 space-time
manifold, instantiated by using STsphere(). User-specific manifolds can also be specified, how-
ever helper functions that are manifold specific, such as auto_BAUs and auto_basis, only work
with the pre-configured manifolds. Importantly, one can change the distance function used on the
manifold to synthesise anisotropy or heterogeneity. See the vignette for one such example.

See Also

real_line, plane, sphere, STplane and STsphere for constructing manifolds.

measure-class 35

measure-class measure

Description
Measure class used for defining measures used to compute distances between points in objects
constructed with the FRK package.

Details
An object of class measure contains a distance function and a variable dim with the dimensions of
the Riemannian manifold over which the distance is computed.

See Also

distance for computing a distance and distances for a list of implemented distance functions.

MODIS_cloud_df MODIS cloud data

Description

An image of a cloud taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) in-
strument aboard the Aqua satellite (MODIS Characterization Support Team, 2015).

Usage
MODIS_cloud_df

Format

A data frame with 33,750 rows and 3 variables:

X x-coordinate
y y-coordinate

z binary dependent variable: 1 if cloud is present, 0 if no cloud. This variable has been thresholded
from the original continuous measurement of radiance supplied by the MODIS instrument

z_unthresholded The original continuous measurement of radiance supplied by the MODIS in-
strument

References

MODIS Characterization Support Team (2015). MODIS 500m Calibrated Radiance Product. NASA
MODIS Adaptive Processing System, Goddard Space Flight Center, USA.

36

NOAA_df 1990

nbasis Number of basis functions

Description

Retrieve the number of basis functions from Basis or SRE object.
Usage
nbasis(.0Object)

S4 method for signature 'Basis_obj'
nbasis(.0Object)

S4 method for signature 'SRE'
nbasis(.0Object)

Arguments

.Object object of class Basis or SRE

See Also

auto_basis for automatically constructing basis functions.

Examples
library(sp)
data(meuse)
coordinates(meuse) = ~x+y # change into an sp object
G <- auto_basis(manifold = plane(),
data=meuse,
nres = 2,
regular=1,
type = "Gaussian")
print(nbasis(G))
NOAA_df_1990 NOAA maximum temperature data for 1990-1993
Description

Maximum temperature data obtained from the National Oceanic and Atmospheric Administration

(NOAA) for a part of the USA between 1990 and 1993 (inclusive). See https://iridl.ldeo.columbia.edu/

SOURCES/.NOAA/.NCDC/.DAILY/.FSOD/.

nres 37

Usage
NOAA_df_1990

Format
A data frame with 196,253 rows and 8 variables:

year year of retrieval

month month of retrieval

day day of retrieval

z dependent variable

proc variable name (Tmax)

id station id

lon longitude coordinate of measurement station

lat latitude coordinate of measurement station

References

National Climatic Data Center, March 1993: Local Climatological Data. Environmental Informa-
tion summary (C-2), NOAA-NCDC, Asheville, NC.

nres Return the number of resolutions

Description

Return the number of resolutions from a basis function object.
Usage
nres(b)

S4 method for signature 'Basis'
nres(b)

S4 method for signature 'TensorP_Basis'
nres(b)

S4 method for signature 'SRE'
nres(b)

Arguments

b object of class Basis or SRE

38 observed_BAUs

See Also

auto_basis for automatically constructing basis functions and show_basis for visualising basis
functions.

Examples

library(sp)

set.seed(1)

d <- data.frame(lon = runif(n=500,min = -179, max = 179),
lat = runif(n=500,min = -90, max = 90),
z = rnorm(500))

coordinates(d) <- ~lon + lat

slot(d, "proj4string”) = CRS("+proj=longlat"”)

Now create basis functions on sphere

G <- auto_basis(manifold = sphere(),data=d,
nres = 2,prune=15,
type = "bisquare”,
subsamp = 20000)

nres(G)

observed_BAUs Observed (or unobserved) BAUs

Description

Computes the indices (a numeric vector) of the observed (or unobserved) BAUs
Usage

observed_BAUs(object)

unobserved_BAUs(object)

S4 method for signature 'SRE'
observed_BAUs(object)

S4 method for signature 'SRE'
unobserved_BAUs(object)

Arguments

object object of class SRE

See Also

See FRK for more information on the SRE model and available fitting methods.

opts_FRK

Examples

See example in the help file for FRK

39

opts_FRK FRK options

Description

The main options list for the FRK package.

Usage

opts_FRK

Format

List of 2

$ set:function(opt,value)

$ get:function(opt)

Details

opts_FRK is a list containing two functions, set and get, which can be used to set options and

retrieve options, respectively. Currently FRK uses three options:

""progress'': a flag indicating whether progress bars should be displayed or not

""verbose'': a flag indicating whether certain progress messages should be shown or not. Currently

this is the only option applicable to method = "TMB"

"parallel"': an integer indicating the number of cores to use. A number 0 or 1 indicates no paral-

lelism

Examples

opts_FRK$set("progress”,1L)
opts_FRK$get ("parallel”)

40 plot

plane plane

Description

Initialisation of a 2D plane.

Usage

plane(measure = Euclid_dist(dim = 2L))

Arguments

measure an object of class measure

Details

A 2D plane is initialised using a measure object. By default, the measure object (measure) is the
Euclidean distance in 2 dimensions, Euclid_dist.

Examples

P <- plane()
print(type(P))
print(sp::dimensions(P))

plot Plot predictions from FRK analysis

Description

This function acts as a wrapper around plot_spatial_or_ST. It plots the fields of the Spatial*DataFrame
or STFDF object corresponding to prediction and prediction uncertainty quantification. It also uses

the @data slot of SRE object to plot the training data set(s), and generates informative, latex-style
legend labels for each of the plots.

Usage
plot(x, vy, ...)

S4 method for signature 'SRE,list’
plot(x, y, ...)

S4 method for signature 'SRE,STFDF'
plot(x, vy, ...)

plotting-themes 41

S4 method for signature 'SRE,SpatialPointsDataFrame'’
plot(x, vy, ...)

S4 method for signature 'SRE,SpatialPixelsDataFrame'
plot(x, vy, ...)

S4 method for signature 'SRE,SpatialPolygonsDataFrame'

plot(x, vy, ...)
Arguments
X object of class SRE
y the SpatialxDataFrame or STFDF object resulting from the call predict(x).

Keep in mind that predict() returns a 1list when method = "TMB"; the el-
ement $newdata contains the required Spatial/ST object. If the list itself is

passed, you will receive the error: "x" and "y" lengths differ.

optional arguments passed on to plot_spatial_or_ST

Value

A list of ggplot objects consisting of the observed data, predictions, and standard errors. This list
can then be supplied to, for example, ggpubr: : ggarrange().

Examples

See example in the help file for SRE

plotting-themes Plotting themes

Description

Formats a ggplot object for neat plotting.

Usage
LinePlotTheme()

EmptyTheme ()

Details

LinePlotTheme() creates ggplot object with a white background, a relatively large font, and grid
lines. EmptyTheme () on the other hand creates a ggplot object with no axes or legends.

Value

Object of class ggplot

42 plot_spatial_or_ST

Examples

Not run:

X <- data.frame(x=runif(100),y = runif(100), z = runif(100))
LinePlotTheme() + geom_point(data=X,aes(x,y,colour=z))
EmptyTheme() + geom_point(data=X,aes(x,y,colour=z))

End(Not run)

plot_spatial_or_ST Plot a Spatial*DataFrame or STFDF object

Description

Takes an object of class SpatialxDataFrame or STFDF, and plots requested data columns using
ggplot2

Usage

plot_spatial_or_ST(
newdata,
column_names,
map_layer = NULL,
subset_time = NULL,
palette = "Spectral”,
plot_over_world = FALSE,
labels_from_coordnames = TRUE,

)

S4 method for signature 'STFDF'
plot_spatial_or_ST(
newdata,
column_names,
map_layer = NULL,
subset_time = NULL,
palette = "Spectral”,
plot_over_world = FALSE,
labels_from_coordnames = TRUE,

)

S4 method for signature 'SpatialPointsDataFrame'
plot_spatial_or_ST(

newdata,

column_names,

map_layer = NULL,

subset_time = NULL,

palette = "Spectral”,

plot_spatial_or_ST 43

plot_over_world = FALSE,
labels_from_coordnames = TRUE,

)

S4 method for signature 'SpatialPixelsDataFrame'’
plot_spatial_or_ST(

newdata,

column_names,

map_layer = NULL,

subset_time = NULL,

palette = "Spectral”,

plot_over_world = FALSE,

labels_from_coordnames = TRUE,

)

S4 method for signature 'SpatialPolygonsDataFrame'’
plot_spatial_or_ST(

newdata,

column_names,

map_layer = NULL,

subset_time = NULL,

palette = "Spectral”,

plot_over_world = FALSE,

labels_from_coordnames = TRUE,

Arguments

newdata an object of class Spatial*DataFrame or STFDF

column_names a vector of strings indicating the columns of the data to plot

map_layer (optional) a ggplot layer or object to add below the plotted layer, often a map
subset_time (optional) a vector of times to be included; applicable only for STFDF objects
palette the palette supplied to the argument palette of scale_*_distiller(). Alter-

natively, if palette = "nasa", a vibrant colour palette is created using scale_x_gradientn()
plot_over_world

logical; if TRUE, coord_map("mollweide”) and draw_world are used to plot

over the world
labels_from_coordnames

logical; if TRUE, the coordinate names of newdata (i.e., coordnames (newdata))

are used as the horizontal- and vertical-axis labels. Otherwise, generic names,

s_1 and s_2, are used

optional arguments passed on to whatever geom is appropriate for the Spatial*DataFrame
or STFDF object (geom_point, geom_tile, geom_raster, or geom_polygon)

44

Value

real line

Alist of ggplot objects corresponding to the provided column_names. This list can then be supplied

to, for example, ggpubr: :ggarrange().

See Also

plot

Examples

See example in the help file for FRK

real_line real line

Description

Initialisation of the real-line (1D) manifold.

Usage

real_line(measure = Euclid_dist(dim = 1L))

Arguments

measure an object of class measure

Details

A real line is initialised using a measure object. By default, the measure object (measure) describes

the distance between two points as the absolute difference between the two coordinates.

Examples

R <- real_line()
print(type(R))
print(sp::dimensions(R))

remove_basis 45

remove_basis Removes basis functions

Description
Takes an object of class Basis and returns an object of class Basis with selected basis functions
removed

Usage
remove_basis(Basis, rmidx)

S4 method for signature 'Basis,ANY'
remove_basis(Basis, rmidx)

S4 method for signature 'Basis,SpatialPolygons'
remove_basis(Basis, rmidx)

Arguments
Basis object of class Basis
rmidx indices of basis functions to remove. Or a SpatialPolygons object; basis func-
tions overlapping this SpatialPolygons object will be retained
See Also
auto_basis for automatically constructing basis functions and show_basis for visualising basis
functions
Examples
library(sp)

df <- data.frame(x = rnorm(10),

y = rnorm(10))
coordinates(df) <- ~x+y
G <- auto_basis(plane(),df,nres=1)
data.frame(G) # Print info on basis

Removing basis functions by index
G_subset <- remove_basis(G, 1:(nbasis(G)-1))
data.frame(G_subset)

Removing basis functions using SpatialPolygons

x <-1

poly <- Polygon(rbind(c(-x, -x), c(-x, x), c(x, x), c(x, =-x), c(-x, -x)))
polys <- Polygons(list(poly), "1")

spatpolys <- SpatialPolygons(list(polys))

G_subset <- remove_basis(G, spatpolys)

data.frame(G_subset)

46 show_basis

show_basis Show basis functions

Description

Generic plotting function for visualising the basis functions.

Usage

show_basis(basis, ...)

S4 method for signature 'Basis'
show_basis(basis, g = ggplot() + theme_bw() + xlab("") + ylab(""))

S4 method for signature 'TensorP_Basis'
show_basis(basis, g = ggplot())

Arguments
basis object of class Basis
not in use
g object of class gg (a ggplot object) over which to overlay the basis functions
(optional)
Details

The function show_basis adapts its behaviour to the manifold being used. With real_line, the 1D
basis functions are plotted with colour distinguishing between the different resolutions. With plane,
only local basis functions are supported (at present). Each basis function is shown as a circle with
diameter equal to the scale parameter of the function. Linetype distinguishes the resolution. With
sphere, the centres of the basis functions are shown as circles, with larger sizes corresponding
to coarser resolutions. Space-time basis functions of subclass TensorP_Basis are visualised by
showing the spatial basis functions and the temporal basis functions in two separate plots.

See Also

auto_basis for automatically constructing basis functions.

Examples

library(ggplot2)

library(sp)

data(meuse)

coordinates(meuse) = ~x+y # change into an sp object

G <- auto_basis(manifold = plane(),data=meuse,nres = 2,regular=2,prune=0.1, type = "bisquare”)
Not run: show_basis(G,ggplot()) + geom_point(data=data.frame(meuse),aes(x,y))

SpatialPolygonsDataFrame_to_df 47

SpatialPolygonsDataFrame_to_df
SpatialPolygonsDataFrame to df

Description

Convert SpatialPolygonsDataFrame or SpatialPixelsDataFrame object to data frame.

Usage
SpatialPolygonsDataFrame_to_df (sp_polys, vars = names(sp_polys))

Arguments
sp_polys object of class SpatialPolygonsDataFrame or SpatialPixelsDataFrame
vars variables to put into data frame (by default all of them)

Details

This function is mainly used for plotting SpatialPolygonsDataFrame objects with ggplot rather
than spplot. The coordinates of each polygon are extracted and concatenated into one long data
frame. The attributes of each polygon are then attached to this data frame as variables that vary by
polygon id (the rownames of the object).

Examples

library(sp)
library(ggplot2)
opts_FRK$set("parallel”, QL)
df <- data.frame(id = c(rep(1,4),rep(2,4)),
x = ¢(0,1,0,0,2,3,2,2),
y=c(0,0,1,0,0,1,1,0))
pols <- df_to_SpatialPolygons(df,”id",c("x","y"),CRS())
polsdf <- SpatialPolygonsDataFrame(pols,data.frame(p = c(1,2),row.names=row.names(pols)))
df2 <- SpatialPolygonsDataFrame_to_df (polsdf)
Not run: ggplot(df2,aes(x=x,y=y,group=id)) + geom_polygon()

sphere sphere

Description

Initialisation of the 2-sphere, S2.

Usage

sphere(radius = 6371)

48 SRE-class

Arguments

radius radius of sphere

Details

The 2D surface of a sphere is initialised using a radius parameter. The default value of the radius
R is R=6371 km, Earth’s radius, while the measure used to compute distances on the sphere is the
great-circle distance on a sphere of radius R.

Examples

S <- sphere()
print(sp::dimensions(S))

SRE-class Spatial Random Effects class

Description

This is the central class definition of the FRK package, containing the model and all other information
required for estimation and prediction.

Details

The spatial random effects (SRE) model is the model employed in Fixed Rank Kriging, and the SRE
object contains all information required for estimation and prediction from spatial data. Object slots
contain both other objects (for example, an object of class Basis) and matrices derived from these
objects (for example, the matrix .S) in order to facilitate computations.

Slots
f formula used to define the SRE object. All covariates employed need to be specified in the object
BAUs
data the original data from which the model’s parameters are estimated
basis object of class Basis used to construct the matrix .S

BAUs object of class SpatialPolygonsDataFrame, SpatialPixelsDataFrame of STFDF that con-
tains the Basic Areal Units (BAUs) that are used to both (i) project the data onto a common
discretisation if they are point-referenced and (ii) provide a BAU-to-data relationship if the
data has a spatial footprint

S matrix constructed by evaluating the basis functions at all the data locations (of class Matrix)
SO matrix constructed by evaluating the basis functions at all BAUs (of class Matrix)

D_basis list of distance-matrices of class Matrix, one for each basis-function resolution

Ve measurement-error variance-covariance matrix (typically diagonal and of class Matrix)

Vfs fine-scale variance-covariance matrix at the data locations (typically diagonal and of class
Matrix) up to a constant of proportionality estimated using the EM algorithm

SRE-class 49

Vfs_BAUs fine-scale variance-covariance matrix at the BAU centroids (typically diagonal and of
class Matrix) up to a constant of proportionality estimated using the EM algorithm

Qfs_BAUs fine-scale precision matrix at the BAU centroids (typically diagonal and of class Matrix)
up to a constant of proportionality estimated using the EM algorithm

Z vector of observations (of class Matrix)
Cmat incidence matrix mapping the observations to the BAUs
X design matrix of covariates at all the data locations

G list of objects of class Matrix containing the design matrices for random effects at all the data
locations

GO list of objects of class Matrix containing the design matrices for random effects at all BAUs

K_type type of prior covariance matrix of random effects. Can be "block-exponential" (correlation
between effects decays as a function of distance between the basis-function centroids), "un-
structured” (all elements in K are unknown and need to be estimated), or "neighbour” (a sparse
precision matrix is used, whereby only neighbouring basis functions have non-zero precision
matrix elements).

mu_eta updated expectation of the basis-function random effects (estimated)
mu_gamma updated expectation of the random effects (estimated)

S_eta updated covariance matrix of random effects (estimated)

Q_eta updated precision matrix of random effects (estimated)

Khat prior covariance matrix of random effects (estimated)

Khat_inv prior precision matrix of random effects (estimated)

alphahat fixed-effect regression coefficients (estimated)

sigma2fshat fine-scale variation scaling (estimated)

sigma2gamma random-effect variance parameters (estimated)

fs_model type of fine-scale variation (independent or CAR-based). Currently only "ind" is permit-
ted

info_fit information on fitting (convergence etc.)
response A character string indicating the assumed distribution of the response variable

link A character string indicating the desired link function. Can be "log", "identity", "logit", "pro-
bit", "cloglog", "reciprocal”, or "reciprocal-squared". Note that only sensible link-function
and response-distribution combinations are permitted.

mu_xi updated expectation of the fine-scale random effects at all BAUs (estimated)

Q_posterior updated joint precision matrix of the basis function random effects and observed
fine-scale random effects (estimated)

log_likelihood the log likelihood of the fitted model
method the fitting procedure used to fit the SRE model
phi the estimated dispersion parameter (assumed constant throughout the spatial domain)

k_Z vector of known size parameters at the observation support level (only applicable to binomial
and negative-binomial response distributions)

k_BAU vector of known size parameters at the observed BAUs (only applicable to binomial and
negative-binomial response distributions)

50 SRE.predict

include_fs flag indicating whether the fine-scale variation should be included in the model
include_gamma flag indicating whether there are gamma random effects in the model

normalise_wts if TRUE, the rows of the incidence matrices C'z and C'p are normalised to sum to
1, so that the mapping represents a weighted average; if false, no normalisation of the weights
occurs (i.e., the mapping corresponds to a weighted sum)

fs_by_spatial_BAU if TRUE, then each BAU is associated with its own fine-scale variance param-
eter

obsidx indices of observed BAUs

simple_kriging_fixed logical indicating whether one wishes to commit to simple kriging at the
fitting stage: If TRUE, model fitting is faster, but the option to conduct universal kriging at the
prediction stage is removed

References

Zammit-Mangion, A. and Cressie, N. (2017). FRK: An R package for spatial and spatio-temporal
prediction with large datasets. Journal of Statistical Software, 98(4), 1-48. doi:10.18637/jss.v098.104.

See Also

SRE for details on how to construct and fit SRE models.

SRE.predict Deprecated: Please use predict

Description

Deprecated: Please use predict

Usage

SRE.predict(...)

Arguments

(Deprecated)

STplane 51

STplane plane in space-time

Description

Initialisation of a 2D plane with a temporal dimension.

Usage

STplane(measure = Euclid_dist(dim = 3L))

Arguments

measure an object of class measure

Details

A 2D plane with a time component added is initialised using a measure object. By default, the
measure object (measure) is the Euclidean distance in 3 dimensions, Euclid_dist.

Examples

P <- STplane()
print(type(P))
print(sp::dimensions(P))

STsphere Space-time sphere

Description

Initialisation of a 2-sphere (S2) with a temporal dimension

Usage

STsphere(radius = 6371)

Arguments

radius radius of sphere

52 TensorP

Details

As with the spatial-only sphere, the sphere surface is initialised using a radius parameter. The
default value of the radius R is R=6371, which is the Earth’s radius in km, while the measure used
to compute distances on the sphere is the great-circle distance on a sphere of radius R. By de-
fault Euclidean geometry is used to factor in the time component, so that dist((s1,t1),(s2,t2)) =
sqrt(ge_dist(s1,s2)"2 + (t1 - t2)"2). Frequently this distance can be used since separate correlation
length scales for space and time are estimated in the EM algorithm (that effectively scale space and
time separately).

Examples

S <- STsphere()
print(sp::dimensions(S))

TensorP Tensor product of basis functions

Description

Constructs a new set of basis functions by finding the tensor product of two sets of basis functions.

Usage

TensorP(Basis1, Basis2)

S4 method for signature 'Basis,Basis'
TensorP(Basis1, Basis2)

Arguments

Basis1 first set of basis functions

Basis?2 second set of basis functions

See Also

auto_basis for automatically constructing basis functions and show_basis for visualising basis
functions.

Examples

library(spacetime)
library(sp)
library(dplyr)
sim_data <- data.frame(lon = runif(20,-180,180),
lat = runif(20,-90,90),
t =1:20,
z = rnorm(20),
std = 0.1)

type 53

time <- as.POSIXct("2003-05-01",tz="") + 3600*24x(sim_data$t-1)
space <- sim_datal[,c("lon”,"lat")]
coordinates(space) = ~lon+lat # change into an sp object
slot(space, "proj4string”) = CRS("+proj=longlat +ellps=sphere”)
STobj <- STIDF(space,time,data=sim_data)
G_spatial <- auto_basis(manifold = sphere(),

data=as(STobj, "Spatial"”),

nres = 1,

type = "bisquare”,

subsamp = 20000)
G_temporal <- local_basis(manifold=real_line(),loc = matrix(c(1,3)),scale = rep(1,2))
G <- TensorP(G_spatial,G_temporal)
show_basis(G_spatial)
show_basis(G_temporal)

type Type of manifold

Description

Retrieve slot type from object

Usage

type(.Object)
S4 method for signature 'manifold’

type(.0Object)

Arguments

.Object object of class Basis or manifold

See Also

real_line, plane, sphere, STplane and STsphere for constructing manifolds.

Examples

S <- sphere()
print(type(S))

54 worldmap

worldmap World map

Description

This world map was extracted from the package maps v.3.0.1 by running ggplot2: :map_data("world").
To reduce the data size, only every third point of this data frame is contained in worldmap.

Usage

worldmap

Format
A data frame with 33971 rows and 6 variables:

long longitude coordinate

lat latitude coordinate

group polygon (region) number

order order of point in polygon boundary
region region name

subregion subregion name

References

Original S code by Becker, R.A. and Wilks, R.A. This R version is by Brownrigg, R. Enhance-
ments have been made by Minka, T.P. and Deckmyn, A. (2015) maps: Draw Geographical Maps,
R package version 3.0.1.

Index

* datasets
AIRS_05_2003, 3
Am_data, 4
isea3h, 31
MODIS_cloud_df, 35
NOAA_df_1990, 36
opts_FRK, 39
worldmap, 54
$,Basis-method (data.frame<-), 14
$<-,Basis-method (data.frame<-), 14

AIC,SRE-method (FRK), 20

AIRS_05_2003, 3

Am_data, 4

as.data.frame.Basis (data.frame<-), 14

as.data.frame.TensorP_Basis
(data.frame<-), 14

auto_basis, 4, 9-11, 14, 20, 29, 33, 36, 38,
45, 46, 52

auto_BAUs, 7, 12, 29

Basis, 10
Basis-class (Basis_obj-class), 11
Basis_obj-class, 11
BAUs_from_points, 12
BAUs_from_points,SpatialPoints-method
(BAUs_from_points), 12
BAUs_from_points,ST-method
(BAUs_from_points), 12
BIC,SRE-method (FRK), 20

coef, SRE-method (FRK), 20
coef_uncertainty, 13
coef_uncertainty, SRE-method (FRK), 20
combine_basis, 13
combine_basis,Basis-method
(combine_basis), 13
combine_basis,list-method
(combine_basis), 13

data.frame<-, 14

55

data.frame<-,Basis-method
(data.frame<-), 14
data.frame<-,TensorP_Basis-method
(data.frame<-), 14
data.frame_Basis,Basis-method
(data.frame<-), 14
df_to_SpatialPolygons, 15
dist-matrix, 16
distance, 17, 35
distance,manifold-method (distance), 17
distance,measure-method (distance), 17
distances, 17,17, 35
distR (dist-matrix), 16
draw_world, 18, 43

EmptyTheme (plotting-themes), 41
Euclid_dist, 40, 51
Euclid_dist (distances), 17
eval_basis, 19
eval_basis,Basis,matrix-method
(eval_basis), 19
eval_basis,Basis,SpatialPointsDataFrame-method
(eval_basis), 19
eval_basis,Basis,SpatialPolygonsDataFrame-method
(eval_basis), 19
eval_basis,Basis,STIDF-method
(eval_basis), 19
eval_basis,Basis-matrix-method
(eval_basis), 19
eval_basis,Basis-SpatialPointsDataFrame-method
(eval_basis), 19
eval_basis,Basis-SpatialPolygonsDataFrame-method
(eval_basis), 19
eval_basis,Basis-STIDF-method
(eval_basis), 19
eval_basis,TensorP_Basis,matrix-method
(eval_basis), 19
eval_basis,TensorP_Basis, STFDF-method
(eval_basis), 19

56

eval_basis,TensorP_Basis,STIDF-method

(eval_basis), 19

eval_basis,TensorP_Basis-matrix-method

(eval_basis), 19

eval_basis,TensorP_Basis-STFDF-method

(eval_basis), 19

eval_basis,TensorP_Basis-STIDF-method

(eval_basis), 19

fitted, SRE-method (FRK), 20
FRK, 20, 30, 38

gc_dist (distances), 17
gc_dist_time (distances), 17

info_fit, 30

info_fit,SRE-method (info_fit), 30
initialize,manifold-method, 30
isea3h, 31

LinePlotTheme (plotting-themes), 41
local_basis, 10, 11, 31

loglik, 33

logl ik, SRE-method (FRK), 20

loglik, SRE-method (loglik), 33

manifold, 33

manifold,Basis-method (manifold), 33

manifold, TensorP_Basis-method
(manifold), 33

manifold-class, 34

measure (distances), 17

measure-class, 35

MODIS_cloud_df, 35

nbasis, 36
nbasis,Basis_obj-method (nbasis), 36
nbasis, SRE-method (nbasis), 36
NOAA_df_1990, 36

nobs, SRE-method (FRK), 20

nres, 37

nres,Basis-method (nres), 37
nres,SRE-method (nres), 37
nres,TensorP_Basis-method (nres), 37
nres_basis,Basis-method (nres), 37
nres_SRE,SRE-method (nres), 37

observed_BAUs, 38
observed_BAUs, SRE-method
(observed_BAUs), 38

INDEX

opts_FRK, 39

plane, 17, 34, 40, 53
plane-class (manifold-class), 34
plot, 28, 40, 44
plot,SRE,list-method (plot), 40
plot,SRE,SpatialPixelsDataFrame-method
(plot), 40
plot,SRE,SpatialPointsDataFrame-method
(plot), 40
plot,SRE,SpatialPolygonsDataFrame-method
(plot), 40
plot,SRE,STFDF-method (plot), 40
plot_spatial_or_ST, 40, 41,42
plot_spatial_or_ST,SpatialPixelsDataFrame-method
(plot_spatial_or_ST), 42
plot_spatial_or_ST,SpatialPointsDataFrame-method
(plot_spatial_or_ST), 42

plot_spatial_or_ST,SpatialPolygonsDataFrame-method

(plot_spatial_or_ST), 42
plot_spatial_or_ST,STFDF-method
(plot_spatial_or_ST), 42
plotting-themes, 41
predict, 50
predict, SRE-method (FRK), 20

radial_basis (local_basis), 31
real_line, 17, 34,44, 53
real_line-class (manifold-class), 34
remove_basis, 7, 45
remove_basis,Basis, ANY-method
(remove_basis), 45
remove_basis,Basis,SpatialPolygons-method
(remove_basis), 45
remove_basis,Basis-method
(remove_basis), 45
residuals, SRE-method (FRK), 20

show_basis, 7, 10, 11, 14, 33, 38, 45, 46, 52

show_basis,Basis-method (show_basis), 46

show_basis,TensorP_Basis-method
(show_basis), 46

simulate (FRK), 20

SpatialPolygonsDataFrame_to_df, 47

sphere, 17, 34,47, 53

sphere-class (manifold-class), 34

SRE, 50

SRE (FRK), 20

SRE-class, 48

INDEX

SRE.predict, 50

STmanifold-class (manifold-class), 34
STplane, 17, 34,51, 53

STplane-class (manifold-class), 34
STsphere, 17, 34,51, 53

STsphere-class (manifold-class), 34

TensorP, 52

TensorP,Basis,Basis-method (TensorP), 52

TensorP,Basis-Basis-method (TensorP), 52

TensorP_Basis-class (Basis_obj-class),
11

type, 53

type,manifold-method (type), 53

unobserved_BAUs (observed_BAUs), 38
unobserved_BAUs, SRE-method
(observed_BAUs), 38

worldmap, 19, 54

57

	AIRS_05_2003
	Am_data
	auto_basis
	auto_BAUs
	Basis
	Basis_obj-class
	BAUs_from_points
	coef_uncertainty
	combine_basis
	data.frame<-
	df_to_SpatialPolygons
	dist-matrix
	distance
	distances
	draw_world
	eval_basis
	FRK
	info_fit
	initialize,manifold-method
	isea3h
	local_basis
	loglik
	manifold
	manifold-class
	measure-class
	MODIS_cloud_df
	nbasis
	NOAA_df_1990
	nres
	observed_BAUs
	opts_FRK
	plane
	plot
	plotting-themes
	plot_spatial_or_ST
	real_line
	remove_basis
	show_basis
	SpatialPolygonsDataFrame_to_df
	sphere
	SRE-class
	SRE.predict
	STplane
	STsphere
	TensorP
	type
	worldmap
	Index

