Package ‘EEAaq’

January 21, 2026

Title Handle Air Quality Data from the European Environment Agency
Data Portal

Version 1.0.2

Description This software downloads and manages air quality data from the European Environmen-
tal Agency (EEA) dataflow (<https:
//www.eea.europa.eu/data-and-maps/data/agereporting-9>).

See the web page <https://eeadmz1-downloads-webapp.azurewebsites.

net/> for details on the EEA's Air Quality Download Service.

The package allows dynamically mapping the stations, summarising and time aggregat-
ing the measurements and building spatial interpolation maps.

See the web page <https:

//www.eea.europa.eu/en> for further information on EEA activities and history.

Further details, as well as, an extended vignette of the main functions included in the pack-
age, are available at the GitHub web page dedicated to the project.

URL https://github.com/PaoloMaranzano/EEAaq_R

License GPL (>=3)

Depends R (>=2.10)

Imports arrow, curl, dplyr, ggplot2, ggpubr, gifski, grDevices, gstat,
htmlwidgets, httr, leaflet, lubridate, raster, readr, sf,
stats, tibble, tidyr, utils, tidyselect, ggspatial

Encoding UTF-8

RoxygenNote 7.3.3

Suggests knitr, rmarkdown, rvest, readxl, digest, gh, base64enc,
stringr

VignetteBuilder knitr
NeedsCompilation no

Author Paolo Maranzano [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-9228-2759>),
Riccardo Borgoni [aut, cph] (ORCID:
<https://orcid.org/0000-0002-2520-3512>),
Samir Doghmi [aut, cph],
Agostino Tassan Mazzocco [aut, cph]

https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://www.eea.europa.eu/data-and-maps/data/aqereporting-9
https://eeadmz1-downloads-webapp.azurewebsites.net/
https://eeadmz1-downloads-webapp.azurewebsites.net/
https://www.eea.europa.eu/en
https://www.eea.europa.eu/en
https://github.com/PaoloMaranzano/EEAaq_R
https://orcid.org/0000-0002-9228-2759
https://orcid.org/0000-0002-2520-3512

2 code_extr

Maintainer Paolo Maranzano <pmaranzano.ricercastatistica@gmail.com>
Repository CRAN
Date/Publication 2026-01-21 07:50:39 UTC

Contents
COde_EXIT . . . o o e e e 2
EEAaqg_export. o . e e 3
EEAaq_get_data 4
EEAaq_get_dataframe 5
EEAaqg_get_stations 6
EEAaq_idw_map 7
EEAaq_import 10
EEAagq_map_stations e 11
EEAag_summary e e e 13
EEAaq_time_aggregate e e e 14
get_ LAU . . e 15
get, NUTS . . . e 16
get_pollutants e 16
GEE_StatioNS e e 17
handle_dates 17
is_EEAaq df 18
MY_SUMMAIISE . . .« v« v e v v et e e e e e e e e e e e e e e 19

Index 20

code_extr Code_extr
Description

This function extracts the numerical value from NUTS-level strings.

Usage

code_extr(level)
Arguments

level A character vector representing NUTS-level codes (e.g., c("NUTS2", "NUTS3")).
Value

A sorted numeric vector containing the extracted NUTS levels.

EEAaq_export

EEAaqg_export Export and save an EEAaq_df class object

Description

EEAag_export export an EEAag_df class object as a.csv or a .zxt file.

Usage

EEAag_export(data, filepath, format)

Arguments

data an EEAaq_df class object.

filepath character string giving the file path

format character string giving the format of the file. It must be one of *csv’ and "txt’.
Value

No return value, called for side effects.

Examples

Download PM1@ data for the province (NUTS-3) of Milano
(Italy) from January 1st to January 31st, 2023
T%>% <- dplyr:: %>%"
IDstations <- EEAaq_get_stations(byStation = TRUE, complete = FALSE)
IDstations <- IDstations %>%
dplyr::filter(NUTS3 %in% c("Milano”)) %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM10",
from = "2024-01-01", to = "2025-01-31", verbose = TRUE)

Export data to csv file

temp <- tempdir()

filepath <- paste@(temp, "/data.csv")

EEAag_export(data = data, filepath = filepath, format = "csv")

4 EEAaq_get_data
EEAaq_get_data Download air quality data at european level from the EEA download
service
Description
This function retrieves air quality datasets at european level, based on station, time and pollutant
specifications. This function generates a data.frame/tibble object of class EEAaq_df.
Usage
EEAag_get_data(
IDstations = NULL,
pollutants = NULL,
from = NULL,
to = NULL,
verbose = TRUE
)
Arguments
IDstations Numeric value. Unique ID of the stations to retrieve.
pollutants the pollutants for which to download data. It may be:

* character vector representing the short names of the pollutants to analyse.
The reference is the variable Notation in the dataset pollutants provided
by this package.

* numeric vector representing the codes of the pollutants to analyse. The
reference is the variable Code in the dataset pollutants provided by this
package.

from character defining the initial date of the period to be retrieved. The format is
yyyy-mm-dd.
to character defining the final date of the period to be retrieved. The format is
yyyy-mm-dd.
verbose logic value (T or F). If TRUE (the default) information about the function progress
are printed. If FALSE no message is printed.
Details

Recall that stations and sensors are physically managed by national or local environmental protec-
tion agencies with their own specificities and rules. EEA operates as a collector of national environ-
mental protection systems and harmonizes the information received by national offices. However,
data provided can change on a country basis. For instance, time resolution, sampling frequency,
spatial coverage, or the classifications (e.g., urban or rural) can differ country by country. Before
downloading the data, we suggest to manage and filter the stations/sensors of interest through their
metadata files (provided by EEAaq_get_stations or EEAaq_get_dataframe). See the examples
and the vignette for practical examples.

EEAaq_get_dataframe 5

Value

A data frame of class EEAaq_df, if zone_name is specified, and of class EEAaq_df_sfc if whether
the parameter quadrant or polygon is specified.

Examples

T%>%T <= dplyr::T%>%"
Download PM10 data for the province (NUTS-3) of Milano (Italy)
from January 1st to January 31st, 2023
IDstations <- EEAag_get_stations(byStation = TRUE, complete = FALSE)
IDstations <- IDstations %>%
dplyr::filter(NUTS3 %in% c("Milano")) %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM1Q",
from = "2024-01-01", to = "2025-01-31", verbose = TRUE)

EEAag_get_dataframe EFEAaq_get_dataframe

Description

Retrieve one of the metadata (i.e., LAU, NUTS, stations, or pollutant) tables from the EEA and
Eurostat dataflows. This function downloads and loads one dataset at a time from a predefined
list of available datasets. Ensure that the dataset name is written correctly. See details for further
details.

Usage

EEAag_get_dataframe(dataframe = NULL)

Arguments

dataframe name of the data. frame to retrieve. Select among:

* 'LAU’: data.frame containing metadata information on all the local ad-
ministrative units (i.e., municipalities) in Europe according to the NUTS
nomenclature by Eurostat. Information includes geometries.

* 'NUTS: data. frame containing metadata information on all the major socio-
economic regions in Europe according to the NUTS nomenclature by Eu-
rostat. Information includes geometries.

 ’stations’: data. frame containing metadata information on all the monitor-
ing stations maintained (both currencly active and de-activated) by the EEA
and available in EEAaq. Information include: unique identifiers, extended
descriptions, and technical details on operations and data collected.

* ’pollutant’: data.frame containing metadata information on all the avail-
able pollutants monitored by the EEA and available in EEAaq. Information
include: unique identifiers, extended descriptions, and unit of measure.

6 EEAaq_get_stations

Details

The function retrieves information from the EEAaq GitHub folder one of the available metadata.
Since the end of 2024, the data EEA air quality retrieving dataflow is undergoing a major re-
organization. In particular, since January 2025, raw data are accessible only through an online
platform/dashboard. While EEAaq is build to explicitly deal with the automatic and constantly-
updated system for raw data, the same process is not always possible for the metadata. Indeed, most
of the metadata information are updated and require relevant pre-processing (i.e., data manipulation
and cleaning) steps to make them consistent with the main database on pollutants concentrations.
For this reasons, all the metadata files are periodically pre-processed and updated (on GitHub) by
the package maintainers. For issues with the data or code, please contact the development team at
pmaranzano.ricercastatistica@ gmail.com

Value

a dataframe

Examples

LAU <- EEAag_get_dataframe(dataframe= "LAU")

pollutant <- EEAag_get_dataframe(dataframe = "pollutant”)
stations <- EEAaq_get_dataframe(dataframe = "stations")
NUTS <- EEAag_get_dataframe(dataframe = "NUTS")

EEAag_get_stations Download EEA measurement station information dataset

Description

Download the updated dataset from EEA, containing measurement station information. For further
information about the variables see stations.

Usage

EEAag_get_stations(byStation = TRUE, complete = TRUE)

Arguments
byStation Logic value (T or F). If TRUE the dataset is organized by station (one row for
each measurement station). If FALSE the dataset is organized by sampling point.
Each station have multiple sampling points.
complete Logic value (T or F). If TRUE, the dataset contains all the variables given by the

EEA. If FALSE the dataset contains only a few variables, the most importants.
For further details about the variables, see stations.

mailto:pmaranzano.ricercastatistica@gmail.com

EEAaq_idw_map 7

Details

Note that, for very small towns or certain countries, such as Turkey or Albania, data may not
currently be available in the dataset. This limitation reflects the data unavailability at the the
EEA Air Quality Viewer https://discomap.eea.europa.eu/App/AQViewer/index.html?fgn=
Airquality_Dissem.b2g.AirQualityStatistics.

Value

A tibble containing the stations information. Further details available here stations.

Examples

EEAaq_get_stations(byStation = TRUE, complete = TRUE)

EEAag_idw_map Build a spatial interpolation map based on the Inverse Distance
Weighting technique. The function EEAag_idw_map requires as input
a EEAaq_taggr_df or a EEAaq_taggr_df_sfc class object and pro-
duces a spatial interpolation map. Depending on the time frequency of
the aggregation, multiple maps are generated, one for each timestamp.
Interpolation maps may be exported as pdf, jpeg, png, gif and html.

Description

Build a spatial interpolation map based on the Inverse Distance Weighting technique. The function
EEAaq_idw_map requires as input a EEAaq_taggr_df or a EEAag_taggr_df_sfc class object and
produces a spatial interpolation map. Depending on the time frequency of the aggregation, multiple
maps are generated, one for each timestamp. Interpolation maps may be exported as pdf, jpeg, png,
gif and html.

Usage

EEAaqg_idw_map(
data = NULL,
pollutant = NULL,
aggr_fun,
distinct = FALSE,
gradient = TRUE,
idp = 2,
nmax = NULL,
maxdist = NULL,
NUTS_filler = NULL,
NUTS_extborder = NULL,
NUTS_intborder = NULL,
dynamic = FALSE,
tile = "Esri.WorldGrayCanvas",

https://discomap.eea.europa.eu/App/AQViewer/index.html?fqn=Airquality_Dissem.b2g.AirQualityStatistics
https://discomap.eea.europa.eu/App/AQViewer/index.html?fqn=Airquality_Dissem.b2g.AirQualityStatistics

filepath = NULL,
width = 1280,
height = 720,
res = 144,

delay = 1,

save = NULL,
verbose = TRUE

EEAaq_idw_map

Arguments

data

pollutant

aggr_fun

distinct

gradient

idp

nmax

maxdist

NUTS_filler

an object of class EEAaq_taggr_df or EEAaq_taggr_df_sfc, which is the out-
put of the EEAaq_time_aggregate function.

vector containing the pollutant for which to build the map. It must be one of the
pollutants contained in data.

character containing the aggregation function to use for computing the interpo-
lation. It must be one of the statistics contained in data.

logic value (T or F). If TRUE, each map generated is printed and saved in distinct
pages (for instance if data has a monthly frequency in a yearly time window,
12 distinct plots are generated). If FALSE (the default), the maps are printed in a
single page.

logic value (T or F). If TRUE (the default) the maps generated are colored with a
continuous color scale. If FALSE, the color scale is discrete.

numeric value that specify the inverse distance weighting power. For further
information see idw.

numeric value; specify the number of nearest observations that should be used
for the inverse distance weighting computing, where nearest is defined in terms
of the space of the spatial locations. By default, all observations are used. For
further information see idw

numeric value; only observations within a distance of maxdist from the predic-
tion location are used for the idw computation. By default, all observations are
used. If combined with nmax, both criteria apply.

character containing the NUTS level or LAU for which to aggregate the idw
computing, in order to obtain a uniform coloring inside each area at the specified
level. Recall that the NUTS classification (Nomenclature of territorial units for
statistics) is a hierarchical system for dividing up the economic territory of the
EU and the UK. The levels are defined as follows:

* NUTS 0: the whole country

* NUTS 1: major socio-economic regions

e NUTS 2: basic regions for the application of regional policies

e NUTS 3: small regions for specific diagnoses

* LAU: municipality
For instance if NUTS_filler = "LAU", each municipality is filled by the mean
value of the pollutant concentration, computed by the idw, of each pixel inside

the respective municipality). Allowed values are ’NUTSO0’,’NUTS1’, ’NUTS2’,
"NUTS3’, and "LAU".

EEAaq_idw_map 9

NUTS_extborder character containing the NUTS level or LAU for which draw external bound-
aries. Admissible values are 'NUTSO0’, ’NUTS1’, 'NUTS2’, 'NUTS3’, 'LAU".

NUTS_intborder character containing the NUTS level or LAU for which draw internal bound-
aries. Admissible values are 'NUTSO0’, ’NUTS1’, 'NUTS2’, 'NUTS3’, 'LAU".

dynamic logic value (T or F). If TRUE the function creates a Leaflet map widget using
htmlwidgets (for further information see leaflet). If FALSE (the default) the
maps generated are static.

tile character representing the name of the provider tile. To see the full list of the
providers, run providers. For further information see addProviderTiles.

filepath a character string giving the file path.

width, height the width and the height of the plot, expressed in pixels (by default width =
1280, height = 720). This parameters are available only for save ’jpeg’, 'png’
and ’gif’. For further information see png or jpeg.

res the nominal resolution in ppi which will be recorded in the bitmap file, if a

positive integer (by default res = 144). This parameter is available only for
save ’jpeg’, ’png’. For further information see png or jpeg.

delay numeric value specifying the time to show each image in seconds, when save =
n gi .F n .
save character representing in which extension to save the map. Allowed values are

’jpeg’, 'png’, 'pdf’ (if dynamic = FALSE), ’gif”’ (if dynamic = FALSE & distinct
= TRUE), "html’ (if dynamic = TRUE).

verbose logic value (T or F). If TRUE (the default) information about the function progress
are printed. If FALSE no message is printed.

Details

EEAaq_idw_map create a spatial interpolation map, based on the Inverse Distance Weighting method
(Shepard 1968). This method starts from the available georeferenced data and estimates the value
of the variable in the points where it’s unknown as a weighted average of the known values, where
weights are given by an inverse function of the distance of every point from the fixed stations.
The greater the distance of a point from a station, the smaller the weight assigned to the values
of the respective station for the computing of that unknown point. Given the sampling plan s; for
i = 1,...,n, which represent the location of the air quality stations, the pollutant concentration
value Y (s;) = Y represents the value of the pollutant concentration detected by the site s; and u is
the point for which the value of the concentration in unknown.

Y(u) = Z Yiwi(u),

where
g(d(si, u))
> 9(d(si,u))

represent the weights assigned to each location s; and d(s;, u) is the distance between u and s;.

w;(u) =

Value

cosa restituisce la funzione

10

EEAaq_import

Examples

Not run:

Filter all the stations installed in the city (LAU) of Milano (Italy)
IDstations <- EEAaq_get_stations(byStation = FALSE, complete = FALSE)
T%>%" <- dplyr::T%>%

IDstations <- IDstations %>%

dplyr::filter (LAU_NAME == "Milano") %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()

Download NO2 measurement for the city of Milano from January 1st to December 31st, 2023
data <- EEAag_get_data(IDstations = IDstations, pollutants = "NO2",
from = "2023-01-01", to = "2023-01-31", verbose = TRUE)

Monthly aggregation: compute station-specific monthly minimum,
average, and maximum NO2 concentrations
t_aggr <- EEAag_time_aggregate(data = data, frequency = "monthly",
aggr_fun = c("mean”, "min”, "max"))
Static IDW interpolation of the average NO2 concentrations for the whole Lombardy
region (NUTS_extborder = "NUTS2"). Interpolated values are then aggregated at the provincial
it level (NUTS_filler = "NUTS3")
EEAaq_idw_map(data = t_aggr, pollutant = "N02", aggr_fun = "mean”,
distinct = TRUE, gradient = FALSE,
dynamic = FALSE,
NUTS_filler = "NUTS3", NUTS_extborder = "NUTS2")

Dynamic IDW interpolation map (interactive leafleat) of the average
NO2 concentrations for the whole Lombardy
region (NUTS_extborder = "NUTS2"). Interpolated values are then aggregated at the municipal
#iHt level (NUTS_filler = "LAU")
EEAaq_idw_map(data = t_aggr, pollutant = "N02", aggr_fun = "mean”,
distinct = TRUE, gradient = FALSE,
dynamic = TRUE,
NUTS_filler = "LAU", NUTS_extborder = "NUTS2", NUTS_intborder = "LAU")

End(Not run)

EEAag_import Reverse function of EEAag_export. Reads an EEAaq_df object from

a .txt or .csv file saved through EEAaqg_export.

Description

Reverse function of EEAaq_export. Reads an EEAaq_df object from a .txt or .csv file saved through
EEAaqg_export.

Usage

EEAag_import(file_data)

EEAaq_map_stations 11

Arguments

file_data file path of the ’csv’ or ’txt’ file containing the air quality data to import.

Value

No return value, called for side effects.

Examples

T%>% <- dplyr::T%>%
Download PM10 data for the province (NUTS-3) of Milano (Italy)
from January 1st to January 31st, 2023
IDstations <- EEAaq_get_stations(byStation = TRUE, complete = FALSE)
IDstations <- IDstations %>%
dplyr::filter(NUTS3 %in% c("Milano”)) %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM10",
from = "2023-01-01", to = "2023-01-31", verbose = TRUE)

Export data to csv file

temp <- tempdir()

filepath <- paste@(temp, "/data.csv")

EEAag_export(data = data, filepath = filepath, format = "csv")

Import the EEAaq_df object saved in the previous code line
EEAaq_import(file_data = filepath)

EEAag_map_stations Create a static or dynamic (interactive leaflet) map representing the
geographical locations of the stations based on a user-defined input
dataset of class EEAaq_df or EEAag_df_sfc.

Description

Create a static or dynamic (interactive leaflet) map representing the geographical locations of the
stations based on a user-defined input dataset of class EEAaq_df or EEAaq_df_sfc.

Usage

EEAag_map_stations(
data = NULL,
NUTS_extborder
NUTS_intborder
color = TRUE,
dynamic = FALSE

NULL,
NULL,

12 EEAaq_map_stations

Arguments

data an EEAag_df or EEAaq_df_sfc class object, which is the output of the EEAag_get_data
function.

NUTS_extborder character containing the NUTS level or LAU for which draw external bound-
aries. Admissible values are "NUTSO0’, "'NUTS1’, "NUTS2’, 'NUTS3’, "LAU".
Recall that the NUTS classification (Nomenclature of territorial units for statis-
tics) is a hierarchical system for dividing up the economic territory of the EU
and the UK. The levels are defined as follows:

* NUTS 0: the whole country

* NUTS 1: major socio-economic regions

* NUTS 2: basic regions for the application of regional policies
* NUTS 3: small regions for specific diagnoses

* LAU: municipality

NUTS_intborder character containing the NUTS level or LAU for which draw internal bound-
aries. Admissible values are 'NUTSO0’, ’NUTS1’, 'NUTS2’, 'NUTS3’, 'LAU".

color logical value (T or F). If TRUE (the default) the points are colored based on the
pollutant they are able to detect. If FALSE the points have the same color.

dynamic logical value (T or F). If TRUE the map is interactive and dynamic. If FALSE (the
default) the map is static.

Value

A map representing the specified area and the points representing the location of the stations able
to detect the specified pollutants.

Examples

T%>%T <- dplyr:: %>%"
Retrieve all the stations measuring PM1@ in Belgium
IDstations <- EEAag_get_stations(byStation = FALSE, complete = FALSE)
IDstations <- IDstations %>%
dplyr::filter(ISO %in% c("BE"),
AirPollutant %in% "PM10") %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()

Download the corresponding data froom December 1st to December 31st, 2021
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM10",
from = "2021-12-01", to = "2021-12-31", verbose = TRUE)

Static map of available stations across the whole country. External borders are given by the
H#iH union of the available regions (NUTS-2), while municipalities
(LAUs) are used as inner borders.
EEAag_map_stations(data = data,
NUTS_extborder = "NUTS2", NUTS_intborder = "LAU",
color = TRUE, dynamic = FALSE)
Dynamic (interactive leaflet) map of available stations across the whole country.
External borders are given by the

EEAaq_summary 13

#itt union of the available regions (NUTS-2), while provinces (NUTS-3) are used as inner borders.
EEAag_map_stations(data = data,

NUTS_extborder = "NUTS2", NUTS_intborder = "NUTS3",

color = TRUE, dynamic = TRUE)

EEAag_summary Generate an EEAaq_df data summary

Description

This function, applied to an EEAaq_df or EEAaq_df_sfc class object, produces a list of data frames,
containing relevant information about the data, such as descriptive statistics, missing values statis-
tics, gap length and correlation.

Usage

EEAag_summary(data = NULL, verbose = TRUE)

Arguments
data an EEAaqg_df or EEAaq_df_sfc class object, which is the output of the EEAaq_get_data
function.
verbose logic value (T or F). If TRUE (the default) messages about the function progress
are printed. If FALSE no message is printed.
Value

The function EEAaq_summary computes and return a list of summary statistics of the dataset given
in data. In particular the elements of the list are:

* Summary global missing count, missing rate, negative count, minimum, maximum, mean and
standard deviation, organized by pollutant.

* Summary_byStat list of data frames, one for each different station, containing the descrip-
tive statistics (missing count, missing rate, negative count, minimum, maximum, mean and
standard deviation), organized by station.

* gap_length one data frame for each pollutant, containing the gap length organized by station.

e Corr_Matrix if data contains more than one pollutant, the correlation matrix between pollu-
tans is provided, organised by station.

14 EEAaq_time_aggregate

Examples

Download PM10 data for the province (NUTS-3) of Milano (Italy)
##from January 1st to January 31st, 2023
IDstations <- EEAaq_get_stations(byStation = TRUE, complete = FALSE)
T%>%T <= dplyr::T%>%
IDstations <- IDstations %>%
dplyr::filter(NUTS3 %in% c("Milano”)) %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM10",
from = "2023-01-01", to = "2023-01-31", verbose = TRUE)

Compute summary statistics
EEAag_summary(data)

EEAag_time_aggregate Time aggregation of an EEAaq_df class object.

Description

EEAaq_time_aggregate compute a time aggregation of an EEAag_df or EEAag_df_sfc class ob-
ject, based on the specified frequency and the aggregation functions aggr_fun.

Usage
EEAag_time_aggregate(
data = NULL,
frequency = "monthly"”,
aggr_fun = c("mean”, "min", "max")
)
Arguments
data an EEAaq_df or EEAaq_df_sfc class object, which is the output of the EEAaq_get_data
function.
frequency vector containing the time frequency for which to aggregate the data object.
Admissible values are yearly’, "'monthly’, *weekly’, ’daily’ "hourly’.
aggr_fun character vector containing one or more agregation functions. Admissible values
are ‘'mean’, 'median’, 'min’, 'max’, ’sd’, ’var’, ’quantile_pp’ (where pp is a
number in the range [0,1], representing the required percentile).
Value

A EEAag_taggr_df or a EEAag_taggr_df_sfc class object, which is a tibble containing the re-
quired time aggregation.

get LAU 15

Examples

Filter all the stations installed in the city (LAU) of Milano (Italy)
IDstations <- EEAag_get_stations(byStation = FALSE, complete = FALSE)
“%>% <- dplyr:: %>%"

IDstations <- IDstations %>%

dplyr::filter (LAU_NAME == "Milano") %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()

Download NO2 measurement for the city of Milano from January 1st to December 31st, 2023
data <- EEAag_get_data(IDstations = IDstations, pollutants = "N02",
from = "2023-01-01", to = "2023-01-31", verbose = TRUE)

Monthly aggregation: compute station-specific monthly minimum,
average, and maximum NO2 concentrations
t_aggr <- EEAag_time_aggregate(data = data, frequency = "monthly”,

"o on

aggr_fun = c("mean”, "min", "max"))

Weekly aggregation: compute station-specific monthly average

##and standard deviation concentrations

t_aggr <- EEAag_time_aggregate(data = data, frequency = "weekly”,
aggr_fun = c("mean”, "sd"))

get_LAU Get LAU data

Description

Local Administrative Units (LAUs) are the building blocks of the NUTS classification and corre-
spond to the municipalities and communes within the EU To get the final dataframe we combine
two dataset: one taken from Eurostat (https://ec.europa.eu/eurostat/web/nuts/local-administrative-
units)that includes City names and City IDs, essential for querying and associations. The other one
taken from EEA which provides LAU information. The Latter dataset is updated automatically by
selecting the most recent shapefile (SHP) available online. While The Eurostat dataset URL needs
to be manually updated with the latest download link to ensure the City-related data is current.

Usage
get_LAU(year = "Null")

Arguments

year expressed as four digit (YYYY)

Value

A tibble containing LAUs information with selected columns (e.g., ISO, LAU_ID, NUTS3_ID and
geometry).

16 get_pollutants

get_NUTS Get NUTS

Description

It automatically updates the dataset by identifying the most recent available file, accessing the cor-
responding page, and downloading the SHP file at the 1:20 Million scale with the EPSG:4326
reference system from this website (https://gisco-services.ec.europa.eu/distribution/v2/nuts/)

Usage

get_NUTS(year = "Null")

Arguments

year expressed as four digit (YYYY)

Value

A tibble containing LAUs information with selected columns (NUTS_ID, LEVL_CODE...)

get_pollutants Get pollutant

Description

Retrieve Pollutant Data from EEA Vocabulary (https://dd.eionet.europa.eu/vocabulary/ag/pollutant)
Downloads and processes pollutant data from the EEA (European Environment Agency) vocabulary
database. The data includes relevant information such as pollutant names, codes, and descriptions.

Usage

get_pollutants()

Value

A tibble containing pollutant information with selected columns (e.g., URI, notation, and extracted
code).

get_stations 17

get_stations Get Station Data

Description

This function downloads detailed information for each SamplingPointld. It performs a spatial join

to merge the spatial information of LAU and NUTS (specifically, the geometries of LAU and the
geometry of stations) and fills in the missing data for CITY_NAME and CITY_ID (retrieved from
https://discomap.eea.europa.eu/App/AQViewer/index.html?fqn=Airquality_Dissem.b2g. AirQualityStatistics)
through a left join based on the AirQualityStationEolCode column. These values are essential for

querying the endpoint. The missing_cities file was obtained manually (from 2000 to 2024) because

the website did not allow downloading more than 100,000 rows at a time. The data was collected

in multiple batches, filtering SamplingPoints using the following criteria:

* Filter on data used in AQ Report: yes

» Filter on data coverage: yes For each station, the column AirQualityStationEoICode (iden-
tical for all sensors at the same station) was used to select the first row containing unique
values for CITY_NAME and CITY_ID. No station reported more than one value for this pair
of columns. To support future uploads, it is necessary to integrate updated AirQualityStatio-
nEolCode values.

Usage

get_stations()

Value

a tibble

handle_dates Handle Dates based on Dataset Ranges

Description

This function handles dates based on the respective dataset. According to the documentation:

e Data from 2024 onwards corresponds to Unverified data transmitted continuously (Up-To-
Date/UTD/E2a).

* Data from 2013 to the begin of 2023 corresponds to Verified data (Ela) reported by countries
by 30 September each year for the previous year.

 Data delivered before 2012 corresponds to Historical Airbase data. The range for E1 is ex-
tended until 31/12/2023 because the observations are already validated, and no data for 2023
is retrieved when considering E2.

18 is_EEAaq_df

Usage

handle_dates(from, to)

Arguments
from StartDate (in "YYYY-MM-DD" format).
to EndDate (in "YYYY-MM-DD" format).
Value

A list of datasets with associated date ranges and descriptions.

is_EEAaqg_df Check if a given object is an EEAaq_df class object

Description

Given an object as input, is_EEAaq_df verify that the given object belongs to the EEAaqg_df class.

Usage
is_EEAaqg_df(data)

Arguments

data the object for which verify the if it belongs to the EEAaq_df class.

Value

logical value (T ot F). If TRUE the object given in input is an EEAaq_df object. If FALSE the object
doesn’t belong to the EEAag_df class.

Examples

Download PM10 data for the province (NUTS-3) of Milano (Italy)
from January 1st to January 31st, 2023
T%>%T <= dplyr:: %%
IDstations <- EEAag_get_stations(byStation = TRUE, complete = FALSE)
IDstations <- IDstations %>%
dplyr::filter(NUTS3 %in% c("Milano")) %>%
dplyr::pull(AirQualityStationEoICode) %>%
unique()
data <- EEAag_get_data(IDstations = IDstations, pollutants = "PM1Q",
from = "2023-01-01", to = "2023-01-31", verbose = TRUE)

Check if the imported object belongs to the EEAaq_df class
is_EEAaq_df(data = data)

my_summarise 19

my_summarise Aggregate data based on a specific statistic

Description
Given data and the aggregation function desired, this function compute a time aggregation of the
data.

Usage

my_summarise(data, fun_aggr)

Arguments
data An EEAaqg_df or EEAaq_df_sfc class object, which is the output of the EEAaq_get_data
function.
fun_aggr Vector character containing the aggregation function for which to time aggre-
gate.
Value

A tibble with the required aggregation.

Index

addProviderTiles, 9
code_extr, 2

EEAaq_export, 3, 10
EEAag_get_data, 4, 12-14, 19
EEAag_get_dataframe, 5
EEAag_get_stations, 6
EEAaq_idw_map, 7
EEAaq_import, 10
EEAag_map_stations, 11
EEAag_summary, 13
EEAaq_time_aggregate, 8, 14

get_LAU, 15
get_NUTS, 16
get_pollutants, 16
get_stations, 17

handle_dates, 17

idw, 8
is_EEAaqg_df, 18

jpeg, 9
leaflet, 9
my_summarise, 19

png, 9
providers, 9

20

	code_extr
	EEAaq_export
	EEAaq_get_data
	EEAaq_get_dataframe
	EEAaq_get_stations
	EEAaq_idw_map
	EEAaq_import
	EEAaq_map_stations
	EEAaq_summary
	EEAaq_time_aggregate
	get_LAU
	get_NUTS
	get_pollutants
	get_stations
	handle_dates
	is_EEAaq_df
	my_summarise
	Index

