Package ‘EDCimport’

January 10, 2026
Version 0.7.0
Title Import Data from EDC Software

Description A convenient toolbox to import data exported from Electronic Data Capture (EDC) soft-
ware "TrialMaster'.

License GPL-3

URL https://github.com/DanChaltiel/EDCimport,
https://danchaltiel.github.io/EDCimport/

BugReports https://github.com/DanChaltiel/EDCimport/issues
Depends R (>=3.6.0)

Imports cli, dplyr, forcats, fs, glue, ggplot2, haven, lubridate,
purrr, readr, rlang, scales, stats, stringr, tibble, tidyr,
tidyselect, utils, lifecycle

Suggests bslib, callr, crosstable, DT, gt, gtools, htmlwidgets,
janitor, knitr, openxlsx, patchwork, plotly, quarto, rmarkdown,
rstudioapi, testthat (>= 3.1.8), shiny, usethis, vdiffr, withr

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first local, trialmaster, utils
VignetteBuilder quarto

NeedsCompilation no

Author Dan Chaltiel [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3488-779X>)

Maintainer Dan Chaltiel <dan.chaltiel@gmail.com>
Repository CRAN
Date/Publication 2026-01-10 13:20:02 UTC

https://github.com/DanChaltiel/EDCimport
https://danchaltiel.github.io/EDCimport/
https://github.com/DanChaltiel/EDCimport/issues
https://orcid.org/0000-0003-3488-779X

2

Contents

Index

Contents

assert_no_duplicate e 3
compare_databasesl e e e 4
edc_clean_names e 5
edc_crf_plot L 5
edc_database e e e 7
edc_data_warn e 7
edc_db_to_excel e e e 9
edc_example 10
edc_find value e 11
edc_inform_code e 12
edc_left_join L 12
edc_lookup e e e 13
edc_Options 14
edc_patient_gridplot L e e 15
edc_peek_options L 16
edc_population_plot L 17
edc_reset_Options e e e 18
ede_split_mixed e 18
edc_swimmerplot e e 19
edc_unify_subjid 21
€dC_VIBWET e e e e e e e e e e e 22
edc_warn_extraction_date e e 23
edc_warn_patient_diffs Lo o 24
fetyesnoo 25
geL_COMMON_COIS o vttt e e e e e 26
get_datasetS e e e e e e e e e e 27
lastnews_table L L e e 27
load_database e 28
manual_CoITection e 29
read_all_csv e 30
read_all_sas L 32
read_all_Xpt L e e e 34
read_trialmaster L e 36
save_edc_data_warningso Lo e e e e 37
save_plotly L e 38
save_sessioninfo L e 39
search_for_newer_data 39
select_diStinCt e e e 40
SEt_Project_NAME o v v vt et e e e e e e e e 41
table_format L e 42
unify . ..o e 43
44

assert_no_duplicate

assert_no_duplicate Assert that a dataframe has one row per patient

Description

Check that there is no duplicate on the column holding patient ID in a pipeable style.
Mostly useful after joining two datasets.

Usage

assert_no_duplicate(df, by = NULL, id_col = get_subjid_cols())

Arguments

df a dataframe

by (optional) grouping columns

id_col the name of the columns holding patient ID
Value

the df dataset, unchanged

Examples

Not run:
#without duplicate => no error, continue the pipeline
tibble(subjid=c(1:10)) %>% assert_no_duplicate() %>% nrow()

#with duplicate => throws an error
tibble(subjid=c(1:10, 1:2)) %>% assert_no_duplicate() %>% nrow()

#By groups

df = tibble(subjid=rep(1:10, 4), visit=rep(c("V1", "V2"), 2, each=10),
group=rep(c("A", "B"), each=20))

df %>% assert_no_duplicate() #error

df %>% assert_no_duplicate(by=c(visit, group)) #no error

End(Not run)

4 compare_databases

compare_databases Compare multiple EDC database extractions

Description

Compares several EDC database extractions and returns:

Usage
compare_databases(databases, fun_read = read_trialmaster, ...)
Arguments
databases file paths to read using fun_read. Can also be a list of edc_database objects.
fun_read Reading function to use on databases
arguments passed to fun_read
Details

* a summary table of the detected differences in datasets/columns presence

* a summary plot of the differences in number of rows, columns, patients, and rows per patient

Value

a list of table (a gt object with tooltips) and plot (a patchwork of ggplots)

Examples

#list of 3 edc_databases, each being a list of multiple datasets
databases = edc_example_multiple()

comparison = compare_databases(databases)
comparison$table
comparison$plot

#in real world, you should better use paths with a reader function:
Not run:
databases = c(
"data/MYPROJECT _ExportTemplate_xxx_SAS_XPORT_2024_06_01_12_00.zip",
"data/MYPROJECT _ExportTemplate_xxx_SAS_XPORT_2024_08_01_12_00.zip",
"data/MYPROJECT _ExportTemplate_xxx_SAS_XPORT_2024_09_01_12_00.zip",
)
pw” is passed to “read_trialmaster()"
comparison = compare_databases(databases, fun_read=read_trialmaster, pw="the_password")

End(Not run)

edc_clean_names 5

edc_clean_names Clean up the names of all datasets

Description
Clean the names of all the datasets in the database. By default, it converts names to lowercase
letters, numbers, and underscores only.

Usage

edc_clean_names(database, clean_fun = NULL)

Arguments
database an edc_database object, from read_trialmaster() or other EDCimport read-
ing functions.
clean_fun a cleaning function to be applied to column names.
Value

an edc_database object

Examples

#db = read_trialmaster(”filename.zip"”, pw="xx"
db = edc_example() %>%

edc_clean_names()
names (db$enrol)

edc_crf_plot Show the current CRF status distribution

Description

Generate a barplot showing the distribution of CRF status (Complete, Incomplete, ...) for each
dataset of the database.

Usage

edc_crf_plot(
crfstat_col = "CRFSTAT",

details = FALSE,

pal = edc_pal_crf(),
reverse = FALSE,
x_label = "{dataset}"”,

6 edc_crf_plot

treat_as_worst = NULL,
datasets = get_datasets(),
lookup = edc_lookup()

)

edc_pal_crf()

Arguments

crfstat_col the column name of the CRF status
unused

details whether to show all the CRF status levels. When FALSE (default), recode the
status into "Complete”, "Incomplete”, or "No Data".

pal the palette, defaulting to the helper EDCimport: : :edc_pal_crf (). The names
give the CREF status levels, from "best" to "worst". The plot is ordered by the
"worst" level.

reverse whether to reverse the CRF status level order.

x_label a glue pattern determining the tick label in the x axis. Available variables are the
ones of edc_lookup(): c("dataset”, "nrow”, "ncol”, "n_id", "rows_per_id",
"crfname").

treat_as_worst aregex for levels that should be treated as worst in the ordering.
datasets, lookup
internal

Value

a ggplot

Source

ggsci:::ggsci_db$lancet[["lanonc”]1] %>% dput()

Examples

Not run:

#import a TM database and use load_database(), then:
edc_crf_plot() + ggtitle(date_extraction)
edc_crf_plot(reverse=TRUE)

edc_crf_plot(details=TRUE, treat_as_worst="No Data")
edc_crf_plot(x_label="{crfname} (N={n_id}, n={nrow})")

p = edc_crf_plot(details=TRUE)

p$datas$crfstat %>% unique()

#> [1] "Incomplete” "No Data Locked” "No Data” "Signed”
#> [5] "Partial Monitored” "Monitored” "Complete Locked” "Complete”

End(Not run)

edc_database 7

edc_database EDCimport Database

Description

This class of object represents a database, as the result of an EDCimport reading function. It has its
own print() method.

Functions returning edc_database objects

As per now, reading functions are: read_trialmaster(), read_all_sas(), read_all_xpt(),
and read_all_csv().

Structure
While it is not usually useful to query them, an edc_database object is a named list containing:

« all the datasets from the source files

e datetime_extraction and date_extraction the inferred date of data extraction

* .lookup a temporary copy of the lookup table

See Also

read_trialmaster()

edc_data_warn Standardized warning system

Description

When checking your data, filter your dataset to get only problematic rows.
Then, use either:

* edc_data_warn() to generate a standardized warning that can be forwarded to the dataman-
ager.

* edc_data_stop() to abort the script if the problem is too serious.

Each time edc_data_warn is used, the warning is saved internally so that a summary of all your
warnings can be retrieved using edc_data_warnings.

The result can be saved into an Excel file using save_edc_data_warnings().

8 edc_data_warn

Usage
edc_data_warn(
df,
message,
*
issue_n = "xx",

max_subjid = 5,

csv_path = FALSE,

envir = parent.frame(),
col_subjid = get_subjid_cols()

edc_data_stop(df, message, ..., issue_n, max_subjid, csv_path, envir, col_subjid)

edc_data_warnings()

Arguments
df the filtered dataframe
message the message. Can use cli formats. df can be accessed using the .data special
keyword (see example)
unused
issue_n identifying row number
max_subjid max number of subject ID to show in the message
csv_path a path to save df in a csv file that can be shared with the DM for more details.
envir the environment to evaluate message in.
col_subjid column name for subject ID. Set to NULL to ignore.
Value
df invisibly
Examples
library(dplyr)

db = edc_example()
load_database(db)
enrol %>%
filter(age>70) %>%
edc_data_warn("Age should not be >70", issue_n=1)

enrol %>%
filter(age<25) %>%
edc_data_warn("Age should not be <25", issue_n=2)

datal %>%
filter(n()>1, .by=subjid) %>%
edc_data_warn("There are duplicated patients in “datal” ({nrow(.data)} rows)", issue_n=3)

https://cli.r-lib.org/reference/inline-markup.html#classes

edc_db_to_excel 9

enrol %>%
filter(age<25) %>%
edc_data_warn("”Age should not be <25", issue_n=NULL)

edc_data_warnings()

Not run:
enrol %>%
filter(age<25) %>%
edc_data_warn("Age should not be <25", csv_path="check/check_age_25.csv")

enrol %>%
filter(age<25) %>%
edc_data_stop("Age should *never* be <25")

End(Not run)

edc_db_to_excel Save the database as an Excel file

Description

Because RStudio is not very good at showing data, it can be more convenient to browse the database
using MS Excel. This function turns the whole TM export (or any named list of datasets) into an
Excel workbook, with one tab for each dataset.

Use edc_db_to_excel () to create the file and edc_browse_excel () to open it.

Usage

edc_db_to_excel(
filename = tempfile(fileext = ".x1sx"),
datasets = get_datasets(),
overwrite = FALSE,
open = FALSE

edc_browse_excel ()

Arguments
filename the path to the Excel output file. Default to a temporary file. Use the special
value TRUE to save in "data/database_{date_extraction}.xIsx".
unused
datasets a named list of dataframes. Default to the TM export.
overwrite whether to overwrite any existing file. Default to FALSE.

open whether to open the Excel file afterward. Default to FALSE.

10 edc_example

Value

nothing

Examples

Not run:
db = edc_example()
load_database(db)
edc_db_to_excel() #default arguments are usually OK
edc_db_to_excel (filename=TRUE)

End(Not run)

edc_example Example database

Description

A list of tables that simulates the extraction of a clinical database. Used in EDCimport examples
and tests.

Usage

edc_example(N = 50, seed = 42, outdated = FALSE)

Arguments

N the number of patients

seed the random seed

outdated whether to simulate times after the data extraction date
Value

A list of tables of class edc_database.

edc_find_value 11

edc_find_value Search the whole database

Description

Find a keyword in columns or values, in all the datasets of the database.

Usage

edc_find_value(
keyword,
ignore_case = TRUE,
data = get_datasets(),
lookup = edc_lookup()
)

edc_find_column(keyword, ignore_case = TRUE, lookup = edc_lookup())

Arguments
keyword The keyword to search for. Regular expressions are only supported in edc_find_column.
ignore_case Logical. If TRUE (default), the search will ignore case differences.
data A list of datasets.
lookup A lookup table.
Value
a tibble
Examples

db = edc_example()
load_database(db)

edc_find_value("respi”)
edc_find_value(2010)

edc_find_column("ad")

edc_find_column("date")

#with regex

edc_find_column(”\\d")

edc_find_column("\\(") #you need to escape special characters

12 edc_left_join

edc_inform_code Shows how many code you wrote

Description

Shows how many code you wrote

Usage

edc_inform_code(main = "main.R", Rdir = "R/")

Arguments

main the main R file, which sources the other ones

Rdir the R directory, where sourced R files are located

Value

Nothing

edc_left_join Join within the EDCimport framework

Description

Perform a join with default by to the Subject ID and default suffix to the name of the y dataset. See
[dplyr::mutate-joins] for the description of the join logic.

Usage
edc_left_join(
X,
Y,
by = NULL,

suffix = NULL,
cols = everything(),
remove_dups = FALSE

)

Arguments
X,y Data frames to join
by The key to join on, as character. Defaults to get_subjid_cols()
suffix The disambiguation suffix. Defaults to the actual name of the y dataset.
cols <tidy-select> The columns to select in y before joining.

remove_dups Whether to remove columns in y that already exist in x.

edc_lookup

Value

a dataframe

Examples

db = edc_example()
load_database(db)
datal$common = data2$common = "Common"
x = enrol %>%
edc_left_join(data2) %>%
edc_right_join(datal)

#crfname get a suffix, common
names (x)

13

edc_lookup Retrieve the lookup table from options

Description

Retrieve the lookup table from options

Usage
edc_lookup(..., check = TRUE)
Arguments
passed on to dplyr: :arrange()
check whether to check for internal consistency
Value

the lookup dataframe summarizing the database import

Examples

db = edc_example()
load_database(db)
edc_lookup()
edc_lookup(dataset)

14 edc_options

edc_options Set global options for EDCimport

Description

Use this function to manage your EDCimport parameters globally while taking advantage of auto-
completion.

Use edc_peek_options() to see which option is currently set and edc_reset_options() to set
all options back to default.

Usage

edc_options(
trialmaster_pw,
path_7zip,
edc_lookup,
edc_subjid_ref,
edc_plotly,
edc_fct_yesno,
edc_cols_subjid,
edc_cols_meta,
edc_cols_id,
edc_cols_crfname,
edc_meta_cols_pct,
edc_warn_max_subjid,
edc_read_verbose,
edc_correction_verbose,
edc_get_key_cols_verbose,
edc_lookup_overwrite_warn,
.local = FALSE

Arguments

unused

trialmaster_pw the password of the trialmaster zip archive. For instance, you can use edc_options(trialmaster_pw="m
in the console once per session, so that you don’t have to write the password in
clear in your R code

path_7zip the path to the 7zip executable. Default to "C: /Program Files/7-Zip/".

edc_lookup (Internal) a reference to the lookup table (usually . lookup). Should usually not
be changed manually

edc_subjid_ref wused in edc_warn_patient_diffs the vector of the reference subject IDs. You
should usually write edc_options(edc_subjid_ref=enrolres$subjid).

edc_plotly used in edc_swimmerplot whether to use plotly to visualize the plot.

edc_patient_gridplot 15

edc_fct_yesno used in fct_yesno list of values to be considered as Yes/No values. Defaults to
get_yesno_1v1().
edc_cols_subjid, edc_cols_meta
the name of the columns holding the subject id (defaultto c("ptno”, "subjid"))
and the CRF form name (default to c("crfname”)). It is case-insensitive.
edc_cols_id, edc_cols_crfname
deprecated
edc_meta_cols_pct
The minimal proportion of datasets a column has to reach to be considered
"meta"
edc_warn_max_subjid
The max number of subject IDs to show in edc_data_warn
edc_read_verbose, edc_correction_verbose, edc_get_key_cols_verbose
the verbosity of the output of functions read_trialmaster and read_all_xpt, and
manual_correction. For example, set edc_options(edc_read_verbose=0) to
silence the first 2.
edc_lookup_overwrite_warn

default to TRUE. Whether there should be warning when overwriting . Lookup
(like when reading 2 databases successively)

.local if TRUE, the effect will only apply to the local frame (internally using rlang: : local_options())

Value

Nothing, called for its side effects

edc_patient_gridplot Patient gridplot

Description

Draw a gridplot giving, for each patient and each dataset, whether the patient is present in the
dataset. Data are drawn from get_datasets.

Usage

edc_patient_gridplot(
sort_rows = TRUE,
sort_cols = TRUE,
gradient = FALSE,
axes_flip = FALSE,
show_grid = TRUE,
preprocess = NULL,
palette = c(Yes = "#00468BFF", No = "#EDQQQOFF"),
datasets = get_datasets(),
lookup = edc_lookup()

16

Arguments

sort_rows
sort_cols

gradient
axes_flip

show_grid
preprocess

palette
datasets, lookup

Value

a ggplot object

Examples

Not run:

edc_peek_options

whether to sort patients from "present in most datasets" to "present in least
datasets"

whether to sort datasets from "containing the most patients" to "containing the
least patients"

whether to add a color gradient for repeating measures

whether to flip the axes, so that patients are on the Y axis and datasets on the X
axis

whether to show the grid

a function to preprocess the patient ID, e.g. as.numeric, or a custom function
with string replacement

the colors to use

internal

tm = read_trialmaster("path/to/archive.zip”)
load_database(db)
edc_patient_gridplot(sort_rows=FALSE, sort_cols=FALSE)
edc_patient_gridplot(axes_flip=TRUE, show_grid=TRUE,

End(Not run)

preprocess=~str_remove(.x, "\\Dx")) #remove all non-digits

edc_peek_options

See which EDCimport option is currently set

Description

See which EDCimport option is currently set

Usage

edc_peek_options(keep_null = FALSE)

Arguments

keep_null

Value

set to TRUE to get a list

A named list of EDCimport options

edc_population_plot 17

edc_population_plot Plot the populations

Description

In a RCT, you usually have several populations of analysis, and this function allow to show which
patient is in which population graphically.

Usage

edc_population_plot(x, id_per_row = 50, ref = "first")

Arguments

X a named list of subject ID, as numeric or factor.
id_per_row number of patients per rows.

ref the whole population. Default to the first member of x.

Value

a ggplot

Examples

#in real word code, use filter and pull to get these vectors

pop_total = c(1:180) %>% setdiff(55) #screen failure, no patient 55

pop_itt = pop_total %>% setdiff(10) #patient 10 has had the wrong treatment

pop_safety = pop_total %>% setdiff(c(40,160)) #patients 40 and 160 didn't receive any treatment
pop_m_itt = pop_total %>% setdiff(c(40,160,80)) #patient 80 had a wrong inclusion criterion
pop_evaluable = pop_total %>% setdiff(c(40,160,101,147,186)) #patients with no recist evaluation

1 = list(
"Total population”=pop_total,
"ITT population"=pop_itt,
"Safety population”=pop_safety,
"mITT population”=pop_m_itt,
"Evaluable population”=pop_evaluable
)
edc_population_plot(l)
edc_population_plot(1[-1], ref=pop_total)
edc_population_plot(l, ref=1:200)
edc_population_plot(l, id_per_row=60)

18

edc_split_mixed

edc_reset_options Reset all EDCimport options

Description

Reset all EDCimport options

Usage

edc_reset_options(
except = c("edc_lookup", "trialmaster_pw", "path_7zip"),
quiet = FALSE

)
Arguments
except options that are not reset by default
quiet set to TRUE to remove the message.
Value

Nothing, called for its side effects

edc_split_mixed Split mixed datasets

Description

Split mixed tables, i.e. tables that hold both long data (N values per patient) and short data (one

value per patient, duplicated on N lines), into one long table and one short table.

Usage

edc_split_mixed(
database,
datasets = everything(),
ignore_cols = NULL,
verbose = FALSE

edc_swimmerplot 19

Arguments
database an edc_database object, from read_trialmaster() or other EDCimport read-
ing functions.
datasets <tidy-select> datasets to split in the database
not used, ensure arguments are named
ignore_cols columns to ignore in long tables. Default to getOption(”edc_cols_crfname”,
"CRFNAME"). Case-insensitive. Avoid splitting tables for useless columns.
verbose whether to print informations about the process.
Value

an edc_database object

Examples

#db = read_trialmaster(”filename.zip"”, pw="xx")
db = edc_example() %>%
edc_split_mixed(c(ae, starts_with("long")),
ignore_cols="crfstat")

names (db)
edc_lookup()

are long, but “n_ae” is short

db$ae # aesoc™, “aegr”, and “sae

db$ae_short
db$ae_long

edc_swimmerplot Swimmer plot of all dates columns

Description

Join all tables on id with only date columns to build a ggplot (or a plotly if plot1ly=TRUE) showing
all dates for each subject.
This allows outliers to be easily identified.

Usage

edc_swimmerplot(

L

include = NULL,
exclude = NULL,
group = NULL,

origin = NULL,
data_list = get_datasets(),
id_subset = "all”,

20 edc_swimmerplot
id_sort = FALSE,
id_cols = get_subjid_cols(),
time_unit = c("days"”, "weeks"”, "months", "years"),
origin_fun = "min",
aes_color = c("variable"”, "label”),
plotly = getOption("edc_plotly"”, FALSE),
id = "deprecated”,
id_lim = "deprecated”,
.lookup = "deprecated”
)
Arguments
not used
include, exclude
a character vector of variables to exclude/include, in the form dataset$column.
Can be a regex (apart from $ symbols that will be automatically escaped). Case-
insensitive.
group a grouping variable, given as "dataset$column".
origin a variable to consider as time 0, given as "dataset$column".
data_list a named list of data.frames to get the dates from. Default to get_datasets, which
retrieve all raw datasets.
id_subset the subjects to include in the plot.
id_sort whether to sort subjects by date (or time).
id_cols the subject identifiers columns. Identifiers be coerced as numeric if possible.
See get_subjid_cols if needed.
time_unit if origin!=NULL, the unit to measure time. One of c("days"”, "weeks"”, "months”,
"years").
origin_fun function to summarise the origin date at the id level if needed. Should be
named, or at least have a meaningful function name (see example "summarized
origin".
aes_color either variable ("{dataset} - {column}") or 1abel (the column label).
plotly whether to use {plotly} to get an interactive plot.
id deprecated
id_lim deprecated
. Llookup deprecated
Value

either a plotly or a ggplot

edc_unify_subjid 21

Examples

#db = read_trialmaster(”filename.zip"”, pw="xx")
db = edc_example()

load_database(db)
edc_swimmerplot(id_lim=c(5,45))

#fixed origin

edc_swimmerplot(origin="enrol$enrol_date"”, time_unit="months",
include=c("datal”, "data3"),
exclude=c("DATAT$DATE2", "data3$date\\d\\d"),
id_sort=TRUE)

#summarised origin

edc_swimmerplot(origin="datal$date2"”, time_unit="months",
origin_fun=c("average”"=~mean(.x, na.rm=TRUE)),
include=c("datal"”, "data3"),
exclude=c("DATAT$DATE2", "data3$date\\d\\d"),
id_sort=TRUE)

#id_subset
edc_swimmerplot(group="enrol$arm”, id_subset=1:10, aes_color="1label”)

Not run:
p = edc_swimmerplot(plotly=TRUE)
save_plotly(p, "edc_swimmerplot.html”)

End(Not run)

edc_unify_subjid Harmonize the subject ID of the database

Description

Turns the subject ID columns of all datasets into a factor containing levels for all the subjects of the
database. Avoid problems when joining tables, and some checks can be performed on the levels.
See vignette("postprocessing”) for a real-life case.

Usage

edc_unify_subjid(
database,
preprocess = NULL,
mode = c("factor”, "numeric"),
col_subjid = NULL

22

Arguments

database

preprocess

mode

col_subjid

Value

edc_viewer

an edc_database object, from read_trialmaster() or other EDCimport read-
ing functions.

an optional function to modify the subject ID column (at the character level).
Default behavior is only to remove trailing zeros if numeric.

the output type of the subject ID columns

names of the subject ID columns (as character)

database, with subject id modified

Examples

db = edc_example()
db$enrol$subjid %>% head() #double vector

db2 = edc_unify_subjid(db)
db2$enrol$subjid %>% head() #factor with 50 levels

db3 = edc_unify_subjid(db, preprocess=function(x) paste@("#", x))
db3$enrol$subjid %>% head()

#use numeric mode to get a numeric output
db4 = edc_unify_subjid(db, preprocess=function(x) as.numeric(x)+1, mode="numeric")
db4$enrol$subjid %>% head()

edc_viewer

Shiny data explorer

Description

Run a Shiny application that allows to browse the datasets.

Usage

edc_viewer(
data = NULL,

L

background = TRUE,
title = NULL,

port = 1209,
replace = FALSE

edc_warn_extraction_date 23

Arguments

data

background
title
port

replace

A list of dataframes to view. If NULL, defaults to the last datasets loaded using
EDCimport functions.

unused

Whether the app should run in a background process.
The app title, in the header and the tab label.

The TCP port that the application should listen on.

whether to replace a previously running app on the same port.

edc_warn_extraction_date

Warn if extraction is too old

Description

‘Warn if extraction is too old

Usage

edc_warn_extraction_date(max_days = 30)

Arguments

max_days

Value

nothing

Examples

the max acceptable age of the data

db = edc_example()

load_database(db)

edc_warn_extraction_date()

24 edc_warn_patient_diffs

edc_warn_patient_diffs
Check the validity of the subject ID column

Description

Compare a subject ID vector to the study’s reference subject ID (usually something like enrolres$subjid),
and warn if any patient is missing or extra.
check_subjid() is the old, deprecated name.

Usage

edc_warn_patient_diffs(
X)
ref = getOption("edc_subjid_ref"),
issue_n = "xx",
data_name = NULL,

col_subjid = get_subjid_cols()

)
Arguments
X the subject ID vector to check, or a dataframe which ID column will be guessed
ref the reference for subject ID. Should usually be set through edc_options(edc_subjid_ref=xxx).
See example.
issue_n identifying row number
data_name the name of the data (for the warning message)
col_subjid name of the subject ID column if x is a dataframe.
Value

nothing, called for errors/warnings

Examples

db = edc_example()

load_database(db)

options(edc_subjid_ref=enrol$subjid)

#usually, you set something like:

#options(edc_subjid_ref=enrolres$subjid)

edc_warn_patient_diffs(datal)

datal %>% dplyr::filter(subjid>1) %>% edc_warn_patient_diffs(issue_n=NULL)
edc_warn_patient_diffs(c(datal$subjid, 99, 999))

fet_yesno 25

fct_yesno Format factor levels as Yes/No

Description

Format factor levels as arbitrary values of Yes/No (with Yes always first) while leaving untouched
all vectors that contain other information.

Usage

fct_yesno(
X!
input = list(yes = c("Yes”, "Oui”), no = c("No", "Non"), na = c("NA", "")),
output = c("Yes"”, "No"),
strict = FALSE,
mutate_character = TRUE,

fail = TRUE
)
Arguments
X a vector of any type/class.
input list of values to be considered as "yes", "no", and NA.
output the output factor levels.
strict whether to match the input strictly or use stringr::str_detect to find them. Can

also be "ignore_case" to just ignore the case.
mutate_character
whether to turn characters into factor.

fail whether to fail if some levels cannot be recoded to yes/no.

Value

a factor, or x untouched.

Examples

fct_yesno(c("No", "Yes")) #levels are in order

set.seed(42)

N=6

x = tibble(
a=sample(c("Yes", "No"), size=N, replace=TRUE),
b=sample(c("Oui”, "Non"), size=N, replace=TRUE),
c=sample(@:1, size=N, replace=TRUE),
d=sample(c(TRUE, FALSE), size=N, replace=TRUE),
e=sample(c("1-Yes"”, "0-No", "2-NA"), size=N, replace=TRUE),

26 get_common_cols

y=sample(c("aaa", "bbb", "ccc"), size=N, replace=TRUE),
z=1:N,
)

X
#y and z are left untouched (or throw an error if fail=TRUE)
sapply(x, fct_yesno, fail=FALSE, simplify=FALSE)

as "1-Yes” is not in “input™, x$e is untouched/fails if strict=TRUE
fct_yesno(x$e)

fct_yesno(x$e, strict=TRUE, fail=FALSE)

fct_yesno(x$e, output=c(”Ja", "Nein"))

get_common_cols Get columns that are common to multiple datasets

Description

[Experimental] Attempt to list all columns in the database and group the ones that are common to
some datasets. Useful to find keys to pivot or summarise data.

Usage

get_common_cols(lookup = edc_lookup(), min_datasets = 3)

S3 method for class 'common_cols'

summary (object, ...)
Arguments
lookup the lookup table, default to edc_lookup()
min_datasets the minimal number of datasets to be considered
object an object of class "common_cols"
unused
Value

a tibble of class "common_cols"

Examples

db = edc_example()
load_database(db)

x = get_common_cols(min_datasets=1)
X

summary (x)

get_datasets 27

get_datasets Retrieve the datasets as a list of data.frames

Description

Get the datasets from the lookup table as a list of data.frames.

Usage

get_datasets(lookup = edc_lookup(), envir = edc_data_env())

Arguments
lookup the lookup table
envir (internal use)
Value

a list of all datasets

lastnews_table Get a table with the latest date for each patient

Description

This function search for date columns in every tables and returns the latest date for each patient
with the variable it comes from. Useful in survival analysis to get the right censoring time.

Usage

lastnews_table(
except = NULL,
with_ties = FALSE,
show_delta = FALSE,
numeric_id = TRUE,
prefer = NULL,
regex = FALSE,
warn_if_future = TRUE

28

Arguments

except

with_ties

show_delta

numeric_id
prefer
regex

warn_if_future

Value

a dataframe

Examples

load_database

the datasets/columns that should not be searched. Example: a scheduled visit
for which the patient may have died before attending should not be considered.

in case of tie, whether to return the first origin (FALSE) or all the origins that
share this tie (TRUE).

whether to compute the difference between the last prefer date and the actual
last date

set to FALSE if the patient ID column is not numeric
preferred origins in the event of a tie. Usually the followup table.
whether to consider except and prefer as regex.

whether to show a warning about dates that are after the extraction date. Can
also be a csv file path to save the warning as csv (see csv_path argument in
edc_data_warn).

db = edc_example()

load_database(db)
lastnews_table()

lastnews_table(except="data3")
lastnews_table(except="data3$date9"”)
lastnews_table(prefer="date10", show_delta=TRUE)
lastnews_table() %>%

dplyr::count(origin = glue::glue("{origin_data}${origin_col}"),

sort=TRUE)

csv_file = tempfile(fileext=".csv")
lastnews_table(prefer="date9”, warn_if_future=csv_file)

load_database

Load a list in an environment

Description

Load a list in an environment

Usage

load_database(db, env = parent.frame(), remove = TRUE)

manual_correction 29

Arguments
db an edc_database object (to be fair, any list would do)
env the environment onto which the list should be loaded
remove if TRUE, db will be removed from the environment afterward
Value

nothing, called for its side-effect

Examples

db = edc_example()
load_database(db, remove=FALSE)
print(db)

print(lengths(db))

manual_correction Manual correction

Description

[Experimental]

When finding wrong or unexpected values in an exported dataset, it can be useful to temporarily
correct them by hard-coding a value. However, this manual correction should be undone as soon as
the central database is updated with the correction.

* manual_correction() applies a correction in a specific dataset column location and throws
an error if the correction is already in place. This check applies only once per R session so
you can source your script without errors.

* reset_manual_correction() resets all checks. For instance, itis called by read_trialmaster().

Usage

manual_correction(
data,
col,
rows,
wrong,
correct,
verbose = getOption("edc_correction_verbose"”, TRUE)

reset_manual_correction()

30 read_all csv

Arguments

data, col, rows the rows of a column of a dataframe where the error lies

wrong the actual wrong value

correct the temporary correction value

verbose whether to print informations (once)
Value

Nothing, used for side effects

Examples

library(dplyr)
X = iris %>% mutate(id=row_number(), .before=1) %>% as_tibble()
x$Sepal.Length[c(1,3,5)]

#1st correction is silent

manual_correction(x, Sepal.Length, rows=c(1,3,5),
wrong=c(5.1, 4.7, 5.0), correct=c(5, 4, 3))

x$Sepal.Length[c(1,3,5)]

#further correction is silent
manual_correction(x, Sepal.Length, rows=c(1,3,5),
wrong=c(5.1, 4.7, 5.0), correct=c(5, 4, 3))

#if the database is corrected, an error is thrown

Not run:

reset_manual_correction()

x$Sepal.Length[c(1,3,5)] = c(5, 4, 3) #mimics db correction

manual_correction(x, Sepal.Length, rows=c(1,3,5),
wrong=c(5.1, 4.7, 5.0), correct=c(5, 4, 3))

End(Not run)

read_all_csv Read all .csv files in a directory

Description

Read all . csv files in a directory, with labels if specified.

Usage

read_all_csv(
path,
labels_from = NULL,
format_file = NULL,

read_all csv 31

use_cache = "write”,

subdirectories = FALSE,

read_fun = "guess",

datetime_extraction = "guess”,

verbose = getOption("edc_read_verbose”, 1),
clean_names_fun = NULL

Arguments

path [character(1)]
path to the directory containing . csv files.

unused

labels_from [character(1)]
path to the file containing the labels. See section "Labels file" below.

format_file [character(1)]
the path to the file that should be used to apply formats. See section "Format
file" below. Use NULL to not apply formats.

use_cache [mixed(1): "write"]
controls the . rds cache. If TRUE, read the cache if any or extract the archive and
create a cache. If FALSE extract the archive without creating a cache file. Can
also be "read” or "write".

subdirectories [logical(1)]
whether to read subdirectories

read_fun [function]
if "guess" doesn’t work properly, a function to read the files in path, e.g. read.csv,
read.csv2,...

datetime_extraction
[POSIXt(1)]
the datetime of the data extraction. Default to the most common date of last
modification in path.

verbose [numeric(1)]
one of c(@, 1, 2). The higher, the more information will be printed.

clean_names_fun
[Deprecated] use edc_clean_names() instead.

Value

a list containing one dataframe for each . csv file in the folder, the extraction date (datetime_extraction),
and a summary of all imported tables (. lookup).

Labels file

labels_from should contain the information about column labels. It should be a data file (.csv)
containing 2 columns: one for the column name and the other for its associated label. Use options(edc_col_name="xxx"
edc_col_label="xxx") to specify the names of the columns.

32 read_all sas

Format file

format_f1ile should contain the information about SAS formats. It can be either:

* aprocformat.sas file, containing the whole PROC FORMAT
* or a data file (.csv or .sas7bdat) containing 3 columns:

— FMTNAME the SAS format name (repeated)
— START the variable level
— LABEL the label associated to the level

You can get this datafile from SAS using PROC FORMAT with option CNTLOUT. Otherwise, you
canuse options(edc_var_format_name="xxx", edc_var_level="xxx", edc_var_label="xxx"
to specify different column names.

See Also

Other EDCimport reading functions: read_all_sas(), read_all_xpt(), read_trialmaster()

Examples

Create a directory with multiple csv files and a label lookup.

path = paste@(tempdir(), "/read_all_csv")

dir.create(paste@(path, "/subdir"), recursive=TRUE)

write.csv(iris, paste@(path, "/iris.csv"))

write.csv(mtcars, paste@(path, "/mtcars.csv"))

write.csv(mtcars, paste@(path, "/subdir/mtcars.csv"))

write.csv(airquality, paste@(path, "/airquality.csv"))

labs = c(iris, mtcars, airquality) %>% names()

write.csv(data.frame(name=labs, label=toupper(labs)), paste@(path, "/labels.csv"))

db = read_all_csv(path, labels_from="labels.csv", subdirectories=TRUE) %>%
set_project_name("My great project”)

db

edc_lookup()

read_all_sas Read all .sas7bdat files in a directory

Description

Read all . sas7bdat files in a directory. Formats (factors levels) can be applied from a procformat. sas
SAS file, or from a format dictionary. See the "Format file" section below. Column labels are read
directly from the .sas7bdat files.

https://blogs.sas.com/content/sgf/2017/12/04/controlling-your-formats/

read_all sas 33

Usage
read_all_sas(
path,
format_file = "procformat.sas”,
use_cache = "write",
subdirectories = FALSE,
datetime_extraction = "guess",

verbose = getOption("edc_read_verbose”, 1),
clean_names_fun = NULL

Arguments
path [character(1)]
the path to the directory containing all . sas7bdat files.
unused

format_file [character(1)]
the path to the file that should be used to apply formats. See section "Format
file" below. Use NULL to not apply formats.

use_cache [mixed(1): "write"]
controls the . rds cache. If TRUE, read the cache if any or extract the archive and
create a cache. If FALSE extract the archive without creating a cache file. Can
also be "read” or "write".

subdirectories [logical(1)]
whether to read subdirectories

datetime_extraction

[POSIXt(1)]
the datetime of the data extraction. Default to the most common date of last
modification in path.

verbose [numeric(1)]
one of c(@, 1, 2). The higher, the more information will be printed.

clean_names_fun
[Deprecated] use edc_clean_names() instead.

Value

a list containing one dataframe for each . sas7bdat file in the folder, the extraction date (datetime_extraction),
and a summary of all imported tables (. lookup).

Format file
format_f1ile should contain the information about SAS formats. It can be either:

* aprocformat.sas file, containing the whole PROC FORMAT
* or a data file (.csv or . sas7bdat) containing 3 columns:

— FMTNAME the SAS format name (repeated)

34 read_all_xpt

— START the variable level
— LABEL the label associated to the level

You can get this datafile from SAS using PROC FORMAT with option CNTLOUT. Otherwise, you
canuse options(edc_var_format_name="xxx", edc_var_level="xxx", edc_var_label="xxx"
to specify different column names.

See Also

Other EDCimport reading functions: read_all_csv(), read_all_xpt(), read_trialmaster()

Examples

Create a directory with multiple sas files.

path = paste@(tempdir(), "/read_all_sas")

dir.create(paste@(path, "/subdir"), recursive=TRUE)

haven: :write_sas(attenu, paste@(path, "/attenu.sas7bdat"))

haven: :write_sas(mtcars, paste@(path, "/mtcars.sas7bdat"))

haven: :write_sas(mtcars, paste@(path, "/subdir/mtcars.sas7bdat"”))
haven: :write_sas(esoph, paste@(path, "/esoph.sas7bdat"))

db = read_all_sas(path, format_file=NULL, subdirectories=TRUE) %>%
set_project_name("My great project”)

db

edc_lookup()

read_all_xpt Read all . xpt files in a directory

Description

Read all . xpt files in a directory (unzipped TrialMaster archive).

If 7zip is installed, you should probably rather use read_trialmaster() instead.

Formats (factors levels) can be applied from a procformat.sas SAS file, or from a format dictio-
nary. See the "Format file" section below. Column labels are read directly from the . xpt files.

Usage
read_all_xpt(
path,
format_file = "procformat.sas”,
datetime_extraction = "guess",
use_cache = "write",

subdirectories = FALSE,

verbose = getOption("edc_read_verbose”, 1),
clean_names_fun = NULL,

directory = "deprecated”,

key_columns = "deprecated”

https://blogs.sas.com/content/sgf/2017/12/04/controlling-your-formats/

read_all_xpt 35

Arguments

path [character(1)]
the path to the directory containing all . xpt files.

unused

format_file [character(1)]
the path to the file that should be used to apply formats. See section "Format
file" below. Use NULL to not apply formats.

datetime_extraction
[POSIXt(1)]
the datetime of the data extraction. Default to the most common date of last
modification in path.

use_cache [mixed(1): "write"]
controls the . rds cache. If TRUE, read the cache if any or extract the archive and
create a cache. If FALSE extract the archive without creating a cache file. Can
also be "read” or "write".
subdirectories [logical(1)]
whether to read subdirectories
verbose [numeric(1)]
one of c(@, 1, 2). The higher, the more information will be printed.
clean_names_fun
[Deprecated] use edc_clean_names() instead.

directory deprecated in favor for path
key_columns deprecated
Value

a list containing one dataframe for each . xpt file in the folder, the extraction date (datetime_extraction),
and a summary of all imported tables (. lookup).

Format file
format_file should contain the information about SAS formats. It can be either:

* aprocformat.sas file, containing the whole PROC FORMAT
* or a data file (. csv or . sas7bdat) containing 3 columns:

— FMTNAME the SAS format name (repeated)
— START the variable level
— LABEL the label associated to the level

You can get this datafile from SAS using PROC FORMAT with option CNTLOUT. Otherwise, you
canuse options(edc_var_format_name="xxx", edc_var_level="xxx", edc_var_label="xxx"
to specify different column names.

See Also

Other EDCimport reading functions: read_all_csv(), read_all_sas(), read_trialmaster()

https://blogs.sas.com/content/sgf/2017/12/04/controlling-your-formats/

36 read_trialmaster

Examples

Create a directory with multiple .xpt files.

path = paste@(tempdir(), "/read_all_xpt")
dir.create(paste@(path, "/subdir"), recursive=TRUE)

haven: :write_xpt(attenu, paste@(path, "/attenu.xpt"”))

haven: :write_xpt(mtcars, paste@(path, "/mtcars.xpt”))

haven: :write_xpt(mtcars, paste@(path, "/subdir/mtcars.xpt”))
haven: :write_xpt(esoph, paste@(path, "/esoph.xpt"))

db = read_all_xpt(path, format_file=NULL, subdirectories=TRUE) %>%
set_project_name("My great project”)

db

edc_lookup()

read_trialmaster Read the .zip archive of a TrialMaster export

Description

Import the .zip archive of a TrialMaster trial export as a list of dataframes. The archive filename
should be leaved untouched as it contains the project name and the date of extraction.

Generate a . rds cache file for future reads.

If 7zip is not installed or available, use read_all_xpt() instead.

The TM export should be of type SAS Xport, with the checkbox "Include Codelists" ticked.

Usage
read_trialmaster(
archive,
e,
use_cache = "write",

clean_names_fun = NULL,

subdirectories = FALSE,

pw = getOption("trialmaster_pw"),

verbose = getOption("edc_read_verbose”, 1),

key_columns = "deprecated”
)
Arguments
archive [character(1)]
the path to the archive
unused
use_cache [mixed(1): "write"]

controls the . rds cache. If TRUE, read the cache if any or extract the archive and
create a cache. If FALSE extract the archive without creating a cache file. Can
also be "read” or "write".

save_edc_data_warnings 37

clean_names_fun
[Deprecated] use edc_clean_names() instead.

subdirectories [logical(1)]
whether to read subdirectories

pw [character(1)]
The password if the archive is protected. To avoid writing passwords in plain
text, it is probably better to use options(trialmaster_pw="xxx") instead
though.

verbose [numeric(1)]
one of c(@, 1, 2). The higher, the more information will be printed.

key_columns deprecated

Value
a list containing one dataframe for each . xpt file in the folder, the extraction date (datetime_extraction),
and a summary of all imported tables (. lookup).

See Also

Other EDCimport reading functions: read_all_csv(), read_all_sas(), read_all_xpt()

save_edc_data_warnings
Save EDCimport warning to Excel

Description

Each time edc_data_warn is used, the warning is saved internally so that a summary can be retrieved
using edc_data_warnings. This summary can then be saved into a . x1sx file using save_edc_data_warnings().

Usage

save_edc_data_warnings(
edc_warnings = edc_data_warnings(),

output_file = "edc_data_warnings_{project}_{date_extraction}.xlsx",
output_dir = "output/check”,
open = FALSE,

overwrite = TRUE,
hide_resolved = TRUE,
include_stops = FALSE,
path = "deprecated”

38 save_plotly

Arguments

edc_warnings the result of edc_data_warnings
output_file, output_dir
path to a . x1sx file. Use special values {proj_name} and {date_extraction}.
open If TRUE, overwrite any existing file.
overwrite If TRUE, overwrite any existing file.
hide_resolved If TRUE, hide sheets with no data.
include_stops If TRUE, also include STOP-type warnings.
path deprecated

Value

a logical(1), whether the file could be written, invisibly

save_plotly Save a plotly to an HTML file

Description

Save a plotly to an HTML file

Usage
save_plotly(p, file, ...)
Arguments
p a plot object (plotly or ggplot)
file a file path to save the HTML file. Can use the glue syntax to add variables.
passed on to htmlwidgets::saveWidget
Value

nothing, used for side effect

Examples

Not run:

db = edc_example()

load_database(db)

p = edc_swimmerplot(id_lim=c(5,45))

save_plotly(p, "graph/swimplots_{date_extraction}/edc_swimmerplot.html”,
title="My Swimmerplot")

End(Not run)

save_sessioninfo 39

save_sessioninfo Save sessionInfo() output

Description

Save sessionInfo() output into a text file.

Usage

save_sessioninfo(path = "check/session_info.txt"”, with_date = TRUE)

Arguments

path target path to write the file

with_date whether to insert the date before the file extension

Value

nothing

Examples

Not run:
save_sessioninfo()

End(Not run)

search_for_newer_data Search for newer data

Description

Search in some folders if a TrialMaster database more recent than the current extraction is present.
By default, it will search the "data" folder and the OS usual "Downloads"” folder. If a newer database
is found, user will be asked if they want to move it to the "data" folder.

Usage

search_for_newer_data(
archive,
source = path_home("”"Downloads”),
target = "data",
ask = TRUE,
advice = TRUE

40 select_distinct

Arguments
archive TM archive path, giving the project name and date
unused
source the path vector to be searched, default to both "data" and the usual "Downloads"
folder
target the path where files should be copied
ask whether to ask the user to move the file to "data"
advice whether to advice how to move it instead, if ask==FALSE
Value

the path to the newer file, invisibly.

Examples

Not run:
archive = "data/MYPROJECT_ExportTemplate_xxx_SAS_XPORT_2024_06_01_12_00.zip"
#tm = read_trialmaster(archive)
search_for_newer_data(archive)

End(Not run)

select_distinct Select only distinct columns

Description

Select all columns that has only one level for a given grouping scope. Useful when dealing with

mixed datasets containing both long data and repeated short data.

Usage

select_distinct(df, .by)

Arguments

df a dataframe

by optional grouping columns
Value

df with less columns

set_project_name

Examples

db = edc_example()

db$ae %>% colnames()

#-crfname™ has one level for the whole dataset
db$ae %>% select_distinct() %>% colnames()

n_ae” has one level per patient

db$ae %>% select_distinct(.by=subjid) %>% colnames()

41

set_project_name Set the project name

Description

Set or override the project name

Usage

set_project_name(db, name)

get_project_name(lookup = edc_lookup())

Arguments
db the edc_database
name the project name
lookup the lookup table
Value
nothing

the name of the project

Examples

db = edc_example() %>%
set_project_name("My great project”)
edc_lookup()

42 table_format

table_format Identify if a dataframe has a long or a wide format

Description

A dataset is either in the wide format or in the long format. This function identifies the format
of a dataframe with respect to a subject ID. If a dataframe has some wide and long columns, it is
considered "mixed".

Usage

table_format(
df,
id = get_subjid_cols(),
ignore_cols = get_meta_cols(0.95),
na_rm = FALSE,

warn = TRUE

)
Arguments

df a dataframe

id the identifying subject ID

not used

ignore_cols columns to ignore.

na_rm whether to consider missing values

warn whether to warn if ID is not found
Value

a string value in c("wide”, "long"”, "mixed)
See Also

https://tidyr.tidyverse.org/articles/pivot.html

Examples

db = edc_example()
sapply(db, table_format, warn=FALSE)

https://tidyr.tidyverse.org/articles/pivot.html

unify 43

unify Unify a vector

Description

Turn a vector of length N to a vector of length 1 after checking that there is only one unique value.
Useful to safely flatten a duplicated table. Preserves the label attribute if set.

Usage

unify(x, collapse_chr = FALSE, warn = TRUE)

Arguments

X a vector
collapse_chr whether to collapse non-unique character values

warn whether to warn if non-unique values were found

Value

a vector of length 1

Examples

unify(c(1,1,1,1))
#unify(c(1,1,2,1)) #warning

library(dplyr)
set.seed(42)
x=tibble(id=rep(letters[1:5],10), value=rep(1:5,10),
value2=sample(letters[6:10], 50, replace=TRUE))
X %>% summarise(value=unify(value), .by=id) #safer than ~value=value[1]
X %>% summarise(value2=unify(value2, collapse_chr=TRUE, warn=FALSE), .by=id)
x$value[2]=1
X %>% summarise(value2=unify(value2), .by=id) #warning about that non-unique value

Index

* EDCimport reading functions
read_all_csv, 30
read_all_sas, 32
read_all_xpt, 34
read_trialmaster, 36

assert_no_duplicate, 3
assert_no_rows (edc_data_warn), 7

check_subjid (edc_warn_patient_diffs),
24

compare_databases, 4

crf_status_plot (edc_crf_plot), 5

dplyr::arrange(), I3

edc_browse_excel (edc_db_to_excel), 9
edc_clean_names, 5
edc_clean_names(), 31, 33, 35, 37
edc_crf_plot, 5

edc_data_stop (edc_data_warn), 7
edc_data_warn, 7,7, 15, 28, 37
edc_data_warnings, 7, 37, 38
edc_data_warnings (edc_data_warn), 7
edc_database, 5,7, 19, 22, 29, 41
edc_db_to_excel, 9

edc_example, 10

edc_example_plot (edc_example), 10
edc_find_column (edc_find_value), 11
edc_find_value, 11

edc_full_join (edc_left_join), 12
edc_inform_code, 12
edc_left_join, 12

edc_lookup, 13

edc_lookup(), 6, 26

edc_options, 14

edc_pal_crf (edc_crf_plot), 5
edc_patient_gridplot, 15
edc_peek_options, 16
edc_peek_options(), 14

44

edc_population_plot, 17
edc_reset_options, 18
edc_reset_options(), 14
edc_right_join (edc_left_join), 12
edc_split_mixed, 18
edc_swimmerplot, /4, 19
edc_unify_subjid, 21
edc_viewer, 22
edc_warn_extraction_date, 23
edc_warn_patient_diffs, 14, 24

fct_yesno, 15,25
find_keyword (edc_find_value), 11

get_common_cols, 26
get_datasets, 15, 20, 27

get_lookup (edc_lookup), 13
get_project_name (set_project_name), 41
get_subjid_cols, 20

harmonize_subjid (edc_unify_subjid), 21
htmlwidgets: :saveWidget, 38

lastnews_table, 27
load_database, 28
load_list (load_database), 28

manual_correction, 15, 29

read_all_csv, 30, 34, 35, 37
read_all_csv(),”7
read_all_sas, 32, 32, 35, 37
read_all_sas(),”7
read_all_xpt, 15, 32, 34, 34, 37
read_all_xpt(), 7, 36
read_tm_all_xpt (read_all_xpt), 34
read_trialmaster, 15, 32, 34, 35, 36
read_trialmaster(), 5, 7, 19, 22, 29, 34
reset_manual_correction
(manual_correction), 29

INDEX

save_edc_data_warnings, 37

save_edc_data_warnings(), 7

save_plotly, 38

save_sessioninfo, 39

search_for_newer_data, 39

select_distinct, 40

set_project_name, 41

stringr::str_detect, 25

summary . common_cols (get_common_cols),
26

table_format, 42
tidy-select, 12, 19

unify, 43

45

	assert_no_duplicate
	compare_databases
	edc_clean_names
	edc_crf_plot
	edc_database
	edc_data_warn
	edc_db_to_excel
	edc_example
	edc_find_value
	edc_inform_code
	edc_left_join
	edc_lookup
	edc_options
	edc_patient_gridplot
	edc_peek_options
	edc_population_plot
	edc_reset_options
	edc_split_mixed
	edc_swimmerplot
	edc_unify_subjid
	edc_viewer
	edc_warn_extraction_date
	edc_warn_patient_diffs
	fct_yesno
	get_common_cols
	get_datasets
	lastnews_table
	load_database
	manual_correction
	read_all_csv
	read_all_sas
	read_all_xpt
	read_trialmaster
	save_edc_data_warnings
	save_plotly
	save_sessioninfo
	search_for_newer_data
	select_distinct
	set_project_name
	table_format
	unify
	Index

