Package ‘DatabaseConnector’

January 9, 2026
Type Package

Title Connecting to Various Database Platforms
Version 7.1.0
Date 2026-01-08

Description An R 'DataBase Interface' (‘'DBI') compatible interface to various database plat-
forms ('PostgreSQL', 'Oracle’, 'Microsoft SQL Server',
'Amazon Redshift', 'Microsoft Parallel Database Warehouse', TBM Netezza', 'Apache Im-
pala’, 'Google BigQuery', 'Snowflake', 'Spark’, 'SQLite’,
and 'InterSystems IRIS"). Also includes support for fetching data as 'Andromeda’ ob-
jects. Uses either 'Java Database Connectivity' (JDBC') or
other 'DBI' drivers to connect to databases.

SystemRequirements Java (>= 8)
Depends R (>=4.0.0)

Imports rJava, SqlRender (>= 1.19.2), methods, stringr, readr, rlang,
utils, DBI (>= 1.0.0), urltools, bit64, checkmate, digest,
dbplyr (>=2.2.0)

Suggests aws.s3, R.utils, withr, testthat, DBItest, knitr, rmarkdown,
RSQLite, ssh, Andromeda, dplyr, RPostgres, odbc, duckdb,
bigrquery, pool, ParallelLogger, AzureStor

License Apache License

VignetteBuilder knitr

URL https://ohdsi.github.io/DatabaseConnector/,
https://github.com/OHDSI/DatabaseConnector

BugReports https://github.com/OHDSI/DatabaseConnector/issues
Copyright See file COPYRIGHTS

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

https://ohdsi.github.io/DatabaseConnector/
https://github.com/OHDSI/DatabaseConnector
https://github.com/OHDSI/DatabaseConnector/issues

Author Martijn Schuemie [aut, cre],
Marc Suchard [aut],
Adam Black [aut],
Observational Health Data Science and Informatics [cph],
Microsoft Inc. [cph] (SQL Server JDBC driver),
PostgreSQL Global Development Group [cph] (PostgreSQL JDBC driver),
Oracle Inc. [cph] (Oracle JDBC driver),
Amazon Inc. [cph] (RedShift JDBC driver)

Maintainer Martijn Schuemie <schuemie@ohdsi.org>
Repository CRAN
Date/Publication 2026-01-09 09:31:28 UTC

Contents

assertTempEmulationSchemaSet
computeDataHash,
COMNECE . . . vt v v e e e e e e e e e e e e e e e e
createConnectionDetails
createDbiConnectionDetails
createZipFile
DatabaseConnectorDriver
dbAppendTable,DatabaseConnectorConnection,character-method
dbClearResult,DatabaseConnectorDbiResult-method
dbClearResult,DatabaseConnectorJdbcResult-method
dbColumnInfo,DatabaseConnectorDbiResult-method
dbColumnInfo,DatabaseConnectorJdbcResult-method
dbConnect,DatabaseConnectorDriver-method
dbCreateTable,DatabaseConnectorConnection-method
dbDisconnect,DatabaseConnectorConnection-method
dbExecute,DatabaseConnectorDbiConnection,character-method
dbExecute,DatabaseConnectorJdbcConnection,character-method
dbExistsTable,DatabaseConnectorConnection,character-method
dbFetch,DatabaseConnectorDbiResult-method
dbFetch,DatabaseConnectorJdbcResult-method
dbGetlnfo,DatabaseConnectorConnection-method
dbGetlnfo,DatabaseConnectorDriver-method
dbGetQuery,DatabaseConnectorDbiConnection,character-method
dbGetQuery,DatabaseConnectorJdbcConnection,character-method
dbGetRowCount,DatabaseConnectorDbiResult-method
dbGetRowCount,DatabaseConnectorJdbcResult-method
dbGetRowsAffected,DatabaseConnectorDbiResult-method
dbGetRowsAffected,DatabaseConnectorJdbcResult-method
dbGetStatement,DatabaseConnectorDbiResult-method
dbGetStatement,DatabaseConnectorJdbcResult-method
dbHasCompleted,DatabaseConnectorDbiResult-method
dbHasCompleted,DatabaseConnectorJdbcResult-method
dblIsValid,DatabaseConnectorDbiConnection-method

Contents

assertTempEmulationSchemaSet 3

Index

dblIsValid,DatabaseConnectorJdbcConnection-method 40
dbListFields,DatabaseConnectorConnection,character-method 41
dbListTables,DatabaseConnectorConnection-method 42
dbms . . . e e e e 43
dbReadTable,DatabaseConnectorConnection,character-method 44
dbRemoveTable,DatabaseConnectorConnection,ANY-method 45
dbSendQuery,DatabaseConnectorDbiConnection,character-method 46
dbSendQuery,DatabaseConnectorJdbcConnection,character-method 47
dbSendStatement,DatabaseConnectorConnection,character-method 48
dbUnloadDriver,DatabaseConnectorDriver-method 49
dbWriteTable,DatabaseConnectorConnection,ANY-method 50
disconnect e e e e 52
downloadJdbcDrivers L e 52
dropEmulatedTempTables oL 54
executeSql L e 54
existsTable e 56
extractQueryTimes 56
getAvailableJavaHeapSpace Lo 57
getTableNames e 57
inDatabaseSchema 58
insertTable 59
isSqlReservedWord 61
JdbeDrivers oL 62
querySql . . . e 62
querySqlToAndromeda 64
renderTranslateExecuteSql 65
renderTranslateQueryApplyBatched oo 67
renderTranslateQuerySql L 69
renderTranslateQuerySqlToAndromeda 71
requiresTempEmulation L 73

74

assertTempEmulationSchemaSet

Assert the temp emulation schema is set

Description

Asserts the temp emulation schema is set for DBMSs requiring temp table emulation.

If you know your code uses temp tables, it is a good idea to call this function first, so it can throw
an informative error if the user forgot to set the temp emulation schema.

4 computeDataHash

Usage
assertTempEmulationSchemaSet
dbms,
tempEmulationSchema = getOption("”sqlRenderTempEmulationSchema")
)
Arguments
dbms The type of DBMS running on the server. See connect () or createConnectionDetails()
for valid values.
tempEmulationSchema
The temp emulation schema specified by the user.
Value

Does not return anything. Throws an error if the DBMS requires temp emulation but the temp
emulation schema is not set.

computeDataHash Compute hash of data

Description

Compute a hash of the data in the database schema. If the data changes, this should produce a
different hash code. Specifically, the hash is based on the field names, field types, and table row
counts.

Usage

computeDataHash(connection, databaseSchema, tables = NULL, progressBar = TRUE)

Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect ().

databaseSchema The name of the database schema. See details for platform-specific details.

tables (Optional) A list of tables to restrict to.
progressBar When true, a progress bar is shown based on the number of tables in the database
schema.
Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

connect 5

Value

A string representing the MDS5 hash code.

connect connect

Description

Creates a connection to a database server .There are four ways to call this function:

e connect(dbms, user, password, server, port, extraSettings, oracleDriver, pathToDriver)

e connect(connectionDetails)
e connect(dbms, connectionString, pathToDriver))

e connect(dbms, connectionString, user, password, pathToDriver)

DBMS parameter details::
Depending on the DBMS, the function arguments have slightly different interpretations:
Oracle:

¢ user. The user name used to access the server
* password. The password for that user

e server. This field contains the SID, or host and servicename, SID, or TNSName: ’sid’,
*host/sid’, "host/service name’, or ’tnsname’

* port. Specifies the port on the server (default = 1521)

* extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"(PROTOCOL=tcps)")

e oracleDriver. The driver to be used. Choose between "thin" or "oci".
* pathToDriver. The path to the folder containing the Oracle JDBC driver JAR files.

Microsoft SQL Server:

 user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

* password. The password used to log on to the server
¢ server. This field contains the host name of the server
¢ port. Not used for SQL Server

e extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"encrypt=true; trustServerCertificate=false;")

* pathToDriver. The path to the folder containing the SQL Server JDBC driver JAR files.
Microsoft PDW:

 user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

* password. The password used to log on to the server

connect

e server. This field contains the host name of the server
¢ port. Not used for SQL Server

* extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"encrypt=true; trustServerCertificate=false;")

e pathToDriver. The path to the folder containing the SQL Server JDBC driver JAR files.
PostgreSQL:

* user. The user used to log in to the server
* password. The password used to log on to the server

* server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

* port. Specifies the port on the server (default = 5432)

* extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

e pathToDriver. The path to the folder containing the PostgreSQL JDBC driver JAR files.

Redshift:

* user. The user used to log in to the server
* password. The password used to log on to the server

* server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

* port. Specifies the port on the server (default = 5439)
* ‘extraSettings The configuration settings for the connection (i.e. SSL Settings such as "ssl=true&sslfactory=com.amazc
* pathToDriver. The path to the folder containing the RedShift JDBC driver JAR files.

Netezza:

* user. The user used to log in to the server
* password. The password used to log on to the server

* server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

* port. Specifies the port on the server (default = 5480)

e extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

* pathToDriver. The path to the folder containing the Netezza JDBC driver JAR file (nzjdbc.jar).
Impala:

¢ user. The user name used to access the server

* password. The password for that user

¢ server. The host name of the server

* port. Specifies the port on the server (default = 21050)

e extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"SSLKeyStorePwd=**%**")

* pathToDriver. The path to the folder containing the Impala JDBC driver JAR files.
SQLite:

 server. The path to the SQLIte file.
DuckDB:

connect 7

* server. The path to the DuckDB file.

* extraSettings. Additional settings for DuckDB. For DuckDB specifically, if extraSettings$config
is provided, it will be passed to the duckdb: : duckdb () constructor. For example: extraSettings
=list(config=1ist(memory_limit = "8GB", preserve_insertion_order = "false"))

Spark / Databricks:
Currently both JDBC and ODBC connections are supported for Spark. Set the connectionString
argument to use JDBC, otherwise ODBC is used:

e connectionString. The JDBC connection string (e.g. something like ’jdbc:databricks://my-
org.cloud.databricks.com:443/default;transportMode=http;ssl=1; AuthMech=3;httpPath=/sql/1.0/warehouses/abcde 12

e user. The user name used to access the server. This can be set to ’token’ when using a
personal token (recommended).

* password. The password for that user. This should be your personal token when using a
personal token (recommended).

* server. The host name of the server (when using ODBC), e.g. my-org.cloud.databricks.com’)

* port. Specifies the port on the server (when using ODBC)

* extraSettings. Additional settings for the ODBC connection, for example extraSettings
= 1list(HTTPPath = "/sql/1.0@/warehouses/abcde12345", SSL =1, ThriftTransport =
2, AuthMech = 3)

Snowflake:
e connectionString. The connection string (e.g. starting with ’jdbc:snowflake://host:port/?db=database”’).
 user. The user name used to access the server.
* password. The password for that user.
InterSystems IRIS:
e connectionString. The connection string (e.g. starting with ’jdbc:IRIS://host:port/namespace’).

Alternatively, you can provide values for server and port, in which case the default USER
namespace is used to connect.

¢ user. The user name used to access the server.
* password. The password for that user.

* pathToDriver. The path to the folder containing the InterSystems IRIS JDBC driver JAR
file.

Windows authentication for SQL Server::

To be able to use Windows authentication for SQL Server (and PDW), you have to install the
JDBC driver. Download the version 9.2.0 .zip from Microsoft and extract its contents to a
folder. In the extracted folder you will find the file sqljdbc_9.2/enu/auth/x64/mssql-jdbc_auth-
9.2.0.x64.dll (64-bits) or ssqljdbc_9.2/enu/auth/x86/mssql-jdbc_auth-9.2.0.x86.d1l (32-bits), which
needs to be moved to location on the system path, for example to c:/windows/system32. If you
not have write access to any folder in the system path, you can also specify the path to the folder
containing the dll by setting the environmental variable PATH_TO_AUTH_DLL, so for example
Sys.setenv("PATH_TO_AUTH_DLL" = "c:/temp") Note that the environmental variable needs to
be set before calling connect () for the first time.

Arguments

connectionDetails

An object of class connectionDetails as created by the createConnectionDetails()
function.

https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver15#92-releases

8 connect

dbms The type of DBMS running on the server. Valid values are

* "oracle" for Oracle

* "postgresql" for PostgreSQL

* "redshift" for Amazon Redshift

* "sql server" for Microsoft SQL Server

e "pdw" for Microsoft Parallel Data Warehouse (PDW)
* "netezza" for IBM Netezza

* "bigquery" for Google BigQuery

» "sqlite" for SQLite

* "sqglite extended" for SQLite with extended types (DATE and DATETIME)
* "spark" for Spark

* "snowflake" for Snowflake

* "iris" for InterSystems IRIS

user The user name used to access the server.
password The password for that user.

server The name of the server.

port (optional) The port on the server to connect to.

extraSettings (optional) Additional configuration settings specific to the database provider to
configure things as security for SSL. For connections using JDBC these will
be appended to end of the connection string. For connections using DBI, these
settings will additionally be used to call DBI: : dbConnect ().

oracleDriver Specify which Oracle drive you want to use. Choose between "thin" or "oci”.
connectionString
The JDBC connection string. If specified, the server, port, extraSettings,

and oracleDriver fields are ignored. If user and password are not specified,
they are assumed to already be included in the connection string.

pathToDriver Path to a folder containing the JDBC driver JAR files. See downloadJdbcDrivers()
for instructions on how to download the relevant drivers.

Details

This function creates a connection to a database.

Value

An object that extends DBIConnection in a database-specific manner. This object is used to direct
commands to the database engine.

Examples

Not run:

connectionDetails <- createConnectionDetails(
dbms = "postgresql”,
server = "localhost/postgres”,
user = "root”,

createConnectionDetails 9

"

password = "xxx
)
conn <- connect(connectionDetails)
dbGetQuery(conn, "SELECT COUNT(x) FROM person")

disconnect(conn)

conn <- connect(dbms = "sqgl server”, server = "RNDUSRDHIT®@6.jnj.com")
dbGetQuery(conn, "SELECT COUNT(x) FROM concept”)

disconnect(conn)

conn <- connect(
dbms = "oracle”,
server = "127.0.0.1/xe",
user = "system",
password = "xxx",
pathToDriver = "c:/temp”

)

dbGetQuery(conn, "SELECT COUNT(*) FROM test_table")

disconnect(conn)

conn <- connect(
dbms = "postgresql”,
connectionString = "jdbc:postgresql://127.0.0.1:5432/cmd_database”
)
dbGetQuery(conn, "SELECT COUNT(x) FROM person")
disconnect(conn)

End(Not run)

createConnectionDetails
createConnectionDetails

Description

Creates a list containing all details needed to connect to a database. There are three ways to call this
function:

e createConnectionDetails(dbms, user, password, server, port, extraSettings, oracleDriver,
pathToDriver)
* createConnectionDetails(dbms, connectionString, pathToDriver)

* createConnectionDetails(dbms, connectionString, user, password, pathToDriver)

DBMS parameter details::
Depending on the DBMS, the function arguments have slightly different interpretations:
Oracle:

* user. The user name used to access the server

* password. The password for that user

10

createConnectionDetails

server. This field contains the SID, or host and servicename, SID, or TNSName: ’sid’,
*host/sid’, “host/service name’, or "tnsname’

port. Specifies the port on the server (default = 1521)

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"(PROTOCOL=tcps)")

oracleDriver. The driver to be used. Choose between "thin" or "oci".
pathToDriver. The path to the folder containing the Oracle JDBC driver JAR files.

Microsoft SQL Server:

user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

password. The password used to log on to the server
server. This field contains the host name of the server
port. Not used for SQL Server

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"encrypt=true; trustServerCertificate=false;")

pathToDriver. The path to the folder containing the SQL Server JDBC driver JAR files.

Microsoft PDW:

user. The user used to log in to the server. If the user is not specified, Windows Integrated
Security will be used, which requires the SQL Server JDBC drivers to be installed (see details
below).

password. The password used to log on to the server
server. This field contains the host name of the server
port. Not used for SQL Server

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"encrypt=true; trustServerCertificate=false;")

pathToDriver. The path to the folder containing the SQL Server JDBC driver JAR files.

PostgreSQL:

user. The user used to log in to the server
password. The password used to log on to the server

server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

port. Specifies the port on the server (default = 5432)

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

pathToDriver. The path to the folder containing the PostgreSQL JDBC driver JAR files.

Redshift:

user. The user used to log in to the server
password. The password used to log on to the server

server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

port. Specifies the port on the server (default = 5439)

createConnectionDetails 11

‘extraSettings The configuration settings for the connection (i.e. SSL Settings such as "ssl=true&sslfactory=com.amazc

pathToDriver. The path to the folder containing the RedShift JDBC driver JAR files.

Netezza:

user. The user used to log in to the server
password. The password used to log on to the server

server. This field contains the host name of the server and the database holding the relevant
schemas: host/database

port. Specifies the port on the server (default = 5480)

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"ssl=true")

pathToDriver. The path to the folder containing the Netezza JDBC driver JAR file (nzjdbc.jar).

Impala:

user. The user name used to access the server
password. The password for that user

server. The host name of the server

port. Specifies the port on the server (default = 21050)

extraSettings. The configuration settings for the connection (i.e. SSL Settings such as
"SSLKeyStorePwd=**%**")

pathToDriver. The path to the folder containing the Impala JDBC driver JAR files.

SQLite:

server. The path to the SQLIte file.

DuckDB:

server. The path to the DuckDB file.

extraSettings. Additional settings for DuckDB. For DuckDB specifically, if extraSettings$config
is provided, it will be passed to the duckdb: : duckdb () constructor. For example: extraSettings

=list(config=1ist(memory_limit = "8GB", preserve_insertion_order = "false"))

Spark / Databricks:

Currently both JDBC and ODBC connections are supported for Spark. Set the connectionString
argument to use JDBC, otherwise ODBC is used:

connectionString. The JDBC connection string (e.g. something like ’jdbc:databricks://my-

org.cloud.databricks.com:443/default;transportMode=http;ssl=1; AuthMech=3;httpPath=/sql/1.0/warehouses/abcde 12

user. The user name used to access the server. This can be set to 'token’ when using a
personal token (recommended).

password. The password for that user. This should be your personal token when using a
personal token (recommended).

server. The host name of the server (when using ODBC), e.g. "my-org.cloud.databricks.com’)
port. Specifies the port on the server (when using ODBC)

extraSettings. Additional settings for the ODBC connection, for example extraSettings
= 1ist(HTTPPath = "/sql/1.0@/warehouses/abcde12345", SSL =1, ThriftTransport =
2, AuthMech = 3)

Snowflake:

connectionString. The connection string (e.g. starting with ’jdbc:snowflake://host:port/?db=database’).

12 createConnectionDetails

¢ user. The user name used to access the server.
* password. The password for that user.

InterSystems IRIS:

e connectionString. The connection string (e.g. starting with ’jdbc:IRIS://host:port/namespace’).
Alternatively, you can provide values for server and port, in which case the default USER
namespace is used to connect.

¢ user. The user name used to access the server.
 password. The password for that user.

e pathToDriver. The path to the folder containing the InterSystems IRIS JDBC driver JAR
file.

Windows authentication for SQL Server::

To be able to use Windows authentication for SQL Server (and PDW), you have to install the
JDBC driver. Download the version 9.2.0 .zip from Microsoft and extract its contents to a
folder. In the extracted folder you will find the file sqljdbc_9.2/enu/auth/x64/mssql-jdbc_auth-
9.2.0.x64.d11 (64-bits) or ssqljdbc_9.2/enu/auth/x86/mssql-jdbc_auth-9.2.0.x86.d11 (32-bits), which
needs to be moved to location on the system path, for example to c:/windows/system32. If you
not have write access to any folder in the system path, you can also specify the path to the folder
containing the dll by setting the environmental variable PATH_TO_AUTH_DLL, so for example
Sys.setenv("PATH_TO_AUTH_DLL" = "c:/temp") Note that the environmental variable needs to
be set before calling connect () for the first time.

Arguments

dbms The type of DBMS running on the server. Valid values are
* "oracle" for Oracle
* "postgresql" for PostgreSQL
¢ "redshift" for Amazon Redshift
* "sql server" for Microsoft SQL Server
* "pdw" for Microsoft Parallel Data Warehouse (PDW)
¢ "netezza" for IBM Netezza
* "bigquery" for Google BigQuery
* "sqlite" for SQLite
 "sqlite extended" for SQLite with extended types (DATE and DATETIME)
* "spark" for Spark
* "snowflake" for Snowflake
* "iris" for InterSystems IRIS
user The user name used to access the server.
password The password for that user.
server The name of the server.
port (optional) The port on the server to connect to.

extraSettings (optional) Additional configuration settings specific to the database provider to
configure things as security for SSL. For connections using JDBC these will
be appended to end of the connection string. For connections using DBI, these
settings will additionally be used to call DBI: : dbConnect ().

https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver15#92-releases

createDbiConnectionDetails 13

oracleDriver Specify which Oracle drive you want to use. Choose between "thin" or "oci”.

connectionString
The JDBC connection string. If specified, the server, port, extraSettings,
and oracleDriver fields are ignored. If user and password are not specified,
they are assumed to already be included in the connection string.

pathToDriver Path to a folder containing the JDBC driver JAR files. See downloadJdbcDrivers()
for instructions on how to download the relevant drivers.

Details

This function creates a list containing all details needed to connect to a database. The list can then
be used in the connect () function.

It is highly recommended to use a secure approach to storing credentials, so not to have your cre-
dentials in plain text in your R scripts. The examples demonstrate how to use the keyring package.

Value

A list with all the details needed to connect to a database.

Examples

Not run:
Needs to be done only once on a machine. Credentials will then be stored in
the operating system's secure credential manager:

keyring: :key_set_with_value("”server”, password = "localhost/postgres")
keyring::key_set_with_value("user"”, password = "root”)
keyring: :key_set_with_value("password”, password = "secret")

Create connection details using keyring. Note: the connection details will
not store the credentials themselves, but the reference to get the credentials.
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,
server = keyring::key_get("server"),
user = keyring::key_get("user”),
password = keyring: :key_get("password"),
)
conn <- connect(connectionDetails)
dbGetQuery(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

End(Not run)

createDbiConnectionDetails
Create DBI connection details

14 createZipFile

Description

For advanced users only. This function will allow DatabaseConnector to wrap any DBI driver. Us-
ing a driver that DatabaseConnector hasn’t been tested with may give unpredictable performance.
Use at your own risk. No support will be provided.

Usage

createDbiConnectionDetails(dbms, drv, ...)

Arguments

dbms The type of DBMS running on the server. Valid values are

* "oracle" for Oracle

* "postgresql" for PostgreSQL

* "redshift" for Amazon Redshift

* "sql server" for Microsoft SQL Server

e "pdw" for Microsoft Parallel Data Warehouse (PDW)
* "netezza" for IBM Netezza

* "bigquery" for Google BigQuery

 "sqlite" for SQLite

* "sqglite extended" for SQLite with extended types (DATE and DATETIME)
* "spark" for Spark

* "snowflake" for Snowflake

¢ "iris" for InterSystems IRIS

drv An object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

authentication arguments needed by the DBMS instance; these typically in-
clude user, password, host, port, dbname, etc. For details see the appropriate
DBIDriver

Value

A list with all the details needed to connect to a database.

createZipFile Compress files and/or folders into a single zip file

Description

Compress files and/or folders into a single zip file

Usage

createZipFile(zipFile, files, rootFolder = getwd(), compressionLevel = 9)

DatabaseConnectorDriver 15

Arguments
zipFile The path to the zip file to be created.
files The files and/or folders to be included in the zip file. Folders will be included
recursively.
rootFolder The root folder. All files will be stored with relative paths relative to this folder.
compressionLevel
A number between 1 and 9. 9 compresses best, but it also takes the longest.
Details

Uses Java’s compression library to create a zip file. It is similar to utils: : zip, except that it does
not require an external zip tool to be available on the system path.

DatabaseConnectorDriver
Create a DatabaseConnectorDriver object

Description

Create a DatabaseConnectorDriver object

Usage

DatabaseConnectorDriver()

dbAppendTable,DatabaseConnectorConnection, character-method
Insert rows into a table

Description

The dbAppendTable() method assumes that the table has been created beforehand, e.g. with
dbCreateTable(). The default implementation calls sqlAppendTableTemplate () and then dbExecute()
with the param argument. Use dbAppendTableArrow() to append data from an Arrow stream.

Usage

S4 method for signature 'DatabaseConnectorConnection,character’
dbAppendTable(

conn,

name,

value,

databaseSchema = NULL,

temporary = FALSE,

D

row.names = NULL

16 dbClearResult,DatabaseConnectorDbiResult-method

Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:
* acharacter string with the unquoted DBMS table name, e.g. "table_name”,
e acall to Id() with components to the fully qualified table name, e.g. Id(schema
="my_schema”, table = "table_name")
¢ acall to SQL () with the quoted and fully qualified table name given verba-
tim, e.g. SQL(' "my_schema”. "table_name"")
value A data.frame (or coercible to data.frame).

databaseSchema The name of the database schema. See details for platform-specific details.
temporary Should the table created as a temp table?
Other parameters passed on to methods.

row.names Must be NULL.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

dbAppendTable () returns a scalar numeric.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTableArrow(), dbCreateTable(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement (),
dbUnquoteldentifier(), dbWriteTable(), dbWriteTableArrow()

dbClearResult,DatabaseConnectorDbiResult-method
Clear a result set

Description

Frees all resources (local and remote) associated with a result set. This step is mandatory for all
objects obtained by calling dbSendQuery () or dbSendStatement ().

dbClearResult,DatabaseConnectorJdbcResult-method 17

Usage
S4 method for signature 'DatabaseConnectorDbiResult’
dbClearResult(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbClearResult () returns TRUE, invisibly, for result sets obtained from dbSendQuery (), dbSendStatement (),
or dbSendQueryArrow(),

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbColumnInfo(), dbFetch(), dbGetInfo(),
dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbFetchArrow(), dbFetchArrowChunk(),
dbHasCompleted(), dbIsValid()

Other data retrieval generics: dbBind(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), doHasCompleted(), dbSendQuery (), dbSendQueryArrow()

Other command execution generics: dbBind(), dbExecute(), dbGetRowsAffected(), dbSendStatement ()

dbClearResult,DatabaseConnectorJdbcResult-method
Clear a result set

Description

Frees all resources (local and remote) associated with a result set. This step is mandatory for all
objects obtained by calling dbSendQuery () or dbSendStatement().

Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbClearResult(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

18 dbColumnlInfo,DatabaseConnectorDbiResult-method

Value

dbClearResult () returns TRUE, invisibly, for result sets obtained from dbSendQuery (), dbSendStatement (),
or dbSendQueryArrow(),

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbColumnInfo(), dbFetch(), dbGetInfo(),
dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), doHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbFetchArrow(), dbFetchArrowChunk(),
dbHasCompleted(), dbIsValid()

Other data retrieval generics: dbBind(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), doHasCompleted(), dbSendQuery (), dbSendQueryArrow()

Other command execution generics: dbBind(), dbExecute(), dbGetRowsAffected(), dbSendStatement ()

dbColumnInfo,DatabaseConnectorDbiResult-method
Information about result types

Description

Produces a data.frame that describes the output of a query. The data.frame should have as many
rows as there are output fields in the result set, and each column in the data.frame describes an
aspect of the result set field (field name, type, etc.)

Usage
S4 method for signature 'DatabaseConnectorDbiResult’
dbColumnInfo(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbColumnInfo() returns a data frame with at least two columns "name” and "type" (in that order)
(and optional columns that start with a dot). The "name” and "type" columns contain the names
and types of the R columns of the data frame that is returned from dbFetch(). The "type"” column
is of type character and only for information. Do not compute on the "type” column, instead use
dbFetch(res, n=0) to create a zero-row data frame initialized with the correct data types.

dbColumnlnfo,DatabaseConnectorJdbcResult-method 19

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbFetch(), dbGetInfo(),
dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuotelLiteral(), dbQuoteString()

dbColumnInfo,DatabaseConnectorJdbcResult-method
Information about result types

Description

Produces a data.frame that describes the output of a query. The data.frame should have as many
rows as there are output fields in the result set, and each column in the data.frame describes an
aspect of the result set field (field name, type, etc.)

Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbColumnInfo(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbColumnInfo() returns a data frame with at least two columns "name” and "type" (in that order)
(and optional columns that start with a dot). The "name” and "type" columns contain the names
and types of the R columns of the data frame that is returned from dbFetch(). The "type"” column
is of type character and only for information. Do not compute on the "type” column, instead use
dbFetch(res, n=0) to create a zero-row data frame initialized with the correct data types.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbFetch(), dbGetInfo(),
dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

20 dbConnect,DatabaseConnectorDriver-method

dbConnect,DatabaseConnectorDriver-method
Create a connection to a DBMS

Description

Connect to a database. This function is synonymous with the connect () function. except a dummy
driver needs to be specified

Usage
S4 method for signature 'DatabaseConnectorDriver'
dbConnect(drv, ...)

Arguments
drv The result of the DatabaseConnectorDriver () function

Other parameters. These are the same as expected by the connect () function.

Value

Returns a DatabaseConnectorConnection object that can be used with most of the other functions
in this package.

Examples

Not run:
conn <- dbConnect(DatabaseConnectorDriver(),
dbms = "postgresql”,
server = "localhost/ohdsi”,
user = "joe",
password = "secret”
)
querySql(conn, "SELECT * FROM cdm_synpuf.person;")
dbDisconnect(conn)

End(Not run)

dbCreateTable,DatabaseConnectorConnection-method 21

dbCreateTable,DatabaseConnectorConnection-method
Create a table in the database

Description

The default dbCreateTable () method calls sqlCreateTable() and dbExecute(). Use dbCreateTableArrow()
to create a table from an Arrow schema.

Usage

S4 method for signature 'DatabaseConnectorConnection'’
dbCreateTable(

conn,

name,

fields,

databaseSchema = NULL,

row.names = NULL,

temporary = FALSE

)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:
* acharacter string with the unquoted DBMS table name, e.g. "table_name”,
* acallto Id() with components to the fully qualified table name, e.g. Id(schema
="my_schema”, table = "table_name")
¢ acall to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL(' "my_schema”."table_name"")
fields Either a character vector or a data frame.

A named character vector: Names are column names, values are types. Names
are escaped with dbQuoteIdentifier(). Field types are unescaped.

A data frame: field types are generated using dbDataType().
databaseSchema The name of the database schema. See details for platform-specific details.
Other parameters passed on to methods.
row.names Must be NULL.

temporary Should the table created as a temp table?

22 dbDisconnect,DatabaseConnectorConnection-method

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

dbCreateTable() returns TRUE, invisibly.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbDisconnect,DatabaseConnectorConnection-method
Disconnect (close) a connection

Description

This closes the connection, discards all pending work, and frees resources (e.g., memory, sockets).

Usage
S4 method for signature 'DatabaseConnectorConnection’
dbDisconnect(conn)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
Value

dbDisconnect () returns TRUE, invisibly.

dbExecute,DatabaseConnectorDbiConnection,character-method 23

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly (), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(),
dbSendStatement (), dbUnquoteldentifier(), doWriteTable(), doWriteTableArrow()

dbExecute,DatabaseConnectorDbiConnection, character-method
Change database state

Description

Executes a statement and returns the number of rows affected. dbExecute() comes with a de-
fault implementation (which should work with most backends) that calls dbSendStatement (), then
dbGetRowsAffected(), ensuring that the result is always freed by dbClearResult(). For passing
query parameters, see dbBind(), in particular the "The command execution flow" section.

Usage
S4 method for signature 'DatabaseConnectorDbiConnection,character’
dbExecute(conn, statement, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

Details

You can also use dbExecute() to call a stored procedure that performs data manipulation or other
actions that do not return a result set. To execute a stored procedure that returns a result set, or a
data manipulation query that also returns a result set such as INSERT INTO ... RETURNING ...,
use dbGetQuery () instead.

Value

dbExecute() always returns a scalar numeric that specifies the number of rows affected by the
statement.

24 dbExecute,DatabaseConnectorJdbcConnection,character-method

See Also

For queries: dbSendQuery () and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(),
dbSendStatement (), dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other command execution generics: dbBind(), dbClearResult (), dbGetRowsAffected(), dbSendStatement ()

dbExecute,DatabaseConnectorJdbcConnection, character-method
Change database state

Description

Executes a statement and returns the number of rows affected. dbExecute() comes with a de-
fault implementation (which should work with most backends) that calls dbSendStatement (), then
dbGetRowsAffected(), ensuring that the result is always freed by dbClearResult(). For passing
query parameters, see dbBind(), in particular the "The command execution flow" section.

Usage
S4 method for signature 'DatabaseConnectorJdbcConnection,character’
dbExecute(conn, statement, ...)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

Details

You can also use dbExecute() to call a stored procedure that performs data manipulation or other
actions that do not return a result set. To execute a stored procedure that returns a result set, or a
data manipulation query that also returns a result set such as INSERT INTO ... RETURNING ...,
use dbGetQuery() instead.

Value

dbExecute() always returns a scalar numeric that specifies the number of rows affected by the
statement.

dbExistsTable,DatabaseConnectorConnection,character-method 25

See Also

For queries: dbSendQuery () and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(),
dbSendStatement (), dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other command execution generics: dbBind(), dbClearResult (), dbGetRowsAffected(), dbSendStatement ()

dbExistsTable,DatabaseConnectorConnection, character-method
Does a table exist?

Description

Returns if a table given by name exists in the database.

Usage
S4 method for signature 'DatabaseConnectorConnection,character'
dbExistsTable(conn, name, databaseSchema = NULL, ...)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:

* acharacter string with the unquoted DBMS table name, e.g. "table_name”,

e acall to Id() with components to the fully qualified table name, e.g. Id(schema
="my_schema”, table = "table_name")

* acall to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL(' "my_schema"”. "table_name"")
databaseSchema The name of the database schema. See details for platform-specific details.

Other parameters passed on to methods.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

26 dbFetch,DatabaseConnectorDbiResult-method

Value

dbExistsTable() returns a logical scalar, TRUE if the table or view specified by the name argument
exists, FALSE otherwise.

This includes temporary tables if supported by the database.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExecute(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbFetch,DatabaseConnectorDbiResult-method
Fetch records from a previously executed query

Description

Fetch the next n elements (rows) from the result set and return them as a data.frame.

Usage
S4 method for signature 'DatabaseConnectorDbiResult’
dbFetch(res, n = -1, ...)
Arguments
res An object inheriting from DBIResult, created by dbSendQuery ().
n maximum number of records to retrieve per fetch. Use n=-1 or n=Inf to
retrieve all pending records. Some implementations may recognize other special
values.

Other arguments passed on to methods.

Details

fetch() is provided for compatibility with older DBI clients - for all new code you are strongly
encouraged to use dbFetch(). The default implementation for dbFetch() calls fetch() so that it
is compatible with existing code. Modern backends should implement for dbFetch() only.

Value

dbFetch() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.
Passing n = NA is supported and returns an arbitrary number of rows (at least one) as specified by
the driver, but at most the remaining rows in the result set.

dbFetch,DatabaseConnectorJdbcResult-method 27

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbGetInfo(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), dobHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery (), dbSendQueryArrow()

dbFetch,DatabaseConnectorJdbcResult-method
Fetch records from a previously executed query

Description

Fetch the next n elements (rows) from the result set and return them as a data.frame.

Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbFetch(res, n = -1, ...)
Arguments
res An object inheriting from DBIResult, created by dbSendQuery ().
n maximum number of records to retrieve per fetch. Use n=-1 or n=Inf to
retrieve all pending records. Some implementations may recognize other special
values.

Other arguments passed on to methods.

Details

fetch() is provided for compatibility with older DBI clients - for all new code you are strongly
encouraged to use dbFetch(). The default implementation for dbFetch() calls fetch() so that it
is compatible with existing code. Modern backends should implement for dbFetch() only.

Value

dbFetch() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.
Passing n = NA is supported and returns an arbitrary number of rows (at least one) as specified by
the driver, but at most the remaining rows in the result set.

28 dbGetlnfo,DatabaseConnectorConnection-method

See Also

Close the result set with dbClearResult () as soon as you finish retrieving the records you want.

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbGetInfo(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement (), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other data retrieval generics: dbBind(), dbClearResult (), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), doHasCompleted(), dbSendQuery (), dbSendQueryArrow()

dbGetInfo,DatabaseConnectorConnection-method
Get DBMS metadata

Description

Retrieves information on objects of class DBIDriver, DBIConnection or DBIResult.

Usage

S4 method for signature 'DatabaseConnectorConnection’
dbGetInfo(dbObj, ...)

Arguments
dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult
Other arguments to methods.
Value

For objects of class DBIDriver, dbGetInfo() returns a named list that contains at least the following
components:

e driver.version: the package version of the DBI backend,

» client.version: the version of the DBMS client library.
For objects of class DBIConnection, dbGetInfo() returns a named list that contains at least the
following components:

e db.version: version of the database server,

¢ dbname: database name,

e username: username to connect to the database,

¢ host: hostname of the database server,

* port: port on the database server. It must not contain a password component. Components
that are not applicable should be set to NA.

dbGetInfo,DatabaseConnectorDriver-method 29

For objects of class DBIResult, dbGetInfo() returns a named list that contains at least the following
components:

* statatment: the statement used with dbSendQuery () or dbExecute(), as returned by dbGetStatement (),
* row.count: the number of rows fetched so far (for queries), as returned by dbGetRowCount (),
* rows.affected: the number of rows affected (for statements), as returned by dbGetRowsAffected()

* has.completed: a logical that indicates if the query or statement has completed, as returned
by dbHasCompleted().

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetQuery(), dbGetQueryArrow(), doIsReadOnly(), dbIsValid(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement (),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetInfo,DatabaseConnectorDriver-method
Get DBMS metadata

Description

Retrieves information on objects of class DBIDriver, DBIConnection or DBIResult.

Usage

S4 method for signature 'DatabaseConnectorDriver'
dbGetInfo(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

Other arguments to methods.

30 dbGetInfo,DatabaseConnectorDriver-method

Value

For objects of class DBIDriver, dbGetInfo() returns a named list that contains at least the following
components:

* driver.version: the package version of the DBI backend,

* client.version: the version of the DBMS client library.
For objects of class DBIConnection, dbGetInfo() returns a named list that contains at least the
following components:

e db.version: version of the database server,

¢ dbname: database name,

* username: username to connect to the database,

¢ host: hostname of the database server,

e port: port on the database server. It must not contain a password component. Components

that are not applicable should be set to NA.

For objects of class DBIResult, dbGetInfo() returns a named list that contains at least the following
components:

statatment: the statement used with dbSendQuery () or dbExecute(), as returned by dbGetStatement (),
* row.count: the number of rows fetched so far (for queries), as returned by dbGetRowCount (),
* rows.affected: the number of rows affected (for statements), as returned by dbGetRowsAffected()

* has.completed: alogical that indicates if the query or statement has completed, as returned
by dbHasCompleted().

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), doDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetQuery,DatabaseConnectorDbiConnection,character-method 31

dbGetQuery,DatabaseConnectorDbiConnection, character-method
Retrieve results from a query

Description

Returns the result of a query as a data frame. dbGetQuery() comes with a default implementation
(which should work with most backends) that calls dbSendQuery(), then dbFetch(), ensuring
that the result is always freed by dbClearResult(). For retrieving chunked/paged results or for
passing query parameters, see dbSendQuery (), in particular the "The data retrieval flow" section.
For retrieving results as an Arrow object, see dbGetQueryArrow().

Usage
S4 method for signature 'DatabaseConnectorDbiConnection,character’
dbGetQuery(conn, statement, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

Details

This method is for SELECT queries only (incl. other SQL statements that return a SELECT-alike re-
sult, e.g., execution of a stored procedure or data manipulation queries like INSERT INTO ... RETURNING ...).
To execute a stored procedure that does not return a result set, use dbExecute().

Some backends may support data manipulation statements through this method for compatibility
reasons. However, callers are strongly advised to use dbExecute() for data manipulation state-
ments.

Value

dbGetQuery () always returns a data.frame, with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.

See Also

For updates: dbSendStatement () and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQueryArrow(), dbIsReadOnly (), dbIsValid(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

32 dbGetQuery,DatabaseConnectorJdbcConnection,character-method

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQueryArrow(), dbHasCompleted(), dbSendQuery (), dbSendQueryArrow()

dbGetQuery,DatabaseConnectorJdbcConnection, character-method
Retrieve results from a query

Description

Returns the result of a query as a data frame. dbGetQuery() comes with a default implementation
(which should work with most backends) that calls dbSendQuery(), then dbFetch(), ensuring
that the result is always freed by dbClearResult(). For retrieving chunked/paged results or for
passing query parameters, see dbSendQuery (), in particular the "The data retrieval flow" section.
For retrieving results as an Arrow object, see dbGetQueryArrow().

Usage
S4 method for signature 'DatabaseConnectorJdbcConnection,character’
dbGetQuery(conn, statement, ...)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

Details

This method is for SELECT queries only (incl. other SQL statements that return a SELECT-alike re-
sult, e.g., execution of a stored procedure or data manipulation queries like INSERT INTO ... RETURNING ...).
To execute a stored procedure that does not return a result set, use dbExecute().

Some backends may support data manipulation statements through this method for compatibility
reasons. However, callers are strongly advised to use dbExecute() for data manipulation state-
ments.

Value
dbGetQuery () always returns a data.frame, with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQueryArrow(), dbIsReadOnly (), dbIsValid(),dbListFields(),

dbGetRowCount,DatabaseConnectorDbiResult-method 33

dbListObjects(),dbListResults(),dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

dbGetRowCount,DatabaseConnectorDbiResult-method
The number of rows fetched so far

Description

Returns the total number of rows actually fetched with calls to dbFetch () for this result set.

Usage
S4 method for signature 'DatabaseConnectorDbiResult'
dbGetRowCount(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbGetRowCount () returns a scalar number (integer or numeric), the number of rows fetched so far.
After calling dbSendQuery (), the row count is initially zero. After a call to dbFetch() without
limit, the row count matches the total number of rows returned. Fetching a limited number of rows
increases the number of rows by the number of rows returned, even if fetching past the end of
the result set. For queries with an empty result set, zero is returned even after fetching. For data
manipulation statements issued with dbSendStatement (), zero is returned before and after calling
dbFetch().

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowsAffected(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuotelLiteral(), dbQuoteString()

34 dbGetRowsAffected,DatabaseConnectorDbiResult-method

dbGetRowCount,DatabaseConnectorJdbcResult-method
The number of rows fetched so far

Description

Returns the total number of rows actually fetched with calls to dbFetch () for this result set.

Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbGetRowCount(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbGetRowCount () returns a scalar number (integer or numeric), the number of rows fetched so far.
After calling dbSendQuery (), the row count is initially zero. After a call to dbFetch() without
limit, the row count matches the total number of rows returned. Fetching a limited number of rows
increases the number of rows by the number of rows returned, even if fetching past the end of
the result set. For queries with an empty result set, zero is returned even after fetching. For data
manipulation statements issued with dbSendStatement (), zero is returned before and after calling
dbFetch().

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowsAffected(), dbGetStatement(), doHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetRowsAffected,DatabaseConnectorDbiResult-method
The number of rows affected

Description

This method returns the number of rows that were added, deleted, or updated by a data manipulation
statement.

dbGetRowsAffected, DatabaseConnectorJdbcResult-method 35

Usage

S4 method for signature 'DatabaseConnectorDbiResult’
dbGetRowsAffected(res, ...)

Arguments

res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbGetRowsAffected() returns a scalar number (integer or numeric), the number of rows affected
by a data manipulation statement issued with dbSendStatement (). The value is available directly
after the call and does not change after calling dbFetch(). NA_integer_ or NA_numeric_ are
allowed if the number of rows affected is not known.

For queries issued with dbSendQuery (), zero is returned before and after the call to dbFetch(). NA
values are not allowed.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other command execution generics: dbBind(), dbClearResult (), dbExecute(), dbSendStatement ()

dbGetRowsAffected,DatabaseConnectorJdbcResult-method
The number of rows affected

Description

This method returns the number of rows that were added, deleted, or updated by a data manipulation

statement.
Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbGetRowsAffected(res, ...)
Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

36 dbGetStatement,DatabaseConnectorDbiResult-method

Value

dbGetRowsAffected() returns a scalar number (integer or numeric), the number of rows affected
by a data manipulation statement issued with dbSendStatement (). The value is available directly
after the call and does not change after calling dbFetch(). NA_integer_ or NA_numeric_ are
allowed if the number of rows affected is not known.

For queries issued with dbSendQuery (), zero is returned before and after the call to dbFetch(). NA
values are not allowed.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetStatement (), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other command execution generics: dbBind(), dbClearResult(), dbExecute(), dbSendStatement()

dbGetStatement,DatabaseConnectorDbiResult-method
Get the statement associated with a result set

Description

Returns the statement that was passed to dbSendQuery () or dbSendStatement().

Usage
S4 method for signature 'DatabaseConnectorDbiResult’
dbGetStatement(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbGetStatement () returns a string, the query used in either dbSendQuery () or dbSendStatement().

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount (), dbGetRowsAffected(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetStatement,DatabaseConnectorJdbcResult-method 37

dbGetStatement,DatabaseConnectorJdbcResult-method
Get the statement associated with a result set

Description

Returns the statement that was passed to dbSendQuery () or dbSendStatement ().

Usage
S4 method for signature 'DatabaseConnectorJdbcResult'
dbGetStatement(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbGetStatement () returns a string, the query used in either dbSendQuery () or dbSendStatement().

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), doGetRowsAffected(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbHasCompleted,DatabaseConnectorDbiResult-method
Completion status

Description

This method returns if the operation has completed. A SELECT query is completed if all rows have
been fetched. A data manipulation statement is always completed.

Usage
S4 method for signature 'DatabaseConnectorDbiResult’
dbHasCompleted(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

38 dbHasCompleted,DatabaseConnectorJdbcResult-method

Value

dbHasCompleted() returns a logical scalar. For a query initiated by dbSendQuery() with non-
empty result set, dbHasCompleted() returns FALSE initially and TRUE after calling dbFetch()
without limit. For a query initiated by dbSendStatement (), dbHasCompleted() always returns
TRUE.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbIsReadOnly(),
dbIsValid(), dbQuotelLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk (), dbIsValid()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), dbSendQuery (), dbSendQueryArrow()

dbHasCompleted,DatabaseConnectorJdbcResult-method
Completion status

Description

This method returns if the operation has completed. A SELECT query is completed if all rows have
been fetched. A data manipulation statement is always completed.

Usage
S4 method for signature 'DatabaseConnectorJdbcResult’
dbHasCompleted(res, ...)

Arguments
res An object inheriting from DBIResult.

Other arguments passed on to methods.

Value

dbHasCompleted() returns a logical scalar. For a query initiated by dbSendQuery() with non-
empty result set, dbHasCompleted() returns FALSE initially and TRUE after calling dbFetch()
without limit. For a query initiated by dbSendStatement(), dbHasCompleted() always returns
TRUE.

dbls Valid,Database ConnectorDbiConnection-method 39

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement (), dbIsReadOnly(),
dbIsValid(), dbQuotelLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbIsvValid()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), dbSendQuery (), dbSendQueryArrow()

dbIsValid,DatabaseConnectorDbiConnection-method
Is this DBMS object still valid?

Description

This generic tests whether a database object is still valid (i.e. it hasn’t been disconnected or cleared).

Usage

S4 method for signature 'DatabaseConnectorDbiConnection'’
dbIsValid(dbObj, ...)

Arguments
db0Obj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult
Other arguments to methods.
Value

dbIsValid() returns a logical scalar, TRUE if the object specified by dbObj is valid, FALSE oth-
erwise. A DBIConnection object is initially valid, and becomes invalid after disconnecting with
dbDisconnect(). For an invalid connection object (e.g., for some drivers if the object is saved
to a file and then restored), the method also returns FALSE. A DBIResult object is valid after a
call to dbSendQuery (), and stays valid even after all rows have been fetched; only clearing it with
dbClearResult() invalidates it. A DBIResult object is also valid after a call to dbSendStatement (),
and stays valid after querying the number of rows affected; only clearing it with dbClearResult()
invalidates it. If the connection to the database system is dropped (e.g., due to connectivity prob-
lems, server failure, etc.), dbIsValid() should return FALSE. This is not tested automatically.

40

dblsValid,DatabaseConnectorJdbcConnection-method

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbGetInfo(), dbIsReadOnly(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbHasCompleted()

dbIsValid,DatabaseConnectorJdbcConnection-method

Is this DBMS object still valid?

Description

This generic tests whether a database object is still valid (i.e. it hasn’t been disconnected or cleared).

Usage

S4 method for signature 'DatabaseConnectorJdbcConnection’
dbIsvValid(dbObj, ...)

Arguments
db0Obj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult
Other arguments to methods.
Value

dbIsValid() returns a logical scalar, TRUE if the object specified by dbObj is valid, FALSE oth-
erwise. A DBIConnection object is initially valid, and becomes invalid after disconnecting with
dbDisconnect(). For an invalid connection object (e.g., for some drivers if the object is saved
to a file and then restored), the method also returns FALSE. A DBIResult object is valid after a
call to dbSendQuery (), and stays valid even after all rows have been fetched; only clearing it with
dbClearResult() invalidates it. A DBIResult object is also valid after a call to dbSendStatement (),
and stays valid after querying the number of rows affected; only clearing it with dbClearResult()
invalidates it. If the connection to the database system is dropped (e.g., due to connectivity prob-
lems, server failure, etc.), dbIsValid() should return FALSE. This is not tested automatically.

dbListFields,DatabaseConnectorConnection,character-method 41

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbGetInfo(), dbIsReadOnly(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), doIsReadOnly(),dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount (), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbHasCompleted()

dbListFields,DatabaseConnectorConnection, character-method
List field names of a remote table

Description

Returns the field names of a remote table as a character vector.

Usage

S4 method for signature 'DatabaseConnectorConnection,character’
dbListFields(conn, name, databaseSchema = NULL, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:

* acharacter string with the unquoted DBMS table name, e.g. "table_name”,
* acallto Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema”, table = "table_name")
¢ acall to SQL () with the quoted and fully qualified table name given verba-
tim, e.g. SQL(' "my_schema”."table_name"")
databaseSchema The name of the database schema. See details for platform-specific details.

Other parameters passed on to methods.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

42 dbListTables,DatabaseConnectorConnection-method

Value

dbListFields() returns a character vector that enumerates all fields in the table in the correct
order. This also works for temporary tables if supported by the database. The returned names are
suitable for quoting with dbQuoteIdentifier().

See Also

dbColumnInfo() to get the type of the fields.

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListObjects(),dbListResults(),dbListTables(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), doRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbListTables,DatabaseConnectorConnection-method
List remote tables

Description

Returns the unquoted names of remote tables accessible through this connection. This should in-
clude views and temporary objects, but not all database backends (in particular RMariaDB and
RMySQL) support this.

Usage

S4 method for signature 'DatabaseConnectorConnection'
dbListTables(conn, databaseSchema = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect ().
databaseSchema The name of the database schema. See details for platform-specific details.

Not used

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

dbms 43

Value

dbListTables() returns a character vector that enumerates all tables and views in the database. Ta-
bles added with dbWriteTable() are part of the list. As soon a table is removed from the database,
it is also removed from the list of database tables.

The same applies to temporary tables if supported by the database.

The returned names are suitable for quoting with dbQuoteIdentifier().

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly (), dbIsValid(),
dbListFields(), dbListObjects(),dbListResults(), dbQuoteldentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable (), dbSendQuery (), dbSendQueryArrow(), dbSendStatement (),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbms Get the database platform from a connection

Description

The SqlRender package provides functions that translate SQL from OHDSI-SQL to a target SQL
dialect. These function need the name of the database platform to translate to. The dbms function
returns the dbms for any DBI connection that can be passed along to SqlRender translation functions
(see example).

Usage

dbms (connection)
Arguments

connection The connection to the database server created using either connect () or DBI: : dbConnect ().
Value

The name of the database (dbms) used by SqlRender

Examples

library(DatabaseConnector)

con <- connect(dbms = "sqlite"”, server = ":memory:")

dbms (con)

#> [1] "sqglite”

SqglRender: :translate("DATEADD(d, 365, dateColumn)”, targetDialect = dbms(con))

#> "CAST(STRFTIME('%s', DATETIME(dateColumn, 'unixepoch', (365)]||' days')) AS REAL)"
disconnect(con)

44 dbReadTable,DatabaseConnectorConnection,character-method

dbReadTable,DatabaseConnectorConnection, character-method
Read database tables as data frames

Description

Reads a database table to a data frame, optionally converting a column to row names and converting
the column names to valid R identifiers. Use dbReadTableArrow() instead to obtain an Arrow

object.
Usage
S4 method for signature 'DatabaseConnectorConnection,character'’
dbReadTable(conn, name, databaseSchema = NULL, ...)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:

* acharacter string with the unquoted DBMS table name, e.g. "table_name”,

¢ acall to Id() with components to the fully qualified table name, e.g. Id(schema
="my_schema”, table = "table_name")

* acall to SQL () with the quoted and fully qualified table name given verba-

n on

tim, e.g. SQL(' "my_schema”."table_name"")
databaseSchema The name of the database schema. See details for platform-specific details.

Other parameters passed on to methods.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

dbReadTable() returns a data frame that contains the complete data from the remote table, effec-
tively the result of calling dbGetQuery () with SELECT * FROM <name>.

An empty table is returned as a data frame with zero rows.
The presence of rownames depends on the row. names argument, see sqlColumnToRownames () for
details:

e If FALSE or NULL, the returned data frame doesn’t have row names.

e If TRUE, a column named "row_names" is converted to row names.

dbRemoveTable,DatabaseConnectorConnection, AN Y-method 45

e If NA, a column named "row_names" is converted to row names if it exists, otherwise no
translation occurs.

« If a string, this specifies the name of the column in the remote table that contains the row
names.

The default is row. names = FALSE.

If the database supports identifiers with special characters, the columns in the returned data frame
are converted to valid R identifiers if the check.names argument is TRUE, If check.names = FALSE,
the returned table has non-syntactic column names without quotes.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement (),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbRemoveTable,DatabaseConnectorConnection, ANY-method
Remove a table from the database

Description

Remove a remote table (e.g., created by dbWriteTable()) from the database.

Usage
S4 method for signature 'DatabaseConnectorConnection,ANY'
dbRemoveTable(conn, name, databaseSchema = NULL, ...)
Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:

* acharacter string with the unquoted DBMS table name, e.g. "table_name”,

e acallto Id() with components to the fully qualified table name, e.g. Id(schema
="my_schema”, table = "table_name")

* acall to SQL () with the quoted and fully qualified table name given verba-

n on

tim, e.g. SQL(' "my_schema”. "table_name"")
databaseSchema The name of the database schema. See details for platform-specific details.

Other parameters passed on to methods.

46 dbSendQuery,DatabaseConnectorDbiConnection,character-method

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

dbRemoveTable () returns TRUE, invisibly.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly (), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbSendQuery (), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

dbSendQuery,DatabaseConnectorDbiConnection, character-method
Execute a query on a given database connection

Description

The dbSendQuery () method only submits and synchronously executes the SQL query to the database
engine. It does not extract any records — for that you need to use the dbFetch() method, and then
you must call dbClearResult () when you finish fetching the records you need. For interactive use,
you should almost always prefer dbGetQuery (). Use dbSendQueryArrow() or dbGetQueryArrow()
instead to retrieve the results as an Arrow object.

Usage
S4 method for signature 'DatabaseConnectorDbiConnection,character’
dbSendQuery(conn, statement, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

dbSendQuery,DatabaseConnectorJdbcConnection,character-method 47

Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement () for data manipulation statements.

The query is submitted to the database server and the DBMS executes it, possibly generating vast
amounts of data. Where these data live is driver-specific: some drivers may choose to leave the
output on the server and transfer them piecemeal to R, others may transfer all the data to the client
— but not necessarily to the memory that R manages. See individual drivers’ dbSendQuery () docu-
mentation for details.

Value

dbSendQuery () returns an S4 object that inherits from DBIResult. The result set can be used with
dbFetch() to extract records. Once you have finished using a result, make sure to clear it with
dbClearResult().

See Also

For updates: dbSendStatement () and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable (), dbSendQueryArrow(), dbSendStatement (),
dbUnquoteldentifier(), dbWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind (), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), dbHasCompleted(), dbSendQueryArrow()

dbSendQuery,DatabaseConnectorJdbcConnection, character-method
Execute a query on a given database connection

Description

The dbSendQuery () method only submits and synchronously executes the SQL query to the database
engine. It does not extract any records — for that you need to use the dbFetch() method, and then
you must call dbClearResult () when you finish fetching the records you need. For interactive use,
you should almost always prefer dbGetQuery (). Use dbSendQueryArrow() or dbGetQueryArrow()
instead to retrieve the results as an Arrow object.

Usage

S4 method for signature 'DatabaseConnectorJdbcConnection,character’
dbSendQuery(conn, statement, ...)

48 dbSendStatement,DatabaseConnectorConnection,character-method

Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.
Other parameters passed on to methods.
Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement () for data manipulation statements.

The query is submitted to the database server and the DBMS executes it, possibly generating vast
amounts of data. Where these data live is driver-specific: some drivers may choose to leave the
output on the server and transfer them piecemeal to R, others may transfer all the data to the client
— but not necessarily to the memory that R manages. See individual drivers’ dbSendQuery () docu-
mentation for details.

Value

dbSendQuery () returns an S4 object that inherits from DBIResult. The result set can be used with
dbFetch() to extract records. Once you have finished using a result, make sure to clear it with
dbClearResult().

See Also

For updates: dbSendStatement () and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect (), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), doRemoveTable (), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery (), dbGetQueryArrow(), dbHasCompleted(), dbSendQueryArrow()

dbSendStatement,DatabaseConnectorConnection, character-method
Execute a data manipulation statement on a given database connec-
tion

Description

The dbSendStatement () method only submits and synchronously executes the SQL data manipu-
lation statement (e.g., UPDATE, DELETE, INSERT INTO, DROP TABLE, ...) to the database engine. To
query the number of affected rows, call dbGetRowsAffected() on the returned result object. You
must also call dbClearResult() after that. For interactive use, you should almost always prefer
dbExecute().

dbUnloadDriver,DatabaseConnectorDriver-method 49

Usage
S4 method for signature 'DatabaseConnectorConnection,character'
dbSendStatement(conn, statement, ...)

Arguments
conn A DBIConnection object, as returned by dbConnect ().
statement a character string containing SQL.

Other parameters passed on to methods.

Details

dbSendStatement () comes with a default implementation that simply forwards to dbSendQuery (),
to support backends that only implement the latter.

Value

dbSendStatement () returns an S4 object that inherits from DBIResult. The result set can be used
with dbGetRowsAffected() to determine the number of rows affected by the query. Once you have
finished using a result, make sure to clear it with dbClearResult().

See Also

For queries: dbSendQuery () and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), doIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteldentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(),
dbUnquoteldentifier(), doWriteTable(), dbWriteTableArrow()

Other command execution generics: dbBind(), dbClearResult(), dbExecute(), dbGetRowsAffected()

dbUnloadDriver,DatabaseConnectorDriver-method
Load and unload database drivers

Description

These methods are deprecated, please consult the documentation of the individual backends for the
construction of driver instances.

dbDriver() is a helper method used to create an new driver object given the name of a database
or the corresponding R package. It works through convention: all DBI-extending packages should
provide an exported object with the same name as the package. dbDriver() just looks for this
object in the right places: if you know what database you are connecting to, you should call the
function directly.

dbUnloadDriver() is not implemented for modern backends.

50 dbWriteTable,DatabaseConnectorConnection,AN Y-method

Usage
S4 method for signature 'DatabaseConnectorDriver'
dbUnloadDriver(drv, ...)

Arguments
drv an object that inherits from DBIDriver as created by dbDriver.

any other arguments are passed to the driver drvName.

Details

The client part of the database communication is initialized (typically dynamically loading C code,
etc.) but note that connecting to the database engine itself needs to be done through calls to
dbConnect.

Value

In the case of dbDriver, an driver object whose class extends DBIDriver. This object may be used
to create connections to the actual DBMS engine.

In the case of dbUnloadDriver, a logical indicating whether the operation succeeded or not.

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbGetInfo(), dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbGetInfo(), dbIsReadOnly(), dbIsValid(), dbListConnections()

dbWriteTable,DatabaseConnectorConnection, ANY-method
Copy data frames to database tables

Description

Writes, overwrites or appends a data frame to a database table, optionally converting row names to
a column and specifying SQL data types for fields.

Usage

S4 method for signature 'DatabaseConnectorConnection,ANY'
dbWriteTable(

conn,

name,

value,

databaseSchema = NULL,

overwrite = FALSE,

dbWriteTable,DatabaseConnectorConnection, AN Y-method 51

append = FALSE,
temporary = FALSE,

Arguments
conn A DBIConnection object, as returned by dbConnect ().
name The table name, passed on to dbQuoteIdentifier(). Options are:
* acharacter string with the unquoted DBMS table name, e.g. "table_name”,
* acallto Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema”, table = "table_name")
* acall to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL(' "my_schema”."table_name"")
value A data.frame (or coercible to data.frame).

databaseSchema The name of the database schema. See details for platform-specific details.

overwrite Overwrite an existing table (if exists)?
append Append to existing table?
temporary Should the table created as a temp table?

Other parameters passed on to methods.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

dbWriteTable() returns TRUE, invisibly.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), doIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(),dbListTables(), dbQuoteldentifier(),
dbReadTable(), doReadTableArrow(), dbRemoveTable(), dbSendQuery (), dbSendQueryArrow(),
dbSendStatement (), dbUnquoteIdentifier(), dbWriteTableArrow()

52 downloadJdbcDrivers

disconnect Disconnect from the server

Description

Close the connection to the server.

Usage

disconnect(connection)

Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect ().

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root",
password = "blah”

)

conn <- connect(connectionDetails)
count <- querySqgl(conn, "SELECT COUNT(*) FROM person”)
disconnect(conn)

End(Not run)

downloadJdbcDrivers Download DatabaseConnector JDBC Jar files

Description

Download the DatabaseConnector JDBC drivers from https://ohdsi.github.io/DatabaseConnectorJars/

Usage

downloadJdbcDrivers(
dbms,
pathToDriver = Sys.getenv(”"DATABASECONNECTOR_JAR_FOLDER"),
method = "auto”,

downloadJdbcDrivers 53

Arguments

dbms

The type of DBMS to download Jar files for.

* "postgresql" for PostgreSQL

* "redshift" for Amazon Redshift

* "sql server", "pdw" or "synapse" for Microsoft SQL Server
* "oracle" for Oracle

* "spark" for Spark

* "snowflake" for Snowflake

* "bigquery" for Google BigQuery

* "iris" for InterSystems IRIS

* "all" for all aforementioned platforms

pathToDriver The full path to the folder where the JDBC driver .jar files should be downloaded

to. By default the value of the environment variable "DATABASECONNEC-
TOR_JAR_FOLDER" is used.

method The method used for downloading files. See ?download.file for details and

Details

options.

Further arguments passed on to download.file.

The following versions of the JDBC drivers are currently used:

Value

PostgreSQL: V42.7.3
RedShift: vV2.1.0.9

SQL Server: V9.2.0

Oracle: V19.8

Spark (Databricks): V2.6.36
Snowflake: V3.24.0
BigQuery: v1.3.2.1003
InterSystems IRIS: v3.10.2

Invisibly returns the destination if the download was successful.

Examples

Not run:
downloadJdbcDrivers("redshift")

End(Not run)

54 executeSql

dropEmulatedTempTables
Drop all emulated temp tables.

Description

On some DBMSs, like Oracle and BigQuery, DatabaseConnector through SqlRender emulates
temp tables in a schema provided by the user. Ideally, these tables are deleted by the application /
R script creating them, but for various reasons orphan temp tables may remain. This function drops
all emulated temp tables created in this session only.

Usage
dropEmulatedTempTables(
connection,
tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”)
)
Arguments
connection The connection to the database server created using either connect () or DBI: :dbConnect ().
tempEmulationSchema
Some database platforms like Oracle and Impala do not truly support temp ta-
bles. To emulate temp tables, provide a schema with write privileges where
temp tables can be created.
Value

Invisibly returns the list of deleted emulated temp tables.

executeSql Execute SOL code

Description

This function executes SQL consisting of one or more statements.

Usage

executeSql(
connection,
sql,
profile = FALSE,
progressBar = l!as.logical(Sys.getenv("TESTTHAT", unset = FALSE)),
reportOverallTime = TRUE,
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
runAsBatch = FALSE

executeSql 55

Arguments
connection The connection to the database server created using either connect () or DBI: :dbConnect ().
sql The SQL to be executed
profile When true, each separate statement is written to file prior to sending to the
server, and the time taken to execute a statement is displayed.
progressBar When true, a progress bar is shown based on the statements in the SQL code.
reportOverallTime
When true, the function will display the overall time taken to execute all state-
ments.
errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.
runAsBatch When true the SQL statements are sent to the server as a single batch, and exe-
cuted there. This will be faster if you have many small SQL statements, but there
will be no progress bar, and no per-statement error messages. If the database
platform does not support batched updates the query is executed without batch-
ing.
Details

This function splits the SQL in separate statements and sends it to the server for execution. If an
error occurs during SQL execution, this error is written to a file to facilitate debugging. Optionally,
a progress bar is shown and the total time taken to execute the SQL is displayed. Optionally, each
separate SQL statement is written to file, and the execution time per statement is shown to aid in
detecting performance issues.

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"

)

conn <- connect(connectionDetails)

executeSqgl(conn, "CREATE TABLE x (k INT); CREATE TABLE y (k INT);")
disconnect(conn)

End(Not run)

56 extractQueryTimes

existsTable Does the table exist?

Description

Checks whether a table exists. Accounts for surrounding escape characters. Case insensitive.

Usage

existsTable(connection, databaseSchema, tableName)

Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect ().
databaseSchema The name of the database schema. See details for platform-specific details.
tableName The name of the table to check.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

A logical value indicating whether the table exits.

extractQueryTimes Extract query times from a Parallellogger log file

Description

When using the Parallellogger default file logger, and using options (LOG_DATABASECONNECTOR_SQL
= TRUE), DatabaseConnector will log all SQL sent to the server, and the time to get a response.

This function parses the log file, producing a data frame with time per query.

Usage

extractQueryTimes(logFileName)

Arguments

logFileName Name of the Parallellogger log file. Assumes the file was created using the
default file logger.

getAvailableJavaHeapSpace

Value

A data frame with queries and their run times in milliseconds.

Examples
connection <- connect(dbms = "sqlite"”, server = ":memory:")
logFile <- tempfile(fileext = ".log")

Parallellogger::addDefaultFileLogger(fileName = logFile, name = "MY_LOGGER")
options (LOG_DATABASECONNECTOR_SQL = TRUE)

executeSqgl (connection, "CREATE TABLE test (x INT);")
querySql(connection, "SELECT * FROM test;")

extractQueryTimes(logFile)
Parallellogger: :unregisterLogger ("MY_LOGGER")

unlink(logFile)
disconnect(connection)

getAvailableJavaHeapSpace
Get available Java heap space

Description

For debugging purposes: get the available Java heap space.

Usage

getAvailableJavaHeapSpace()

Value

The Java heap space (in bytes).

getTableNames List all tables in a database schema.

Description

This function returns a list of all tables in a database schema.

Usage

getTableNames(connection, databaseSchema = NULL, cast = "lower")

58 inDatabaseSchema

Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect().
databaseSchema The name of the database schema. See details for platform-specific details.

cast Should the table names be cast to uppercase or lowercase before being returned?
Valid options are "upper" , "lower" (default), "none" (no casting is done)

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

A character vector of table names.

inDatabaseSchema Refer to a table in a database schema

Description

Can be used with dplyr::tb1() to indicate a table in a specific database schema.

Usage

inDatabaseSchema(databaseSchema, table)

Arguments

databaseSchema The name of the database schema. See details for platform-specific details.

table The name of the table in the database schema.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

Value

An object representing the table and database schema.

insertTable 59

insertTable Insert a table on the server

Description

This function sends the data in a data frame to a table on the server. Either a new table is created,
or the data is appended to an existing table.

Usage

insertTable(
connection,
databaseSchema = NULL,
tableName,
data,
dropTableIfExists = TRUE,
createTable = TRUE,
tempTable = FALSE,
tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”),
bulkLoad = Sys.getenv("DATABASE_CONNECTOR_BULK_UPLOAD"),
useMppBulkLoad = Sys.getenv("USE_MPP_BULK_LOAD"),
progressBar = FALSE,
camelCaseToSnakeCase = FALSE

Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect ().

databaseSchema The name of the database schema. See details for platform-specific details.

tableName The name of the table where the data should be inserted.
data The data frame containing the data to be inserted.
dropTableIfExists

Drop the table if the table already exists before writing?
createTable Create a new table? If false, will append to existing table.
tempTable Should the table created as a temp table?
tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp ta-
bles. To emulate temp tables, provide a schema with write privileges where
temp tables can be created.

bulkLoad If using Redshift, PDW, Hive or Postgres, use more performant bulk loading
techniques. Does not work for temp tables (except for HIVE). See Details for
requirements for the various platforms.

useMppBulkLoad DEPRECATED. Use bulkLoad instead.

progressBar Show a progress bar when uploading?

60 insertTable

camelCaseToSnakeCase
If TRUE, the data frame column names are assumed to use camelCase and are
converted to snake_case before uploading.

Details

The databaseSchema argument is interpreted differently according to the different platforms: SQL
Server and PDW: The databaseSchema schema should specify both the database and the schema,
e.g. 'my_database.dbo’. Impala: the databaseSchema should specify the database. Oracle: The
databaseSchema should specify the Oracle ’user’. All other : The databaseSchema should specify
the schema.

This function sends the data in a data frame to a table on the server. Either a new table is created,
or the data is appended to an existing table. NA values are inserted as null values in the database.

Bulk uploading:

Redshift: The MPP bulk loading relies upon the CloudyR S3 library to test a connection to an S3
bucket using AWS S3 credentials. Credentials are configured directly into the System Environ-
ment using the following keys: Sys.setenv("AWS_ACCESS_KEY_ID" = "some_access_key_id",
"AWS_SECRET_ACCESS_KEY" = "some_secret_access_key", "AWS_DEFAULT_REGION" =
"some_aws_region", "AWS_BUCKET_NAME" = "some_bucket_name", "AWS_OBJECT_KEY"
= "some_object_key", "AWS_SSE_TYPE" = "server_side_encryption_type").

Spark (DataBricks): The MPP bulk loading relies upon the AzureStor library to test a connection to

an Azure ADLS Gen?2 storage container using Azure credentials. Credentials are configured directly

into the System Environment using the following keys: Sys.setenv("AZR_STORAGE_ACCOUNT"
="some_azure_storage_account", "AZR_ACCOUNT_KEY" = "some_secret_account_key", "AZR_CONTAINER_NAME"
= "some_container_name").

PDW: The MPP bulk loading relies upon the client having a Windows OS and the DWLoader
exe installed, and the following permissions granted: —Grant BULK Load permissions - needed
at a server level USE master; GRANT ADMINISTER BULK OPERATIONS TO user; —Grant
Staging database permissions - we will use the user db. USE scratch; EXEC sp_addrolemember
’db_ddladmin’, user; Set the R environment variable DWLOADER_PATH to the location of the
binary.

PostgreSQL: Uses the "psql’ executable to upload. Set the POSTGRES_PATH environment vari-
able to the Postgres binary path, e.g. *C:/Program Files/PostgreSQL/11/bin’ on Windows or */Li-
brary/PostgreSQL/16/bin’ on MacOs.

Examples

Not run:

connectionDetails <- createConnectionDetails(
dbms = "mysql”,
server = "localhost”,
user = "root”,
password = "blah”

)

conn <- connect(connectionDetails)

data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))
insertTable(conn, "my_schema”, "my_table", data)
disconnect(conn)

isSqlReservedWord 61

bulk data insert with Redshift or PDW
connectionDetails <- createConnectionDetails(
dbms = "redshift”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v5"

)

conn <- connect(connectionDetails)
data <- data.frame(x = c(1, 2, 3), y = c("a", "b", "c"))

insertTable(
connection = connection,
databaseSchema = "scratch”,
tableName = "somedata”,
data = data,

dropTableIfExists = TRUE,
createTable = TRUE,
tempTable = FALSE,
bulkLoad = TRUE
) # or, Sys.setenv("DATABASE_CONNECTOR_BULK_UPLOAD" = TRUE)

End(Not run)

isSqlReservedWord Test a character vector of SQL names for SQL reserved words

Description

This function checks a character vector against a predefined list of reserved SQL words.

Usage

isSglReservedWord(sqlNames, warn = FALSE)

Arguments

sqlNames A character vector containing table or field names to check.

warn (logical) Should a warn be thrown if invalid SQL names are found?
Value

A logical vector with length equal to sqlNames that is TRUE for each name that is reserved and
FALSE otherwise

62 querySql

jdbcDrivers How to download and use JDBC drivers for the various data plat-
forms.

Description

Below are instructions for downloading JDBC drivers for the various data platforms. Once down-
loaded use the pathToDriver argument in the connect() or createConnectionDetails() func-
tions to point to the driver. Alternatively, you can set the ' DATABASECONNECTOR_JAR_FOLDER’
environmental variable, for example in your .Renviron file (recommended).

SQL Server, Oracle, PostgreSQL, PDW, Snowflake, Spark, RedShift, Azure Synapse, BigQuery,
InterSystems IRIS
Use the downloadJdbcDrivers() function to download these drivers from the OHDSI GitHub
pages.
Netezza

Read the instructions here on how to obtain the Netezza JDBC driver.

Impala
Go to Cloudera’s site, pick your OS version, and click "GET IT NOW!’. Register, and you should
be able to download the driver.

SQLite

For SQLite we actually don’t use a JDBC driver. Instead, we use the RSQLite package, which can
be installed using install.packages(”"RSQLite").

querySql Retrieve data to a data.frame

Description

This function sends SQL to the server, and returns the results.

Usage

querySql(
connection,
sql,
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
snakeCaseToCamelCase = FALSE,
integerAsNumeric = getOption("databaseConnectorIntegerAsNumeric"”, default = TRUE),
integer64AsNumeric = getOption("databaseConnectorInteger64AsNumeric”, default = TRUE)

)

https://www.ibm.com/docs/en/netezza?topic=dls-installing-configuring-jdbc
https://www.cloudera.com/downloads/connectors/impala/jdbc.html

querySql 63

Arguments
connection The connection to the database server created using either connect () or DBI: :dbConnect().
sql The SQL to be send.
errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.
snakeCaseToCamelCase
If true, field names are assumed to use snake_case, and are converted to camel-
Case.
integerAsNumeric

Logical: should 32-bit integers be converted to numeric (double) values? If

FALSE 32-bit integers will be represented using R’s native Integer class.
integer64AsNumeric

Logical: should 64-bit integers be converted to numeric (double) values? If

FALSE 64-bit integers will be represented using bit64: :integer64.

Details
Fields will be automatically converted for improved consistenty in these situations:
* SQLite: Fields with names ending in _date will be converted to DATE fields. Rationale:
SQLite does not support DATE fields.

» SQLite: Fields with names ending in _datetime will be converted to POSIXct fields. Ratio-
nale: SQLite does not support DATETIME fields.

* BigQuery and Snowflake: Integer fields will be converted to Integer if it fits in an integer, or
will remain Integer64 otherwise. Rationale: these platforms do not distinguish between INT
and BIGINT.

This function sends the SQL to the server and retrieves the results. If an error occurs during SQL
execution, this error is written to a file to facilitate debugging. Null values in the database are
converted to NA values in R.

Value

A data frame.

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"

)

conn <- connect(connectionDetails)
count <- querySqgl(conn, "SELECT COUNT(*) FROM person")
disconnect(conn)

64 querySqlToAndromeda

End(Not run)

querySqglToAndromeda Retrieves data to a local Andromeda object

Description

This function sends SQL to the server, and returns the results in a local Andromeda object

Usage

querySqglToAndromeda(
connection,
sql,
andromeda,
andromedaTableName,
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
snakeCaseToCamelCase = FALSE,
appendToTable = FALSE,
integerAsNumeric = getOption("databaseConnectorIntegerAsNumeric"”, default = TRUE),
integer64AsNumeric = getOption("databaseConnectorInteger64AsNumeric”, default = TRUE)
)

Arguments

connection The connection to the database server created using either connect () or DBI: : dbConnect ().

sql The SQL to be sent.

andromeda An open Andromeda object, for example as created using Andromeda: : andromeda().

andromedaTableName
The name of the table in the local Andromeda object where the results of the
query will be stored.

errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.

snakeCaseToCamelCase
If true, field names are assumed to use snake_case, and are converted to camel-
Case.

appendToTable If FALSE, any existing table in the Andromeda with the same name will be
replaced with the new data. If TRUE, data will be appended to an existing table,
assuming it has the exact same structure.

integerAsNumeric
Logical: should 32-bit integers be converted to numeric (double) values? If
FALSE 32-bit integers will be represented using R’s native Integer class.

integer64AsNumeric
Logical: should 64-bit integers be converted to numeric (double) values? If
FALSE 64-bit integers will be represented using bit64: :integer64.

renderTranslateExecuteSql 65

Details

Retrieves data from the database server and stores it in a local Andromeda object. This allows
very large data sets to be retrieved without running out of memory. If an error occurs during SQL
execution, this error is written to a file to facilitate debugging. Null values in the database are
converted to NA values in R.If a table with the same name already exists in the local Andromeda
object it is replaced.

Value

Invisibly returns the andromeda. The Andromeda object will have a table added with the query
results.

Examples

Not run:
andromeda <- Andromeda: :andromeda()
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,
server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"
)
conn <- connect(connectionDetails)
querySqlToAndromeda(
connection = conn,
sql = "SELECT * FROM person;"”,
andromeda = andromeda,
andromedaTableName = "foo"

)

disconnect(conn)
andromeda$foo

End(Not run)

renderTranslateExecuteSql
Render; translate, execute SQL code

Description

This function renders, translates, and executes SQL consisting of one or more statements.

Usage

renderTranslateExecuteSql(
connection,

66 renderTranslateExecuteSql

sql,

profile = FALSE,

progressBar = TRUE,

reportOverallTime = TRUE,

errorReportFile = file.path(getwd(), "errorReportSql.txt"),
runAsBatch = FALSE,

tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”),

)
Arguments

connection The connection to the database server created using either connect () or DBI: :dbConnect ().

sql The SQL to be executed

profile When true, each separate statement is written to file prior to sending to the
server, and the time taken to execute a statement is displayed.

progressBar When true, a progress bar is shown based on the statements in the SQL code.

reportOverallTime
When true, the function will display the overall time taken to execute all state-
ments.

errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.

runAsBatch When true the SQL statements are sent to the server as a single batch, and exe-

cuted there. This will be faster if you have many small SQL statements, but there

will be no progress bar, and no per-statement error messages. If the database

platform does not support batched updates the query is executed as ordinarily.
tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp ta-

bles. To emulate temp tables, provide a schema with write privileges where

temp tables can be created.

Parameters that will be used to render the SQL.

Details

This function calls the render and translate functions in the SqlRender package before calling
executeSql().

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"

renderTranslateQuery ApplyBatched 67

conn <- connect(connectionDetails)
renderTranslateExecuteSql (connection,
sql = "SELECT * INTO #temp FROM @schema.person;”,
schema = "cdm_synpuf”
)

disconnect(conn)

End(Not run)

renderTranslateQueryApplyBatched
Render; translate, and perform process to batches of data.

Description

This function renders, and translates SQL, sends it to the server, processes the data in batches with
a call back function. Note that this function should perform a row-wise operation. This is designed
to work with massive data that won’t fit in to memory.

The batch sizes are determined by the java virtual machine and will depend on the data.

Usage

renderTranslateQueryApplyBatched(
connection,
sql,
fun,
args = list(),
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
snakeCaseToCamelCase = FALSE,
tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”),
integerAsNumeric = getOption("databaseConnectorIntegerAsNumeric"”, default = TRUE),
integer64AsNumeric = getOption("databaseConnectorInteger64AsNumeric”, default = TRUE),

)
Arguments
connection The connection to the database server created using either connect () or DBI: :dbConnect().
sql The SQL to be send.
fun Function to apply to batch. Must take data.frame and integer position as param-
eters.
args List of arguments to be passed to function call.
errorReportFile

The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.

68 renderTranslateQueryApplyBatched

snakeCaseToCamelCase

If true, field names are assumed to use snake_case, and are converted to camel-
Case.

tempEmulationSchema
Some database platforms like Oracle and Impala do not truly support temp ta-
bles. To emulate temp tables, provide a schema with write privileges where
temp tables can be created.

integerAsNumeric

Logical: should 32-bit integers be converted to numeric (double) values? If
FALSE 32-bit integers will be represented using R’s native Integer class.

integer64AsNumeric

Logical: should 64-bit integers be converted to numeric (double) values? If
FALSE 64-bit integers will be represented using bit64: :integer64.

Parameters that will be used to render the SQL.

Details
Fields will be automatically converted for improved consistenty in these situations:

» SQLite: Fields with names ending in _date will be converted to DATE fields. Rationale:
SQLite does not support DATE fields.

* SQLite: Fields with names ending in _datetime will be converted to POSIXct fields. Ratio-
nale: SQLite does not support DATETIME fields.

* BigQuery and Snowflake: Integer fields will be converted to Integer if it fits in an integer, or
will remain Integer64 otherwise. Rationale: these platforms do not distinguish between INT
and BIGINT.

This function calls the render and translate functions in the SqlRender package before calling
querySql().
Value

Invisibly returns a list of outputs from each call to the provided function.

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"

)

connection <- connect(connectionDetails)

First example: write data to a large CSV file:

filepath <- "myBigFile.csv"

writeBatchesToCsv <- function(data, position, ...) {
write.csv(data, filepath, append = position != 1)

renderTranslateQuerySql 69

return(NULL)
3
renderTranslateQueryApplyBatched(connection,
"SELECT * FROM @schema.person;",
schema = "cdm_synpuf”,
fun = writeBatchesToCsv

)

Second example: write data to Andromeda
(Alternative to querySqlToAndromeda if some local computation needs to be applied)
bigResults <- Andromeda::andromeda()
writeBatchesToAndromeda <- function(data, position, ...) {
data$p <- EmpiricalCalibration::computeTraditionalP(data$logRr, data$logSeRr)
if (position == 1) {
bigResults$rrs <- data
} else {
Andromeda: : appendToTable(bigResults$rrs, data)
}
return(NULL)
3
sql <- "SELECT target_id, comparator_id, log_rr, log_se_rr FROM @schema.my_results;"”
renderTranslateQueryApplyBatched(connection,

sql,

fun = writeBatchesToAndromeda,
schema = "my_results”,
snakeCaseToCamelCase = TRUE

)

disconnect(connection)

End(Not run)

renderTranslateQuerySql
Render, translate, and query to data.frame

Description

This function renders, and translates SQL, sends it to the server, and returns the results as a
data.frame.

Usage

renderTranslateQuerySql(
connection,
sql,
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
snakeCaseToCamelCase = FALSE,

70 renderTranslateQuerySql

tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”),
integerAsNumeric = getOption("”databaseConnectorIntegerAsNumeric"”, default = TRUE),
integer64AsNumeric = getOption("databaseConnectorInteger64AsNumeric”, default = TRUE),

)
Arguments

connection The connection to the database server created using either connect () or DBI: : dbConnect ().

sql The SQL to be send.

errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.

snakeCaseToCamelCase
If true, field names are assumed to use snake_case, and are converted to camel-
Case.

tempEmulationSchema
Some database platforms like Oracle and Impala do not truly support temp ta-
bles. To emulate temp tables, provide a schema with write privileges where
temp tables can be created.

integerAsNumeric
Logical: should 32-bit integers be converted to numeric (double) values? If
FALSE 32-bit integers will be represented using R’s native Integer class.

integer64AsNumeric
Logical: should 64-bit integers be converted to numeric (double) values? If
FALSE 64-bit integers will be represented using bit64: :integer64.
Parameters that will be used to render the SQL.

Details

Fields will be automatically converted for improved consistenty in these situations:

* SQLite: Fields with names ending in _date will be converted to DATE fields. Rationale:
SQLite does not support DATE fields.

* SQLite: Fields with names ending in _datetime will be converted to POSIXct fields. Ratio-
nale: SQLite does not support DATETIME fields.

* BigQuery and Snowflake: Integer fields will be converted to Integer if it fits in an integer, or
will remain Integer64 otherwise. Rationale: these platforms do not distinguish between INT
and BIGINT.

This function calls the render and translate functions in the SqlRender package before calling
querySql().

Value

A data frame.

renderTranslateQuerySqlToAndromeda 71

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root",
password = "blah”,
schema = "cdm_v4"

)

conn <- connect(connectionDetails)

persons <- renderTranslatequerySql(conn,
sql = "SELECT TOP 1@ * FROM @schema.person”,
schema = "cdm_synpuf”

)

disconnect(conn)

End(Not run)

renderTranslateQuerySqlToAndromeda
Render; translate, and query to local Andromeda

Description

This function renders, and translates SQL, sends it to the server, and returns the results as an
Andromeda object

Usage

renderTranslateQuerySqlToAndromeda(
connection,
sql,
andromeda,
andromedaTableName,
errorReportFile = file.path(getwd(), "errorReportSql.txt"),
snakeCaseToCamelCase = FALSE,
appendToTable = FALSE,
tempEmulationSchema = getOption(”sqlRenderTempEmulationSchema”),
integerAsNumeric = getOption("databaseConnectorIntegerAsNumeric"”, default = TRUE),
integer64AsNumeric = getOption("databaseConnectorInteger64AsNumeric”, default = TRUE),

Arguments

connection The connection to the database server created using either connect () or DBI: : dbConnect ().

sql The SQL to be send.

72 renderTranslateQuerySqlToAndromeda

andromeda An open Andromeda object, for example as created using Andromeda: : andromeda().

andromedaTableName
The name of the table in the local Andromeda object where the results of the
query will be stored.

errorReportFile
The file where an error report will be written if an error occurs. Defaults to
“errorReportSql.txt’ in the current working directory.

snakeCaseToCamelCase
If true, field names are assumed to use snake_case, and are converted to camel-
Case.

appendToTable If FALSE, any existing table in the Andromeda with the same name will be
replaced with the new data. If TRUE, data will be appended to an existing table,
assuming it has the exact same structure.

tempEmulationSchema
Some database platforms like Oracle and Impala do not truly support temp ta-
bles. To emulate temp tables, provide a schema with write privileges where
temp tables can be created.

integerAsNumeric
Logical: should 32-bit integers be converted to numeric (double) values? If
FALSE 32-bit integers will be represented using R’s native Integer class.

integer64AsNumeric
Logical: should 64-bit integers be converted to numeric (double) values? If
FALSE 64-bit integers will be represented using bit64: :integer64.

Parameters that will be used to render the SQL.

Details

This function calls the render and translate functions in the SqlRender package before calling
querySqlToAndromeda().

Value

Invisibly returns the andromeda. The Andromeda object will have a table added with the query
results.

Examples

Not run:
connectionDetails <- createConnectionDetails(
dbms = "postgresql”,

server = "localhost”,
user = "root”,
password = "blah”,
schema = "cdm_v4"

)

conn <- connect(connectionDetails)
renderTranslatequerySglToAndromeda(conn,
sql = "SELECT * FROM @schema.person”,

requires TempEmulation 73

schema = "cdm_synpuf”,
andromeda = andromeda,
andromedaTableName = "foo"

)
disconnect(conn)

andromeda$foo

End(Not run)

requiresTempEmulation Does the DBMS require temp table emulation?

Description

Does the DBMS require temp table emulation?

Usage

requiresTempEmulation(dbms)

Arguments
dbms The type of DBMS running on the server. See connect () or createConnectionDetails()
for valid values.
Value

TRUE if the DBMS requires temp table emulation, FALSE otherwise.

Examples

requiresTempEmulation("postgresql”)
requiresTempEmulation("”oracle")

Index

Andromeda: :andromeda(), 64, 72
assertTempEmulationSchemaSet, 3

computeDataHash, 4

connect, 5

connect(),4,7,12, 13,20,43,52, 54-56, 58,
59, 62-64, 66, 67,70, 71,73

createConnectionDetails, 9

createConnectionDetails(), 4,7, 62,73

createDbiConnectionDetails, 13

createZipFile, 14

data.frame, 16, 26, 27, 31, 32, 51

DatabaseConnectorDriver, 15

DatabaseConnectorDriver(), 20

dbAppendTable, 22-26, 29-32, 40-43, 4549,
51

dbAppendTable,DatabaseConnectorConnection,cha%%%ier-
i

15
dbAppendTableArrow, 16, 22-26, 29-32,
40-43,45-49, 51
dbAppendTableArrow(), 15
dbBind, 17-19, 24, 25, 27-30, 32-41, 4749
dbBind(), 23, 24
dbCanConnect, 29, 30, 40, 41, 50
dbClearResult, 19, 24, 25, 27-30, 32-41,
47-49
dbClearResult(), 23, 24, 27, 28, 31, 32, 39,
40, 46—49

dbClearResult,DatabaseConnectorDbiResult-method,

dbConnect(), 16, 21-25, 31, 32,41, 42,

44-46, 48, 49, 51
dbConnect,DatabaseConnectorDriver-method,

20
dbCreateTable, 16, 23-26, 29-32, 4043,

45-49, 51
dbCreateTable(), 15
dbCreateTable,DatabaseConnectorConnection-method,

21
dbCreateTableArrow, 16, 22-26, 29-32,

40-43,45-49, 51
dbCreateTableArrow(), 21
dbDataType, 16, 22-26, 29-32, 40-43, 45-51
dbDataType(), 21
dbDisconnect, 16, 22, 24-26, 29-32, 4043,

4549, 51

scogg%%BS),39,40 .
sconnect,DatabaseConnectorConnection-method,

22
dbDriver, 29, 30, 40, 41
dbExecute, 16-18, 22, 23, 26, 29-32, 35, 30,

4043, 4549, 51
dbExecute(), 15, 21, 29-32,47, 48
dbExecute,DatabaseConnectorDbiConnection, character-method,

23
dbExecute,DatabaseConnectorJdbcConnection, character-method

24
dbExistsTable, 16, 22-25, 29-32, 4043,

45-49,51

16 dbExistsTable,DatabaseConnectorConnection, character-method
dbClearResult,DatabaseConnectorJdbcResult-method, 25
17 dbFetch, 17-19, 29, 30, 3241, 47, 48

dbColumnInfo, 17, 18, 27-30, 33—41
dbColumnInfo(), 42

dbFetch(), 18, 19, 31-36, 38, 4648
dbFetch,DatabaseConnectorbDbiResult-method,

dbColumnInfo,DatabaseConnectorDbiResult-method, 26

18

dbFetch,DatabaseConnectorJdbcResult-method,

dbColumnInfo,DatabaseConnectorJdbcResult-method, 27

19
dbConnect, 29, 30, 40, 41, 50

dbFetchArrow, 17, 18, 27, 28, 32, 33, 38—41,
47, 48

INDEX 75

dbFetchArrowChunk, 17, 18, 27, 28, 32, 33, 4446, 48, 49, 51

3841,47, 48 DBIDriver, 28-30, 39, 40
dbGetException, 16, 22-26, 29-32, 40-43, DBIObject, 28, 29, 39, 40

45-49, 51 DBIResult, 17-19, 26-30, 33—40, 4749
dbGetInfo, 16-19, 22-28, 31-43, 45-51 dbIsReadOnly, 1619, 22-43,45-51
dbGetInfo,DatabaseConnectorConnection-method, dbIsValid, 16—19, 22-39, 42, 43, 45-51

28 dbIsValid,DatabaseConnectorDbiConnection-method,
dbGetInfo,DatabaseConnectorDriver-method, 39

29 dbIsValid,DatabaseConnectorJdbcConnection-method,
dbGetQuery, 16-18, 22-30, 38-43, 4549, 51 40
dbGetQuery(), 23-25, 44, 46, 47, 49 dbListConnections, 29, 30, 40, 41, 50
dbGetQuery,DatabaseConnectorDbiConnection, chadbicistFiettiod] 6, 22-26, 29-32, 40, 41, 43,

31 4549, 51
dbGetQuery,DatabaseConnectorJdbcConnection, chdisatseFtebdbpbatabaseConnectorConnection, character-method,

32 41
dbGetQueryArrow, 1618, 22-33, 38—43, dbListObjects, 16, 22-26, 29-31, 33, 40-43,

45-49, 51 45-49, 51
dbGetQueryArrow(), 31, 32, 46, 47 dbListResults, 16, 22-26, 29-31, 33, 40—43,
dbGetRowCount, 17-19, 27-30, 3541 4549, 51
dbGetRowCount(), 29, 30 dbListTables, 16, 22-26, 29-31, 33, 4042,
dbGetRowCount,DatabaseConnectorDbiResult-method, 45-49, 51

33 dbListTables,DatabaseConnectorConnection-method,
dbGetRowCount,DatabaseConnectorJdbcResult-method, 42

34 dbms, 43
dbGetRowsAffected, 17-19, 24, 25, 27-30, dbQuoteldentifier, 16, 22-26, 29-31, 33,

33, 34, 3641, 49 4043, 4549, 51
dbGetRowsAffected(), 23, 24, 29, 30, 48, 49 dbQuoteldentifier(), 16, 21, 25,41, 44, 45,
dbGetRowsAffected,DatabaseConnectorDbiResult-method, 51

34 dbQuotelLiteral, 17-19, 27-30, 3341
dbGetRowsAffected,DatabaseConnectorJdbcResul tdb@uboeString, 17-19, 27-30, 33—41

35 dbReadTable, 16, 22-26, 29-31, 33, 40-43,
dbGetStatement, 17-19, 27-30, 33-36, 46-49, 51

3841 dbReadTable,DatabaseConnectorConnection,character-method,
dbGetStatement (), 29, 30 44
dbGetStatement,DatabaseConnectorDbiResult-mettioRleadTableArrow, 16, 22-26, 29-31, 33,

36 40-43, 4549, 51
dbGetStatement,DatabaseConnectorJdbcResult-medbReadTableArrow(), 44

37 dbRemoveTable, 16, 22-26, 29-31, 33, 40—43,
dbHasCompleted, 17-19, 27-30, 32-37, 40, 45,4749, 51

41,47, 48 dbRemoveTable,DatabaseConnectorConnection, ANY-method,
dbHasCompleted(), 29, 30 45
dbHasCompleted,DatabaseConnectorDbiResul t-metioSendQuery, 16—18, 22-33, 38—43, 45, 46,

37 49,51
dbHasCompleted,DatabaseConnectorJdbcResul t-medh®endQuery (), 16, 17, 24-27, 29-40, 49

38 dbSendQuery,DatabaseConnectorDbiConnection, character-metho
DBI::dbConnect(), 4, 8, 12,43, 52, 54-56, 46

58, 59, 63, 64, 66, 67, 70, 71 dbSendQuery,DatabaseConnectorJdbcConnection, character-meth

DBIConnection, 16, 21-25, 28-32, 3942, 47

76 INDEX

dbSendQueryArrow, 16—18, 22-33, 38—43, requiresTempEmulation, 73
45-49, 51 rownames, 44
dbSendQueryArrow(), 46, 47
dbSendStatement, 16—18, 22-26, 29-31, 33, SQLQ), 16,21, 25,41,44, 45,51
35, 36, 40-43, 4548, 51 sqlAppendTableTemplate(), /5
dbSendStatement (), 16, 17, 23, 24, 3140, sqlColumnToRownames (), 44
47-49 sqlCreateTable(), 21
dbSendStatement,DatabaseConnectorConnection,character-method,
48
dbUnloadDriver,DatabaseConnectorDriver-method,
49

dbUnquoteldentifier, 16, 22-26, 29-31, 33,
40-43,45-49, 51

dbWriteTable, 16, 22-26, 29-31, 33, 4043,
45-49

dbWriteTable(), 43,45

dbWriteTable,DatabaseConnectorConnection, ANY-method,
50

dbWriteTableArrow, 16, 22-26, 29-31, 33,
40-43,45-49, 51

disconnect, 52

downloadJdbcDrivers, 52

downloadJdbcDrivers(), 8, 13, 62

dplyr::tb1(), 58

dropEmulatedTempTables, 54

executeSql, 54
executeSql(), 66
existsTable, 56
extractQueryTimes, 56

getAvailableJavaHeapSpace, 57
getTableNames, 57

1d(Q), 16,21, 25,41, 44, 45, 51
inDatabaseSchema, 58
insertTable, 59
isSqlReservedWord, 61

jdbcDrivers, 62

querySql, 62
querySql (), 68, 70
querySglToAndromeda, 64
querySqglToAndromeda(), 72

renderTranslateExecuteSql, 65
renderTranslateQueryApplyBatched, 67
renderTranslateQuerySql, 69
renderTranslateQuerySgqlToAndromeda, 71

	assertTempEmulationSchemaSet
	computeDataHash
	connect
	createConnectionDetails
	createDbiConnectionDetails
	createZipFile
	DatabaseConnectorDriver
	dbAppendTable,DatabaseConnectorConnection,character-method
	dbClearResult,DatabaseConnectorDbiResult-method
	dbClearResult,DatabaseConnectorJdbcResult-method
	dbColumnInfo,DatabaseConnectorDbiResult-method
	dbColumnInfo,DatabaseConnectorJdbcResult-method
	dbConnect,DatabaseConnectorDriver-method
	dbCreateTable,DatabaseConnectorConnection-method
	dbDisconnect,DatabaseConnectorConnection-method
	dbExecute,DatabaseConnectorDbiConnection,character-method
	dbExecute,DatabaseConnectorJdbcConnection,character-method
	dbExistsTable,DatabaseConnectorConnection,character-method
	dbFetch,DatabaseConnectorDbiResult-method
	dbFetch,DatabaseConnectorJdbcResult-method
	dbGetInfo,DatabaseConnectorConnection-method
	dbGetInfo,DatabaseConnectorDriver-method
	dbGetQuery,DatabaseConnectorDbiConnection,character-method
	dbGetQuery,DatabaseConnectorJdbcConnection,character-method
	dbGetRowCount,DatabaseConnectorDbiResult-method
	dbGetRowCount,DatabaseConnectorJdbcResult-method
	dbGetRowsAffected,DatabaseConnectorDbiResult-method
	dbGetRowsAffected,DatabaseConnectorJdbcResult-method
	dbGetStatement,DatabaseConnectorDbiResult-method
	dbGetStatement,DatabaseConnectorJdbcResult-method
	dbHasCompleted,DatabaseConnectorDbiResult-method
	dbHasCompleted,DatabaseConnectorJdbcResult-method
	dbIsValid,DatabaseConnectorDbiConnection-method
	dbIsValid,DatabaseConnectorJdbcConnection-method
	dbListFields,DatabaseConnectorConnection,character-method
	dbListTables,DatabaseConnectorConnection-method
	dbms
	dbReadTable,DatabaseConnectorConnection,character-method
	dbRemoveTable,DatabaseConnectorConnection,ANY-method
	dbSendQuery,DatabaseConnectorDbiConnection,character-method
	dbSendQuery,DatabaseConnectorJdbcConnection,character-method
	dbSendStatement,DatabaseConnectorConnection,character-method
	dbUnloadDriver,DatabaseConnectorDriver-method
	dbWriteTable,DatabaseConnectorConnection,ANY-method
	disconnect
	downloadJdbcDrivers
	dropEmulatedTempTables
	executeSql
	existsTable
	extractQueryTimes
	getAvailableJavaHeapSpace
	getTableNames
	inDatabaseSchema
	insertTable
	isSqlReservedWord
	jdbcDrivers
	querySql
	querySqlToAndromeda
	renderTranslateExecuteSql
	renderTranslateQueryApplyBatched
	renderTranslateQuerySql
	renderTranslateQuerySqlToAndromeda
	requiresTempEmulation
	Index

