Package ‘DLFM’

January 26, 2026
Type Package
Version 0.2.2
Title Distributed Laplace Factor Model

Description Distributed estimation method is based on a Laplace factor model
to solve the estimates of load and specific variance. The philosophy of
the package is described in Guangbao Guo. (2022).
<doi:10.1007/s00180-022-01270-z>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

Imports MASS, LaplacesDemon, matrixcalc, stats
Depends R (>=3.5.0)

Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
BuildManual yes
NeedsCompilation no
Language en-US

Date/Publication 2025-01-25
Repository CRAN

Author Guangbao Guo [aut, cre],
Siqi Liu [aut]

Maintainer Guangbao Guo <ggh11111111@163.com>
Date/Publication 2026-01-26 09:50:29 UTC

Contents

https://doi.org/10.1007/s00180-022-01270-z

2 Dfactor.tests

DPPC . . e e 6
DSAPC . . . e e e 7
factortests L e 8
FanPC 9
Ftest e 10
GulPC e 11
IPC . e 12
LEM . . e 13
online_sir Ifm e 14
osdr Ifm L 15
PC . e 16
PPC . . e 17
SAPC . . . 18

Index 19

Dfactor.tests Distributed Factor Model Testing with Wald, GRS, PY tests and FDR
control
Description

Performs comprehensive factor model testing in distributed environment across multiple nodes,
including joint tests (Wald, GRS, PY), individual asset t-tests, and False Discovery Rate control.

Usage

Dfactor.tests(ret, fac, nl1, K, q.fdr = 0.05)

Arguments
ret A T x N matrix representing the excess returns of N assets at T time points.
fac A T x K matrix representing the returns of K factors at T time points.
ni The number of assets allocated to each node
K The number of nodes
q.fdr The significance level for FDR (False Discovery Rate) testing, defaulting to 5%.
Value

A list containing the following components:

alpha_list List of alpha vectors from each node
tstat_list List of t-statistics from each node
pval_list List of p-values from each node
Wald_list List of Wald test statistics from each node

p_Wald_list List of p-values for Wald tests from each node

DGuIPC 3

GRS_list List of GRS test statistics from each node

p_GRS_list List of p-values for GRS tests from each node

PY_list List of Pesaran and Yamagata test statistics from each node
p_PY_list List of p-values for PY tests from each node

reject_fdr_list
List of logical vectors indicating significant assets after FDR correction from
each node
power_proxy_list
List of number of significant assets after FDR correction from each node
combined_alpha Combined alpha vector from all nodes

combined_pval Combined p-value vector from all nodes
combined_reject_fdr
Combined FDR rejection vector from all nodes
total_power_proxy
Total number of significant assets across all nodes after FDR correction

Examples

set.seed(42)

T <- 120

N <- 100 # Larger dataset for distributed testing
K_factors <- 3

fac <- matrix(rnorm(T x K_factors), T, K_factors)
beta <- matrix(rnorm(N * K_factors), N, K_factors)
alpha <- rep(@, N)

alpha[1:10] <- @.4 / 100 # 10 non-zero alphas

eps <- matrix(rnorm(T * N, sd = 0.02), T, N)

ret <- alpha + fac %*% t(beta) + eps

Distributed testing with 4 nodes, each handling 25 assets
results <- Dfactor.tests(ret, fac, n1 = 25, K = 4, q.fdr = 0.05)

View combined results

cat("Total significant assets after FDR:", results$total_power_proxy, "\n")
cat("Combined results across all nodes:\n")
print(summary(results$combined_alpha))

DGulPC Distributed general unilateral loading principal component

Description

Distributed general unilateral loading principal component

Usage

DGulPC(data, m, n1, K)

4 DIPC

Arguments
data is a total data set
m is the number of principal component
ni is the length of each data subset
K is the number of nodes
Value

AU1,AU2,DU3,Shat

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,@))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%*%t (A)+epsilon
DGulPC(data,m=3,n1=128,K=2)

DIPC Distributed Incremental Principal Component Analysis (DIPC)

Description

Apply IPC in a distributed manner across K nodes.

Usage

DIPC(data, m, eta, K)

Arguments
data Matrix of input data (n X p).
m Number of principal components.
eta Proportion of initial batch to total data within each node.

K Number of nodes (distributed splits).

DPC

Value

List with per-node results and aggregated averages.

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5

mu=t (matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma®=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon

results <- DIPC(data, m, eta=0.8, K=5)

DPC Distributed principal component

Description

Distributed principal component

Usage

DPC(data, m, n1, K)

Arguments
data is a total data set
m is the number of principal component
n1 is the length of each data subset
K is the number of nodes
Value

Ahat,Dhat,Sigmahathat

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5

mu=t (matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon
DPC(data,m=3,n1=128,K=2)

DPPC

DPPC Distributed projection principal component

Description

Distributed projection principal component

Usage

DPPC(data, m, nl1, K)

Arguments
data is a total data set
m is the number of principal component
n1 is the length of each data subset
K is the number of nodes
Value

Apro,pro,Sigmahathatpro

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))

DSAPC 7

sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon
DPPC(data,m=3,n1=128,K=2)

DSAPC The distributed stochastic approximation principal component for
handling online data sets with highly correlated data across multiple
nodes.

Description

The distributed stochastic approximation principal component for handling online data sets with
highly correlated data across multiple nodes.

Usage
DSAPC(data, m, eta, n1, K)

Arguments
data is a highly correlated online data set
m is the number of principal component
eta is the proportion of online data to total data
ni is the length of each data subset
K is the number of nodes
Value

Asa, Dsa (lists containing results from each node)

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5

mu=t (matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigmad=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)

factor.tests

epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)

data=mu+F%x%t (A)+epsilon

DSAPC(data=data, m=3, eta=0.8, n1=128, K=2)

factor.tests

Factor Model Testing with Wald, GRS, PY tests and FDR control

Description

Performs comprehensive factor model testing including joint tests (Wald, GRS, PY), individual
asset t-tests, and False Discovery Rate control.

Usage

factor.tests(ret, fac, g.fdr = 0.05)

Arguments

ret
fac

g.fdr

Value

A T x N matrix representing the excess returns of N assets at T time points.
A T x K matrix representing the returns of K factors at T time points.

The significance level for FDR (False Discovery Rate) testing, defaulting to 5%.

A list containing the following components:

alpha
tstat
pval
Wald
p_Wald
GRS
p_GRS
PY
p_PY

reject_fdr

fdr_p

power_proxy

N-vector of estimated alphas for each asset
N-vector of t-statistics for testing individual alphas
N-vector of p-values for individual alpha tests
Wald test statistic for joint alpha significance
p-value for Wald test

GRS test statistic (finite-sample F-test)

p-value for GRS test

Pesaran and Yamagata test statistic

p-value for PY test

Logical vector indicating which assets have significant alphas after FDR correc-
tion

Adjusted p-values using Benjamini-Hochberg procedure

Number of significant assets after FDR correction

FanPC 9

Examples

set.seed(42)

T <- 120

N <- 25

K<-3

fac <- matrix(rnorm(T * K), T, K)

beta <- matrix(rnorm(N x K), N, K)

alpha <- rep(@, N)

alphal[1:3] <- 0.4 / 100 # 3 non-zero alphas
eps <- matrix(rnorm(T * N, sd = 0.02), T, N)
ret <- alpha + fac %*% t(beta) + eps

results <- factor.tests(ret, fac, q.fdr = 0.05)

View results

cat("Wald test p-value:"”, results$p_Wald, "\n")
cat("GRS test p-value:", results$p_GRS, "\n")
cat("PY test p-value:"”, results$p_PY, "\n")

cat("Significant assets after FDR:", results$power_proxy, "\n")
FanPC Apply the FanPC method to the Laplace factor model
Description

This function performs Factor Analysis via Principal Component (FanPC) on a given data set. It
calculates the estimated factor loading matrix (AF), specific variance matrix (DF), and the mean
squared errors.

Usage
FanPC(data, m)

Arguments

data A matrix of input data.

m is the number of principal component

Value

AF,DF,SigmahatF

Examples

library(LaplacesDemon)
library(MASS)

n=1000

p=10

m=5

10

Ftest

mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))

F=i
A=

matrix(mvrnorm(n,mu@, sigma@),nrow=n)
matrix(runif(pxm,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)

D=

diag(t(epsilon)%*%epsilon)

data=mu+F%x%t (A)+epsilon
results <- FanPC(data, m)
print(results)

Ftest Apply the Farmtest method to the Laplace factor model

Description

This function simulates data from a Lapalce factor model and applies the FarmTest for multiple
hypothesis testing. It calculates the false discovery rate (FDR) and power of the test.

Usage
Ftest(
data,
p1,
alpha = 0.05,
K=-1,
alternative = c("two.sided”, "less"”, "greater")
)
Arguments
data A matrix or data frame of simulated or observed data from a Laplace factor
model.
pl The number or proportion of non-zero hypotheses.
alpha The significance level for controlling the false discovery rate (default: 0.05).
K The number of factors to estimate (default: -1, meaning auto-detect).
alternative The alternative hypothesis: "two.sided", "less", or "greater" (default: "two.sided").
Value

A list containing the following elements:

FDR The false discovery rate, which is the proportion of false positives among all

discoveries (rejected hypotheses).

Power The statistical power of the test, which is the probability of correctly rejecting a

false null hypothesis.

GulPC

PValues A vector of p-values associated with each hypothesis test.
RejectedHypotheses
The total number of hypotheses that were rejected by the FarmTest.
reject Indices of rejected hypotheses.
means Estimated means.
Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t(A)+epsilon

p1=40

results <- Ftest(data, p1)
print(results$FDR)
print(results$Power)

GulPC General unilateral loading principal component

Description

General unilateral loading principal component

Usage

GulPC(data, m)

Arguments

data is a total data set

m is the number of first layer principal component
Value

AU1,AU2,DU3,SigmaUhat

12 IPC
Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5

mu=t(matrix(rep(runif(p,@,1000),n),p,n))

mu@=as.matrix(runif(m,0))

sigma@=diag(runif(m,1))

F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)

A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)

epsilon=matrix(lanor,nrow=n)

D=diag(t(epsilon)%x%epsilon)

data=mu+F%x%t (A)+epsilon

GulPC(data=data,m=5)

IPC Incremental principal component method

Description

The incremental principal component can handle online data sets with highly correlated.
Usage

IPC(data, m, eta)
Arguments

data is a highly correlated online data set

m is the number of principal component

eta is the proportion of online data to total data
Value

Ai,Di
Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))

LFM 13

F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon
IPC(data=data,m=3,eta=0.8)

LFM Generate Laplace factor models

Description

The function is to generate Laplace factor model data. The function supports various distribution
types for generating the data, including: - ‘truncated_laplace‘: Truncated Laplace distribution -
‘log_laplace‘: Univariate Symmetric Log-Laplace distribution - ‘Asymmetric Log_Laplace‘: Log-
Laplace distribution - ‘Skew-Laplace*: Skew-Laplace distribution

Usage
LFM(n, p, m, distribution_type)

Arguments
n An integer specifying the sample size.
p An integer specifying the sample dimensionality or the number of variables.
m An integer specifying the number of factors in the model.

distribution_type
A character string indicating the type of distribution to use for generating the
data.

Value
A list containing the following elements:

data A numeric matrix of the generated data.
A A numeric matrix representing the factor loadings.

D A numeric matrix representing the uniquenesses, which is a diagonal matrix.

Examples

n <- 1000

p <- 10

m<-5

sigmal <- 1

sigma2 <- matrix(c(1,0.7,0.7,1), 2, 2)
distribution_type <- "Asymmetric Log_Laplace’
results <- LFM(n, p, m, distribution_type)
print(results)

I

14

online_sir_Ifm

online_sir_1fm

Online Sufficient Dimension Reduction for Laplace Factor Model
(LFM)

Description

Implements an online SIR algorithm tailored for LFM data, using a proxy response constructed
from the current subspace estimate and robust updates to handle heavy-tailed noise. The algorithm
supports two optimization methods: gradient-based updates and perturbation-based updates.

Usage

online_sir_1fm(

X,
K_true =

NULL,
K_max = NULL,

c_robust = 1.345,

eta = "auto”,

method = "gradient”,

verbose =

Arguments

X

K_true

K_max

c_robust

eta
method

verbose

Value
A list with:

B_hat

K_est
B_path

loss
method_used

FALSE

A matrix or data stream of size n x p (rows = observations, cols = features). Can
be processed row-by-row in streaming setting.

Optional true dimension (for monitoring). If NULL, will estimate online via
BIC-like criterion.

Maximum candidate dimension for online selection (default = min(10, ncol(X))).

Robustness scale for tanh transformation (default = 1.345, approx. 0.95 effi-
ciency for Gaussian).

Learning rate schedule: either a function of t, or "auto" for 1/t.

Optimization method: "gradient" for gradient-based updates with learning rate,
or "perturbation" for direct eigenvector computation of the moment matrix (de-
fault = "gradient").

Logical; if TRUE, prints progress and estimated K at each step.

Final estimated basis matrix (p x K_est)

Estimated structural dimension

List of B estimates over time (optional, for debugging)
Reconstruction loss trace (optional)

The optimization method actually used

osdr_Ifm 15

Examples

set.seed(123)

n <- 500; p<-20; m<-3

B_true <- gr.Q(gr(matrix(rnorm(p * m), p, m)))

f <= matrix(rnorm(n * m), n, m)

eps <- matrix(rexp(n * p, rate = 1) - 1, n, p) # Asymmetric Laplace-like noise
X <= f %*% t(B_true) + eps

Using gradient method (default)
out_grad <- online_sir_lfm(X, K_true = m, verbose = TRUE)

Using perturbation method

out_pert <- online_sir_1fm(X, K_true = m, method = "perturbation”, verbose = TRUE)
osdr_1fm Online Sufficient Dimension Reduction for Laplace Factor Models
(OSDR-LFM)
Description

Implements an online SIR-based sufficient dimension reduction method tailored for Laplace Fac-
tor Models (LFM) with symmetric, asymmetric, or skewed error structures. Supports distributed
deployment via local updates and global aggregation.

Usage
osdr_1fm(
X’
Y = NULL,
laplace_type = c("symmetric”, "asymmetric"”, "skewed"),
K_max = NULL,
H = NULL,
method_svd = c("gradient”, "perturbation”),

is_distributed = FALSE,
node_id = 1,
sync_interval = 50,
verbose = FALSE

)
Arguments
X numeric matrix (n X p), observations in rows.
Y optional numeric vector (n) of proxy responses (e.g., factor scores). If NULL,

uses norm of projection as proxy (unsupervised LFM mode).

laplace_type character; one of "symmetric", "asymmetric", or "skewed".

K_max integer; maximum candidate dimension (default = min(10, p)).

16 PC

H integer; number of slices for SIR (default = max(5, floor(sqrt(n)))).
method_svd character; "perturbation” or "gradient" (default = "gradient").

is_distributed logical; if TRUE, simulate distributed node behavior.

node_id integer; node identifier (only used if is_distributed = TRUE).
sync_interval integer; how often to "aggregate" in distributed mode (ignored if not distributed).
verbose logical; print progress.

Value

list with B_hat (p x K_est), K_est, lambda_trace, and (if distributed) local_B.

Examples

set.seed(42)

n <- 600; p <- 30; m<- 4

A <- gr.Q(gr(matrix(rnorm(p * m), p, m)))

F <- matrix(rnorm(n * m), n, m)

eps <- matrix(rexp(n * p) - rexp(n *x p), n, p)
X <= F %*% t(A) + eps

out <- osdr_1fm(X, laplace_type = "asymmetric”, K_max = 6, verbose = TRUE)
cat("Estimated K:", out$K_est, "\n")

PC Principal component

Description

Principal component

Usage

PC(data, m)

Arguments

data is a total data set

m is the number of principal component

Value

Ahat, Dhat, Sigmahat

PPC

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5

mu=t (matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon

PC(data,m=5)

17

PPC Projection principal component

Description

Projection principal component

Usage
PPC(data, m)

Arguments

data is a total data set

m is the number of principal component
Value

Apro, Dpro, Sigmahatpro

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,0))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

18 SAPC

lanor <- rlaplace(n*xp,@,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%x%t (A)+epsilon
PPC(data=data,m=5)

SAPC The stochastic approximation principal component can handle online
data sets with highly correlated.

Description

The stochastic approximation principal component can handle online data sets with highly corre-
lated.

Usage
SAPC(data, m, eta)

Arguments

data is a highly correlated online data set
m is the number of principal component

eta is the proportion of online data to total data

Value

Asa,Dsa

Examples

library(LaplacesDemon)

library(MASS)

n=1000

p=10

m=5
mu=t(matrix(rep(runif(p,@,1000),n),p,n))
mu@=as.matrix(runif(m,@))
sigma@=diag(runif(m,1))
F=matrix(mvrnorm(n,mu@, sigma@),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%x%epsilon)
data=mu+F%*%t (A)+epsilon
SAPC(data=data,m=3,eta=0.8)

Index

Dfactor.tests, 2
DGulPC, 3

DIPC, 4

DPC, 5

DPPC, 6

DSAPC, 7

factor.tests, 8
FanPC, 9
Ftest, 10

GulPC, 11
IPC, 12
LFM, 13

online_sir_1fm, 14
osdr_1fm, 15

PC, 16
PPC, 17

SAPC, 18

19

	Dfactor.tests
	DGulPC
	DIPC
	DPC
	DPPC
	DSAPC
	factor.tests
	FanPC
	Ftest
	GulPC
	IPC
	LFM
	online_sir_lfm
	osdr_lfm
	PC
	PPC
	SAPC
	Index

