
Package ‘DLFM’
January 26, 2026

Type Package

Version 0.2.2

Title Distributed Laplace Factor Model

Description Distributed estimation method is based on a Laplace factor model
to solve the estimates of load and specific variance. The philosophy of
the package is described in Guangbao Guo. (2022).
<doi:10.1007/s00180-022-01270-z>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports MASS, LaplacesDemon, matrixcalc, stats

Depends R (>= 3.5.0)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

BuildManual yes

NeedsCompilation no

Language en-US

Date/Publication 2025-01-25

Repository CRAN

Author Guangbao Guo [aut, cre],
Siqi Liu [aut]

Maintainer Guangbao Guo <ggb11111111@163.com>

Date/Publication 2026-01-26 09:50:29 UTC

Contents
Dfactor.tests . 2
DGulPC . 3
DIPC . 4
DPC . 5

1

https://doi.org/10.1007/s00180-022-01270-z

2 Dfactor.tests

DPPC . 6
DSAPC . 7
factor.tests . 8
FanPC . 9
Ftest . 10
GulPC . 11
IPC . 12
LFM . 13
online_sir_lfm . 14
osdr_lfm . 15
PC . 16
PPC . 17
SAPC . 18

Index 19

Dfactor.tests Distributed Factor Model Testing with Wald, GRS, PY tests and FDR
control

Description

Performs comprehensive factor model testing in distributed environment across multiple nodes,
including joint tests (Wald, GRS, PY), individual asset t-tests, and False Discovery Rate control.

Usage

Dfactor.tests(ret, fac, n1, K, q.fdr = 0.05)

Arguments

ret A T × N matrix representing the excess returns of N assets at T time points.

fac A T × K matrix representing the returns of K factors at T time points.

n1 The number of assets allocated to each node

K The number of nodes

q.fdr The significance level for FDR (False Discovery Rate) testing, defaulting to 5%.

Value

A list containing the following components:

alpha_list List of alpha vectors from each node

tstat_list List of t-statistics from each node

pval_list List of p-values from each node

Wald_list List of Wald test statistics from each node

p_Wald_list List of p-values for Wald tests from each node

DGulPC 3

GRS_list List of GRS test statistics from each node
p_GRS_list List of p-values for GRS tests from each node
PY_list List of Pesaran and Yamagata test statistics from each node
p_PY_list List of p-values for PY tests from each node
reject_fdr_list

List of logical vectors indicating significant assets after FDR correction from
each node

power_proxy_list

List of number of significant assets after FDR correction from each node
combined_alpha Combined alpha vector from all nodes
combined_pval Combined p-value vector from all nodes
combined_reject_fdr

Combined FDR rejection vector from all nodes
total_power_proxy

Total number of significant assets across all nodes after FDR correction

Examples

set.seed(42)
T <- 120
N <- 100 # Larger dataset for distributed testing
K_factors <- 3
fac <- matrix(rnorm(T * K_factors), T, K_factors)
beta <- matrix(rnorm(N * K_factors), N, K_factors)
alpha <- rep(0, N)
alpha[1:10] <- 0.4 / 100 # 10 non-zero alphas
eps <- matrix(rnorm(T * N, sd = 0.02), T, N)
ret <- alpha + fac %*% t(beta) + eps

Distributed testing with 4 nodes, each handling 25 assets
results <- Dfactor.tests(ret, fac, n1 = 25, K = 4, q.fdr = 0.05)

View combined results
cat("Total significant assets after FDR:", results$total_power_proxy, "\n")
cat("Combined results across all nodes:\n")
print(summary(results$combined_alpha))

DGulPC Distributed general unilateral loading principal component

Description

Distributed general unilateral loading principal component

Usage

DGulPC(data, m, n1, K)

4 DIPC

Arguments

data is a total data set

m is the number of principal component

n1 is the length of each data subset

K is the number of nodes

Value

AU1,AU2,DU3,Shat

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
DGulPC(data,m=3,n1=128,K=2)

DIPC Distributed Incremental Principal Component Analysis (DIPC)

Description

Apply IPC in a distributed manner across K nodes.

Usage

DIPC(data, m, eta, K)

Arguments

data Matrix of input data (n × p).

m Number of principal components.

eta Proportion of initial batch to total data within each node.

K Number of nodes (distributed splits).

DPC 5

Value

List with per-node results and aggregated averages.

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- DIPC(data, m, eta=0.8, K=5)

DPC Distributed principal component

Description

Distributed principal component

Usage

DPC(data, m, n1, K)

Arguments

data is a total data set

m is the number of principal component

n1 is the length of each data subset

K is the number of nodes

Value

Ahat,Dhat,Sigmahathat

6 DPPC

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
DPC(data,m=3,n1=128,K=2)

DPPC Distributed projection principal component

Description

Distributed projection principal component

Usage

DPPC(data, m, n1, K)

Arguments

data is a total data set

m is the number of principal component

n1 is the length of each data subset

K is the number of nodes

Value

Apro,pro,Sigmahathatpro

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))

DSAPC 7

sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
DPPC(data,m=3,n1=128,K=2)

DSAPC The distributed stochastic approximation principal component for
handling online data sets with highly correlated data across multiple
nodes.

Description

The distributed stochastic approximation principal component for handling online data sets with
highly correlated data across multiple nodes.

Usage

DSAPC(data, m, eta, n1, K)

Arguments

data is a highly correlated online data set

m is the number of principal component

eta is the proportion of online data to total data

n1 is the length of each data subset

K is the number of nodes

Value

Asa, Dsa (lists containing results from each node)

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)

8 factor.tests

epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
DSAPC(data=data, m=3, eta=0.8, n1=128, K=2)

factor.tests Factor Model Testing with Wald, GRS, PY tests and FDR control

Description

Performs comprehensive factor model testing including joint tests (Wald, GRS, PY), individual
asset t-tests, and False Discovery Rate control.

Usage

factor.tests(ret, fac, q.fdr = 0.05)

Arguments

ret A T × N matrix representing the excess returns of N assets at T time points.

fac A T × K matrix representing the returns of K factors at T time points.

q.fdr The significance level for FDR (False Discovery Rate) testing, defaulting to 5%.

Value

A list containing the following components:

alpha N-vector of estimated alphas for each asset

tstat N-vector of t-statistics for testing individual alphas

pval N-vector of p-values for individual alpha tests

Wald Wald test statistic for joint alpha significance

p_Wald p-value for Wald test

GRS GRS test statistic (finite-sample F-test)

p_GRS p-value for GRS test

PY Pesaran and Yamagata test statistic

p_PY p-value for PY test

reject_fdr Logical vector indicating which assets have significant alphas after FDR correc-
tion

fdr_p Adjusted p-values using Benjamini-Hochberg procedure

power_proxy Number of significant assets after FDR correction

FanPC 9

Examples

set.seed(42)
T <- 120
N <- 25
K <- 3
fac <- matrix(rnorm(T * K), T, K)
beta <- matrix(rnorm(N * K), N, K)
alpha <- rep(0, N)
alpha[1:3] <- 0.4 / 100 # 3 non-zero alphas
eps <- matrix(rnorm(T * N, sd = 0.02), T, N)
ret <- alpha + fac %*% t(beta) + eps
results <- factor.tests(ret, fac, q.fdr = 0.05)

View results
cat("Wald test p-value:", results$p_Wald, "\n")
cat("GRS test p-value:", results$p_GRS, "\n")
cat("PY test p-value:", results$p_PY, "\n")
cat("Significant assets after FDR:", results$power_proxy, "\n")

FanPC Apply the FanPC method to the Laplace factor model

Description

This function performs Factor Analysis via Principal Component (FanPC) on a given data set. It
calculates the estimated factor loading matrix (AF), specific variance matrix (DF), and the mean
squared errors.

Usage

FanPC(data, m)

Arguments

data A matrix of input data.

m is the number of principal component

Value

AF,DF,SigmahatF

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5

10 Ftest

mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
results <- FanPC(data, m)
print(results)

Ftest Apply the Farmtest method to the Laplace factor model

Description

This function simulates data from a Lapalce factor model and applies the FarmTest for multiple
hypothesis testing. It calculates the false discovery rate (FDR) and power of the test.

Usage

Ftest(
data,
p1,
alpha = 0.05,
K = -1,
alternative = c("two.sided", "less", "greater")

)

Arguments

data A matrix or data frame of simulated or observed data from a Laplace factor
model.

p1 The number or proportion of non-zero hypotheses.

alpha The significance level for controlling the false discovery rate (default: 0.05).

K The number of factors to estimate (default: -1, meaning auto-detect).

alternative The alternative hypothesis: "two.sided", "less", or "greater" (default: "two.sided").

Value

A list containing the following elements:

FDR The false discovery rate, which is the proportion of false positives among all
discoveries (rejected hypotheses).

Power The statistical power of the test, which is the probability of correctly rejecting a
false null hypothesis.

GulPC 11

PValues A vector of p-values associated with each hypothesis test.
RejectedHypotheses

The total number of hypotheses that were rejected by the FarmTest.

reject Indices of rejected hypotheses.

means Estimated means.

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
p1=40
results <- Ftest(data, p1)
print(results$FDR)
print(results$Power)

GulPC General unilateral loading principal component

Description

General unilateral loading principal component

Usage

GulPC(data, m)

Arguments

data is a total data set

m is the number of first layer principal component

Value

AU1,AU2,DU3,SigmaUhat

12 IPC

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
GulPC(data=data,m=5)

IPC Incremental principal component method

Description

The incremental principal component can handle online data sets with highly correlated.

Usage

IPC(data, m, eta)

Arguments

data is a highly correlated online data set

m is the number of principal component

eta is the proportion of online data to total data

Value

Ai,Di

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))

LFM 13

F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
IPC(data=data,m=3,eta=0.8)

LFM Generate Laplace factor models

Description

The function is to generate Laplace factor model data. The function supports various distribution
types for generating the data, including: - ‘truncated_laplace‘: Truncated Laplace distribution -
‘log_laplace‘: Univariate Symmetric Log-Laplace distribution - ‘Asymmetric Log_Laplace‘: Log-
Laplace distribution - ‘Skew-Laplace‘: Skew-Laplace distribution

Usage

LFM(n, p, m, distribution_type)

Arguments

n An integer specifying the sample size.
p An integer specifying the sample dimensionality or the number of variables.
m An integer specifying the number of factors in the model.
distribution_type

A character string indicating the type of distribution to use for generating the
data.

Value

A list containing the following elements:

data A numeric matrix of the generated data.
A A numeric matrix representing the factor loadings.
D A numeric matrix representing the uniquenesses, which is a diagonal matrix.

Examples

n <- 1000
p <- 10
m <- 5
sigma1 <- 1
sigma2 <- matrix(c(1,0.7,0.7,1), 2, 2)
distribution_type <- "Asymmetric Log_Laplace"
results <- LFM(n, p, m, distribution_type)
print(results)

14 online_sir_lfm

online_sir_lfm Online Sufficient Dimension Reduction for Laplace Factor Model
(LFM)

Description

Implements an online SIR algorithm tailored for LFM data, using a proxy response constructed
from the current subspace estimate and robust updates to handle heavy-tailed noise. The algorithm
supports two optimization methods: gradient-based updates and perturbation-based updates.

Usage

online_sir_lfm(
X,
K_true = NULL,
K_max = NULL,
c_robust = 1.345,
eta = "auto",
method = "gradient",
verbose = FALSE

)

Arguments

X A matrix or data stream of size n x p (rows = observations, cols = features). Can
be processed row-by-row in streaming setting.

K_true Optional true dimension (for monitoring). If NULL, will estimate online via
BIC-like criterion.

K_max Maximum candidate dimension for online selection (default = min(10, ncol(X))).
c_robust Robustness scale for tanh transformation (default = 1.345, approx. 0.95 effi-

ciency for Gaussian).
eta Learning rate schedule: either a function of t, or "auto" for 1/t.
method Optimization method: "gradient" for gradient-based updates with learning rate,

or "perturbation" for direct eigenvector computation of the moment matrix (de-
fault = "gradient").

verbose Logical; if TRUE, prints progress and estimated K at each step.

Value

A list with:

B_hat Final estimated basis matrix (p x K_est)
K_est Estimated structural dimension
B_path List of B estimates over time (optional, for debugging)
loss Reconstruction loss trace (optional)
method_used The optimization method actually used

osdr_lfm 15

Examples

set.seed(123)
n <- 500; p <- 20; m <- 3
B_true <- qr.Q(qr(matrix(rnorm(p * m), p, m)))
f <- matrix(rnorm(n * m), n, m)
eps <- matrix(rexp(n * p, rate = 1) - 1, n, p) # Asymmetric Laplace-like noise
X <- f %*% t(B_true) + eps

Using gradient method (default)
out_grad <- online_sir_lfm(X, K_true = m, verbose = TRUE)

Using perturbation method
out_pert <- online_sir_lfm(X, K_true = m, method = "perturbation", verbose = TRUE)

osdr_lfm Online Sufficient Dimension Reduction for Laplace Factor Models
(OSDR-LFM)

Description

Implements an online SIR-based sufficient dimension reduction method tailored for Laplace Fac-
tor Models (LFM) with symmetric, asymmetric, or skewed error structures. Supports distributed
deployment via local updates and global aggregation.

Usage

osdr_lfm(
X,
Y = NULL,
laplace_type = c("symmetric", "asymmetric", "skewed"),
K_max = NULL,
H = NULL,
method_svd = c("gradient", "perturbation"),
is_distributed = FALSE,
node_id = 1,
sync_interval = 50,
verbose = FALSE

)

Arguments

X numeric matrix (n x p), observations in rows.

Y optional numeric vector (n) of proxy responses (e.g., factor scores). If NULL,
uses norm of projection as proxy (unsupervised LFM mode).

laplace_type character; one of "symmetric", "asymmetric", or "skewed".

K_max integer; maximum candidate dimension (default = min(10, p)).

16 PC

H integer; number of slices for SIR (default = max(5, floor(sqrt(n)))).

method_svd character; "perturbation" or "gradient" (default = "gradient").

is_distributed logical; if TRUE, simulate distributed node behavior.

node_id integer; node identifier (only used if is_distributed = TRUE).

sync_interval integer; how often to "aggregate" in distributed mode (ignored if not distributed).

verbose logical; print progress.

Value

list with B_hat (p x K_est), K_est, lambda_trace, and (if distributed) local_B.

Examples

set.seed(42)
n <- 600; p <- 30; m <- 4
A <- qr.Q(qr(matrix(rnorm(p * m), p, m)))
F <- matrix(rnorm(n * m), n, m)
eps <- matrix(rexp(n * p) - rexp(n * p), n, p)
X <- F %*% t(A) + eps

out <- osdr_lfm(X, laplace_type = "asymmetric", K_max = 6, verbose = TRUE)
cat("Estimated K:", out$K_est, "\n")

PC Principal component

Description

Principal component

Usage

PC(data, m)

Arguments

data is a total data set

m is the number of principal component

Value

Ahat, Dhat, Sigmahat

PPC 17

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
PC(data,m=5)

PPC Projection principal component

Description

Projection principal component

Usage

PPC(data, m)

Arguments

data is a total data set

m is the number of principal component

Value

Apro, Dpro, Sigmahatpro

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)

18 SAPC

lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
PPC(data=data,m=5)

SAPC The stochastic approximation principal component can handle online
data sets with highly correlated.

Description

The stochastic approximation principal component can handle online data sets with highly corre-
lated.

Usage

SAPC(data, m, eta)

Arguments

data is a highly correlated online data set

m is the number of principal component

eta is the proportion of online data to total data

Value

Asa,Dsa

Examples

library(LaplacesDemon)
library(MASS)
n=1000
p=10
m=5
mu=t(matrix(rep(runif(p,0,1000),n),p,n))
mu0=as.matrix(runif(m,0))
sigma0=diag(runif(m,1))
F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
A=matrix(runif(p*m,-1,1),nrow=p)
lanor <- rlaplace(n*p,0,1)
epsilon=matrix(lanor,nrow=n)
D=diag(t(epsilon)%*%epsilon)
data=mu+F%*%t(A)+epsilon
SAPC(data=data,m=3,eta=0.8)

Index

Dfactor.tests, 2
DGulPC, 3
DIPC, 4
DPC, 5
DPPC, 6
DSAPC, 7

factor.tests, 8
FanPC, 9
Ftest, 10

GulPC, 11

IPC, 12

LFM, 13

online_sir_lfm, 14
osdr_lfm, 15

PC, 16
PPC, 17

SAPC, 18

19

	Dfactor.tests
	DGulPC
	DIPC
	DPC
	DPPC
	DSAPC
	factor.tests
	FanPC
	Ftest
	GulPC
	IPC
	LFM
	online_sir_lfm
	osdr_lfm
	PC
	PPC
	SAPC
	Index

