Package ‘Countr’

January 18, 2026
Type Package
Title Flexible Univariate Count Models Based on Renewal Processes
Version 3.6.1

Description Flexible univariate count models based on renewal processes. The
models may include covariates and can be specified with familiar formula
syntax as in glm() and package 'flexsurv'. The methodology is described by
Kharrat et all (2019) <doi:10.18637/jss.v090.113> (included as vignette
'Countr_guide' in the package).

License GPL (>=2)

URL https://geobosh.github.io/Countr/ (doc),
https://CRAN.R-project.org/package=Countr

BugReports https://github.com/GeoBosh/Countr/issues
Depends R (>=3.3.0)

Imports Rcpp (>=0.11.3), flexsurv, Formula, VGAM (>= 1.1-1), optimx,
numDeriv, boot, MASS, utils, Rdpack (>= 0.7-0), dplyr,
standardize, pscl, car, Matrix

LinkingTo Rcpp, ReppArmadillo

Suggests testthat, knitr, xtable, Imtest, lattice, RColorBrewer
RdMacros Rdpack

VignetteBuilder knitr

LazyData true

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Collate 'Countr-package.R' 'ReppExports.R' 'anc.R' 'coefnames.R’
'convCount_loglik.R' 'convCount_moments.R' 'convCount_probs.R'
'dBivariateWeibull.R' 'dWeibull.R' 'dWeibullgamma.R' 'data.R’
'renewal_IV.R' 'renewal_tools.R' renewal_cstr.R' 'tools.R'
'renewal_methods.R'

Config/build/clean-inst-doc FALSE

https://doi.org/10.18637/jss.v090.i13
https://geobosh.github.io/Countr/
https://CRAN.R-project.org/package=Countr
https://github.com/GeoBosh/Countr/issues

Author Tarak Kharrat [aut] (ORCID: <https://orcid.org/0000-0001-9399-6174>),
Georgi N. Boshnakov [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2839-346X>)

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>
Repository CRAN
Date/Publication 2026-01-18 15:40:02 UTC

Contents

Countr-package
addBootSampleObject o
chiSq gof
chiSq pearson
compareTOGLM
CountrFormula
count_table
dBivariateWeibullCountFrankCopula
dCount_conv_bi.
dCount_conv_loglik_bi
dmodifiedCount_bi
dRenewalFrankCopula_user
dWeibullCount
dWeibullgammaCount_mat_Covariates
evCount_conv_bi e
fertility e
footballo
frequency_plot
getParNames
predictrenewal
renewalCoef
renewalCoefLiist L
renewalCount
renewalNames
renewal_methods L
residuals_plot L
se.coef . . oL L e

Index

Contents

https://orcid.org/0000-0001-9399-6174
https://orcid.org/0000-0003-2839-346X

Countr-package 3

Countr-package Flexible Univariate Count Models Based on Renewal Processes

Description

Flexible univariate count models based on renewal processes. The models may include covariates
and can be specified with familiar formula syntax as in glm() and ’flexsurv’.

Details

The methodology is described by Kharrat et al. (2019). The paper is included in the package as
vignette vignette('Countr_guide_paper', package = "Countr")).

The main function is renewalCount, see its documentation for examples.

Goodness of fit chi-square (likelihood ratio and Pearson) tests for glm and count renewal models
are implemented in chiSq_gof and chiSq_pearson.

Author(s)

Maintainer: Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk> (ORCID)

Authors:

e Tarak Kharrat <tarak@realanalytics.co.uk> (ORCID)
* Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk> (ORCID)

References

Kharrat T, Boshnakov GN, McHale I, Baker R (2019). “Flexible Regression Models for Count Data
Based on Renewal Processes: The Countr Package.” Journal of Statistical Software, 90(13), 1-35.
doi:10.18637/js5.v090.113.

Baker R, Kharrat T (2017). “Event count distributions from renewal processes: fast computation
of probabilities.” IMA Journal of Management Mathematics, 29(4), 415-433. ISSN 1471-6798,
doi:10.1093/imaman/dpx008, https://academic.oup.com/imaman/article-pdf/29/4/415/25693854/dpx008.pdf.

Boshnakov G, Kharrat T, McHale IG (2017). “A bivariate Weibull count model for forecasting
association football scores.” International Journal of Forecasting, 33(2), 458—466.

Cameron AC, Trivedi PK (2013). Regression analysis of count data, volume 53. Cambridge uni-
versity press.

Kharrat T, Boshnakov GN, McHale IG, Baker R (2018). “Flexible regression models for count data
based on renewal processes: the Countr package.” Journal of Statistical Software (to appear).

McShane B, Adrian M, Bradlow ET, Fader PS (2008). “Count models based on Weibull interarrival
times.” Journal of Business & Economic Statistics, 26(3), 369-378.

Winkelmann R (1995). “Duration dependence and dispersion in count-data models.” Journal of
Business & Economic Statistics, 13(4), 467-474.

https://orcid.org/0000-0003-2839-346X
https://orcid.org/0000-0001-9399-6174
https://orcid.org/0000-0003-2839-346X
https://doi.org/10.18637/jss.v090.i13
https://doi.org/10.1093/imaman/dpx008

4 addBootSampleObject

See Also
Useful links:
e https://geobosh.github.io/Countr/ (doc)

* https://CRAN.R-project.org/package=Countr
* Report bugs at https://github.com/GeoBosh/Countr/issues

addBootSampleObject Create a bootsrap sample for coefficient estimates

Description

Create a boostrap sample from coefficient estimates.

Usage
addBootSampleObject(object, ...)
Arguments
object an object to add boot object to.
extra parameters to be passed to the boot: :boot() function other than data
and statistic.
Details

The information in object is used to prepare the arguments and then boot is called to generate the
bootstrap sample. The bootstrap sample is stored in object as component "boot"”. Arguments in
"..." can be used customise the boot () call.

Value

object with additional component "boot”

See Also

renewal_methods

Examples

see renewal_methods

https://geobosh.github.io/Countr/
https://CRAN.R-project.org/package=Countr
https://github.com/GeoBosh/Countr/issues

chiSq_gof 5

chiSq_gof Formal Chi-square goodness-of-fit test

Description

Carry out the formal chi-square goodness-of-fit test described by Cameron (2013).
Usage
chiSq_gof(object, breaks, ...)

S3 method for class 'renewal'
chiSq_gof(object, breaks, ...)

S3 method for class 'negbin'
chiSq_gof(object, breaks, ...)

S3 method for class 'glm'

chiSq_gof (object, breaks, ...)
Arguments
object an object from class renewal.
breaks integer values at which the breaks shoudl happen. The function will compute

the observed frequencies in the intervals [breaks[i],breaks[i + 1]).

currently not used.

Details

The test is a conditional moment test described in details in Cameron (2013, Section 5.3.4). We
compute the asymptotically equivalent outer product of the gradient version which is justified for
renewal models (fully parametric + parameters based on MLE).

Value

data.frame

References

Cameron AC, Trivedi PK (2013). Regression analysis of count data, volume 53. Cambridge uni-
versity press.

See Also

chiSq_pearson

6 chiSq_pearson

chiSq_pearson Pearson Chi-Square test

Description

Carry out Pearson Chi-Square test and compute the Pearson statistic.

Usage

chiSqg_pearson(object, ...)

S3 method for class 'renewal'
chiSq_pearson(object, ...)

S3 method for class 'glm'

chiSq_pearson(object, ...)
Arguments
object an object from class renewal.

currently not used.

Details

The computation is inspired from Cameron(2013) Chapter 5.3.4. Observed and fitted frequencies
are computed and the contribution of every observed cell to the Pearson’s chi-square test statistic
is reported. The idea is to check if the fitted model has a tendancy to over or under predict some
ranges of data

Value
data.frame with 5 columns given the count values (Counts), observed frequencies (Actual), model’s
prediction (Predicted), the difference (Diff) and the contribution to the Pearson’s statistic (Pearson).
References
Cameron AC, Trivedi PK (2013). Regression analysis of count data, volume 53. Cambridge uni-
versity press.

See Also

chiSq_gof

compare ToGLM 7

compareToGLM Compare renewals fit to glm models fit

Description

Compare renewals fit to glm models fit on the same data.

Usage

compareToGLM(poisson_model, breaks, nbinom_model, ...)

Arguments

poisson_model fitted Poisson glm model

breaks integer values at which the breaks should happen. The function will compute
the observed frequencies in the intervals [breaks[i],breaks[i + 1]).

nbinom_model fitted negative binomial (fitted using MASS: :glm.nb()). This argument is op-
tional.

renewal models to be considered.

Details

This function computes a data.frame similar to Table 5.6 in Cameron(2013), using the observed
frequencies and predictions from different models. Supported models accepted are Poisson and
negative binomial (fitted using MASS: :glm.nb()) from the glm family and any model from the
renewal family (passedin .. .).

Value

data.frame with columns Counts, Actual (observed probability) and then 2 columns per model
passed (predicted probability and pearson statistic) for the associated count value.

References

Cameron AC, Trivedi PK (2013). Regression analysis of count data, volume 53. Cambridge uni-
versity press.

8 count_table

CountrFormula Create a formula for renewalCount

Description

Create a formula for renewalCount

Usage
CountrFormula(response, ...)
Arguments
response the formula for the "main" parameter. It also specifies the response variable.
additional arguments for the ancilliary parameters.
Value

a Formula object suitable for argument formula of renewalCount().

count_table Summary of a count variable

Description

Summary of a count variable.

Usage

count_table(count, breaks, formatChar = FALSE)

Arguments
count integer, observed count value for every individual in the sample.
breaks integer, values at which the breaks should happen. The function will compute
the observed frequency in [breaks[i], breaks[i + 1]).
formatChar logical, should the values be converted to character and formatted?
Details

The function does a similar job to table() with more flexibility introduced by the argument
breaks. The user can decide how to break the count values and decide to merge some cells if
needed.

dBivariate WeibullCountFrankCopula 9

Value

matrix with 2 rows and length(breaks) columns. The column names are the cells names. The
rows are the observed frequencies and relative frequencies (probabilities).

dBivariateWeibullCountFrankCopula

Density and log-likelihood of the Bivariate Frank Copula Weibull
Count model

Description

Compute density and log-likelihood of the Bivariate Frank Copula Weibull Count model.

Usage

dBivariateWeibullCountFrankCopula(
X)
Y,
shapeX,
scaleX,
shapeY,
scaleY,
theta,
method = c("series_acc”, "conv_dePril”),
time = 1,
log = FALSE,
conv_steps = 100,
conv_extrap = TRUE,
series_terms = 50,
series_acc_niter = 300,
series_acc_eps = le-10

)

dBivariateWeibullCountFrankCopula_loglik(
X,
Y,
shapeX,
scaleX,
shapeY,
scaleY,
theta,
method = c("series_acc”, "conv_dePril”),
time = 1,
na.rm = TRUE,
conv_steps = 100,
conv_extrap = TRUE,
series_terms = 50,

10

series_acc_niter =
series_acc_eps =

dBivariate WeibullCountFrankCopula

300,
Te-10,

weights = NULL

)

Arguments

X,y

shapeX, shapeY
scaleX, scaleY
theta

method

time

log
conv_steps
conv_extrap

series_terms

numeric, the desired counts.

numeric, shape parameters. Either length(x) or length(1).
numeric, scale parameters (length(x)).

numeric, Frank copula parameter.

character method to be used. Choices are "series_acc” (accelerated series
expansion) or "conv_dePril” (convolution by dePril algorithm).

numeric, length of the observation window (defaults to 1).

TODO

integer, number of steps to use in the computation of the integral.

logical, if TRUE, Richardson extrapolation will be applied to improve accuracy.

number of terms used in series expansion.

series_acc_niter

number of iterations in the acceleration algorithm.

series_acc_eps double, tolerance to declare convergence in the acceleration algorithm.

na.rm

weights

Details

logical, should NAs (obtained from log of small probabilities) be replaced with
the smallest allowed probability?

numeric vector of weights to apply. If NULL, a vector of ones.

dBivariateWeibullCountFrankCopula computes the probabilities P(X (¢) = z(t), Y (t) = y(¢)),
where X (t), Y'(t) is a bivariate Weibull count process in which the bivariate distribution is modelled

by Frank copulas.

Value

for dBivariateWeibullCountFrankCopula, a vector of the (log-)probabilities.

for dBivariateWeibullCountFrankCopula_loglik, the log-likelihood of the model, a number.

Examples

first 10 cases from "estimationParams.RDS"”, rounded for presentation

gam_weiH <- 0.9530455

gam_weiA <- 1.010051

theta <- -0.3703702

HG <- c(0, 0, 0, 2, 1, @, 2, 0, 1, 2)

AG <- ¢c(2, 2,1, 1,6, 1,0, 2, 01)

lambdaHome <- c(1.5, 1.0, 1.3, 1.8, 1.3, 1.2, 1.3, 1.0, 2.0, 1.4)
lambdaAway <- c(1.2, 2.4, 1.3, 0.7, 1.3, 1.4, 0.6, 1.6, 0.6, 1.3)

dCount_conv_bi

weiFrank@ <- dBivariateWeibullCountFrankCopula(
HG, AG, gam_weiH, lambdaHome, gam_weiA, lambdaAway, theta,
"series_acc"”, 1, TRUE)

weiFrank1l <- dBivariateWeibullCountFrankCopula(
HG, AG, gam_weiH, lambdaHome, gam_weiA, lambdaAway, theta,
"conv_dePril”, 1, TRUE, conv_extrap = TRUE)

weights <- c(0.01355306, 0.01355306, 0.01355306, 0.01355306, ©.01355306,

0.01355306, 0.01355306, 0.01355306, 0.01357825, 0.01357825)

weiFrank2 <- dBivariateWeibullCountFrankCopula_loglik(
HG, AG, gam_weiH, lambdaHome, gam_weiA, lambdaAway, theta,
"conv_dePril”, 1, TRUE, conv_extrap = TRUE, weights = weights)

weiFrank3 <- dBivariateWeibullCountFrankCopula_loglik(
HG, AG, gam_weiH, lambdaHome, gam_weiA, lambdaAway, theta,
"series_acc”, 1, TRUE, weights = weights)

cbind(weiFrank®, weiFrankl, weiFrank2, weiFrank3)
rdname dRenewalFrankCopula_user

11

dCount_conv_bi Compute count probabilities using convolution

Description

Compute count probabilities using one of several convolution methods. dCount_conv_bi does the
computations for the distributions with builtin support in this package.

dCount_conv_user does the same using a user defined survival function.

Usage

dCount_conv_bi(
X)
distPars,
dist = c("weibull”, "gamma”, "gengamma", "burr"),
method = c("dePril”, "direct”, "naive"),
nsteps = 100,
time = 1,
extrap = TRUE,
log = FALSE

dCount_conv_user(

X,

12

dCount_conv_bi

distPars,
extrapolPars,
SurvR,
method = c("dePril”, "direct”, "naive"),
nsteps = 100,
time = 1,
extrap = TRUE,
log = FALSE
)
Arguments
X integer (vector), the desired count values.
distPars Rcpp: :List with distribution specific slots, see section ‘Details’.
dist character name of the built-in distribution, see section ‘Details’.
method character string, the method to use, see section ‘Details’.
nsteps unsiged integer, number of steps used to compute the integral.
time double, time at wich to compute the probabilities. Set to 1 by default.
extrap logical, if TRUE, Richardson extrapolation will be applied to improve accuracy.
log logical, if TRUE the log-probability will be returned.
extrapolPars vector of length 2, the extrapolation values.
survR function, user supplied survival function; should have signature function(t,
distPars), where t is a positive real number (the time where the survival func-
tion is evaluated) and distPars is a list of distribution parameters. It should
return a double value.
Details

dCount_conv_bi computes count probabilities using one of several convolution methods for the
distributions with builtin support in this package.

The following convolution methods are implemented: "dePril", "direct"”, and "naive".

The builtin distributions currently are Weibull, gamma, generalised gamma and Burr.

Value

vector of probabilities P(z(7), ¢ = 1,...,n) where n is the length of x.

Examples

X <- 0:10

lambda <- 2.56

p@ <- dpois(x, lambda)
11 <- sum(dpois(x, lambda, TRUE))

err <- le-6

all-probs convolution approach
distPars <- list(scale = lambda, shape = 1)

dCount_conv_loglik_bi 13

pmat_bi <- dCount_conv_bi(x, distPars, "weibull”, "direct”,
nsteps = 200)

user pwei
pwei_user <- function(tt, distP) {
alpha <- exp(-log(distP[["scale”]]) / distP[["shape”]])
pweibull(g = tt, scale = alpha, shape = distP[["shape"]1],
lower.tail = FALSE)
3

pmat_user <- dCount_conv_user(x, distPars, c(1, 2), pwei_user, "direct”,
nsteps = 200)

max ((pmat_bi - p@)*2 / po)

max ((pmat_user - p@)*2 / p@)

naive convolution approach
pmat_bi <- dCount_conv_bi(x, distPars, "weibull”, "naive",
nsteps = 200)
pmat_user <- dCount_conv_user(x, distPars, c(1, 2), pwei_user, "naive”,
nsteps = 200)
max ((pmat_bi- p@)*2 / p@)
max((pmat_user- p@)*2 / p@)

dePril conv approach
pmat_bi <- dCount_conv_bi(x, distPars, "weibull”, "dePril”,
nsteps = 200)
pmat_user <- dCount_conv_user(x, distPars, c(1, 2), pwei_user, "dePril”,
nsteps = 200)
max ((pmat_bi- p@)*2 / p@)
max ((pmat_user- p@)*2 / p@)

dCount_conv_loglik_bi Log-likelihood of a count probability computed by convolution (bi)

Description

Compute the log-likelihood of a count model using convolution methods to compute the probabil-
ities. dCount_conv_loglik_bi is for the builtin distributions. dCount_conv_loglik_user is for
user defined survival functions.

Usage
dCount_conv_loglik_bi(
X)
distPars,
dist = c("weibull”, "gamma", "gengamma", "burr"),
method = c("dePril”, "direct”, "naive"),

nsteps = 100,

14

dCount_conv_loglik_bi

time = 1,
extrap = TRUE,
na.rm = TRUE,
weights = NULL
)
dCount_conv_loglik_user(
X ’
distPars,
extrapolPars,
survR,
method = c("dePril”, "direct”, "naive"),
nsteps = 100,
time = 1,
extrap = TRUE,
na.rm = TRUE,
weights = NULL
)
Arguments
X integer (vector), the desired count values.
distPars list of the same length as x with each slot being itself a named list containing the
distribution parameters corresponding to x[i].
dist character name of the built-in distribution, see section ‘Details’.
method character, convolution method to be used; choices are "dePril” (section 3.2),
"direct” (section 2) or "naive” (section 3.1).
nsteps unsiged integer number of steps used to compute the integral.
time double time at wich to compute the probabilities. Set to 1 by default.
extrap logical if TRUE, Richardson extrapolation will be applied to improve accuracy.
na.rm logical, if TRUE, NAs (produced by taking the log of very small probabilities)
will be replaced by the smallest allowed probability; default is TRUE.
weights numeric, vector of weights to apply. If NULL, a vector of ones.
extrapolPars list of same length as x where each slot is a vector of length 2 (the extrapolation
values to be used) corresponding to x[1i].
survR auser defined survival function; should have the signature function(t, distPars)
where t is a real number (>0) where the survival function is evaluated and
distPars is a list of distribution parameters. It should return a double value.
Value

numeric, the log-likelihood of the count process

dmodifiedCount_bi 15

Examples

x <- 0:10
lambda <- 2.56
distPars <- list(scale = lambda, shape = 1)
distParsList <- lapply(seq(along = x), function(ind) distPars)
extrapolParsList <- lapply(seq(along = x), function(ind) c(2, 1))
user pweil
pwei_user <- function(tt, distP) {
alpha <- exp(-log(distP[["scale”]]) / distP[["shape”]])
pweibull(g = tt, scale = alpha, shape = distP[["shape"]],
lower.tail = FALSE)
3

log-likehood allProbs Poisson
dCount_conv_loglik_bi(x, distParsList,
"weibull”, "direct"”, nsteps = 400)

dCount_conv_loglik_user(x, distParsList, extrapolParsList,
pwei_user, "direct”, nsteps = 400)

log-likehood naive Poisson
dCount_conv_loglik_bi(x, distParslList,
"weibull”, "naive"”, nsteps = 400)

dCount_conv_loglik_user(x, distParsList, extrapolParslList,
pwei_user, "naive"”, nsteps = 400)

log-likehood dePril Poisson
dCount_conv_loglik_bi(x, distParsList,
"weibull”, "dePril”, nsteps = 400)

dCount_conv_loglik_user(x, distParsList, extrapolParsList,
pwei_user, "dePril”, nsteps = 400)
see dCount_conv_loglik_bi()

dmodifiedCount_bi Compute count probabilities based on modified renewal process (bi)

Description

Compute count probabilities based on modified renewal process using dePril algorithm. dmodifiedCount_bi
does it for the builtin distributions.

dmodifiedCount_user does the same for a user specified distribution.

Usage

dmodifiedCount_bi(
X’
distPars,

16

dist,
distParso,
disto,
nsteps
time =
extrap
cdfout

In =1

dmodifiedCount_bi

100L,

TRUE,
FALSE,

logFlag = FALSE

)

dmodifiedCount_user(

X,
distPars,
SurvR,
distParso,
survRe,

extrapolPars,

nsteps = 100L,

time =
extrap

I = 1

TRUE,

cdfout = FALSE,
logFlag = FALSE

Arguments

X

integer (vector), the desired count values.

distPars0, distPars

dist@, dist
nsteps
time
extrap
cdfout
logFlag

survRo, survR

extrapolPars

Details

Rcpp: :List with distribution specific slots for the first arrival and the rest of the
process respectively

character, name of the first and following survival distributions.

unsiged integer number of steps used to compute the integral.

double time at wich to compute the probabilities. Set to 1 by default.

logical if TRUE, Richardson extrapolation will be applied to improve accuracy.
TODO

logical if TRUE the log-probability will be returned

user supplied survival function; should have signature function(t, distPars),
where t is a positive real number (the time at which the survival function is eval-
uated) and distPars is a list of distribution parameters. It should return a double
value (first arrival and following arrivals respectively).

list of same length as x, where each slot is a vector of length 2 (the extrapolation
values to be used) corresponding to x[1i].

For the modified renewal process the first arrival is allowed to have a different distribution from the
time between subsequent arrivals. The renewal assumption is kept.

dRenewalFrankCopula_user 17

Value

vector of probabilities P(x(i)) for i = 1, ..., n where n is the length of x.

dRenewalFrankCopula_user
Bivariate Count probability Using Frank copula (user)

Description

Bivariate Count probability Using Frank copula to model dependence using user passed survival
objects

Bivariate Count probability Using Frank copula to model dependence using built-in distributions

Usage

dRenewalFrankCopula_user(
X,
Y,
survX,
survy,
distParsX,
distParsY,
extrapolParsX,
extrapolParsY,
theta,
time = 1,
logFlag = FALSE,
nsteps = 100L,
extrap = TRUE

)

dRenewalFrankCopula_bi(
X,
Y,
distX,
disty,
distParsX,
distParsY,
theta,
time = 1,
logFlag = FALSE,
nsteps = 100L,
extrap = TRUE

18 dWeibullCount

Arguments
X,y numeric vector the desired counts.
survX, survyY R functions: the survival functions.

distParsX, distParsY
List of Lists. Each slot is a named vector of distribution parameters.
extrapolParsX, extrapolParsY

list vec of length 2 values of the Richardson extrapolation parameters for the
inputted distribution.

theta double Frank copula parameter.

time double time at wich to compute the probabilities. Set to 1 by default.

logFlag TODO

nsteps unsiged integer number of steps used to compute the integral.

extrap logical if TRUE, Richardson extrapolation will be applied to improve accuracy.

TODO: (this is for arg. method, maybe!) param dePrilConv logical if TRUE the
dePril method will be applied to compute convolution. Otherwise, the binary
decomposition of section 3 will be used.

distX, distY character name of the survival distribution.

Details

We use Frank copula to model depepndence between 2 renewal count processes obtained from user
passed inter-arrival distribution defined by survPtr, distPars and extrapolPars.

Value

(log) probability of the bivariate count P(X (t) = «;,Y (t) = y;) where x_i and y_i are the ith
component of the X and Y respectively.

(log) probability of the bivariate count P(X () = x;,Y (t) = y;) where x_i and y_i are the ith
component of the X and Y respectively.

dWeibullCount Probability calculations for Weibull count models

Description

Probability computations for the univariate Weibull count process. Several methods are provided.
dWeibullCount computes probabilities.

dWeibullCount_loglik computes the log-likelihood.

evWeibullCount computes the expected value and variance.

dWeibullCount

Usage

dWeibullCount(
X,
shape,
scale,

19

method = c("series_acc”, "series_mat"”, "conv_direct”, "conv_naive”, "conv_dePril"),

time = 1,

log = FALSE,

conv_steps = 100,
conv_extrap = TRUE,
series_terms = 50,
series_acc_niter = 300,
series_acc_eps = le-10

dWeibullCount_loglik(
X!
shape,
scale,

method = c("series_acc”, "series_mat"”, "conv_direct”, "conv_naive"”, "conv_dePril"),

time = 1,

na.rm = TRUE,
conv_steps = 100,
conv_extrap = TRUE,
series_terms = 50,
series_acc_niter = 300,
series_acc_eps = le-10,
weights = NULL

evWeibullCount(
Xmax,
shape,
scale,

method = c("series_acc”, "series_mat", "conv_direct"”, "conv_naive”, "conv_dePril"),

time = 1,

conv_steps = 100,
conv_extrap = TRUE,
series_terms = 50,
series_acc_niter = 300,
series_acc_eps = le-10

)
Arguments
X integer (vector), the desired count values.
shape numeric (length 1), shape parameter of the Weibull count.

scale numeric (length 1), scale parameter of the Weibull count.

20

method

time

log
conv_steps
conv_extrap

series_terms

dWeibullCount

character, one of the available methods, see section ‘Details’.
double, length of the observation window (defaults to 1).
logical, if TRUE, the log of the probability will be returned.
numeric, number of steps used for the extrapolation.

logical, should Richardson extrappolation be applied ?

numeric, number of terms in the series expansion.

series_acc_niter

series_acc_eps

na.rm

weights

Xmax

Details

numeric, number of iterations in the Euler-van Wijngaarden algorithm.
numeric, tolerance of convergence in the Euler-van Wijngaarden algorithm.

logical, if TRUE NA’s (produced by taking the log of very small probabilities)
will be replaced by the smallest allowed probaility; default is TRUE.

numeric, vector of weights to apply. If NULL, a vector of one’s will be applied.

unsigned integer, maximum count to be used.

Argument method can be used to specify the desired method, as follows:

"series_mat"” - series expansion using matrix techniques,

"series_acc"” - Euler-van Wijngaarden accelerated series expansion (default),

"conv_direc"t - direct convolution method of section 2,

"conv_naive" - naive convolurion described in section 3.1,

"conv_dePril” - dePril convolution described in section 3.2.

The arguments have sensible default values.

Value

for dWeibullCount, a vector of probabilities P(x(7)),i = 1,...n, where n = length(x).

for dWeibullCount_loglik, a double, the log-likelihood of the count process.

for evWeibullCount, a list with components:

ExpectedValue

Variance

expected value,

variance.

dWeibullgammaCount_mat_Covariates

dWeibullgammaCount_mat_Covariates
Univariate Weibull Count Probability with gamma and covariate het-
erogeneity

Description

Univariate Weibull Count Probability with gamma and covariate heterogeneity

Usage

dWeibullgammaCount_mat_Covariates(
X,
cc,
r,
alpha,
Xcovar,
beta,
t =1,
logFlag = FALSE,
jmax = 100L

Arguments

X, cc, t, logFlag, jmax

TODO keywords internal
r numeric shape of the gamma distribution
alpha numeric rate of the gamma distribution
Xcovar matrix covariates value
beta numeric vector of slopes
evCount_conv_bi Expected value and variance of a renewal count process

Description

Compute numerically expected values and variances of renewal count processes.

22

evCount_conv_bi

Usage
evCount_conv_bi(
xmax,
distPars,
dist = c("weibull”, "gamma”, "gengamma", "burr"),
method = c("dePril”, "direct”, "naive"),
nsteps = 100,
time = 1,
extrap = TRUE
)
evCount_conv_user(
xmax,
distPars,
extrapolPars,
survR,
method = c("dePril”, "direct”, "naive"),
nsteps = 100,
time = 1,
extrap = TRUE
)
Arguments
Xmax unsigned integer maximum count to be used.
distPars TODO
dist TODO
method TODO
nsteps unsiged integer, number of steps used to compute the integral.
time double, time at wich to compute the probabilities. Set to 1 by default.
extrap logical, if TRUE, Richardson extrapolation will be applied to improve accuracy.
extrapolPars ma::vec of length 2. The extrapolation values.
survR function, user supplied survival function; should have signature function(t,
distPars), where t is a positive real number (the time where the survival func-
tion is evaluated) and distPars is a list of distribution parameters. It should
return a double value.
Details

evCount_conv_bi computes the expected value and variance of renewal count processes for the
builtin distirbutions of inter-arrival times.

evCount_conv_user computes the expected value and variance for a user specified distribution of
the inter-arrival times.

Value

a named list with components ExpectedValue and Variance

fertility 23

Examples

pwei_user <- function(tt, distP) {
alpha <- exp(-log(distP[["scale"]]) / distP[["shape”]])
pweibull(q = tt, scale = alpha, shape = distP[["shape"]],
lower.tail = FALSE)
3

ev convolution Poisson count

lambda <- 2.56

beta <- 1

distPars <- list(scale = lambda, shape = beta)

evbi <- evCount_conv_bi(20, distPars, dist = "weibull")
evu <- evCount_conv_user (20, distPars, c(2, 2), pwei_user, "dePril")

c(evbi[["ExpectedValue”]], lambda)
c(evu[["ExpectedValue”]], lambda)
c(evbi[["Variance”]], lambda)
c(evu[["Variance"”]], lambda)

ev convolution weibull count

lambda <- 2.56

beta <- 1.35

distPars <- list(scale = lambda, shape = beta)

evbi <- evCount_conv_bi(20, distPars, dist = "weibull")
evu <- evCount_conv_user (20, distPars, c(2.35, 2), pwei_user, "dePril")

x <- 1:20

px <- dCount_conv_bi(x, distPars, "weibull”, "dePril”,
nsteps = 100)

ev <- sum(x * px)

var <- sum(x"2 * px) - ev*2

c(evbi[["ExpectedValue"]], ev)
c(evu[["ExpectedValue”]1], ev)

c(evbi[["Variance”]], var)
c(evu[["Variance"]], var)
fertility Fertility data
Description

Fertility data analysed by Winkelmann(1995). The data comes from the second (1985) wave of
German Socio-Economic Panel. The sample is formed by 1,243 women aged 44 or older in 1985.
The response variable is the number of children per woman and explanatory variables are described
in more details below.

24 football

Usage
fertility

Format
A data frame with 9 variables (5 factors, 4 integers) and 1243 observations:

children integer; response variable: number of children per woman (integer).

german factor; is the mother German? (yes or no).

years_school integer; education measured as years of schooling.

voc_train factor; vocational training ? (yes or no)

university factor; university education ? (yes or no)

religion factor; mother’s religion: Catholic, Protestant, Muslim or Others (reference).
rural factor; rural (yes or no ?)

year_birth integer; year of birth (last 2 digits)

age_marriage integer; age at marriage

For further details, see Winkelmann (1995).

References

Winkelmann R (1995). “Duration dependence and dispersion in count-data models.” Journal of
Business & Economic Statistics, 13(4), 467-474.

football Football data

Description

Final scores of all matches in the English Premier League from seasons 2009/2010 to 2016/2017.

Usage
football

Format
a data.frame with 6 columns and 1104 observations:

seasonld integer season identifier (year of the first month of competition).

gameDate POSIXct game date and time.

homeTeam, awayTeam character home and away team name.

homeTeamGoals, awayTeamGoals integer number of goals scored by the home and the away team.

Details

The data were collected from https://www.football-data.co.uk/ and slightly formatted and
simplified.

https://www.football-data.co.uk/

frequency_plot 25

frequency_plot Plot a frequency chart

Description

Plot a frequency chart to compare actual and predicted values.

Usage

frequency_plot(count_labels, actual, pred, colours = character(9))

Arguments

count_labels character, labels to be used.
actual numeric, the observed probabilities for the different count specified in count_labels.

pred data.frame of predicted values. Should have the same number of rows as actual
and one column per model. The columns’ names will be used as labels for the
different models.

colours character vector of colour codes with length ncol(pred) + 2. If colours
is missing or length(colours) <ncol(pred) + 2, the remaining colours are
generated using RColorBrewer: :brewer.pal.

Details

In order to compare actual and fitted values, a barchart plot is created. It is the user’s responsibility
to provide the count, observed and fitted values.

If argument colour is missing or not of sufficient length, the colours are set automatically using a
function from package RColorBrewer.

The bar chart is created with lattice: :barchart. If frequency_plot is called from the command
line, the returned value is automatically ‘printed’ (i.e., the plot is produced). Otherwise, for example
in scripts, you may need to use print() on the returned value.

Value

an object from class "trellis”

26

predict.renewal

getParNames Return the names of distribution parameters

Description

Return the names of the parameters of a count distribution.

Usage
getParNames(dist, ...)
Arguments
dist character, name of the distribution.
parameters to pass when dist == "custom”.
Value

character vector with the names of the distribution parameters

predict.renewal Predict method for renewal objects

Description

Compute predictions from renewal objects.

Usage
S3 method for class 'renewal'
predict(
object,
newdata = NULL,
type = c("response”, "prob"),
se.fit = FALSE,
terms = NULL,
na.action = na.pass,
time = 1,

predict.renewal

Arguments

object

newdata

type

se.fit
terms

na.action

time

Examples

27

Object of class inheriting from "1m"

An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

type of prediction. If equal to "response”, give the mean probability associated
with the individual covariates. If "prob”, give the probability of the observed
count.

A switch indicating if standard errors are required.
If type = "terms”, which terms (default is all terms), a character vector.

function determining what should be done with missing values in newdata. The
default is to predict NA.

TODO

further arguments passed to or from other methods.

fn <- system.file("extdata”, "McShane_Wei_results_boot.RDS", package = "Countr")
object <- readRDS(fn)
data <- object$data

old data

predOld.response <- predict(object, type = "response”, se.fit = TRUE)
predOld.prob <- predict(object, type = "prob”, se.fit = TRUE)

newData (extracted from old Data)
newData <- head(data)
predNew.response <- predict(object, newdata = newData,

type = "response”, se.fit = TRUE)

predNew.prob <- predict(object, newdata = newData,

type = "prob”, se.fit = TRUE)

cbind(head(pred0ld. response$values),

head(pred0ld. responsesescale),
head(predOld. responseseshape),
predNew. response$values,
predNew.responsesescale,
predNew. responseseshape)

cbind(head(predOld.prob$values),
head(predOld.probsescale),
head(pred0Old.probseshape),
predNew.prob$values,
predNew.probsescale,
predNew.probseshape)

28 renewalCoef
renewalCoef Get named vector of coefficients for renewal objects
Description
Get named vector of coefficients for renewal objects.
Usage
renewalCoef (object, ...)
Arguments
object an object, there are methods for several classes, see section ‘Details’.
further arguments to be passed to renewalNames, usually something like target
= "weibull".
Details

This is a convenience function for constructing named vector of coefficients for renewal count
models. Such vectors are needed, for example, for starting values in the model fitting procedures.
The simplest way to get a suitably named vector is to take the coefficients of a fitted model but if
the fitting procedure requires initial values, this is seemingly a circular situation.

The overall idea is to take coefficients specified by object and transform them to coefficients suit-
able for a renewal count model as specified by the arguments ". ..". The provided methods elim-
inate the need for tedius manual preparation of such vectors and in the most common cases allow
the user to do this in a single line.

The default method extracts the coefficients of object using co <- coef (object) (an error is raised
if this fails). It prepares a named numeric vector with names requested by the arguments in "..."
and assigns co to the first length(co) elements of the prepared vector. The net effect is that the
coefficients of a model can be initialised from the coefficients of a nested model. For example a
Poisson regression model can be used to initialise a Weibull count model. Of course the non-zero
shape parameter(s) of the Weibull model need to be set separately.

If object is from class glm, the method is identical to the default method.

If object is from class renewalCoefList, its elements are simply concatenated in one long vector.

References

Kharrat T, Boshnakov GN, McHale I, Baker R (2019). “Flexible Regression Models for Count Data
Based on Renewal Processes: The Countr Package.” Journal of Statistical Software, 90(13), 1-35.
doi:10.18637/jss.v090.113.

See Also

renewalNames

https://doi.org/10.18637/jss.v090.i13

renewalCoefList 29

renewalCoeflList Split a vector using the prefixes of the names for grouping

Description

Split a vector using the prefixes of the names for grouping.

Usage

renewalCoeflList(coef)

Arguments

coef a named vector

Details

The names of the coefficients of renewal regression models are prefixed with the names of the
parameters to which they refer. This function splits such vectors into a list with one component for
each parameter. For example, for a Weibull renewal regression model this will create a list with
components "scale” and "shape”.

This is a convenience function allowing users to manipulate the coefficients related to a parameter
more easily. renewalCoef can convert this list back to a vector.

See Also

renewalNames, renewalCoef

renewalCount Fit renewal count processes regression models

Description

Fit renewal regression models for count data via maximum likelihood.

Usage

renewalCount (
formula,
data,
subset,
na.action,
weights,
offset,
dist = c("weibull”, "weibullgam”, "custom”, "gamma"”, "gengamma"),

30

renewal Count

anc = NULL,
convPars = NULL,
link = NULL,
time = 1

control = renewal.control(...),
customPars = NULL,

seriesPars = NULL,

weiMethod = NULL,
computeHessian = TRUE,
standardise = FALSE,
standardise_scale = 1,

model = TRUE,

y = TRUE,

x = FALSE,

Arguments

formula

a formula object. If it is a standard formula object, the left hand side specifies
the response variable and the right hand sides specifies the regression equation
for the first parameter of the conditional distribution. formula can also be used
to specify the ancilliary regressions, using the operator ‘I‘, see section ‘Details’.

data, subset, na.action

weights
offset

dist

anc

convPars

link

time
control
customPars

seriesPars

arguments controlling formula processing via model. frame.
optional numeric vector of weights.

optional numeric vector with an a priori known component to be included in the
linear predictor of the count model. Currently not used.

character, built-in distribution to be used as the inter-arrival time distribution
or "custom” for a user defined distribution, see section ‘Details’. Currently

the built-in distributions are "weibull”, "weibullgam”, "gamma”, "gengamma”
(generalized-gamma) and "burr”.

a named list of formulas for ancillary regressions, if any, otherwise NULL. The
formulas associated with the (exact) parameter names are used. The left-hand
sides of the formulas in anc are ignored.

a list of convolution parameters arguments with slots nsteps, extrap and convMethod,
see dCount_conv_bi. If NULL, default parameters will be applied.

named list of character strings specifying the name of the link functions to be
used in the regression. If NULL, the canonical link function will be used, i.e, log
if the parameter is supposed to be positive, identity otherwise.

numeric, time at which the count is observed; default to unity (1).
a list of control arguments specified via renewal.control.
list, user inputs if dist = "custom”, see section ‘Details’.

list, series expansion input parameters with slots terms (number of terms in
the series expansion), iter (number of iteration in the accelerated series ex-

renewal Count 31

pansion algorithm) and eps (tolerance in the accelerated series expansion al-
gorithm), Only used if dist = "weibull” and weiMethod = c("series_mat",
"series_acc").

weiMethod character, computation method to be used if dist = "weibull” or "weibullgam”,
see dWeibullCount and dWeibullgammaCount.

computeHessian logical, should the hessian (and hence the covariance matrix) be computed nu-
merically at the fitted values.

standardise logical, should the covariates be standardised using standardize: : standardize()
function.

standardise_scale
numeric the desired scale for the covariates; defaults to 1.

model, y, x logicals. If TRUE the corresponding components of the fit (model frame, re-
sponse, model matrix) are returned.

arguments passed to renewal.control in the default setup.

Details

renewal re-uses design and functionality of the basic R tools for fitting regression model (1m, glm)
and is highly inspired by hurdle() and zeroinfl() from package pscl. Package Formula is used
to handle formulas.

Argument formula is a formula object. In the simplest case its left-hand side (lhs) designates the
response variable and the right-hand side the covariates for the first parameter of the distribution (as
reported by getParNames. In this case, covariates for the ancilliary parameters are specified using
argument anc.

The ancilliary regressions, can also be specified in argument formula by adding them to the righ-
hand side, separated by the operator ‘I’. For example Y | shape ~ x +y | z can be used in place of
the pair Y ~ x +y and anc = list(shape = ~z). In most cases, the name of the second parameter
can be omitted, which for this example gives the equivalent Y ~ x +y | z. The actual rule is that if
the parameter is missing from the left-hand side, it is inferred from the default parameter list of the
distribution.

As another convenience, if the parameters are to to have the same covariates, it is not necessary
to repeat the rhs. For example, Y | shape ~ x +y is equivalent to Y | shape ~x +y | x +y. Note
that this is applied only to parameters listed on the lhs, so Y ~ x + y specifies covariates only for the
response variable and not any other parameters.

Distributions for inter-arrival times supported internally by this package can be chosen by setting
argument "dist” to a suitable character string. Currently the built-in distributions are "weibull”,

"weibullgam”, "gamma"”, "gengamma"” (generalized-gamma) and "burr”.

Users can also provide their own inter-arrival distribution. This is done by setting argument "dist”
to "custom”, specifying the initial values and giving argument customPars as a list with the fol-
lowing components:

parNames character, the names of the parameters of the distribution. The location parameter
should be the first one.

survivalFct function object containing the survival function. It should have signature function(t,
distPars) where t is the point where the survival function is evaluated and distPars is the
list of the distribution parameters. It should return a double value.

32 renewal Count

extrapolFct function object computing the extrapolation values (numeric of length 2) from the
value of the distribution parameters (in distPars). It should have signature function(distPars)
and return a numeric vector of length 2. Only required if the extrapolation is set to TRUE in
convPars.

Some checks are done to validate customPars but it is user’s responsibility to make sure the the
functions have the appropriate signatures.

Note: The Weibull-gamma distribution is an experimental version and should be used with care!
It is very sensitive to initial values and there is no guarantee of convergence. It has also been
reparameterized in terms of (1/7, 1/, ¢) instead of (r, «, ¢), where r and « are the shape and scale
of the gamma distribution and c is the shape of the Weibull distribution.

(2017-08-04(Georgi) experimental feature: probability residuals in component ’probResiduals’.
I also added type ’prob’ to the method for residuals() to extract them.

probResiduals[i] is currently 1 - Prob(Y[i] given the covariates). "one minus", so that values close
to zero are "good". On its own this is probably not very useful but when comparing two models, if
one of them has mostly smaller values than the other, there is some reason to claim that the former
is superior. For example (see below), gamModel < poisModel in 3:1

Value
An S3 object of class "renewal”, which is a list with components including:

coefficients values of the fitted coefficients.

residuals vector of weighted residuals w x (observed — fitted).
fitted.values vector of fitted means.

optim data.frame output of optimx.

method optimisation algorithm.

control the control arguments, passed to optimx.

start starting values, passed to optimx.

weights weights to apply, if any.

n number of observations (with weights > 0).

iterations number of iterations in the optimisation algorithm.
execTime duration of the optimisation.

loglik log-likelihood of the fitted model.

df.residual residuals’ degrees of freedom for the fitted model.

veoc convariance matrix of all coefficients, computed numerically from the hessian at the fitted
coefficients (if computeHessian is TRUE).

dist name of the inter-arrival distribution.

link list, inverse link function corresponding to each parameter in the inter-arrival distribution.
converged logical, did the optimisation algorithm converge?

data data used to fit the model.

formula the original formula.

renewalNames 33

call the original function call.
anc named list of formulas to model regression on ancillary parameters.

score_fct function to compute the vector of scores defined in Cameron and Trivedi (2013), equation
2.94.

convPars convolution inputs used.

customPars named list, user passed distribution inputs, see section ‘Details’.
time observed window used, default is 1.0 (see inputs).

model the full model frame (if model = TRUE).

y the response count vector (if y = TRUE).

x the model matrix (if x = TRUE).

References

Kharrat T, Boshnakov GN, McHale I, Baker R (2019). “Flexible Regression Models for Count Data
Based on Renewal Processes: The Countr Package.” Journal of Statistical Software, 90(13), 1-35.
doi:10.18637/jss.v090.113.

Cameron AC, Trivedi PK (2013). Regression analysis of count data, volume 53. Cambridge uni-
versity press.

Examples
Not run:
may take some time to run depending on your CPU
data(football)
wei = renewalCount(formula = homeTeamGoals ~ 1,

data = football, dist = "weibull”, weiMethod = "series_acc”,
computeHessian = FALSE, control = renewal.control(trace = 0,
method = "nlminb"))

End(Not run)

renewalNames Get names of parameters of renewal regression models

Description

Get names of parameters of renewal regression models

Usage

renewalNames(object, ...)
Arguments

object an object.

further arguments.

https://doi.org/10.18637/jss.v090.i13

34 renewal _methods

Details

renewalNames gives the a character vector of names of parameters for renewal regression models.

There are two main use scenarios: renewalNames(object, target = "dist”) and renewalNames(object,...).

In the first scenario target can be a count distribution, such as "weibull" or a parameter name,
such as shape. In this case renewalNames transforms coefficient names of object to those spec-
ified by target. In the second cenario the argument list is the same that would be used to call
renewalCount. In this case renewalNames returns the names that would be used by renewalCount
for the coefficients of the fitted model.

See Also

renewalCoeflList, renewalCoef

renewal_methods Methods for renewal objects

Description

Methods for renewal objects.

Usage

S3 method for class 'renewal'
coef(object, ...)

S3 method for class 'renewal’
vcov(object, ...)

S3 method for class 'renewal’
residuals(object, type = c("pearson”, "response”, "prob"), ...)

S3 method for class 'renewal’
residuals_plot(object, type = c("pearson”, "response”, "prob”), ...)

S3 method for class 'renewal'
fitted(object, ...)

S3 method for class 'renewal'

confint(
object,
parm,
level = 0.95,
type = c("asymptotic”, "boot"),
bootType = c("norm”, "bca", "basic"”, "perc"),

renewal _methods 35

S3 method for class 'renewal'
summary (object, ...)

S3 method for class 'renewal'
print(x, digits = max(3, getOption("digits"”) - 3), ...)

S3 method for class 'summary.renewal'
print(
X,
digits = max(3, getOption("digits") - 3),
width = getOption("width"),

)

S3 method for class 'renewal'’
model.matrix(object, ...)

S3 method for class 'renewal'
loglik(object, ...)

S3 method for class 'renewal’
nobs(object, ...)

S3 method for class 'renewal'
extractAIC(fit, scale, k = 2, ...)

S3 method for class 'renewal'’
addBootSampleObject(object, ...)

S3 method for class 'renewal'

df.residual(object, ...)
Arguments
object an object from class "renewal”.

further arguments for methods.

type, parm, level, bootType, x, digits
see the corresponding generics and section ‘Details’.

width numeric width length.
fit, scale, k same as in the generic.
Details

Objects from class "renewal” represent fitted count renewal models and are created by calls to
"renewalCount()". There are methods for this class for many of the familiar functions for inter-
acting with fitted models.

36 residuals_plot

Examples

fn <- system.file("extdata”, "McShane_Wei_results_boot.RDS", package = "Countr")
object <- readRDS(fn)
class(object) # "renewal”

coef(object)
vcov(object)

Pearson residuals: rescaled by sd
head(residuals(object, "pearson”))

response residuals: not rescaled
head(residuals(object, "response”))

head(fitted(object))

loglik, nobs, AIC, BIC
c(loglik = as.numeric(logLik(object)), nobs = nobs(object),
AIC = AIC(object), BIC = BIC(object))

asym <- se.coef(object, , "asymptotic")

boot <- se.coef(object, , "boot")

cbind(asym, boot)

CI for coefficients

asym <- confint(object, type = "asymptotic"”)

Commenting out for now, see the nite in the code of confint.renewal():
boot <- confint(object, type = "boot"”, bootType = "norm")
list(asym = asym, boot = boot)

summary (object)

print(object)

see renewal_methods

see renewal_methods

residuals_plot Method to visualise the residuals

Description

A method to visualise the residuals

Usage
residuals_plot(object, type, ...)

Arguments
object object returned by one of the count modeling functions.
type character type of residuals to be used.

further arguments for methods.

se.coef 37

se.coef Extract Standard Errors of Model Coefficients

Description

Extract standard errors of model coefficients from objects returned by count modeling functions.

Usage
se.coef(object, parm, type, ...)

S3 method for class 'renewal'

se.coef(object, parm, type = c("asymptotic”, "boot"), ...)
Arguments
object an object returned by one of the count modeling functions.
parm parameter’s name or index.
type type of standard error: asymtotic normal standard errors ("asymptotic”) or

bootsrap ("boot").

further arguments for methods.

Details

The method for class "renewal” extracts standard errors of model coefficients from objects returned
by renewal. When bootsrap standard error are requested, the function checks for the bootsrap
sample in object. If it is not found, the bootsrap sample is created and a warning is issued. Users
can choose between asymtotic normal standard errors (asymptotic) or bootsrap (boot).

Value

a named numeric vector

Examples

see examples for renewal_methods

38 surv

surv Wrapper to built-in survival functions

Description

Wrapper to built-in survival functions

Usage

surv(t, distPars, dist)

Arguments
t double, time point where the survival is to be evaluated at.
distPars Rcpp: :List with distribution specific slots, see section ‘Details’.
dist character name of the built-in distribution, see section ‘Details’.
Details

The function wraps all builtin-survival distributions. User can choose between the weibull, gamma,
gengamma(generalized gamma) and burr (Burr type XII distribution). It is the user responsibility
to pass the appropriate list of parameters as follows:

weibull scale (the scale) and shape (the shape) parameters.

burr scale (the scale) and shape1 (the shapel) and shape?2 (the shape2) parameters.

gamma scale (the scale) and shape (the shape) parameter.

gengamma mu (location), sigma (scale) and Q (shape) parameters.

Value

a double, giving the value of the survival function at time point t at the parameters’ values.

Examples

tt <- 2.5
weibull

distP <- list(scale = 1.2, shape = 1.16)

alpha <- exp(-log(distP[["scale"1]) / distP[["shape”]])

pweibull(g = tt, scale = alpha, shape = distP[["shape”]],
lower.tail = FALSE)

surv(tt, distP, "weibull”) ## (almost) same

gamma

distP <- list(shape = 0.5, rate = 1.0 / 0.7)

pgamma(q = tt, rate = distP[["rate”]], shape = distP[["shape”]],
lower.tail = FALSE)

surv

surv(tt, distP, "gamma") ## (almost) same

generalized gamma
distP <- list(mu = @.5, sigma = 0.7, Q = 0.7)
flexsurv::pgengamma(q = tt, mu = distP[["mu"]],
sigma = distP[["sigma"]],
Q = distP[["Q"1],
lower.tail = FALSE)
surv(tt, distP, "gengamma”) ## (almost) same

39

Index

x datasets
fertility, 23
football, 24

addBootSampleObject, 4
addBootSampleObject.renewal
(renewal_methods), 34

character, 27

chiSqg_gof, 3,5,6
chiSq_pearson, 3, 5,6

coef.renewal (renewal_methods), 34
compareToGLM, 7

confint.renewal (renewal_methods), 34
count_table, 8

Countr (Countr-package), 3
Countr-package, 3

CountrFormula, 8

dBivariateWeibullCountFrankCopula, 9

dBivariateWeibullCountFrankCopula_loglik
(dBivariateWeibullCountFrankCopula),

9
dCount_conv_bi, 11
dCount_conv_loglik_bi, 13
dCount_conv_loglik_user
(dCount_conv_loglik_bi), 13
dCount_conv_user (dCount_conv_bi), 11
df.residual.renewal (renewal_methods),
34
dmodifiedCount_bi, 15
dmodifiedCount_user
(dmodifiedCount_bi), 15
dRenewalFrankCopula_bi
(dRenewalFrankCopula_user), 17
dRenewalFrankCopula_user, 17
dWeibullCount, 18
dWeibullCount_loglik (dWeibullCount), 18
dWeibullgammaCount_mat_Covariates, 21

evCount_conv_bi, 21

40

evCount_conv_user (evCount_conv_bi), 21
evWeibullCount (dWeibullCount), 18
extractAIC.renewal (renewal_methods), 34

fertility, 23

fitted.renewal (renewal_methods), 34
football, 24

frequency_plot, 25

getParNames, 26, 31
loglLik.renewal (renewal_methods), 34

model.matrix.renewal (renewal_methods),
34

nobs.renewal (renewal_methods), 34

predict.renewal, 26

print.renewal (renewal_methods), 34

print.summary.renewal
(renewal_methods), 34

renewal_methods, 4, 34
renewalCoef, 28, 29, 34
renewalCoeflList, 28, 29, 34
renewalCount, 3, 29
renewalNames, 28, 29, 33
residuals.renewal (renewal_methods), 34
residuals_plot, 36
residuals_plot.renewal
(renewal_methods), 34

se.coef, 37
summary.renewal (renewal_methods), 34
surv, 38

vcov.renewal (renewal_methods), 34

	Countr-package
	addBootSampleObject
	chiSq_gof
	chiSq_pearson
	compareToGLM
	CountrFormula
	count_table
	dBivariateWeibullCountFrankCopula
	dCount_conv_bi
	dCount_conv_loglik_bi
	dmodifiedCount_bi
	dRenewalFrankCopula_user
	dWeibullCount
	dWeibullgammaCount_mat_Covariates
	evCount_conv_bi
	fertility
	football
	frequency_plot
	getParNames
	predict.renewal
	renewalCoef
	renewalCoefList
	renewalCount
	renewalNames
	renewal_methods
	residuals_plot
	se.coef
	surv
	Index

