Package ‘CCI’

January 22, 2026
Type Package

Title Computational Test for Conditional Independence

Version 0.3.6

Date 2026-01-20

Maintainer Christian Thorjussen <christianbern@gmail.com>

Description Tool for performing computational testing for conditional independence between vari-
ables in a dataset. 'CCI' implements permutation in combination with Monte Carlo Cross-
Validation in generating null distributions and test statistics. For more details see Computa-
tional Test for Conditional Independence (2024) <doi:10.3390/a17080323>.

Imports ggplot2, dplyr, caret, xgboost, ranger, stats, data.table,
el071, rlang, progress, kknn

Suggests testthat, knitr, rmarkdown
License GPL (>=2)

URL https://github.com/khliland/CCI

BugReports https://github.com/khliland/CCI/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Depends R (>=3.5)

VignetteBuilder knitr

NeedsCompilation no

Author Christian Thorjussen [aut, cre] (ORCID:
<https://orcid.org/0009-0005-5006-6491>),
Kristian Hovde Liland [aut] (ORCID:
<https://orcid.org/0000-0001-6468-9423>)

Repository CRAN
Date/Publication 2026-01-21 23:00:23 UTC

https://doi.org/10.3390/a17080323
https://github.com/khliland/CCI
https://github.com/khliland/CCI/issues
https://orcid.org/0009-0005-5006-6491
https://orcid.org/0000-0001-6468-9423

2

add_interaction_terms

Contents
add_interaction_terms oo e e e e e 2
add_poly_terms e e e e e e e e 3
build_formula 4
CCLdirection i i e e e 5
CCLPIretuUNer v v o ettt e e e e e e e 7
CCLteSt . . . o o e e e e e e e e 9
check formula e 13
clean_formula e 13
ExponentialNoise e 14
get_pvalues e 15
get_tuned_paramso e e e e 16
HardCase e e e 16
is_categorical_Z_any e e e e e e 17
make_strata_from_categorical_Z 17
NonLinearCategorization vttt 18
NonLinNormal e e e 18
NonLinNormalZs_dO e 19
NonLinNormalZs_dO5 e 20
NormalData e e e e e 21
PEIMLIESt L e e e e e e e e 21
permute_within_strata 23
PIOt.CCI e e e 24
PoissonNoOise e e e e e e 25
PolyData e 26
print.summary.CCI 26
QQplot . . e e 27
TESL.EEM . . . L e e e e e e e e e 28
unclean_formula 30
UniformNoise_large e 31
wrapper_knn 31
WIAPPET_TANZET .« . .« ¢ o v v e v v e e e e e e e e e e e e e e e e e e e 32
WIAPPET_SVINL .+ o o v v v v e 33
Wrapper_xXgboost L e e 34
Index 36

add_interaction_terms Creates interaction terms for specified variables in a data frame Inter-

action terms are named as <var1>_int_<var2> (e.g., Z1_int_Z2 for
the product of 21 and 72).

Description

Creates interaction terms for specified variables in a data frame Interaction terms are named as
<var1>_int_<var2> (e.g., Z1_int_Z2 for the product of Z1 and Z2).

add_poly_terms 3

Usage
add_interaction_terms(data, Z, mode = c("numeric_only”, "mixed"))
Arguments
data Data frame. The data frame containing the variables for which interaction terms
are to be created.
z Character vector. The names of the variables for which interaction terms are to
be created.
mode Character. Specifies the type of interaction terms to create. Options are: nu-
meric_only (only numeric-numeric interactions as products) or mixed (numeric-
numeric as products, factor/character involved as categorical interactions). De-
fault is "numeric_only".
Value

A list with two components:

¢ data: The modified data frame with added interaction terms.

* new_terms: A character vector of the names of the added interaction terms (e.g., Z1_int_2).

Examples

data_generator <- function(N){
Z1 <= rnorm(N,Q,1)

Z2 <- rnorm(N,Q,1)

X <= rnorm(N, Z1 + Z2, 1)

Y <= rnorm(N, Z1 + Z2, 1)

df <- data.frame(Z1, Z2, X, Y)

return(df)

3

dat <- data_generator(250)

interaction_terms <- add_interaction_terms(data = dat, Z = c("Z1", "Z2"))

head(interaction_terms$data$zZi_int_z2)

add_poly_terms Creates polynomial terms for specified variables in a data frame Poly-
nomial terms are named as <variable>_d_<degree> (e.g., Z1_d_2
for the square of 71).
Description

Creates polynomial terms for specified variables in a data frame Polynomial terms are named as
<variable>_d_<degree> (e.g., Z1_d_2 for the square of Z1).

4 build_formula
Usage
add_poly_terms(data, Z, degree = 3, poly = TRUE)
Arguments
data Data frame. The data frame containing the variables for which polynomial terms
are to be created.
Z Character vector. The names of the variables for which polynomial terms are to
be created.
degree Integer. The maximum degree of polynomial terms to be created. Default is 3.
poly Logical. If TRUE, polynomial terms will be created. If FALSE, no polynomial
terms will be created. Default is TRUE.
Value
A list with two components:
* data: The modified data frame with added polynomial terms.
* new_terms: A character vector of the names of the added polynomial terms (e.g., Z1_d_2).
#’
Examples
set.seed(123)
data_generator <- function(N){
Z1 <= rnorm(N,9,1)
Z2 <- rnorm(N,9,1)
X <= rnorm(N, Z1 + Z2, 1)
Y <= rnorm(N, Z1 + Z2, 1)
df <- data.frame(Z1, Z2, X, Y)
return(df)
3
dat <- data_generator(250)
poly_terms <- add_poly_terms(data = dat, Z = c("Z1", "Z2"), degree = 3, poly = TRUE)
print(poly_terms$new_terms)
build_formula Build an expanded formula with poly and interaction terms
Description
Build an expanded formula with poly and interaction terms
Usage

build_formula(formula, poly_terms = NULL, interaction_terms = NULL)

CCl.direction 5

Arguments
formula A base formula in the format Y ~ X | Z1 + Z2
poly_terms Character vector of polynomial term names

interaction_terms
Character vector of interaction term names

Value

A formula object combining all terms

Examples

poly_terms <- c("Z1_d_2", "Z2_d_2")

interaction_terms <- c("Z1_int_Z2")

formula <= Y ~ X | Z1 + Z2

final_formula <- build_formula(formula, poly_terms, interaction_terms)
print(final_formula)

CCI.direction Choose Direction for testing for the CCI test

Description

This function selects the best direction for the CCI test based on cross validation. For the condition
Y Il X | Z, the function return the recommended formula either Y ~X | Zor X ~Y | Z.

Usage

CCI.direction(
formula,
data,
method = "rf",
folds = 4,
nrounds = 600,
max_depth = 6,
eta = 0.3,
gamma = 0,
colsample_bytree
min_child_weight
subsample = 1,
poly = TRUE,
degree = 3,
interaction = TRUE,
verbose = FALSE,

Inn
—_

Arguments
formula

data

method

folds

nrounds

max_depth
eta

gamma

CCl.direction

A formula object specifying the model to be fitted.
A data frame containing the variables specified in the formula.

A character string specifying the method to be used for model fitting. Options
include "rf" (random forest), "xgboost" (XGBoost), "nnet" (neural network),
"gpr" (Gaussian process regression), and "svm" (support vector machine).

An integer specifying the number of folds for cross-validation. Default is 4.

Integer. The number of rounds (trees) for methods like xgboost, ranger, and
lightgbm. Default is 600.

Integer. The maximum depth of the trees for methods like xgboost. Default is 6.
Numeric. The learning rate for methods like xgboost. Default is 0.3.

Numeric. The minimum loss reduction required to make a further partition on a
leaf node of the tree for methods like xgboost. Default is 0.

colsample_bytree

Numeric. The subsample ratio of columns when constructing each tree for meth-
ods like xgboost. Default is 1.

min_child_weight

subsample

poly

degree

interaction

verbose

Value

Numeric. The minimum sum of instance weight (hessian) needed in a child for
methods like xgboost. Default is 1.

Numeric. The proportion of the data to be used for subsampling. Default is 1
(no subsampling).

Logical. If TRUE, polynomial terms of the conditioning variables are included
in the model. Default is TRUE.

Integer. The degree of polynomial terms to include if poly is TRUE. Default is
3.

Logical. If TRUE, interaction terms of the conditioning variables are included
in the model. Default is TRUE.

Logical. If TRUE, prints additional information during the execution. Default
is FALSE.

Additional arguments to be passed to the model fitting function.

A formula object specifying the selected model direction.

CCl.pretuner 7

CCI.pretuner CCI tuner function for CCI test

Description

The CCI. tuner function performs a grid search over parameters for a conditional independence test
using machine learning model supported by CCl.test. The tuner use the caret package for tuning.

Usage

CCI.pretuner(
formula,
data,
method "rf",
metric = "RMSE",
validation_method = "cv",
folds = 4,
training_share = 0.7,
tune_length = 4,
random_grid = TRUE,

samples = 35,
poly = TRUE,
degree = 3,

interaction = TRUE,

verboselter = FALSE,
include_explanatory = FALSE,
verbose = FALSE,

parallel = FALSE,

mtry = 1:10,

nrounds = c(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000),
eta = seq(@.01, 0.3, by = 0.05),
max_depth = 2:6,

gamma = c(0, 1, 2, 3),
colsample_bytree = c(0.8, 0.9, 1),
min_child_weight = c(1, 3),
subsample = 1,

sigma = seq(@.1, 2, by = 0.3),

C = seq(@.1, 2, by = 0.5),

Arguments

formula Model formula specifying the relationship between dependent and independent
variables.

data A data frame containing the variables specified in the formula.

method

metric

CCl.pretuner

Character. Specifies the machine learning method to use. Supported methods
are random forest "rf", extreme gradient boosting "xgboost" and Support Vector
Machine "svm".

Character. The performance metric to optimize during tuning. Default is "RMSE".

validation_method

folds

training_share

tune_length

random_grid

samples

poly

degree

interaction

verboselter

Character. Specifies the resampling method. Default is "cv".

Integer. The number of folds for cross-validation during the tuning process.
Default is 10.

Numeric. For leave-group out cross-validation: the training percentage. Default
is 0.7.

Integer. The number of parameter combinations to try during the tuning process.
Default is 10.

Logical. If TRUE, a random grid search is performed. If FALSE, a full grid
search is performed. Default is TRUE.

Integer. The number of random samples to take from the grid. Default is 30.

Logical. If TRUE, polynomial terms of the conditional variables are included in
the model. Default is TRUE.

Integer. The degree of polynomial terms to include if poly is TRUE. Default is
3.

Logical. If TRUE, interaction terms of the conditional variables are included in
the model. Default is TRUE.

Logical. If TRUE, the function will print the tuning process. Default is FALSE.

include_explanatory

verbose
parallel
mtry

nrounds

eta
max_depth

gamma

Logical. If TRUE, given the condition Y Il X | Z, the function will include
explanatory variable X in the model for Y. Default is FALSE

Logical. If TRUE, the function will print the tuning process. Default is FALSE..
Logical. If TRUE, the function will use parallel processing. Default is TRUE.

Integer. The number of variables randomly sampled as candidates at each split
for random forest. Default is 1:5.

Integer. The number of rounds (trees) for methods such as xgboost and random
forest. Default is seq(50, 200, by = 25).

Numeric. The learning rate for xgboost. Default is seq(0.01, 0.3, by = 0.05).
Integer. The maximum depth of the tree for xgboost. Default is 1:6.

Numeric. The minimum loss reduction required to make a further partition on a
leaf node for xgboost. Default is seq(0, 5, by = 1).

colsample_bytree

Numeric. The subsample ratio of columns when constructing each tree for xg-
boost. Default is seq(0.5, 1, by = 0.1).

min_child_weight

subsample

Integer. The minimum sum of instance weight (hessian) needed in a child for
xgboost. Default is 1:5.

Numeric. The subsample ratio of the training. Default is 1.

CCl.test 9

sigma Numeric. The standard deviation of the Gaussian kernel for Gaussian Process
Regression. Default is seq(0.1, 2, by = 0.3).

C Numeric. The regularization parameter for Support Vector Machine. Default is
seq(0.1, 2, by = 0.5).

Additional arguments to pass to the CCI. tuner function.

Value

A list containing:

* best_param: A data frame with the best parameters.

e tuning_result: A data frame with all tested parameter combinations and their performance
metrics.

* warnings: A character vector of warnings issued during tuning.

See Also

CCI.test perm.test, print.summary.CCI, plot.CCI, QQplot

Examples

set.seed(123)

data <- data.frame(x1 = rnorm(100), x2 = rnorm(100), x3 = rnorm(100), y = rnorm(100))
Tune random forest parameters

result <- CCI.pretuner(formula =y ~ x1 | x2 + x3,

data = data,
samples = 5,
folds = 3,

method = "rf")

CCI.test Computational test for conditional independence based on ML and
Monte Carlo Cross Validation

Description

The CCI.test function performs a conditional independence test using a specified machine learn-
ing model or a custom model provided by the user. It calculates the test statistic, generates a null
distribution via permutations, computes p-values, and optionally generates a plot of the null dis-
tribution with the observed test statistic. The *CCl.test’ function serves as a wrapper around the
’perm.test’ function

10

Usage

CCI.test(
formula = NULL,
data,
p =20.5,
nperm = 160,
nrounds = 600,
mtry = NULL,
metric = "Auto”,
method = "rf",

choose_direction = FALSE,

parametric = FALSE,
poly = TRUE,

degree = 3,

robust = TRUE,
subsample = "Auto”,
subsample_set,
min_child_weight
colsample_bytree
eta = 0.3,
gamma = 0,
max_depth = 6,
interaction = TRUE,
mode = "numeric_only",
metricfunc = NULL,
mlfunc = NULL,

tail = NA,

tune = FALSE,

samples = 35,

folds = 5,

tune_length = 10,

k =15,

center = TRUE,

scale = TRUE,

eps = le-15,

positive = NULL,
kernel = "optimal”,
distance = 2,

seed = NA,

random_grid = TRUE,
nthread = 2,

verbose = FALSE,
progress = TRUE,

I n
—_

CCl.test

CCl.test

Arguments

formula

data

p
nperm

nrounds

mtry

metric

method

11

Model formula specifying the relationship between dependent and independent
variables. (Ex: Y ~X1Z1 +Z2forY Il X 1Z1,7Z2)

A data frame containing the variables specified in the formula.
Numeric. Proportion of data used for training the model. Default is 0.5.
Integer. The number of permutations to perform. Default is 60.

Integer. The number of rounds (trees) for methods *xgboost’ and ’rf” Default is
600.

Number of variables to possibly split at in each node for method 'rf’. Default is
NULL (sqrt of number of variables).

Character. Specifies the type of data: "Auto", "RMSE" or "Kappa". Default is
"Auto".

Character. Specifies the machine learning method to use. Supported methods
are random forest "rf", extreme gradient boosting "xgboost", support vector ma-
chine ’svm’ and K-nearest neighbour ’KNN’. Default is "rf".

choose_direction

parametric

poly
degree
robust

subsample

subsample_set

Logical. If TRUE, the function will choose the best direction for testing. Default
is FALSE.

Logical, indicating whether to compute a parametric p-value instead of the em-
pirical p-value. A parametric p-value assumes that the null distribution is gaus-
sian. Default is FALSE.

Logical. If TRUE, polynomial terms of the conditional variables are included in
the model. Default is TRUE.

Integer. The degree of polynomial terms to include if poly is TRUE. Default is
3.

Logical. If TRUE, uses a robust method for permutation. Default is TRUE.

Character. Specifies whether to use automatic subsampling based on sample size
("Auto"), user-defined subsampling ("Yes"), or no subsampling ("No"). Default
is "Auto"

Numeric. If subsample is set to "Yes", this parameter defines the proportion of
data to use for subsampling. Default is NA.

min_child_weight

Numeric. The minimum sum of instance weight (hessian) needed in a child for
methods like xgboost. Default is 1.

colsample_bytree

eta

gamma

max_depth

interaction

Numeric. The subsample ratio of columns when constructing each tree for meth-
ods like xgboost. Default is 1.

Numeric. The learning rate for methods like xgboost. Default is 0.3.

Numeric. The minimum loss reduction required to make a further partition on a
leaf node of the tree for methods like xgboost. Default is 0.

Integer. The maximum depth of the trees for methods like xgboost. Default is 6.

Logical. If TRUE, interaction terms of the conditional variables are included in
the model. Default is TRUE.

12

mode

metricfunc

mlfunc

tail

tune

samples

folds

tune_length

center

scale

eps

positive

kernel

distance

seed

random_grid

nthread

verbose

progress

Value

CCl.test

Character. Specifies the mode of operation: "numeric_only" or "mixed". Default
is "numeric_only".

Optional the user can pass a custom function for calculating a performance met-
ric based on the model’s predictions. Default is NULL.

Optional the user can pass a custom machine learning wrapper function to use
instead of the predefined methods. Default is NULL.

Character. Specifies whether to calculate left-tailed or right-tailed p-values, de-
pending on the performance metric used. Only applicable if using metricfunc
or mlfunc. Default is NA.

Logical. If TRUE, the function will perform hyperparameter tuning for the spec-
ified machine learning method. Default is FALSE.

Integer. Number of hyperparameter combinations used in tuning. Default is 35.

Integer. The number of folds for cross-validation during the tuning process.
Default is 5.

Integer. The number of parameter combinations to try during the tuning process.
Default is 10.

Integer. The number of nearest neighbors to use for KNN method. Default is
15.

Logical. If TRUE, the data will be centered before fitting the model

Logical. If TRUE, the data will be scaled before fitting the model. Default is
TRUE.

Numeric. A small value to avoid division by zero in some calculations.

Character. The name of the positive class (KNN) in the data, used for classifica-
tion tasks. Default is NULL.

Character. The kernel type to use for KNN method. Default is "optimal".

Numeric. Parameter of Minkowski distance for the "KNN" method. Default is
2.

Integer. Set the seed for reproducing results. Default is NA.

Logical. If TRUE, a random grid search is performed. If FALSE, a full grid
search is performed. Default is TRUE.

Integer. The number of threads to use for parallel processing. Default is 1.

Logical. If TRUE, additional information is printed during the execution of the
function. Default is FALSE.

Logical. If TRUE, a progress bar is displayed during the permutation process.
Default is TRUE.

Additional arguments to pass to the perm. test function.

Invisibly returns the result of perm.test, which is an object of class ’CCI’ containing the null
distribution, observed test statistic, p-values, the machine learning model used, and the data.

check_formula 13

See Also

perm. test, print.summary.CCI, plot.CCI, CCI.pretuner, QQplot

Examples

set.seed(123)

data <- data.frame(x1 = stats::rnorm(100), x2 = stats::rnorm(100), y = stats::rnorm(100))
result <- CCI.test(y ~ x1 | x2, data = data, nperm = 25, interaction = FALSE)

summary (result)

check_formula Check the formula statement

Description

This function verifies that all variables specified in the formula are present in the provided data
frame. If any variables are missing, the function will stop and return an error message listing the
missing variables.

Usage

check_formula(formula, data)

Arguments
formula Formula. The model formula that specifies the relationship between the depen-
dent and independent variables.
data Data frame. The data frame in which to check for the presence of variables
specified in the formula.
Value

Invisibly returns NULL if all variables are present. Stops with an error if any variables are missing.

clean_formula Clean and Reformat Formula String

Description

This function processes and reformats formula string to ensure it is in the correct format for condi-

tional independence testing. The function checks if the formula uses the + operator for additive

models and transforms it into a format that includes a conditioning variable separated by ’I’.
Usage

clean_formula(formula)

14 ExponentialNoise

Arguments
formula Formula. The model formula that specifies the relationship between the depen-
dent and independent variables, and potentially the conditioning variables. The
formula is expected to follow the format Y ~ X + Z1 +Z2 or Y ~ X | Z1 + Z2.
Value

A reformatted formula in the correct format for conditional independence testing. The returned
formula will either retain the original format or be transformed to include conditioning variables.

Examples

clean_formula(y ~ x | z + v)
clean_formula(y ~ x + z + v)

ExponentialNoise Example dataset: ExponentialNoise

Description

A dataset containing simulated conditional independence test results.

Usage

ExponentialNoise

Format
A data frame with 600 rows and 3 variables:
X Numeric vector
Y Numeric vector

Z1 Conditioning variable

72 Conditioning variable

Source

Simulated data.

get_pvalues 15

get_pvalues P-value Calculation Based on Null Distribution and Test Statistic

Description

This function calculates p-values based on the comparison of a test statistic against a null distribu-
tion. It can perform either empirical or parametric p-value calculations and supports both left-tailed
and right-tailed tests.

Usage

get_pvalues(
dist,
test_statistic,
parametric = FALSE,
tail = c("left”, "right")

Arguments

dist Numeric vector. Represents the null distribution of the test statistic.
test_statistic Numeric. The observed test statistic for which the p-value is to be calculated.

parametric Logical. If TRUE, calculates parametric p-values assuming the null distribution
is normal. If FALSE, calculates empirical p-values. Default is FALSE.

tail Character. Specifies whether to calculate left-tailed or right-tailed p-values.
Must be either "left" or "right". Default is "left".

Value

Numeric. The calculated p-value.

Examples

set.seed(123)

null_dist <- rnorm(1000)

observed_stat <- 1.5

p_value <- get_pvalues(null_dist, observed_stat, parametric = FALSE, tail = "right")
print(p_value)

16 HardCase

get_tuned_params Get the best parameters after tuning with CCLtuner

Description

Get the best parameters after tuning with CCIL.tuner

Usage

get_tuned_params(tuned_model)

Arguments
tuned_model A model object returned from the CCL.pretuner function. This object contains
the tuned parameters and other relevant information.
Value

A named list of tuned parameters specific to the model method (e.g., mtry for random forest, eta,
max_depth for xgboost). Returns NULL for unsupported methods.

HardCase Example dataset: HardCase

Description

A dataset containing simulated conditional independence test results.

Usage

HardCase

Format
A data frame with 500 rows and 3 variables:
X Numeric vector
Y Numeric vector

71 Conditioning variable

72 Conditioning variable

Source

Simulated data.

is_categorical_Z_any 17

is_categorical_Z_any Check whether Z contains at least one categorical variable

Description

Categorical is defined as factor (and optionally character).

Usage

is_categorical_Z_any(sub_data, Z, allow_character = TRUE)

Arguments
sub_data data.frame containing the Z columns.
Z character vector of column names defining the conditioning set.

allow_character
logical; treat character as categorical. Default TRUE.

Value

logical scalar.

make_strata_from_categorical_Z
Create strata from the categorical subset of Z

Description

Uses interaction() on the categorical Z columns only.

Usage

make_strata_from_categorical_Z(sub_data, Z, allow_character = TRUE)

Arguments
sub_data data.frame containing Z columns.
z character vector of Z column names.

allow_character
logical; treat character as categorical. Default TRUE.

Value

A factor defining strata.

18 NonLinNormal

NonLinearCategorization
Example dataset: NonLinearCategorization

Description

A dataset containing simulated data from a non-linear transformation followed by categorization.

Usage

NonLinearCategorization

Format
A data frame with 600 rows and 3 variables:

X Numeric vector
Y Numeric vector

Z Conditioning variable

Source

Simulated data.

NonLinNormal Example dataset: NonLinNormal

Description
A dataset containing simulated data from a non-linear transformation of a multivariate normal dis-
tribution.

Usage

NonLinNormal

Format
A data frame with 500 rows and 4 variables:

X Numeric vector
Y Numeric vector
Z1 Conditioning variable
72 Conditioning variable

Source

Simulated data.

NonLinNormalZs _d0

19

NonLinNormalZs_de

Example dataset: NonLinNormalZs_d0

Description

A dataset containing simulated data with uniform noise.

Usage

NonLinNormalZs_d@

Format

A data frame with 1000 rows and 15 variables:

X Numeric vector

Y Numeric vector

71
72
YA
74
75
76
77
78
79

Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable

Conditioning variable

710 Conditioning variable

Z11 Conditioning variable

712 Conditioning variable

713 Conditioning variable

714 Conditioning variable

Z15 Conditioning variable

Source

Simulated data.

20

NonLinNormalZs_d05

NonLinNormalZs_d@5

Example dataset: NonLinNormalZs_d05

Description

A dataset containing simulated data with uniform noise.

Usage

NonLinNormalZs_d@5

Format

A data frame with 1000 rows and 15 variables:

X Numeric vector

Y Numeric vector

71
72
YA
74
75
76
77
78
79

Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable
Conditioning variable

Conditioning variable

710 Conditioning variable

Z11 Conditioning variable

712 Conditioning variable

713 Conditioning variable

714 Conditioning variable

Z15 Conditioning variable

Source

Simulated data.

NormalData

21

NormalData Example dataset: NormalData

Description

A dataset containing simulated data from a multivariate normal distribution.

Usage

NormalData

Format
A data frame with 400 rows and 4 variables:

X Numeric vector
Y Numeric vector
71 Conditioning variable

Z2 Conditioning variable

@source Simulated data.

perm.test Permutation Test for Conditional Independence

Description

Permutation Test for Conditional Independence

Usage

perm.test(
formula,
data,
p =20.5,
nperm = 160,
subsample = 1,
metric = "RMSE",
method = "rf",
nrounds = 600,
mtry = NULL,
parametric = FALSE,
tail = NA,
robust = TRUE,
metricfunc = NULL,

22 perm.test

mlfunc = NULL,

nthread = 1,
progress = TRUE,

k =15,

center = TRUE,
scale = TRUE,

eps = le-15,
positive = NULL,
kernel = "optimal”,

distance = 2,

Arguments

formula Model formula or DAGitty object specifying the relationship between dependent
and independent variables.

data A data frame containing the variables specified in the formula.

p Proportion of data to use for training the model. Default is 0.5.

nperm Number of permutations to perform. Default is 160.

subsample The proportion of the data to be used. Default is 1 (no subsampling).

metric Type of metric: "RMSE", "Kappa" or "LogLoss". Default is 'RMSE’.

method The machine learning method to use for the learner. Supported methods include
"rf", "xgboost", "KNN" and "svm". Default is "rf".

nrounds Number of rounds (trees) for methods *xgboost’” and ’rf’. Default is 600.

mtry Number of variables to possibly split at in each node for method 'rf’. Default is
NULL (sqrt of number of variables).

parametric Logical. If TRUE, a parametric p-value is calculated instead of an empirical
p-value. Default is FALSE.

tail Specifies whether the test is one-tailed ("left" or "right") or two-tailed. Default
is NA.

robust Logical. If TRUE, uses a robust method for permutation. Default is TRUE.

metricfunc An optional custom function to calculate the performance metric based on the
model’s predictions. Default is NULL.

mlfunc An optional custom machine learning function to use instead of the predefined
methods. Default is NULL.

nthread Integer. The number of threads to use for parallel processing for method ’rf” and
"xgboost’. Default is 1.

progress Logical. If TRUE, a progress bar is displayed during the permutation process.
Default is TRUE.

k Integer. The number of nearest neighbors for the "KNN" method. Default is 15.

center Logical. If TRUE, the data is centered before model fitting. Default is TRUE.

scale Logical. If TRUE, the data is scaled before model fitting. Default is TRUE.

permute_within_strata

eps

positive

kernel

distance

Value

23

Numeric. A small value added to avoid division by zero. Default is le-15.

Character vector. Specifies which levels of a factor variable should be treated as
positive class in classification tasks. Default is NULL.

Character string specifying the kernel type for method option "KNN" . Pos-
sible choices are "rectangular" (which is standard unweighted knn), "triangu-
lar", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or
beta(4,4)), "cos", "inv", "gaussian" and "optimal". Default is "optimal".

Numeric. Parameter of Minkowski distance for the "KNN" method. Default is
2.

Additional arguments to pass to the machine learning model fitting function.

An object of class ’CCI” containing the null distribution, observed test statistic, p-values, the ma-
chine learning model used, and the data.

See Also

print.CCI, summary.CCI, plot.CCI, QQplot

Examples

set.seed(123)

dat <- data.frame(x1 = rnorm(100),

X2 = rnorm(100),
x3 = rnorm(100),
x4 = rnorm(100),

y = rnorm(100))
perm.test(y ~ x1

| x2 + x3 + x4, data = dat, nperm = 25)

permute_within_strata Stratified permutation of x within strata

Description

Stratified permutation of x within strata

Usage

permute_within_strata(x, strata, seed = NULL)

Arguments

X
strata

seed

vector to permute.
factor-like vector defining strata.

optional seed for reproducibility.

24 plot.CCI

Value

x_star permuted within strata.

Examples

set.seed(123)

x <- 1:10

strata <- rep(letters[1:2], each = 5)

x_permuted <- permute_within_strata(x, strata, seed = 123)

plot.CCI Plot for CCI testing

Description

Plot for CCI testing

Usage

S3 method for class 'CCI'

plot(
X,
fill_color = "lightblue",
title.size = 14,
axis.text.x = 13,
axis.text.y = 13,
strip.text.x = 13,
strip.text.y = 13,
legend. text = 13,
legend.title = 13,
axis.title.x = 13,
axis.title.y = 13,
base_size = 13,

)

Arguments
X Object of class "CCT’
fill_color Color for the histogram fill
title.size Size of the plot title
axis.text.x Size of x-axis text
axis.text.y Size of y-axis text

strip.text.x Size of x-axis strip text

strip.text.y Size of y-axis strip text

PoissonNoise 25

legend. text Size of legend text
legend.title Size of legend title
axis.title.x Size of x-axis title
axis.title.y Size of y-axis title
base_size Base font size

Additional arguments to ggplot2

Value

A plot of the null distribution and the test statistic in ggplot2 format.

See Also

print.CCI, summary.CCI, plot.CCI, perm.test

Examples

dat <- data.frame(x1 = rnorm(100), x2 = rnorm(100), y = rnorm(100))
cci <- CCI.test(y ~ x1 + x2, data = dat, interaction = FALSE, nperm = 30)
plot(cci)

PoissonNoise Example dataset: PoissonNoise

Description

A dataset containing simulated data from a Poisson distribution.

Usage

PoissonNoise

Format
A data frame with 1000 rows and 4 variables:
X Numeric vector
Y Numeric vector

Z1 Conditioning variable

Z2 Conditioning variable

Source

Simulated data.

26

print.summary.CCI

PolyData Example dataset: PolyData

Description

A dataset containing simulated data from a polynomial relationship.

Usage
PolyData

Format
A data frame with 600 rows and 4 variables:

X Numeric vector
Y Numeric vector
Z1 Conditioning variable

72 Conditioning variable

Source

Simulated data.

print.summary.CCI Print and summary methods for the CCI class

Description

Print and summary methods for the CCI class

Usage
S3 method for class 'summary.CCI'
print(x, ...)
Arguments
X Object of class "CCT’
Additional arguments to print/summary
Value

The print methods have no return value, the summary methods return an object of class ’sum-

mary.CCI’.

QQplot

See Also

perm.test, plot.CCI, QQplot

QQplot QOQ-plot for multiple testing in CCI

Description

QQ-plot for multiple testing in CCI

Usage

QQplot(

object,

title.size = 14,
axis.text.x = 13,
axis.text.y = 13,
strip.text.x = 13,
strip.text.y = 13,
legend.text = 13,
legend.title = 13,
axis.title.x = 13,
axis.title.y = 13,
progress = TRUE,

)

Arguments
object Object of class ’CCI’
title.size Size of the plot title
axis.text.x Size of x-axis text
axis.text.y Size of y-axis text

strip.text.x Size of x-axis strip text

strip.text.y Size of y-axis strip text

legend. text Size of legend text

legend.title Size of legend title

axis.title.x Size of x-axis title

axis.title.y Size of y-axis title

progress Logical indicating whether to show progress during computation

Additional arguments to pass to the test.gen function.

28 test.gen

Value

A QQ-plot of the p-values in ggplot2 format.

See Also

print.CCI, summary.CCI, plot.CCI, perm.test

Examples

dat <- data.frame(x1 = rnorm(100), x2 = rnorm(100), y = rnorm(100))
cci <- CCI.test(y ~ x1 | x2,

data = dat,

nperm = 25,

interaction = FALSE)

QQplot(cci)

test.gen Generate the Test Statistic or Null Distribution Using Permutation

Description

This function generates the test statistic or a null distribution through permutation for conditional
independence testing. It supports various machine learning methods, including random forests,
extreme gradient boosting, and allows for custom metric functions and model fitting functions.

Usage

test.gen(
formula,
data,
method = "rf",
metric = "RMSE",
nperm = 160,
subsample = 1,
p =0.5,
nrounds = 600,
mtry = NULL,
nthread = 1,

permutation = FALSE,
robust = TRUE,
metricfunc = NULL,
mlfunc = NULL,
progress = TRUE,
center = TRUE,

scale = TRUE,

eps = le-15,

k =15,

test.gen

positive
kernel =
distance

Arguments

formula

data
method

metric

nperm

subsample

nrounds

mtry

nthread

permutation

robust

metricfunc

mlfunc

progress

center
scale

eps

29

= NULL,
"optimal”,

:2,

Formula specifying the relationship between dependent and independent vari-
ables.

Data frame. The data containing the variables used.

Character. The modeling method to be used. Options include "xgboost" for gra-
dient boosting, or "rf" for random forests or "svm" for Support Vector Machine.

Character. The type of metric: can be "RMSE", "Kappa" or "LogLoss". Default
is ’RMSE’
Integer. The number of generated Monte Carlo samples. Default is 160.

Numeric. The proportion of the data to be used for subsampling. Default is 1
(no subsampling).

Numeric. The proportion of the data to be used for training. The remaining data
will be used for testing. Default is 0.5.

Integer. The number of rounds (trees) for methods like *xgboost’ and ’rf’. De-
fault is 600.

Integer. The number of variables to possibly split at in each node for method
'rf’. Default is the rounded down square root of numbers of columns in data.

Integer. The number of threads to use for parallel processing. Only relevant for
methods ’rf” and *xgboost’. Default is 1.

Logical. Whether to perform permutation of the X’ variable. Used to generate
a null distribution. Default is FALSE.

Logical. If TRUE, automatically performs stratified permutation if all condi-
tional variables are factor or categorical. Default is TRUE.

Function. A custom metric function provided by the user. It must take argu-
ments: actual, predictions, and optionally ..., and return a single numeric
performance value.

Function. A custom machine learning function provided by the user. The func-
tion must have the arguments: formula, data, train_indices, test_indices,
and . .., and return a single value performance metric. Default is NULL.

Logical. A logical value indicating whether to show a progress bar during when
building the null distribution. Default is TRUE.

Logical. If TRUE, the data is centered before model fitting. Default is TRUE.
Logical. If TRUE, the data is scaled before model fitting. Default is TRUE.

Numeric. A small value added to avoid division by zero. Only relevant for
method ’KNN’. Default is 1e-15.

Integer. The number of nearest neighbors for the "KNN" method. Default is 15.

30 unclean_formula

positive Character vector. Only relevant for method ’KNN’. Specifies which levels of a
factor variable should be treated as positive class in classification tasks. Default
is NULL.

kernel Character. Only relevant for method "KNN’. Specifies the kernel type for method

option "KNN" . Possible choices are "rectangular” (which is standard unweighted
knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "tri-

weight" (or beta(4,4)), "cos", "inv", "gaussian" and "optimal". Default is "opti-
mal".

distance Numeric. Parameter of Minkowski distance for the "KNN" method. Default is
2.

Additional arguments to pass to the machine learning wrapper functions wrapper_xgboost,
wrapper_ranger, wrapper_knn and wrapper_svm, or to a custom-built wrap-
per function.

Value

A list containing the test distribution.

Examples

set.seed(123)

data <- data.frame(x1 = rnorm(100),

x2 = rnorm(100),

x3 = rnorm(100),

x4 = rnorm(100),

y = rnorm(100))

result <- test.gen(formula =y ~ x1 | x2 + x3 + x4,
metric = "RMSE",
data = data)

hist(result$distribution)

unclean_formula Convert Cl-style formula Y ~ X | Z into regression-style Y ~X + Z

Description

Convert Cl-style formula Y ~ X | Z into regression-style Y ~ X + Z

Usage

unclean_formula(formula)

Arguments

formula A formula of the form Y ~ X | Z1 + Z2, or already Y ~ X + Z1 + Z2.

Value

A standard formula of the form Y ~ X + Z1 + Z2.

UniformNoise_large

31

UniformNoise_large Example dataset: UniformNoise_large

Description

A dataset containing simulated data with uniform noise.

Usage

UniformNoise_large

Format
A data frame with 20000 rows and 4 variables:

X Numeric vector
Y Numeric vector
Z1 Conditioning variable

72 Conditioning variable

Source

Simulated data.

wrapper_knn k-Nearest Neighbors (KNN) wrapper for CCI (kknn-based)

Description

k-Nearest Neighbors (KNN) wrapper for CCI (kknn-based)

Usage

wrapper_knn(
formula,
data,
train_indices,
test_indices,

metric,

metricfunc = NULL,
k =15,

eps = le-15,
positive = NULL,
kernel = "optimal”,

distance = 2,

32

Arguments

formula

data
train_indices
test_indices

metric

metricfunc
k
eps

positive

kernel

distance

Value

wrapper_ranger

Model formula

Data frame

Indices for training rows
Indices for test rows

Performance metric: "RMSE" (regression), "Kappa" (classification), or "LogLoss"
(classification)

Optional custom metric function: function(actual, predictions, ...)
Integer, number of neighbors (default 15)
Small value to avoid log(0) in LogLoss calculations. Default is le-15.

Character. The positive class label for binary classification (used in LogLoss).
Default is NULL.

Character. Weighting kernel for kknn. Default "optimal".
Numeric. Minkowski distance parameter. 2 = Euclidean. Default 2.

Additional arguments passed to kknn::kknn (e.g., ykernel, na.action)

Numeric performance metric

wrapper_ranger

Random Forest wrapper for CCI

Description

Random Forest wrapper for CCI

Usage

wrapper_ranger(

formula,
data,

train_indices,
test_indices,
metric,
metricfunc =
nthread = 1,
mtry = NULL,
num. trees,
eps = le-15;

NULL,

wrapper_svim 33

Arguments
formula Model formula specifying the dependent and independent variables.
data Data frame containing the dataset to be used for training and testing the model.

train_indices A vector of indices specifying the rows in data to be used as the training set.
test_indices A vector of indices specifying the rows in data to be used as the test set.
metric Type of metric ("RMSE", "Kappa" or "Log Loss")

metricfunc Optional user-defined function to calculate a custom performance metric. This
function should take the arguments data, model, and test_indices, and return
a numeric value representing the performance metric.

nthread Integer. The number of threads to use for parallel processing. Default is 1.

mtry Integer. The number of variables to possibly split at in each node. Default is the
square root of the number of columns in data.

num. trees Integer. The number of trees to grow in the random forest.
eps Small value to avoid log(0) in LogLoss calculations. Default is 1e-15.

Additional arguments passed to the ranger function.

Value

A numeric value representing the performance metric of the model on the test set.

wrapper_svm SVM wrapper for CCI

Description

SVM wrapper for CCI

Usage

wrapper_svm(
formula,
data,
train_indices,
test_indices,
metric,
metricfunc = NULL,
eps = le-15;

34

Arguments

formula

data
train_indices
test_indices
metric
metricfunc

eps

Value

Performance metric (RMSE for continuous, Kappa for classification)

Model formula

Data frame

Indices for training data

Indices for testing data

Type of metric ("RMSE", "Kappa" or "Log Loss")

wrapper._xgboost

Optional user-defined function to calculate a custom performance metric.

Small value to avoid log(0) in LogLoss calculations. Default is le-15.

Additional arguments passed to e1071::svm

wrapper_xgboost

Extreme Gradient Boosting wrapper for CCI

Description

Extreme Gradient Boosting wrapper for CCI

Usage

wrapper_xgboos
formula,
data,
train_indice
test_indices
metric,
nrounds = 50
metricfunc =
nthread = 1,
eps = le-15,
subsample =

Arguments
formula
data
train_indices

test_indices

t(

s’

’

o,
NULL,

1,

Model formula
Data frame
Indices for training data

Indices for training data

wrapper._xgboost

metric
nrounds

metricfunc

nthread

eps

subsample

Value

35

Type of metric ("RMSE", "Kappa" or "Log Loss")
Number of boosting rounds

A user specific metric function which have the arguments data, model test_indices
and test_matrix and returns a numeric value

Integer. Number of threads to use for parallel computation during model training
in XGBoost. Default is 1.

Small value to avoid log(0) in LogLoss calculations. Default is le-15.

Numeric. The proportion of the data to be used for subsampling. Default is 1
(no subsampling).

Additional arguments passed to xgb.train

Performance metric

Index

+ datasets
ExponentialNoise, 14
HardCase, 16
NonLinearCategorization, 18
NonLinNormal, 18
NonLinNormalZs_do, 19
NonLinNormalZs_d@5, 20
NormalData, 21
PoissonNoise, 25
PolyData, 26
UniformNoise_large, 31

add_interaction_terms, 2
add_poly_terms, 3

build_formula, 4

CCI (CCI.test), 9
CCI.direction, 5
CCI.pretuner, 7,13
CCI.test, 9,9
check_formula, 13
clean_formula, 13

ExponentialNoise, 14

get_pvalues, 15
get_tuned_params, 16

HardCase, 16
is_categorical_Z_any, 17
make_strata_from_categorical_z, 17

NonLinearCategorization, 18
NonLinNormal, 18
NonLinNormalZs_do, 19
NonLinNormalZs_d@5, 20
NormalData, 21

perm.test, 9, 13,21, 25,27, 28

permute_within_strata, 23
plot.CCI, 9, 13, 23,24, 25,27, 28
PoissonNoise, 25

PolyData, 26

print.CCI, 23, 25, 28

print.CCI (print.summary.CCI), 26
print.summary.CCI, 9, 13, 26

QQplot, 9, 13, 23, 27,27
reports (print.summary.CCI), 26

summary.CCI, 23, 25, 28
summary.CCI (print.summary.CCI), 26

test.gen, 28
tuner (CCI.pretuner), 7

unclean_formula, 30
UniformNoise_large, 31

wrapper_knn, 31
wrapper_ranger, 32
wrapper_svm, 33
wrapper_xgboost, 34

	add_interaction_terms
	add_poly_terms
	build_formula
	CCI.direction
	CCI.pretuner
	CCI.test
	check_formula
	clean_formula
	ExponentialNoise
	get_pvalues
	get_tuned_params
	HardCase
	is_categorical_Z_any
	make_strata_from_categorical_Z
	NonLinearCategorization
	NonLinNormal
	NonLinNormalZs_d0
	NonLinNormalZs_d05
	NormalData
	perm.test
	permute_within_strata
	plot.CCI
	PoissonNoise
	PolyData
	print.summary.CCI
	QQplot
	test.gen
	unclean_formula
	UniformNoise_large
	wrapper_knn
	wrapper_ranger
	wrapper_svm
	wrapper_xgboost
	Index

