Package ‘BayesMallows’

January 20, 2026

Type Package

Title Bayesian Preference Learning with the Mallows Rank Model
Version 2.2.7

Maintainer Oystein Sorensen <oystein.sorensen.1985@gmail.com>

Description An implementation of the Bayesian version of the Mallows rank model
(Vitelli et al., Journal of Machine Learning Research, 2018 <https:
//jmlr.org/papers/v18/15-481.html>;
Crispino et al., Annals of Applied Statistics, 2019 <doi:10.1214/18-A0AS1203>;
Sorensen et al., R Journal, 2020 <doi:10.32614/RJ-2020-026>;
Stein, PhD Thesis, 2023 <https:
//eprints.lancs.ac.uk/id/eprint/195759>). Both Metropolis-Hastings
and sequential Monte Carlo algorithms for estimating the models are available. Cayley, footrule,
Hamming, Kendall, Spearman, and Ulam distances are supported in the mod-
els. The rank data to be
analyzed can be in the form of complete rankings, top-
k rankings, partially missing rankings, as well
as consistent and inconsistent pairwise preferences. Several functions for plotting and studying the
posterior distributions of parameters are provided. The package also provides functions for esti-
mating
the partition function (normalizing constant) of the Mallows rank model, both with the importance
sampling algorithm of Vitelli et al. and asymptotic approximation with the IPFP algorithm
(Mukherjee, Annals of Statistics, 2016 <doi:10.1214/15-A0S1389>).

URL https://github.com/ocbe-uio/BayesMallows,
https://ocbe-uio.github.io/BayesMallows/

BugReports https://github.com/ocbe-uio/BayesMallows/issues
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Depends R (>=3.5.0)

Imports Rcpp (>= 1.0.0), ggplot2 (>= 3.1.0), Rdpack (>= 1.0), sets (>=
1.0-18), relations (>= 0.6-8), rlang (>=0.3.1)

1


https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html
https://doi.org/10.1214/18-AOAS1203
https://doi.org/10.32614/RJ-2020-026
https://eprints.lancs.ac.uk/id/eprint/195759
https://eprints.lancs.ac.uk/id/eprint/195759
https://doi.org/10.1214/15-AOS1389
https://github.com/ocbe-uio/BayesMallows
https://ocbe-uio.github.io/BayesMallows/
https://github.com/ocbe-uio/BayesMallows/issues

2 Contents

LinkingTo Rcpp, ReppArmadillo, testthat

Suggests knitr, testthat (>= 3.0.0), label.switching (>= 1.7),
rmarkdown, covr, parallel (>=3.5.1)

VignetteBuilder knitr, rmarkdown
RdMacros Rdpack
Config/testthat/edition 3
NeedsCompilation yes

Author Oystein Sorensen [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0724-3542>),
‘Waldir Leoncio [aut],
Valeria Vitelli [aut] (ORCID: <https://orcid.org/0000-0002-6746-0453>),
Marta Crispino [aut],
Qinghua Liu [aut],
Cristina Mollica [aut],
Luca Tardella [aut],
Anja Stein [aut]

Repository CRAN
Date/Publication 2026-01-20 11:20:08 UTC

Contents
ASSESS_CONVEIZENCE . . .« « ¢ v v v v v e ettt e e e e e e e e e 3
assign_cluster . . . . .. L. 4
beach_preferences. . . . . . . . . . .. 5
bernoulli_data . . . . . . . . .. 6
burnin . . . ... L e e e 6
burnin<- . . . . . .. L e e 7
cluster data . . . . . . . .. L e 8
COMPULE_CONSENSUS . « « v v v o v v v v e e e e e e e e e e e e e e e e e e 9
compute_exact_partition_function . . . . . . ... oL oo 11
compute_expected_distance . . . . ... L. Lo e 12
compute_mallows . . . . . . ... 13
compute_mallows_mixtures . . . . . . . . . ... e e 19
compute_mallows_sequentially . . . . . . . .. ... ... 22
compute_observation_frequency . . . . . . ... L. 24
compute_posterior_intervals . . . . . .. ..o Lo 25
compute_rank_distance . . . . ... ..o 27
create_ranking . . . . . ... L. e e 29
estimate_partition_function . . . . . .. ... Lo 30
get_acceptanCe_ratios . . . . . . . ... e e e e e e e e e e 32
get_cardinalities . . . . . . . . L. L. e 33
get_mallows_loglik . . . .. .. ... 35
get_transitive_closure . . . . . ..o L. L 37
heat_plot . . . . . . e e 38

plot.BayesMallows . . . . . . . . . . .. 39


https://orcid.org/0000-0003-0724-3542
https://orcid.org/0000-0002-6746-0453

assess_convergence 3

plot.SMCMallows . . . . . . . . . . e e e 40
plot_elbow . . . .. e e e e 43
plot_top_K . . . . . e 46
potato_true_ranking . . . . . ... L.l e 47
potato_visual . . ... L. e e e 48
potato_weighing . . . . . . . ... L 48
predict_top_K . . . . .. 49
print. BayesMallows . . . . . . . . . L 50
sample_mallows . . . . . . . . . L 51
sample_prior . . . . ... e e e e e e e e e e 53
setup_rank_data . . . ... L. L e e e 54
SEL_COMPULE_OPHONS . . . . v v v v o vt e e e e e e e e e e e e e e 57
set_initial_values . . . . . . . . ... 59
set_model_options . . . . ... e 60
SEL_PIIOIS . . o o o v i i i e e e e e e e e 61
SEt_Progress_report . . . . . ... L Lo e e e e e e 62
SEt_SMC_OPLIONS . . . . . v v v vttt et e e e e e 62
SOUNAS . . ... 64
sushi_rankings . . . . . . . . . L e e e 65
update_mallows . . . . . . .. e e e 66
Index 70
assess_convergence Trace Plots from Metropolis-Hastings Algorithm
Description

assess_convergence provides trace plots for the parameters of the Mallows Rank model, in order

to study the convergence of the Metropolis-Hastings algorithm.

Usage

assess_convergence(model_fit, ...)

## S3 method for class 'BayesMallows'
assess_convergence(
model_fit,
parameter = c("alpha”,
items = NULL,
assessors = NULL,

rho”, "Rtilde”, "cluster_probs"”, "theta"),

) .

## S3 method for class 'BayesMallowsMixtures'
assess_convergence(

model_fit,

parameter = c("alpha"”, "cluster_probs"),



items = NULL,

assign_cluster

assessors = NULL,

Arguments

model_fit

parameter

items

assessors

Examples

set.seed(1)
# Fit a model on

A fitted model object of class BayesMallows returned from compute_mallows()
or an object of class BayesMallowsMixtures returned from compute_mallows_mixtures().

Other arguments passed on to other methods. Currently not used.

Character string specifying which parameter to plot. Available options are "alpha”,
"rho"”, "Rtilde"”, "cluster_probs”, or "theta".

The items to study in the diagnostic plot for rho. Either a vector of item names,
corresponding to model_fit$data$items or a vector of indices. If NULL, five
items are selected randomly. Only used when parameter = "rho" or parameter

= "Rtilde".

Numeric vector specifying the assessors to study in the diagnostic plot for "Rtilde".

the potato_visual data

mod <- compute_mallows(setup_rank_data(potato_visual))
# Check for convergence
assess_convergence (mod)

assess_convergence(mod, parameter =

n n

rho"”, items = 1:20)

assign_cluster

Assign Assessors to Clusters

Description

Assign assessors to clusters by finding the cluster with highest posterior probability.

Usage

assign_cluster(model_fit, soft = TRUE, expand = FALSE)

Arguments

model_fit
soft

expand

An object of type BayesMallows, returned from compute_mallows().

A logical specifying whether to perform soft or hard clustering. If soft=TRUE,
all cluster probabilities are returned, whereas if soft=FALSE, only the maximum
a posterior (MAP) cluster probability is returned, per assessor. In the case of a
tie between two or more cluster assignments, a random cluster is taken as MAP
estimate.

A logical specifying whether or not to expand the rowset of each assessor to also

include clusters for which the assessor has 0 a posterior assignment probability.
Only used when sof't = TRUE. Defaults to FALSE.



beach_preferences 5

Value

A dataframe. If soft = FALSE, it has one row per assessor, and columns assessor, probability
and map_cluster. If soft = TRUE, it has n_cluster rows per assessor, and the additional column
cluster.

See Also

Other posterior quantities: compute_consensus(), compute_posterior_intervals(), get_acceptance_ratios(),
heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(), plot_top_k(), predict_top_k(),
print.BayesMallows()

Examples

# Fit a model with three clusters to the simulated example data
set.seed(1)
mixture_model <- compute_mallows(
data = setup_rank_data(cluster_data),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 5000, burnin = 1000)

)

head(assign_cluster(mixture_model))
head(assign_cluster(mixture_model, soft = FALSE))

beach_preferences Beach preferences

Description

Example dataset from (Vitelli et al. 2018), Section 6.2.

Usage

beach_preferences

Format

An object of class data. frame with 1442 rows and 3 columns.

References

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.


https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

6 burnin

See Also

Other datasets: bernoulli_data, cluster_data, potato_true_ranking, potato_visual, potato_weighing,
sounds, sushi_rankings

bernoulli_data Simulated intransitive pairwise preferences

Description

Simulated dataset based on the potato_visual data. Based on the rankings in potato_visual, all n-
choose-2 = 190 pairs of items were sampled from each assessor. With probability .9, the pairwise
preference was in agreement with potato_visual, and with probability .1, they were in disagreement.
Hence, the data generating mechanism was a Bernoulli error model (Crispino et al. 2019) with
0 =0.1.

Usage

bernoulli_data

Format

An object of class data. frame with 2280 rows and 3 columns.

See Also

Other datasets: beach_preferences, cluster_data, potato_true_ranking, potato_visual,
potato_weighing, sounds, sushi_rankings

burnin See the burnin

Description

See the current burnin value of the model.
Usage
burnin(model, ...)

## S3 method for class 'BayesMallows'
burnin(model, ...)

## S3 method for class 'BayesMallowsMixtures'
burnin(model, ...)

## S3 method for class 'SMCMallows'
burnin(model, ...)



burnin<- 7

Arguments
model A model object.
Optional arguments passed on to other methods. Currently not used.
Value

An integer specifying the burnin, if it exists. Otherwise NULL.

See Also

Other modeling: burnin<-(), compute_mallows(), compute_mallows_mixtures(), compute_mallows_sequentially()
sample_prior(), update_mallows()

Examples

set.seed(445)

mod <- compute_mallows(setup_rank_data(potato_visual))

assess_convergence(mod)

burnin(mod)

burnin(mod) <- 1500

burnin(mod)

plot(mod)

#

models <- compute_mallows_mixtures(
data = setup_rank_data(cluster_data),
n_clusters = 1:3)

burnin(models)

burnin(models) <- 100

burnin(models)

burnin(models) <- c(100, 300, 200)

burnin(models)

burnin<- Set the burnin

Description

Set or update the burnin of a model computed using Metropolis-Hastings.
Usage
burnin(model, ...) <- value

## S3 replacement method for class 'BayesMallows'
burnin(model, ...) <- value

## S3 replacement method for class 'BayesMallowsMixtures'
burnin(model, ...) <- value



8 cluster_data

Arguments
model An object of class BayesMallows returned from compute_mallows() or an ob-
ject of class BayesMallowsMixtures returned from compute_mallows_mixtures().
Optional arguments passed on to other methods. Currently not used.
value An integer specifying the burnin. If model is of class BayesMallowsMixtures,
a single value will be assumed to be the burnin for each model element. Alterna-
tively, value can be specified as an integer vector of the same length as model,
and hence a separate burnin can be set for each number of mixture components.
Value

An object of class BayesMallows with burnin set.

See Also

Other modeling: burnin(), compute_mallows(), compute_mallows_mixtures(), compute_mallows_sequentially(),
sample_prior(), update_mallows()

Examples

set.seed(445)

mod <- compute_mallows(setup_rank_data(potato_visual))

assess_convergence(mod)

burnin(mod)

burnin(mod) <- 1500

burnin(mod)

plot(mod)

#

models <- compute_mallows_mixtures(
data = setup_rank_data(cluster_data),
n_clusters = 1:3)

burnin(models)

burnin(models) <- 100

burnin(models)

burnin(models) <- c(100, 300, 200)

burnin(models)

cluster_data Simulated clustering data

Description

Simulated dataset of 60 complete rankings of five items, with three different clusters.

Usage

cluster_data



compute_consensus 9

Format

An object of class matrix (inherits from array) with 60 rows and 5 columns.

See Also

Other datasets: beach_preferences, bernoulli_data, potato_true_ranking, potato_visual,
potato_weighing, sounds, sushi_rankings

compute_consensus Compute Consensus Ranking

Description

Compute the consensus ranking using either cumulative probability (CP) or maximum a posteriori
(MAP) consensus (Vitelli et al. 2018). For mixture models, the consensus is given for each mixture.
Consensus of augmented ranks can also be computed for each assessor, by setting parameter =
"Rtilde".

Usage

compute_consensus(model_fit, ...)

## S3 method for class 'BayesMallows'
compute_consensus(

model_fit,
type = c("CP", "MAP"),
parameter = c("rho”, "Rtilde"),

assessors = 1L,

)

## S3 method for class 'SMCMallows'

compute_consensus(model_fit, type = c("CP", "MAP"), parameter = "rho", ...)

Arguments

model_fit A model fit.
Other arguments passed on to other methods. Currently not used.

type Character string specifying which consensus to compute. Either "CP" or "MAP".
Defaults to "CP".

parameter Character string defining the parameter for which to compute the consensus.

Defaults to "rho"”. Available options are "rho"” and "Rtilde”, with the latter
giving consensus rankings for augmented ranks.

assessors When parameter = "rho”, this integer vector is used to define the assessors for
which to compute the augmented ranking. Defaults to 1L, which yields aug-
mented rankings for assessor 1.



10 compute_consensus

References

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other posterior quantities: assign_cluster(), compute_posterior_intervals(), get_acceptance_ratios(),
heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(), plot_top_k(), predict_top_k(),
print.BayesMallows()

Examples

# The example datasets potato_visual and potato_weighing contain complete
# rankings of 20 items, by 12 assessors. We first analyse these using the
# Mallows model:

model_fit <- compute_mallows(setup_rank_data(potato_visual))

# Se the documentation to compute_mallows for how to assess the convergence of
# the algorithm. Having chosen burin = 1000, we compute posterior intervals
burnin(model_fit) <- 1000

# We then compute the CP consensus.

compute_consensus(model_fit, type = "CP")
# And we compute the MAP consensus
compute_consensus(model_fit, type = "MAP")
## Not run:

# CLUSTERWISE CONSENSUS
# We can run a mixture of Mallows models, using the n_clusters argument
# We use the sushi example data. See the documentation of compute_mallows for
# a more elaborate example
model_fit <- compute_mallows(
setup_rank_data(sushi_rankings),
model_options = set_model_options(n_clusters = 5))
# Keeping the burnin at 1000, we can compute the consensus ranking per cluster
burnin(model_fit) <- 1000
cp_consensus_df <- compute_consensus(model_fit, type = "CP")
# We can now make a table which shows the ranking in each cluster:
cp_consensus_df$cumprob <- NULL
stats: :reshape(cp_consensus_df, direction = "wide"”, idvar = "ranking”,
timevar = "cluster”,
varying = list(sort(unique(cp_consensus_df$cluster))))

## End(Not run)

## Not run:
# MAP CONSENSUS FOR PAIRWISE PREFENCE DATA
# We use the example dataset with beach preferences.
model_fit <- compute_mallows(setup_rank_data(preferences = beach_preferences))
# We set burnin = 1000
burnin(model_fit) <- 1000
# We now compute the MAP consensus


https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

compute_exact_partition_function 11

map_consensus_df <- compute_consensus(model_fit, type = "MAP")

# CP CONSENSUS FOR AUGMENTED RANKINGS
# We use the example dataset with beach preferences.
model_fit <- compute_mallows(
setup_rank_data(preferences = beach_preferences),
compute_options = set_compute_options(save_aug = TRUE, aug_thinning = 2))
# We set burnin = 1000
burnin(model_fit) <- 1000
# We now compute the CP consensus of augmented ranks for assessors 1 and 3
cp_consensus_df <- compute_consensus(
model_fit, type = "CP", parameter = "Rtilde”, assessors = c(1L, 3L))
# We can also compute the MAP consensus for assessor 2
map_consensus_df <- compute_consensus(
model_fit, type = "MAP", parameter = "Rtilde”, assessors = 2L)

# Caution!
# With very sparse data or with too few iterations, there may be ties in the
# MAP consensus. This is illustrated below for the case of only 5 post-burnin
# iterations. Two MAP rankings are equally likely in this case (and for this
# seed).
model_fit <- compute_mallows(

setup_rank_data(preferences = beach_preferences),

compute_options = set_compute_options(

nmc = 1005, save_aug = TRUE, aug_thinning = 1))
burnin(model_fit) <- 1000
compute_consensus(model_fit, type = "MAP", parameter = "Rtilde”,
assessors = 2L)

## End(Not run)

compute_exact_partition_function
Compute exact partition function

Description

For Cayley, Hamming, and Kendall distances, computationally tractable functions are available for
the exact partition function.

Usage
compute_exact_partition_function(
alpha,
n_items,
metric = c("cayley”, "hamming”, "kendall")

)



12 compute_expected_distance

Arguments

alpha Dispersion parameter.

n_items Number of items.

metric Distance function, one of "cayley", "hamming", or "kendall".
Value

The logarithm of the partition function.

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

Other partition function: estimate_partition_function(), get_cardinalities()

Examples

compute_exact_partition_function(
alpha = 3.4, n_items = 34, metric = "cayley”

)
compute_exact_partition_function(

alpha = 3.4, n_items = 34, metric = "hamming”
)

compute_exact_partition_function(
alpha = 3.4, n_items = 34, metric = "kendall”

)

compute_expected_distance
Expected value of metrics under a Mallows rank model

Description

Compute the expectation of several metrics under the Mallows rank model.

Usage
compute_expected_distance(
alpha,
n_items,
metric = c("footrule”, "spearman”, "cayley”, "hamming”, "kendall”, "ulam")

)



compute_mallows 13

Arguments
alpha Non-negative scalar specifying the scale (precision) parameter in the Mallows
rank model.
n_items Integer specifying the number of items.
metric Character string specifying the distance measure to use. Available options are
"kendall"”, "cayley"”, "hamming”, "ulam”, "footrule”, and "spearman”.
Value

A scalar providing the expected value of the metric under the Mallows rank model with distance
specified by the metric argument.

See Also

Other rank functions: compute_observation_frequency(), compute_rank_distance(), create_ranking(),
get_mallows_loglik(), sample_mallows()

Examples
compute_expected_distance(1, 5, metric = "kendall")
compute_expected_distance(2, 6, metric = "cayley")
compute_expected_distance(1.5, 7, metric = "hamming")

compute_expected_distance(5, 30, "ulam")
compute_expected_distance(3.5, 45, "footrule")
compute_expected_distance(4, 10, "spearman”)

compute_mallows Preference Learning with the Mallows Rank Model

Description

Compute the posterior distributions of the parameters of the Bayesian Mallows Rank Model, given
rankings or preferences stated by a set of assessors.

The BayesMallows package uses the following parametrization of the Mallows rank model (Mal-
lows 1957):

plrlas) = 5 e { )

where r is a ranking, « is a scale parameter, p is the latent consensus ranking, Z,, («) is the partition
function (normalizing constant), and d(r, p) is a distance function measuring the distance between
r and p. We refer to Vitelli et al. (2018) for further details of the Bayesian Mallows model.

compute_mallows always returns posterior distributions of the latent consensus ranking p and the
scale parameter o.. Several distance measures are supported, and the preferences can take the form
of complete or incomplete rankings, as well as pairwise preferences. compute_mallows can also
compute mixtures of Mallows models, for clustering of assessors with similar preferences.



14 compute_mallows

Usage

compute_mallows(
data,
model_options = set_model_options(),
compute_options = set_compute_options(),
priors = set_priors(),
initial_values = set_initial_values(),
pfun_estimate = NULL,
progress_report = set_progress_report(),
cl = NULL

Arguments

data An object of class "BayesMallowsData" returned from setup_rank_data().

model_options An object of class "BayesMallowsModelOptions" returned from set_model _options().
compute_options
An object of class "BayesMallowsComputeOptions" returned from set_compute_options().

priors An object of class "BayesMallowsPriors" returned from set_priors().
initial_values Anobjectof class "BayesMallowslnitial Values" returned from set_initial_values().

pfun_estimate Object returned from estimate_partition_function(). Defaults to NULL,
and will only be used for footrule, Spearman, or Ulam distances when the car-
dinalities are not available, cf. get_cardinalities().

progress_report
An object of class "BayesMallowsProgressReported" returned from set_progress_report().

cl Optional cluster returned from parallel: :makeCluster (). If provided, chains
will be run in parallel, one on each node of c1.
Value

An object of class BayesMallows.

References

Mallows CL (1957). “Non-Null Ranking Models. 1.” Biometrika, 44(1/2), 114-130.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other modeling: burnin(), burnin<-(), compute_mallows_mixtures(), compute_mallows_sequentially(),
sample_prior(), update_mallows()


https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

compute_mallows

Examples

# ANALYSIS OF COMPLETE RANKINGS
# The example datasets potato_visual and potato_weighing contain complete
# rankings of 20 items, by 12 assessors. We first analyse these using the Mallows
# model:
set.seed(1)
model_fit <- compute_mallows(
data = setup_rank_data(rankings = potato_visual),
compute_options = set_compute_options(nmc = 2000)

)

# We study the trace plot of the parameters
assess_convergence(model_fit, parameter = "alpha")
assess_convergence(model_fit, parameter = "rho"”, items = 1:4)

# Based on these plots, we set burnin = 1000.

burnin(model_fit) <- 1000

# Next, we use the generic plot function to study the posterior distributions
# of alpha and rho

plot(model_fit, parameter = "alpha")

plot(model_fit, parameter = "rho", items = 10:15)

# We can also compute the CP consensus posterior ranking
compute_consensus(model_fit, type = "CP")

# And we can compute the posterior intervals:
# First we compute the interval for alpha

compute_posterior_intervals(model_fit, parameter = "alpha")
# Then we compute the interval for all the items
compute_posterior_intervals(model_fit, parameter = "rho")

# ANALYSIS OF PAIRWISE PREFERENCES
# The example dataset beach_preferences contains pairwise
# preferences between beaches stated by 60 assessors. There
# is a total of 15 beaches in the dataset.
beach_data <- setup_rank_data(
preferences = beach_preferences
)
# We then run the Bayesian Mallows rank model
# We save the augmented data for diagnostics purposes.
model_fit <- compute_mallows(
data = beach_data,
compute_options = set_compute_options(save_aug = TRUE),
progress_report = set_progress_report(verbose = TRUE))
# We can assess the convergence of the scale parameter
assess_convergence(model_fit)
# We can assess the convergence of latent rankings. Here we
# show beaches 1-5.
assess_convergence(model_fit, parameter = "rho", items = 1:5)
# We can also look at the convergence of the augmented rankings for
# each assessor.
assess_convergence(model_fit, parameter = "Rtilde”,

”

15



compute_mallows

items = c(2, 4), assessors = c(1, 2))
# Notice how, for assessor 1, the lines cross each other, while
# beach 2 consistently has a higher rank value (lower preference) for
# assessor 2. We can see why by looking at the implied orderings in
# beach_tc
subset(get_transitive_closure(beach_data), assessor %in% c(1, 2) &
bottom_item %in% c(2, 4) & top_item %in% c(2, 4))
# Assessor 1 has no implied ordering between beach 2 and beach 4,
# while assessor 2 has the implied ordering that beach 4 is preferred
# to beach 2. This is reflected in the trace plots.

# CLUSTERING OF ASSESSORS WITH SIMILAR PREFERENCES
## Not run:
# The example dataset sushi_rankings contains 5000 complete
# rankings of 10 types of sushi
# We start with computing a 3-cluster solution
model_fit <- compute_mallows(
data = setup_rank_data(sushi_rankings),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 10000),
progress_report = set_progress_report(verbose = TRUE))
# We then assess convergence of the scale parameter alpha
assess_convergence (model_fit)
# Next, we assess convergence of the cluster probabilities
assess_convergence(model_fit, parameter = "cluster_probs")
# Based on this, we set burnin = 1000
# We now plot the posterior density of the scale parameters alpha in
# each mixture:
burnin(model_fit) <- 1000
plot(model_fit, parameter = "alpha")
# We can also compute the posterior density of the cluster probabilities
plot(model_fit, parameter = "cluster_probs")
# We can also plot the posterior cluster assignment. In this case,
# the assessors are sorted according to their maximum a posteriori cluster estimate.
plot(model_fit, parameter = "cluster_assignment")
# We can also assign each assessor to a cluster
cluster_assignments <- assign_cluster(model_fit, soft = FALSE)

## End(Not run)

# DETERMINING THE NUMBER OF CLUSTERS
## Not run:
# Continuing with the sushi data, we can determine the number of cluster
# Let us look at any number of clusters from 1 to 10
# We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(
n_clusters = n_clusters,
data = setup_rank_data(rankings = sushi_rankings),
compute_options = set_compute_options(
nmc = 6000, alpha_jump = 10, include_wcd = TRUE)



compute_mallows 17

# models is a list in which each element is an object of class BayesMallows,
# returned from compute_mallows

# We can create an elbow plot

burnin(models) <- 1000

plot_elbow(models)

# We then select the number of cluster at a point where this plot has

# an "elbow”, e.g., at 6 clusters.

## End(Not run)

# SPEEDING UP COMPUTION WITH OBSERVATION FREQUENCIES With a large number of

# assessors taking on a relatively low number of unique rankings, the

# observation_frequency argument allows providing a rankings matrix with the

# unique set of rankings, and the observation_frequency vector giving the number
# of assessors with each ranking. This is illustrated here for the potato_visual
# dataset

#

# assume each row of potato_visual corresponds to between 1 and 5 assessors, as
# given by the observation_frequency vector

## Not run:

set.seed(1234)

observation_frequency <- sample.int(n = 5, size = nrow(potato_visual), replace = TRUE)

m <- compute_mallows(

setup_rank_data(rankings = potato_visual, observation_frequency = observation_frequency))

# INTRANSITIVE PAIRWISE PREFERENCES
set.seed(1234)
mod <- compute_mallows(
setup_rank_data(preferences = bernoulli_data),
compute_options = set_compute_options(nmc = 5000),
priors = set_priors(kappa = c(1, 10)),
model_options = set_model_options(error_model = "bernoulli”)

assess_convergence(mod)
assess_convergence(mod, parameter = "theta")
burnin(mod) <- 3000

plot(mod)
plot(mod, parameter = "theta")

## End(Not run)

#

CHEKING FOR LABEL SWITCHING

## Not run:

# This example shows how to assess if label switching happens in BayesMallows

# We start by creating a directory in which csv files with individual

# cluster probabilities should be saved in each step of the MCMC algorithm

# NOTE: For computational efficiency, we use much fewer MCMC iterations than one
# would normally do.

dir.create("”./test_label_switch")

# Next, we go into this directory

setwd("./test_label_switch/")

# For comparison, we run compute_mallows with and without saving the cluster



18

compute_mallows

# probabilities The purpose of this is to assess the time it takes to save
# the cluster probabilites.
system.time(m <- compute_mallows(

setup_rank_data(rankings = sushi_rankings),

model_options = set_model_options(n_clusters = 3),

compute_options = set_compute_options(nmc = 500, save_ind_clus = FALSE)))
# With this options, compute_mallows will save cluster_probs2.csv,
# cluster_probs3.csv, ..., cluster_probs[nmc].csv.
system.time(m <- compute_mallows(

setup_rank_data(rankings = sushi_rankings),

model_options = set_model_options(n_clusters = 3),

compute_options = set_compute_options(nmc = 500, save_ind_clus = TRUE)))

# Next, we check convergence of alpha
assess_convergence(m)

# We set the burnin to 200
burnin <- 200

# Find all files that were saved. Note that the first file saved is
# cluster_probs2.csv
cluster_files <- list.files(pattern = "cluster\\_probs[[:digit:J]+\\.csv")

# Check the size of the files that were saved.
paste(sum(do.call(file.size, list(cluster_files))) * 1e-6, "MB")

# Find the iteration each file corresponds to, by extracting its number
iteration_number <- as.integer(

regmatches(x = cluster_files,m = regexpr(pattern = "[0-9]+", cluster_files)

)

# Remove all files before burnin
file.remove(cluster_files[iteration_number <= burnin])
# Update the vector of files, after the deletion
cluster_files <- list.files(pattern = "cluster\\_probs[[:digit:J]+\\.csv")
# Create 3d array, with dimensions (iterations, assessors, clusters)
prob_array <- array(

dim = c(length(cluster_files), m$data$n_assessors, m$n_clusters))
# Read each file, adding to the right element of the array
for(i in seq_along(cluster_files)){

prob_array[i, , ] <- as.matrix(

read.csv(cluster_files[[i]], header = FALSE))

# Create an integer array of latent allocations, as this is required by
# label.switching
z <- subset(m$cluster_assignment, iteration > burnin)

z$value <- as.integer(gsub("Cluster ", "", z$value))
z$chain <- NULL
z <- reshape(z, direction = "wide"”, idvar = "iteration”, timevar = "assessor")

z$iteration <- NULL
z <- as.matrix(z)

# Now apply Stephen's algorithm



compute_mallows_mixtures 19

library(label.switching)
switch_check <- label.switching("STEPHENS", z = z,
K = m$n_clusters, p = prob_array)

# Check the proportion of cluster assignments that were switched

mean(apply (switch_check$permutations$STEPHENS, 1, function(x) {
lall(x == seq(1, m$n_clusters, by = 1))

m

# Remove the rest of the csv files
file.remove(cluster_files)

# Move up one directory

setwd("..")

# Remove the directory in which the csv files were saved
file.remove("./test_label_switch/")

## End(Not run)

compute_mallows_mixtures
Compute Mixtures of Mallows Models

Description

Convenience function for computing Mallows models with varying numbers of mixtures. This is
useful for deciding the number of mixtures to use in the final model.

Usage

compute_mallows_mixtures(
n_clusters,
data,
model_options = set_model_options(),
compute_options = set_compute_options(),
priors = set_priors(),
initial_values = set_initial_values(),
pfun_estimate = NULL,
progress_report = set_progress_report(),

cl = NULL
)
Arguments
n_clusters Integer vector specifying the number of clusters to use.
data An object of class "BayesMallowsData" returned from setup_rank_data().

model_options An object of class "BayesMallowsModelOptions" returned from set_model _options().
compute_options
An object of class "BayesMallowsComputeOptions" returned from set_compute_options().



20

compute_mallows_mixtures

priors An object of class "BayesMallowsPriors" returned from set_priors().
initial_values An objectof class "BayesMallowslnitial Values" returned from set_initial_values().

pfun_estimate Object returned from estimate_partition_function(). Defaults to NULL,
and will only be used for footrule, Spearman, or Ulam distances when the car-
dinalities are not available, cf. get_cardinalities().
progress_report
An object of class "BayesMallowsProgressReported" returned from set_progress_report().

cl Optional cluster returned from parallel: :makeCluster (). If provided, chains
will be run in parallel, one on each node of c1.

Details

The n_clusters argument to set_model_options() isignored when calling compute_mallows_mixtures.

Value

A list of Mallows models of class BayesMallowsMixtures, with one element for each number of
mixtures that was computed. This object can be studied with plot_elbow().

See Also

Other modeling: burnin(), burnin<-(), compute_mallows(), compute_mallows_sequentially(),
sample_prior(), update_mallows()

Examples

# SIMULATED CLUSTER DATA

set.seed(1)

n_clusters <- seq(from = 1, to = 5)

models <- compute_mallows_mixtures(
n_clusters = n_clusters, data = setup_rank_data(cluster_data),
compute_options = set_compute_options(nmc = 2000, include_wcd = TRUE))

# There is good convergence for 1, 2, and 3 cluster, but not for 5.

# Also note that there seems to be label switching around the 7000th iteration

# for the 2-cluster solution.

assess_convergence(models)

# We can create an elbow plot, suggesting that there are three clusters, exactly
# as simulated.

burnin(models) <- 1000

plot_elbow(models)

# We now fit a model with three clusters
mixture_model <- compute_mallows(
data = setup_rank_data(cluster_data),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 2000))

# The trace plot for this model looks good. It seems to converge quickly.
assess_convergence(mixture_model)



compute_mallows_mixtures

# We set the burnin to 500
burnin(mixture_model) <- 500

# We can now look at posterior quantities

# Posterior of scale parameter alpha

plot(mixture_model)

plot(mixture_model, parameter = "rho", items = 4:5)

# There is around 33 % probability of being in each cluster, in agreemeent
# with the data simulating mechanism

plot(mixture_model, parameter = "cluster_probs")
# We can also look at a cluster assignment plot
plot(mixture_model, parameter = "cluster_assignment"”)

# DETERMINING THE NUMBER OF CLUSTERS IN THE SUSHI EXAMPLE DATA
## Not run:
# Let us look at any number of clusters from 1 to 10
# We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(
n_clusters = n_clusters, data = setup_rank_data(sushi_rankings),
compute_options = set_compute_options(include_wcd = TRUE))
# models is a list in which each element is an object of class BayesMallows,
# returned from compute_mallows
# We can create an elbow plot
burnin(models) <- 1000
plot_elbow(models)
# We then select the number of cluster at a point where this plot has
# an "elbow", e.g., n_clusters = 5.

# Having chosen the number of clusters, we can now study the final model
# Rerun with 5 clusters
mixture_model <- compute_mallows(
rankings = sushi_rankings,
model_options = set_model_options(n_clusters = 5),
compute_options = set_compute_options(include_wcd = TRUE))
# Delete the models object to free some memory
rm(models)
# Set the burnin
burnin(mixture_model) <- 1000
# Plot the posterior distributions of alpha per cluster
plot(mixture_model)
# Compute the posterior interval of alpha per cluster

compute_posterior_intervals(mixture_model, parameter = "alpha")
# Plot the posterior distributions of cluster probabilities
plot(mixture_model, parameter = "cluster_probs")

# Plot the posterior probability of cluster assignment
plot(mixture_model, parameter = "cluster_assignment")

# Plot the posterior distribution of "tuna roll” in each cluster
plot(mixture_model, parameter = "rho"”, items = "tuna roll")

# Compute the cluster-wise CP consensus, and show one column per cluster
cp <- compute_consensus(mixture_model, type = "CP")

cp$cumprob <- NULL

stats::reshape(cp, direction = "wide"”, idvar = "ranking”,



22

compute_mallows_sequentially

timevar = "cluster”, varying = list(as.character(unique(cp$cluster))))

# Compute the MAP consensus, and show one column per cluster

map <- compute_consensus(mixture_model, type = "MAP")
map$probability <- NULL
stats::reshape(map, direction = "wide”, idvar = "map_ranking”,
timevar = "cluster”, varying = list(as.character(unique(map$cluster))))

# RUNNING IN PARALLEL
# Computing Mallows models with different number of mixtures in parallel leads to
# considerably speedup
library(parallel)
cl <- makeCluster(detectCores() - 1)
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(
n_clusters = n_clusters,
rankings = sushi_rankings,
compute_options = set_compute_options(include_wcd = TRUE),
cl = cl)
stopCluster(cl)

## End(Not run)

compute_mallows_sequentially

Estimate the Bayesian Mallows Model Sequentially

Description

Compute the posterior distributions of the parameters of the Bayesian Mallows model using se-
quential Monte Carlo. This is based on the algorithms developed in Stein (2023). This function
differs from update_mallows() in that it takes all the data at once, and uses SMC to fit the model
step-by-step. Used in this way, SMC is an alternative to Metropolis-Hastings, which may work
better in some settings. In addition, it allows visualization of the learning process.

Usage

compute_mallows_sequentially(

data,

initial_values,

model_options = set_model_options(),
smc_options = set_smc_options(),
compute_options = set_compute_options(),
priors = set_priors(),

pfun_estimate = NULL



compute_mallows_sequentially 23

Arguments
data A list of objects of class "BayesMallowsData" returned from setup_rank_data().
Each list element is interpreted as the data belonging to a given timepoint.
initial_values Anobjectof class "BayesMallowsPriorSamples" returned from sample_prior().
model_options An object of class "BayesMallowsModelOptions" returned from set_model_options().

smc_options An object of class "SMCOptions" returned from set_smc_options().
compute_options

An object of class "BayesMallowsComputeOptions" returned from set_compute_options().
priors An object of class "BayesMallowsPriors" returned from set_priors().

pfun_estimate Object returned from estimate_partition_function(). Defaults to NULL,
and will only be used for footrule, Spearman, or Ulam distances when the car-
dinalities are not available, cf. get_cardinalities().

Details

This function is very new, and plotting functions and other tools for visualizing the posterior distri-
bution do not yet work. See the examples for some workarounds.

Value

An object of class BayesMallowsSequential.

References

Stein A (2023). Sequential Inference with the Mallows Model. Ph.D. thesis, Lancaster University.

See Also

Other modeling: burnin(), burnin<-(), compute_mallows(), compute_mallows_mixtures(),
sample_prior(), update_mallows()

Examples

## Not run:

# Observe one ranking at each of 12 timepoints

library(ggplot2)

data <- lapply(seq_len(nrow(potato_visual)), function(i) {
setup_rank_data(potato_visuall[i, ], user_ids = i)

b

initial_values <- sample_prior(
n = 200, n_items = 20,
priors = set_priors(gamma = 3, lambda = .1))

mod <- compute_mallows_sequentially(
data = data,
initial_values = initial_values,
smc_options = set_smc_options(n_particles = 500, mcmc_steps = 20))



24

compute_observation_frequency

# We can see the acceptance ratio of the move step for each timepoint:

get_acceptance_ratios(mod)

plot_dat <- data.frame(
n_obs = seq_along(data),
alpha_mean = apply(mod$alpha_samples, 2, mean),
alpha_sd = apply(mod$alpha_samples, 2, sd)

)

# Visualize how the dispersion parameter is being learned as more data arrive

ggplot(plot_dat, aes(x = n_obs, y = alpha_mean, ymin =
ymax = alpha_mean + alpha_sd)) +
geom_line() +
geom_ribbon(alpha = .1) +
ylab(expression(alpha)) +
xlab("Observations") +
theme_classic() +
scale_x_continuous(
breaks =

seq(min(plot_dat$n_obs), max(plot_dat$n_obs),

alpha_mean - alpha_sd,

by = 1))

# Visualize the learning of the rank for a given item (item 1 in this example)

plot_dat <- data.frame(
n_obs = seq_along(data),
rank_mean = apply(mod$rho_samples[1, , 1, 2, mean),
rank_sd = apply(mod$rho_samples[1, , 1, 2, sd)

)

ggplot(plot_dat, aes(x = n_obs, y = rank_mean, ymin =
ymax = rank_mean + rank_sd)) +
geom_line() +
geom_ribbon(alpha = .1) +
xlab("Observations”) +
ylab(expression(rho[1])) +
theme_classic() +
scale_x_continuous(
breaks =

## End(Not run)

rank_mean - rank_sd,

seq(min(plot_dat$n_obs), max(plot_dat$n_obs), by = 1))

compute_observation_frequency

Frequency distribution of the ranking sequences

Description

Construct the frequency distribution of the distinct ranking sequences from the dataset of the indi-
vidual rankings. This can be of interest in itself, but also used to speed up computation by providing

the observation_frequency argument to compute_mallows().



compute_posterior._intervals 25

Usage

compute_observation_frequency(rankings)

Arguments

rankings A matrix with the individual rankings in each row.

Value

Numeric matrix with the distinct rankings in each row and the corresponding frequencies indicated
in the last (n_items+1)-th column.

See Also

Other rank functions: compute_expected_distance(), compute_rank_distance(), create_ranking(),
get_mallows_loglik(), sample_mallows()

Examples

# Create example data. We set the burn-in and thinning very low

# for the sampling to go fast

data@ <- sample_mallows(rho® = 1:5, alpha = 10, n_samples = 1000,
burnin = 10, thinning = 1)

# Find the frequency distribution

compute_observation_frequency(rankings = data®)

# The function also works when the data have missing values
rankings <- matrix(c(1, 2, 3, 4,

1, 2, 4, NA,

1, 2, 4, NA,

3, 2, 1, 4,

NA, NA, 2, 1,

NA, NA, 2, 1,

NA, NA, 2, 1,

2, NA, 1, NA), ncol = 4, byrow = TRUE)

compute_observation_frequency(rankings)

compute_posterior_intervals
Compute Posterior Intervals

Description

Compute posterior intervals of parameters of interest.



26 compute_posterior_intervals

Usage

compute_posterior_intervals(model_fit, ...)

## S3 method for class 'BayesMallows'
compute_posterior_intervals(
model_fit,
parameter = c("alpha”,
level = 0.95,
decimals = 3L,

n n

rho"”, "cluster_probs"”),

)

## S3 method for class 'SMCMallows'
compute_posterior_intervals(
model_fit,
parameter = c("alpha"”, "rho"),
level = 0.95,
decimals = 3L,

)
Arguments
model_fit A model object.
Other arguments. Currently not used.
parameter Character string defining which parameter to compute posterior intervals for.
One of "alpha”, "rho", or "cluster_probs". Default is "alpha”.
level Decimal number in [0, 1] specifying the confidence level. Defaults to @. 95.
decimals Integer specifying the number of decimals to include in posterior intervals and
the mean and median. Defaults to 3.
Details

This function computes both the Highest Posterior Density Interval (HPDI), which may be discon-
tinuous for bimodal distributions, and the central posterior interval, which is simply defined by the
quantiles of the posterior distribution.

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), get_acceptance_ratios(),
heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(), plot_top_k(), predict_top_k(),
print.BayesMallows()



compute_rank_distance

Examples

set.seed(1)
model_fit <- compute_mallows(
setup_rank_data(potato_visual),
compute_options = set_compute_options(nmc = 3000, burnin = 1000))

# First we compute the interval for alpha

compute_posterior_intervals(model_fit, parameter = "alpha")

# We can reduce the number decimals
compute_posterior_intervals(model_fit, parameter = "alpha”, decimals = 2)
# By default, we get a 95 % interval. We can change that to 99 %.
compute_posterior_intervals(model_fit, parameter = "alpha”, level = 0.99)
# We can also compute the posterior interval for the latent ranks rho
compute_posterior_intervals(model_fit, parameter = "rho")

## Not run:

# Posterior intervals of cluster probabilities
model_fit <- compute_mallows(
setup_rank_data(sushi_rankings),
model_options = set_model_options(n_clusters = 5))
burnin(model_fit) <- 1000

compute_posterior_intervals(model_fit, parameter = "alpha")
compute_posterior_intervals(model_fit, parameter = "cluster_probs")

## End(Not run)

compute_rank_distance Distance between a set of rankings and a given rank sequence

Description

Compute the distance between a matrix of rankings and a rank sequence.

Usage
compute_rank_distance(
rankings,
rho,
metric = c("footrule”, "spearman”, "cayley”, "hamming”, "kendall”, "ulam"),

observation_frequency = 1



28 compute_rank_distance

Arguments
rankings A matrix of size N X n;ems Of rankings in each row. Alternatively, if NV equals
1, rankings can be a vector.
rho A ranking sequence.
metric Character string specifying the distance measure to use. Available options are

non n on

"kendall"”, "cayley"”, "hamming”, "ulam”, "footrule” and "spearman”.

observation_frequency
Vector of observation frequencies of length N, or of length 1, which means that
all ranks are given the same weight. Defaults to 1.

Details

The implementation of Cayley distance is based on a C++ translation of Rankcluster: :distCayley()
(Grimonprez and Jacques 2016).

Value

A vector of distances according to the given metric.

References

Grimonprez Q, Jacques J (2016). Rankcluster: Model-Based Clustering for Multivariate Partial
Ranking Data. R package version 0.94, https://CRAN.R-project.org/package=Rankcluster.

See Also

Other rank functions: compute_expected_distance(), compute_observation_frequency(),
create_ranking(), get_mallows_loglik(), sample_mallows()

Examples

# Distance between two vectors of rankings:

compute_rank_distance(1:5, 5:1, metric = "kendall")

compute_rank_distance(c(2, 4, 3, 6, 1, 7, 5), c(3, 5, 4, 7, 6, 2, 1), metric = "cayley")
compute_rank_distance(c(4, 2 , 1), c(3, 4, 1, 2), metric = "hamming")
compute_rank_distance(c(1, 3 7,9, 8,6, 4,2, c, 2, 3, 4,9, 8,7, 6,5), "ulam")
compute_rank_distance(c(8, 7, 1, 2, 6, 5, 3, 4), c(1, 2, 8, 7, 3, 4, 6, 5), "footrule")
compute_rank_distance(c(1, 6 5,6 3, 4), c(4, 3, 5, 2, 6, 1), "spearman")

’

’

# Difference between a metric and a vector

# We set the burn-in and thinning too low for the example to run fast

data@ <- sample_mallows(rho® = 1:10, alpha = 20, n_samples = 1000,
burnin = 10, thinning = 1)

compute_rank_distance(rankings = data@, rho = 1:10, metric = "kendall")


https://CRAN.R-project.org/package=Rankcluster

create_ranking 29

create_ranking Convert between ranking and ordering.

Description

create_ranking takes a vector or matrix of ordered items orderings and returns a corresponding
vector or matrix of ranked items. create_ordering takes a vector or matrix of rankings rankings
and returns a corresponding vector or matrix of ordered items.

Usage

create_ranking(orderings)

create_ordering(rankings)

Arguments
orderings A vector or matrix of ordered items. If a matrix, it should be of size N times n,
where N is the number of samples and n is the number of items.
rankings A vector or matrix of ranked items. If a matrix, it should be N times n, where N
is the number of samples and n is the number of items.
Value

A vector or matrix of rankings. Missing orderings coded as NA are propagated into corresponding
missing ranks and vice versa.

See Also

Other rank functions: compute_expected_distance(), compute_observation_frequency(),
compute_rank_distance(), get_mallows_loglik(), sample_mallows()

Examples

# A vector of ordered items.

orderings <- c(5, 1, 2, 4, 3)

# Get ranks

rankings <- create_ranking(orderings)

# rankings is c(2, 3, 5, 4, 1)

# Finally we convert it backed to an ordering.
orderings_2 <- create_ordering(rankings)

# Confirm that we get back what we had
all.equal(orderings, orderings_2)

# Next, we have a matrix with N = 19 samples
# and n = 4 items

set.seed(21)

N <- 10



30 estimate_partition_function

n <-4

orderings <- t(replicate(N, sample.int(n)))

# Convert the ordering to ranking

rankings <- create_ranking(orderings)

# Now we try to convert it back to an ordering.
orderings_2 <- create_ordering(rankings)

# Confirm that we get back what we had
all.equal(orderings, orderings_2)

estimate_partition_function
Estimate Partition Function

Description

Estimate the logarithm of the partition function of the Mallows rank model. Choose between the
importance sampling algorithm described in (Vitelli et al. 2018) and the IPFP algorithm for comput-
ing an asymptotic approximation described in (Mukherjee 2016). Note that exact partition functions
can be computed efficiently for Cayley, Hamming and Kendall distances with any number of items,
for footrule distances with up to 50 items, Spearman distance with up to 20 items, and Ulam dis-
tance with up to 60 items. This function is thus intended for the complement of these cases. See
get_cardinalities() and compute_exact_partition_function() for details.

Usage
estimate_partition_function(
method = c(”importance_sampling”, "asymptotic"),
alpha_vector,
n_items,
metric,
n_iterations,
K = 20,
cl = NULL
)
Arguments
method Character string specifying the method to use in order to estimate the logarithm
of the partition function. Available options are "importance_sampling” and
"asymptotic”.

alpha_vector  Numeric vector of o values over which to compute the importance sampling

estimate.
n_items Integer specifying the number of items.
metric Character string specifying the distance measure to use. Available options are

"footrule” and "spearman” when method = "asymptotic” and in addition

n on

"cayley”, "hamming”, "kendall"”, and "ulam" when method = "importance_sampling”.



estimate_partition_function 31

n_iterations Integer specifying the number of iterations to use. When method = "importance_sampling”,

this is the number of Monte Carlo samples to generate. When method = "asymptotic”,
on the other hand, it represents the number of iterations of the IPFP algorithm.

K Integer specifying the parameter K in the asymptotic approximation of the par-
tition function. Only used when method = "asymptotic”. Defaults to 20.

cl Optional computing cluster used for parallelization, returned from parallel: :makeCluster().

Defaults to NULL. Only used when method = "importance_sampling”.

Value

A matrix with two column and number of rows equal the degree of the fitted polynomial approx-
imating the partition function. The matrix can be supplied to the pfun_estimate argument of
compute_mallows().

References

Mukherjee S (2016). “Estimation in exponential families on permutations.” The Annals of Statis-
tics, 44(2), 853-875. doi:10.1214/15a0s13809.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other partition function: compute_exact_partition_function(), get_cardinalities()

Examples

## Not run:

# IMPORTANCE SAMPLING

# Let us estimate logZ(alpha) for 20 items with Spearman distance
# We create a grid of alpha values from @ to 10

alpha_vector <- seq(from = @, to = 10, by = 0.5)

n_items <- 20

metric <- "spearman”

# We start with 1e3 Monte Carlo samples
fit1 <- estimate_partition_function(
method = "importance_sampling”, alpha_vector = alpha_vector,
n_items = n_items, metric = metric, n_iterations = 1e3)
# A matrix containing powers of alpha and regression coefficients is returned
fit1
# The approximated partition function can hence be obtained:
estimatel <-
vapply(alpha_vector, function(a) sum(a*fit1[, 1] = fit1[, 21), numeric(1))

# Now let us recompute with 2e3 Monte Carlo samples

fit2 <- estimate_partition_function(
method = "importance_sampling”, alpha_vector = alpha_vector,
n_items = n_items, metric = metric, n_iterations = 2e3)


https://doi.org/10.1214/15-aos1389
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

32 get_acceptance_ratios

estimate2 <-
vapply(alpha_vector, function(a) sum(a*fit2[, 1] %= fit2[, 21), numeric(1))

# ASYMPTOTIC APPROXIMATION
# We can also compute an estimate using the asymptotic approximation
fit3 <- estimate_partition_function(
method = "asymptotic”, alpha_vector = alpha_vector,
n_items = n_items, metric = metric, n_iterations = 50)
estimate3 <-
vapply(alpha_vector, function(a) sum(a*fit3[, 1] * fit3[, 21), numeric(1))

# We can now plot the estimates side-by-side
plot(alpha_vector, estimatel, type = "1", xlab = expression(alpha),
ylab = expression(log(Z(alpha))))
lines(alpha_vector, estimate2, col = 2)
lines(alpha_vector, estimate3, col = 3)
legend(x = 7, y = 40, legend = c("IS,1e3", "IS,2e3", "IPFP"),
col = 1:3, 1ty = 1)

# We see that the two importance sampling estimates, which are unbiased,
# overlap. The asymptotic approximation seems a bit off. It can be worthwhile
# to try different values of n_iterations and K.

# When we are happy, we can provide the coefficient vector in the
# pfun_estimate argument to compute_mallows
# Say we choose to use the importance sampling estimate with 1e4 Monte Carlo samples:
model_fit <- compute_mallows(
setup_rank_data(potato_visual),
model_options = set_model_options(metric = "spearman”),
compute_options = set_compute_options(nmc = 200),
pfun_estimate = fit2)

## End(Not run)

get_acceptance_ratios Get Acceptance Ratios

Description

Extract acceptance ratio from Metropolis-Hastings algorithm used by compute_mallows() or by
the move step in update_mallows() and compute_mallows_sequentially(). If burnin is not set
in the call to compute_mallows (), the acceptance ratio for all iterations will be reported. Otherwise
the post burnin acceptance ratio is reported. For the SMC method the acceptance ratios apply to all
iterations, since no burnin is needed in here.

Usage

get_acceptance_ratios(model_fit, ...)



get_cardinalities 33

## S3 method for class 'BayesMallows'
get_acceptance_ratios(model_fit, ...)

## S3 method for class 'SMCMallows'

get_acceptance_ratios(model_fit, ...)
Arguments
model_fit A model fit.

Other arguments passed on to other methods. Currently not used.

Value

A list with elements alpha_acceptance, rho_acceptance, and aug_acceptance. Each element
contains acceptance ratios (between 0 and 1) for the corresponding parameter proposals in the
Metropolis-Hastings algorithm. For models with multiple chains, each element is a list with one ac-
ceptance ratio per chain. Higher values indicate higher acceptance rates for the Metropolis-Hastings
proposals.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(), plot_top_k(), predict_top_k(),
print.BayesMallows()

Examples

set.seed(1)

mod <- compute_mallows(
data = setup_rank_data(potato_visual),
compute_options = set_compute_options(burnin = 200)

)

get_acceptance_ratios(mod)

get_cardinalities Get cardinalities for each distance

Description

The partition function for the Mallows model can be defined in a computationally efficient manner
as
Zn(a) = Z Nm,nef(a/n)dm.
dn €Dy

In this equation, D,, a set containing all possible distances at the given number of items, and d,,, is
on element of this set. Finally, IV,,, ,, is the number of possible configurations of the items that give
the particular distance. See Irurozki et al. (2016), Vitelli et al. (2018), and Crispino et al. (2023)
for details.



34 get_cardinalities

For footrule distance, the cardinalities come from entry A062869 in the On-Line Encyclopedia of
Integer Sequences (OEIS) (Sloane and Inc. 2020). For Spearman distance, they come from entry
A175929, and for Ulam distance from entry A126065.

Usage

get_cardinalities(n_items, metric = c("footrule”, "spearman”, "ulam"))
Arguments

n_items Number of items.

metric Distance function, one of "footrule", "spearman", or "ulam".
Value

A dataframe with two columns, distance which contains each distance in the support set at the
current number of items, i.e., d,,, and value which contains the number of values at this particular
distances, i.e., Ny, .

References

Crispino M, Mollica C, Astuti V, Tardella L (2023). “Efficient and accurate inference for mixtures
of Mallows models with Spearman distance.” Statistics and Computing, 33(5). ISSN 1573-1375,
doi:10.1007/s11222023102668, http://dx.doi.org/10.1007/s11222-023-10266-8.

Irurozki E, Calvo B, Lozano JA (2016). “PerMallows: An R Package for Mallows and Gener-
alized Mallows Models.” Journal of Statistical Software, 71(12), 1-30. doi:10.18637/jss.v071.i12.

Sloane NJA, Inc. TOF (2020). “The on-line encyclopedia of integer sequences.” https://oeis.
org/.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other partition function: compute_exact_partition_function(), estimate_partition_function()

Examples

# Extract the cardinalities for four items with footrule distance

n_items <- 4

dat <- get_cardinalities(n_items)

# Compute the partition function at alpha = 2

alpha <- 2

sum(dat$value * exp(-alpha / n_items * dat$distance))

#

# We can confirm that it is correct by enumerating all possible combinations
all <- expand.grid(1:4, 1:4, 1:4, 1:4)


https://doi.org/10.1007/s11222-023-10266-8
http://dx.doi.org/10.1007/s11222-023-10266-8
https://doi.org/10.18637/jss.v071.i12
https://oeis.org/
https://oeis.org/
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

get_mallows_loglik 35

perms <- alllapply(all, 1, function(x) length(unique(x)) == 4), ]
sum(apply(perms, 1, function(x) exp(-alpha / n_items * sum(abs(x - 1:4)))))

# We do the same for the Spearman distance

dat <- get_cardinalities(n_items, metric = "spearman”)
sum(dat$value * exp(-alpha / n_items * dat$distance))
#

# We can confirm that it is correct by enumerating all possible combinations
sum(apply(perms, 1, function(x) exp(-alpha / n_items * sum((x - 1:4)"2))))

get_mallows_loglik Likelihood and log-likelihood evaluation for a Mallows mixture model

Description

Compute either the likelihood or the log-likelihood value of the Mallows mixture model parameters
for a dataset of complete rankings.

Usage
get_mallows_loglik(
rho,
alpha,
weights,
metric = c("footrule”, "spearman”, "cayley”, "hamming”, "kendall”, "ulam"),
rankings,
observation_frequency = NULL,
log = TRUE
)
Arguments
rho A matrix of size n_clusters x n_items whose rows are permutations of the
first n_items integers corresponding to the modal rankings of the Mallows mix-
ture components.
alpha A vector of n_clusters non-negative scalar specifying the scale (precision)
parameters of the Mallows mixture components.
weights A vector of n_clusters non-negative scalars specifying the mixture weights.
metric Character string specifying the distance measure to use. Available options are
"kendall”, "cayley"”, "hamming"”, "ulam”, "footrule”, and "spearman”.
rankings A matrix with observed rankings in each row.

observation_frequency
A vector of observation frequencies (weights) to apply to each row in rankings.
This can speed up computation if a large number of assessors share the same
rank pattern. Defaults to NULL, which means that each row of rankings is mul-
tiplied by 1. If provided, observation_frequency must have the same number
of elements as there are rows in rankings, and rankings cannot be NULL.



36 get_mallows_loglik

log A logical; if TRUE, the log-likelihood value is returned, otherwise its exponen-
tial. Default is TRUE.

Value

The likelihood or the log-likelihood value corresponding to one or more observed complete rankings
under the Mallows mixture rank model with distance specified by the metric argument.

See Also

Other rank functions: compute_expected_distance(), compute_observation_frequency(),
compute_rank_distance(), create_ranking(), sample_mallows()

Examples

# Simulate a sample from a Mallows model with the Kendall distance

n_items <- 5

mydata <- sample_mallows(
n_samples = 100,
rho® = 1:n_items,
alphao = 10,
metric = "kendall")

# Compute the likelihood and log-likelihood values under the true model...
get_mallows_loglik(

rho = rbind(1:n_items, 1:n_items),

alpha = c(10, 10),

weights = c(0.5, 0.5),

metric = "kendall”,
rankings = mydata,
log = FALSE

)

get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),

metric = "kendall”,
rankings = mydata,
log = TRUE

)

# or equivalently, by using the frequency distribution
freqg_distr <- compute_observation_frequency(mydata)
get_mallows_loglik(

rho = rbind(1:n_items, 1:n_items),

alpha = c(10, 10),

weights = c(0.5, 0.5),

metric = "kendall”,

rankings = freq_distr[, 1:n_items],

observation_frequency = freq_distr[, n_items + 1],



get_transitive_closure 37

log = FALSE
)

get_mallows_loglik(
rho = rbind(1:n_items, 1:n_items),
alpha = c(10, 10),
weights = c(0.5, 0.5),
metric = "kendall”,
rankings = freq_distr[, 1:n_items],
observation_frequency = freq_distr[, n_items + 1],
log = TRUE
)

get_transitive_closure
Get transitive closure

Description

A simple method for showing any transitive closure computed by setup_rank_data().

Usage

get_transitive_closure(rank_data)

Arguments

rank_data An object of class "BayesMallowsData" returned from setup_rank_data.

Value

A dataframe with transitive closure, if there is any.

See Also

Other preprocessing: set_compute_options(),set_initial_values(), set_model_options(),
set_priors(), set_progress_report(), set_smc_options(), setup_rank_data()

Examples

# Original beach preferences

head(beach_preferences)

dim(beach_preferences)

# We then create a rank data object

dat <- setup_rank_data(preferences = beach_preferences)

# The transitive closure contains additional filled-in preferences implied
# by the stated preferences.

head(get_transitive_closure(dat))

dim(get_transitive_closure(dat))



38 heat_plot

heat_plot Heat plot of posterior probabilities

Description

Generates a heat plot with items in their consensus ordering along the horizontal axis and ranking
along the vertical axis. The color denotes posterior probability.

Usage
heat_plot(model_fit, ...)
Arguments
model_fit An object of type BayesMallows, returned from compute_mallows().
Additional arguments passed on to other methods. In particular, type = "CP"
or type = "MAP" can be passed on to compute_consensus() to determine the
order of items along the horizontal axis.
Details

In models with a single cluster, the items are sorted along the x-axis according to the consensus
ranking. In models with more than one cluster, the items are sorted alphabetically.

Value

A ggplot object.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(), plot_top_k(),
predict_top_k(), print.BayesMallows()

Examples

set.seed(1)
model_fit <- compute_mallows(
setup_rank_data(potato_visual),
compute_options = set_compute_options(nmc = 2000, burnin = 500))

heat_plot(model_fit)
heat_plot(model_fit, type = "MAP")

## Model with three clusters

mod <- compute_mallows(
data = setup_rank_data(rankings = cluster_data),
model_options = set_model_options(n_clusters = 3),



plot.BayesMallows 39

compute_options = set_compute_options(nmc = 10000, burnin = 1000)

)

heat_plot(mod)
heat_plot(mod, type = "MAP")

plot.BayesMallows Plot Posterior Distributions

Description

Plot posterior distributions of the parameters of the Mallows Rank model.

Usage
## S3 method for class 'BayesMallows'
plot(x, parameter = "alpha”, items = NULL, ...)
Arguments
X An object of type BayesMallows, returned from compute_mallows().
parameter Character string defining the parameter to plot. Available options are "alpha”,

n o n non

"rho”, "cluster_probs"”, "cluster_assignment”, and "theta".

items The items to study in the diagnostic plot for rho. Either a vector of item names,
corresponding to x$data$items or a vector of indices. If NULL, five items are
selected randomly. Only used when parameter = "rho".

Other arguments passed to plot (not used).

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.SMCMallows(), plot_elbow(),plot_top_k(),
predict_top_k(), print.BayesMallows()

Examples

model_fit <- compute_mallows(setup_rank_data(potato_visual))
burnin(model_fit) <- 1000

# By default, the scale parameter "alpha" is plotted
plot(model_fit)

# We can also plot the latent rankings
plot(model_fit, parameter = "rho")

# By default, a random subset of 5 items are plotted
# Specify which items to plot in the items argument.
plot(model_fit, parameter = "rho",

items = c(2, 4, 6, 9, 10, 20))
# When the ranking matrix has column names, we can also

n n

rho



40 plot. SMCMallows

# specify these in the items argument.

# In this case, we have the following names:

colnames(potato_visual)

# We can therefore get the same plot with the following call:

plot(model_fit, parameter = "rho”,
items = c("P2", "P4", "P6", "P9", "P10", "P20"))

## Not run:
# Plots of mixture parameters:
model_fit <- compute_mallows(
setup_rank_data(sushi_rankings),
model_options = set_model_options(n_clusters = 5))
burnin(model_fit) <- 1000
# Posterior distributions of the cluster probabilities

plot(model_fit, parameter = "cluster_probs")

# Cluster assignment plot. Color shows the probability of belonging to each
# cluster.

plot(model_fit, parameter = "cluster_assignment")

## End(Not run)

plot.SMCMallows Plot SMC Posterior Distributions

Description

Plot posterior distributions of SMC-Mallow parameters.

Usage
## S3 method for class 'SMCMallows'
plot(x, parameter = "alpha", items = NULL, ...)
Arguments
X An object of type SMC-Mallows.
parameter Character string defining the parameter to plot. Available options are "alpha”
and "rho".
items Either a vector of item names, or a vector of indices. If NULL, five items are

selected randomly.

Other arguments passed to plot (not used).

Value

A plot of the posterior distributions



plot. SMCMallows 41

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.BayesMallows(), plot_elbow(), plot_top_k(),
predict_top_k(), print.BayesMallows()

Examples

## Not run:

set.seed(1)

# UPDATING A MALLOWS MODEL WITH NEW COMPLETE RANKINGS

# Assume we first only observe the first four rankings in the potato_visual
# dataset

data_first_batch <- potato_visual[1:4, ]

# We start by fitting a model using Metropolis-Hastings
mod_init <- compute_mallows(
data = setup_rank_data(data_first_batch),
compute_options = set_compute_options(nmc = 10000))

# Convergence seems good after no more than 2000 iterations
assess_convergence(mod_init)
burnin(mod_init) <- 2000

# Next, assume we receive four more observations
data_second_batch <- potato_visual[5:8, ]

# We can now update the model using sequential Monte Carlo
mod_second <- update_mallows(
model = mod_init,
new_data = setup_rank_data(rankings = data_second_batch),
smc_options = set_smc_options(resampler = "systematic”)

)

# This model now has a collection of particles approximating the posterior
# distribution after the first and second batch

# We can use all the posterior summary functions as we do for the model

# based on compute_mallows():

plot(mod_second)

plot(mod_second, parameter = "rho"”, items = 1:4)
compute_posterior_intervals(mod_second)

"

# Next, assume we receive the third and final batch of data. We can update
# the model again
data_third_batch <- potato_visual[9:12, ]
mod_final <- update_mallows(
model = mod_second, new_data = setup_rank_data(rankings = data_third_batch))

# We can plot the same things as before
plot(mod_final)

compute_consensus(mod_final)

# UPDATING A MALLOWS MODEL WITH NEW OR UPDATED PARTIAL RANKINGS



plot. SMCMallows

# The sequential Monte Carlo algorithm works for data with missing ranks as

# well. This both includes the case where new users arrive with partial ranks,

# and when previously seen users arrive with more complete data than they had

# previously.

# We illustrate for top-k rankings of the first 10 users in potato_visual

potato_top_10 <- ifelse(potato_visual[1:10, 1 > 10, NA_real_,
potato_visual[1:10, 1)

potato_top_12 <- ifelse(potato_visual[1:10, 1 > 12, NA_real_,
potato_visual[1:10, 1)

potato_top_14 <- ifelse(potato_visual[1:10, 1 > 14, NA_real_,
potato_visual[1:10, 1)

# We need the rownames as user IDs
(user_ids <- 1:10)

# First, users provide top-10 rankings

mod_init <- compute_mallows(
data = setup_rank_data(rankings = potato_top_10, user_ids = user_ids),
compute_options = set_compute_options(nmc = 10000))

# Convergence seems fine. We set the burnin to 2000.
assess_convergence(mod_init)
burnin(mod_init) <- 2000

# Next assume the users update their rankings, so we have top-12 instead.
mod1 <- update_mallows(
model = mod_init,
new_data = setup_rank_data(rankings = potato_top_12, user_ids = user_ids),
smc_options = set_smc_options(resampler = "stratified”)

)
plot(mod1)

# Then, assume we get even more data, this time top-14 rankings:
mod2 <- update_mallows(
model = mod1,
new_data = setup_rank_data(rankings = potato_top_14, user_ids = user_ids)

plot(mod2)

# Finally, assume a set of new users arrive, who have complete rankings.
potato_new <- potato_visual[11:12, ]

# We need to update the user IDs, to show that these users are different
(user_ids <- 11:12)

mod_final <- update_mallows(

model = mod2,
new_data = setup_rank_data(rankings = potato_new, user_ids = user_ids)

plot(mod_final)



plot_elbow 43

# We can also update models with pairwise preferences
# We here start by running MCMC on the first 20 assessors of the beach data
# A realistic application should run a larger number of iterations than we
# do in this example.
set.seed(3)
dat <- subset(beach_preferences, assessor <= 20)
mod <- compute_mallows(

data = setup_rank_data(

preferences = beach_preferences),
compute_options = set_compute_options(nmc = 3000, burnin = 1000)

)

# Next we provide assessors 21 to 24 one at a time. Note that we sample the
# initial augmented rankings in each particle for each assessor from 200
# different topological sorts consistent with their transitive closure.
for(i in 21:24){
mod <- update_mallows(
model = mod,
new_data = setup_rank_data(
preferences = subset(beach_preferences, assessor == i),
user_ids = i),
smc_options = set_smc_options(latent_sampling_lag = 0,
max_topological_sorts = 200)
)
}

# Compared to running full MCMC, there is a downward bias in the scale

# parameter. This can be alleviated by increasing the number of particles,
# MCMC steps, and the latent sampling lag.

plot(mod)

compute_consensus(mod)

## End(Not run)

plot_elbow Plot Within-Cluster Sum of Distances

Description
Plot the within-cluster sum of distances from the corresponding cluster consensus for different
number of clusters. This function is useful for selecting the number of mixture.

Usage
plot_elbow(...)

Arguments

One or more objects returned from compute_mallows(), separated by comma,
or alist of such objects. Typically, each object has been run with a different num-



44 plot_elbow

ber of mixtures, as specified in the n_clusters argument to compute_mallows().
Alternatively an object returned from compute_mallows_mixtures().

Value

A boxplot with the number of clusters on the horizontal axis and the with-cluster sum of distances
on the vertical axis.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_top_k(),
predict_top_k(), print.BayesMallows()

Examples

# SIMULATED CLUSTER DATA

set.seed(1)

n_clusters <- seq(from = 1, to = 5)

models <- compute_mallows_mixtures(
n_clusters = n_clusters, data = setup_rank_data(cluster_data),
compute_options = set_compute_options(nmc = 2000, include_wcd = TRUE))

# There is good convergence for 1, 2, and 3 cluster, but not for 5.

# Also note that there seems to be label switching around the 7000th iteration

# for the 2-cluster solution.

assess_convergence(models)

# We can create an elbow plot, suggesting that there are three clusters, exactly
# as simulated.

burnin(models) <- 1000

plot_elbow(models)

# We now fit a model with three clusters
mixture_model <- compute_mallows(
data = setup_rank_data(cluster_data),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 2000))

# The trace plot for this model looks good. It seems to converge quickly.
assess_convergence(mixture_model)

# We set the burnin to 500

burnin(mixture_model) <- 500

# We can now look at posterior quantities

# Posterior of scale parameter alpha

plot(mixture_model)

plot(mixture_model, parameter = "rho", items = 4:5)

# There is around 33 % probability of being in each cluster, in agreemeent
# with the data simulating mechanism

plot(mixture_model, parameter = "cluster_probs")

# We can also look at a cluster assignment plot

plot(mixture_model, parameter = "cluster_assignment"”)



plot_elbow 45

# DETERMINING THE NUMBER OF CLUSTERS IN THE SUSHI EXAMPLE DATA
## Not run:
# Let us look at any number of clusters from 1 to 10
# We use the convenience function compute_mallows_mixtures
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(
n_clusters = n_clusters, data = setup_rank_data(sushi_rankings),
compute_options = set_compute_options(include_wcd = TRUE))
# models is a list in which each element is an object of class BayesMallows,
# returned from compute_mallows
# We can create an elbow plot
burnin(models) <- 1000
plot_elbow(models)
# We then select the number of cluster at a point where this plot has
# an "elbow", e.g., n_clusters = 5.

# Having chosen the number of clusters, we can now study the final model
# Rerun with 5 clusters
mixture_model <- compute_mallows(
rankings = sushi_rankings,
model_options = set_model_options(n_clusters = 5),
compute_options = set_compute_options(include_wcd = TRUE))
# Delete the models object to free some memory
rm(models)
# Set the burnin
burnin(mixture_model) <- 1000
# Plot the posterior distributions of alpha per cluster
plot(mixture_model)
# Compute the posterior interval of alpha per cluster

compute_posterior_intervals(mixture_model, parameter = "alpha")
# Plot the posterior distributions of cluster probabilities
plot(mixture_model, parameter = "cluster_probs")

# Plot the posterior probability of cluster assignment
plot(mixture_model, parameter = "cluster_assignment”)

# Plot the posterior distribution of "tuna roll” in each cluster
plot(mixture_model, parameter = "rho"”, items = "tuna roll"”)
# Compute the cluster-wise CP consensus, and show one column per cluster

”

cp <- compute_consensus(mixture_model, type = "CP")
cp$cumprob <- NULL
stats::reshape(cp, direction = "wide"”, idvar = "ranking”,
timevar = "cluster”, varying = list(as.character(unique(cp$cluster))))

# Compute the MAP consensus, and show one column per cluster

map <- compute_consensus(mixture_model, type = "MAP")
map$probability <- NULL
stats: :reshape(map, direction = "wide”, idvar = "map_ranking”,
timevar = "cluster”, varying = list(as.character(unique(map$cluster))))

# RUNNING IN PARALLEL

# Computing Mallows models with different number of mixtures in parallel leads to
# considerably speedup

library(parallel)



46 plot_top_k

cl <- makeCluster(detectCores() - 1)
n_clusters <- seq(from = 1, to = 10)
models <- compute_mallows_mixtures(
n_clusters = n_clusters,
rankings = sushi_rankings,
compute_options = set_compute_options(include_wcd = TRUE),
cl =cl)
stopCluster(cl)

## End(Not run)

plot_top_k Plot Top-k Rankings with Pairwise Preferences

Description

Plot the posterior probability, per item, of being ranked among the top-k for each assessor. This
plot is useful when the data take the form of pairwise preferences.

Usage
plot_top_k(model_fit, k = 3)

Arguments
model_fit An object of type BayesMallows, returned from compute_mallows().
k Integer specifying the k in top-k.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(),
predict_top_k(), print.BayesMallows()

Examples

set.seed(1)
# We use the example dataset with beach preferences. Se the documentation to
# compute_mallows for how to assess the convergence of the algorithm
# We need to save the augmented data, so setting this option to TRUE
model_fit <- compute_mallows(

data = setup_rank_data(preferences = beach_preferences),

compute_options = set_compute_options(

nmc = 1000, burnin = 500, save_aug = TRUE))

# By default, the probability of being top-3 is plotted
# The default plot gives the probability for each assessor



potato_true_ranking 47

plot_top_k(model_fit)

# We can also plot the probability of being top-5, for each item
plot_top_k(model_fit, k = 5)

# We get the underlying numbers with predict_top_k

probs <- predict_top_k(model_fit)

# To find all items ranked top-3 by assessors 1-3 with probability more than 80 %,
# we do

subset(probs, assessor %in% 1:3 & prob > 0.8)

# We can also plot for clusters
model_fit <- compute_mallows(

data = setup_rank_data(preferences = beach_preferences),

model_options = set_model_options(n_clusters = 3),

compute_options = set_compute_options(

nmc = 1000, burnin = 500, save_aug = TRUE)

)
# The modal ranking in general differs between clusters, but the plot still
# represents the posterior distribution of each user's augmented rankings.
plot_top_k(model_fit)

potato_true_ranking True ranking of the weights of 20 potatoes.

Description

True ranking of the weights of 20 potatoes.

Usage

potato_true_ranking

Format

An object of class numeric of length 20.

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi:10.1146/annurevstatistics031017-
100213.

See Also

Other datasets: beach_preferences, bernoulli_data, cluster_data, potato_visual, potato_weighing,
sounds, sushi_rankings


https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213

48 potato_weighing

potato_visual Potato weights assessed visually

Description

Result of ranking potatoes by weight, where the assessors were only allowed to inspected the pota-
toes visually. 12 assessors ranked 20 potatoes.

Usage

potato_visual

Format

An object of class matrix (inherits from array) with 12 rows and 20 columns.

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi:10.1146/annurevstatistics031017-
100213.

See Also

Other datasets: beach_preferences, bernoulli_data, cluster_data, potato_true_ranking,
potato_weighing, sounds, sushi_rankings

potato_weighing Potato weights assessed by hand

Description
Result of ranking potatoes by weight, where the assessors were allowed to lift the potatoes. 12
assessors ranked 20 potatoes.

Usage

potato_weighing

Format

An object of class matrix (inherits from array) with 12 rows and 20 columns.


https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213

predict_top_k 49

References

Liu Q, Crispino M, Scheel I, Vitelli V, Frigessi A (2019). “Model-Based Learning from Preference
Data.” Annual Review of Statistics and Its Application, 6(1). doi:10.1146/annurevstatistics031017-
100213.

See Also

Other datasets: beach_preferences, bernoulli_data, cluster_data, potato_true_ranking,
potato_visual, sounds, sushi_rankings

predict_top_k Predict Top-k Rankings with Pairwise Preferences

Description

Predict the posterior probability, per item, of being ranked among the top-k for each assessor. This
is useful when the data take the form of pairwise preferences.

Usage
predict_top_k(model_fit, k = 3)

Arguments
model_fit An object of type BayesMallows, returned from compute_mallows().
k Integer specifying the k in top-k.

Value

A dataframe with columns assessor, item, and prob, where each row states the probability that
the given assessor rates the given item among top-k.

See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.BayesMallows(), plot.SMCMallows(), plot_elbow(),
plot_top_k(), print.BayesMallows()

Examples

set.seed(1)
# We use the example dataset with beach preferences. Se the documentation to
# compute_mallows for how to assess the convergence of the algorithm
# We need to save the augmented data, so setting this option to TRUE
model_fit <- compute_mallows(

data = setup_rank_data(preferences = beach_preferences),

compute_options = set_compute_options(

nmc = 1000, burnin = 500, save_aug = TRUE))


https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213

50 print. BayesMallows

# By default, the probability of being top-3 is plotted

# The default plot gives the probability for each assessor

plot_top_k(model_fit)

# We can also plot the probability of being top-5, for each item
plot_top_k(model_fit, k = 5)

# We get the underlying numbers with predict_top_k

probs <- predict_top_k(model_fit)

# To find all items ranked top-3 by assessors 1-3 with probability more than 80 %,
# we do

subset(probs, assessor %in% 1:3 & prob > 0.8)

# We can also plot for clusters
model_fit <- compute_mallows(

data = setup_rank_data(preferences = beach_preferences),

model_options = set_model_options(n_clusters = 3),

compute_options = set_compute_options(

nmc = 1000, burnin = 500, save_aug = TRUE)

)
# The modal ranking in general differs between clusters, but the plot still
# represents the posterior distribution of each user's augmented rankings.
plot_top_k(model_fit)

print.BayesMallows Print Method for BayesMallows Objects

Description

The default print method for a BayesMallows object.

Usage

## S3 method for class 'BayesMallows'
print(x, ...)

## S3 method for class 'BayesMallowsMixtures'
print(x, ...)

## S3 method for class 'SMCMallows'

print(x, ...)
Arguments
X An object of type BayesMallows, returned from compute_mallows().
Other arguments passed to print (not used).
See Also

Other posterior quantities: assign_cluster(), compute_consensus(), compute_posterior_intervals(),
get_acceptance_ratios(), heat_plot(), plot.BayesMallows(), plot.SMCMallows (), plot_elbow(),
plot_top_k(), predict_top_k()



sample_mallows

51

sample_mallows

Random Samples from the Mallows Rank Model

Description

Generate random samples from the Mallows Rank Model (Mallows 1957) with consensus ranking
p and scale parameter . The samples are obtained by running the Metropolis-Hastings algorithm
described in Appendix C of Vitelli et al. (2018).

Usage
sample_mallows(
rhoo,
alphao,
n_samples,
leap_size = max(1L, floor(n_items/5)),
metric = "footrule”,

diagnostic = FALSE,

burnin = ifelse(diagnostic, @, 1000),
thinning = ifelse(diagnostic, 1, 1000),
items_to_plot = NULL,

max_lag = 1000L

Arguments

rho@
alphao

n_samples

leap_size

metric

diagnostic

burnin

thinning

items_to_plot

Vector specifying the latent consensus ranking in the Mallows rank model.
Scalar specifying the scale parameter in the Mallows rank model.

Integer specifying the number of random samples to generate. When diagnostic
= TRUE, this number must be larger than 1.

Integer specifying the step size of the leap-and-shift proposal distribution.

Character string specifying the distance measure to use. Available options are
"footrule"” (default), "spearman”, "cayley"”, "hamming"”, "kendall”, and
"ulam”. See also the rmm function in the PerMallows package (Irurozki et al.
2016) for sampling from the Mallows model with Cayley, Hamming, Kendall,
and Ulam distances.

Logical specifying whether to output convergence diagnostics. If TRUE, a diag-
nostic plot is printed, together with the returned samples.

Integer specifying the number of iterations to discard as burn-in. Defaults to
1000 when diagnostic = FALSE, else to 0.

Integer specifying the number of MCMC iterations to perform between each
time a random rank vector is sampled. Defaults to 1000 when diagnostic =
FALSE, else to 1.

Integer vector used if diagnostic = TRUE, in order to specify the items to plot
in the diagnostic output. If not provided, 5 items are picked at random.



52 sample_mallows

max_lag Integer specifying the maximum lag to use in the computation of autocorrela-
tion. Defaults to 1000L. This argument is passed to stats::acf. Only used
when diagnostic = TRUE.

References

Irurozki E, Calvo B, Lozano JA (2016). “PerMallows: An R Package for Mallows and Generalized
Mallows Models.” Journal of Statistical Software, 71(12), 1-30. doi:10.18637/jss.v071.112.

Mallows CL (1957). “Non-Null Ranking Models. 1.” Biometrika, 44(1/2), 114-130.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other rank functions: compute_expected_distance(), compute_observation_frequency(),
compute_rank_distance(), create_ranking(), get_mallows_loglik()

Examples

# Sample 100 random rankings from a Mallows distribution with footrule distance

set.seed(1)

# Number of items

n_items <- 15

# Set the consensus ranking

rho@ <- seq(from = 1, to = n_items, by = 1)

# Set the scale

alphao <- 10

# Number of samples

n_samples <- 100

# We first do a diagnostic run, to find the thinning and burnin to use

# We set n_samples to 1000, in order to run 1000 diagnostic iterations.

test <- sample_mallows(rho@ = rho@, alpha® = alpha®, diagnostic = TRUE,
n_samples = 1000, burnin = 1, thinning = 1)

# When items_to_plot is not set, 5 items are picked at random. We can change this.

# We can also reduce the number of lags computed in the autocorrelation plots

test <- sample_mallows(rho® = rho@, alpha® = alpha@, diagnostic = TRUE,
n_samples = 1000, burnin = 1, thinning = 1,
items_to_plot = c(1:3, 10, 15), max_lag = 500)

# From the autocorrelation plot, it looks like we should use

# a thinning of at least 200. We set thinning = 1000 to be safe,

# since the algorithm in any case is fast. The Markov Chain

# seems to mix quickly, but we set the burnin to 1000 to be safe.

# We now run sample_mallows again, to get the 100 samples we want:

samples <- sample_mallows(rho® = rho@, alpha@ = alpha®, n_samples = 100,

burnin = 1000, thinning = 1000)

# The samples matrix now contains 100 rows with rankings of 15 items.

# A good diagnostic, in order to confirm that burnin and thinning are set high

# enough, is to run compute_mallows on the samples

model_fit <- compute_mallows(


https://doi.org/10.18637/jss.v071.i12
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

sample_prior 53

setup_rank_data(samples),

compute_options = set_compute_options(nmc = 10000))
# The highest posterior density interval covers alpha@ = 10.
burnin(model_fit) <- 2000

compute_posterior_intervals(model_fit, parameter = "alpha")
sample_prior Sample from prior distribution
Description

Function to obtain samples from the prior distributions of the Bayesian Mallows model. Intended
to be given to update_mallows().

Usage

sample_prior(n, n_items, priors = set_priors())

Arguments

n An integer specifying the number of samples to take.

n_items An integer specifying the number of items to be ranked.

priors An object of class "BayesMallowsPriors" returned from set_priors().
Value

An object of class "BayesMallowsPriorSample", containing n independent samples of o and p.

See Also

Other modeling: burnin(), burnin<-(), compute_mallows(), compute_mallows_mixtures(),
compute_mallows_sequentially(), update_mallows()

Examples

## Not run:
# We can use a collection of particles from the prior distribution as
# initial values for the sequential Monte Carlo algorithm.
# Here we start by drawing 1000 particles from the priors, using default
# parameters.
prior_samples <- sample_prior(1000, ncol(sushi_rankings))
# Next, we provide the prior samples to update_mallws(), together
# with the first five rows of the sushi dataset
model1 <- update_mallows(
model = prior_samples,
new_data = setup_rank_data(sushi_rankings[1:5, 1))
plot(model?)



54 setup_rank_data

# We keep adding more data
model2 <- update_mallows(

model = modell,

new_data = setup_rank_data(sushi_rankings[6:10, 1))
plot(model2)

model3 <- update_mallows(

model = model2,

new_data = setup_rank_data(sushi_rankings[11:15, 1))
plot(model3)

## End(Not run)

setup_rank_data Setup rank data

Description

Prepare rank or preference data for further analyses.

Usage

setup_rank_data(
rankings = NULL,
preferences = NULL,
user_ids = numeric(),
observation_frequency = NULL,
validate_rankings = TRUE,
na_action = c("augment”, "fail"”, "omit"),
cl = NULL,
max_topological_sorts = 1,
timepoint = NULL,
n_items = NULL

Arguments

rankings A matrix of ranked items, of size n_assessors x n_items. See create_ranking()

if you have an ordered set of items that need to be converted to rankings. If
preferences is provided, rankings is an optional initial value of the rankings.
If rankings has column names, these are assumed to be the names of the items.
NA values in rankings are treated as missing data and automatically augmented;
to change this behavior, see the na_action argument to set_model_options().
A vector length n_items is silently converted to a matrix of length 1 x n_items,
and names (if any), are used as column names.

preferences A data frame with one row per pairwise comparison, and columns assessor,
top_item, and bottom_item. Each column contains the following:

* assessor is a numeric vector containing the assessor index.



setup_rank_data 55

* bottom_item is a numeric vector containing the index of the item that was
disfavored in each pairwise comparison.

e top_item is a numeric vector containing the index of the item that was
preferred in each pairwise comparison.

So if we have two assessors and five items, and assessor 1 prefers item 1 to item
2 and item 1 to item 5, while assessor 2 prefers item 3 to item 5, we have the

following df:
assessor bottom_item top_item
1 2 1
1 5 1
2 5 3
user_ids Optional numeric vector of user IDs. Only only used by update_mallows().

If provided, new data can consist of updated partial rankings from users already
in the dataset, as described in Section 6 of Stein (2023).
observation_frequency
A vector of observation frequencies (weights) to apply do each row in rankings.
This can speed up computation if a large number of assessors share the same
rank pattern. Defaults to NULL, which means that each row of rankings is mul-
tiplied by 1. If provided, observation_frequency must have the same number
of elements as there are rows in rankings, and rankings cannot be NULL. See
compute_observation_frequency() for a convenience function for comput-
ing it.
validate_rankings
Logical specifying whether the rankings provided (or generated from preferences)
should be validated. Defaults to TRUE. Turning off this check will reduce com-
puting time with a large number of items or assessors.

na_action Character specifying how to deal with NA values in the rankings matrix, if pro-
vided. Defaults to "augment”, which means that missing values are automati-
cally filled in using the Bayesian data augmentation scheme described in Vitelli
et al. (2018). The other options for this argument are "fail", which means that
an error message is printed and the algorithm stops if there are NAs in rankings,
and "omit"” which simply deletes rows with NAs in them.

cl Optional computing cluster used for parallelization when generating transitive
closure based on preferences, returned from parallel::makeCluster(). De-
faults to NULL.

max_topological_sorts
When preference data are provided, multiple rankings will be consistent with
the preferences stated by each users. These rankings are the topological sorts of
the directed acyclic graph corresponding to the transitive closure of the prefer-
ences. This number defaults to one, which means that the algorithm stops when
it finds a single initial ranking which is compatible with the rankings stated by
the user. By increasing this number, multiple rankings compatible with the pair-
wise preferences will be generated, and one initial value will be sampled from
this set.



56 setup_rank_data

timepoint Integer vector specifying the timepoint. Defaults to NULL, which means that a
vector of ones, one for each observation, is generated. Used by update_mallows()
to identify data with a given iteration of the sequential Monte Carlo algorithm.
If not NULL, must contain one integer for each row in rankings.

n_items Integer specifying the number of items. Defaults to NULL, which means that
the number of items is inferred from rankings or from preferences. Setting
n_items manually can be useful with pairwise preference data in the SMC algo-
rithm, i.e., when rankings is NULL and preferences is non-NULL, and contains
a small number of pairwise preferences for a subset of users and items.

Value

An object of class "BayesMallowsData", to be provided in the data argument to compute_mallows().

Note

Setting max_topological_sorts larger than 1 means that many possible orderings of each asses-
sor’s preferences are generated, and one of them is picked at random. This can be useful when
experiencing convergence issues, e.g., if the MCMC algorithm does not mix properly.

It is assumed that the items are labeled starting from 1. For example, if a single comparison of the
following form is provided, it is assumed that there is a total of 30 items (n_items=30), and the
initial ranking is a permutation of these 30 items consistent with the preference 29<30.

assessor bottom_item top_item
1 29 30

If in reality there are only two items, they should be relabeled to 1 and 2, as follows:

assessor bottom_item top_item
1 1 2

References

Stein A (2023). Sequential Inference with the Mallows Model. Ph.D. thesis, Lancaster University.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_initial_values(),
set_model_options(), set_priors(), set_progress_report(), set_smc_options()


https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

set_compute_options 57

set_compute_options Specify options for computation

Description

Set parameters related to the Metropolis-Hastings algorithm.

Usage

set_compute_options(
nmc = 2000,
burnin = NULL,
alpha_prop_sd = 0.1
rho_proposal = c("1s"”, "swap"),
leap_size = 1,
aug_method = c("uniform”, "pseudo"),
pseudo_aug_metric = c("footrule”, "spearman"),
swap_leap = 1,
alpha_jump = 1,
aug_thinning = 1,
clus_thinning = 1,
rho_thinning = 1,
include_wcd = FALSE,
save_aug = FALSE,
save_ind_clus = FALSE

)
Arguments
nmc Integer specifying the number of iteration of the Metropolis-Hastings algorithm
to run. Defaults to 2000. See assess_convergence() for tools to check con-
vergence of the Markov chain.
burnin Integer defining the number of samples to discard. Defaults to NULL, which

means that burn-in is not set.

alpha_prop_sd Numeric value specifying the o parameter of the lognormal proposal distribution
used for « in the Metropolis-Hastings algorithm. The logarithm of the proposed
samples will have standard deviation given by alpha_prop_sd. Defaultsto @.1.

rho_proposal Character string specifying the proposal distribution of modal ranking p. De-
faults to "Is", which means that the leap-and-shift algorithm of Vitelli et al.
(2018) is used. The other option is "swap", which means that the swap pro-
posal of Crispino et al. (2019) is used instead.

leap_size Integer specifying the step size of the distribution defined in rho_proposal for
proposing new latent ranks rho. Defaults to 1.

aug_method Augmentation proposal for use with missing data. One of "pseudo" and "uni-
form". Defaults to "uniform", which means that new augmented rankings are



58 set_compute_options

proposed by sampling uniformly from the set of available ranks, see Section 4

in Vitelli et al. (2018). Setting the argument to "pseudo” instead, means that the

pseudo-likelihood proposal defined in Chapter 5 of Stein (2023) is used instead.
pseudo_aug_metric

String defining the metric to be used in the pseudo-likelihood proposal. Only

used if aug_method = "pseudo”. Can be either "footrule" or "spearman", and

defaults to "footrule".

swap_leap Integer specifying the leap size for the swap proposal used for proposing latent
ranks in the case of non-transitive pairwise preference data. Note that leap size
for the swap proposal when used for proposal the modal ranking p is given by
the leap_size argument above.

alpha_jump Integer specifying how many times to sample p between each sampling of a.
In other words, how many times to jump over a while sampling p, and possi-
bly other parameters like augmented ranks R or cluster assignments z. Setting
alpha_jump to a high number can speed up computation time, by reducing the
number of times the partition function for the Mallows model needs to be com-
puted. Defaults to 1.

aug_thinning  Integer specifying the thinning for saving augmented data. Only used when
save_aug = TRUE. Defaults to 1.

clus_thinning Integer specifying the thinning to be applied to cluster assignments and cluster
probabilities. Defaults to 1.

rho_thinning  Integer specifying the thinning of rho to be performed in the Metropolis- Hast-
ings algorithm. Defaults to 1. compute_mallows save every rho_thinningth
value of p.

include_wcd Logical indicating whether to store the within-cluster distances computed during
the Metropolis-Hastings algorithm. Defaults to FALSE. Setting include_wcd =
TRUE is useful when deciding the number of mixture components to include, and
is required by plot_elbow().

save_aug Logical specifying whether or not to save the augmented rankings every aug_thinningth
iteration, for the case of missing data or pairwise preferences. Defaults to FALSE.
Saving augmented data is useful for predicting the rankings each assessor would
give to the items not yet ranked, and is required by plot_top_k().

save_ind_clus  Whether or not to save the individual cluster probabilities in each step. This re-
sults in csv files cluster_probsi.csv, cluster_probs2.csv, ..., being saved
in the calling directory. This option may slow down the code considerably, but
is necessary for detecting label switching using Stephen’s algorithm.

Value
An object of class "BayesMallowsComputeOptions”, to be provided in the compute_options ar-
gument to compute_mallows(), compute_mallows_mixtures(), or update_mallows().

References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?” The Annals of Applied Statistics,



set_initial_values 59

13(1), 492-519. doi:10.1214/18a0as1203.

Stein A (2023). Sequential Inference with the Mallows Model. Ph.D. thesis, Lancaster Univer-
sity.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other preprocessing: get_transitive_closure(), set_initial_values(), set_model_options(),
set_priors(), set_progress_report(), set_smc_options(), setup_rank_data()

set_initial_values Set initial values of scale parameter and modal ranking

Description

Set initial values used by the Metropolis-Hastings algorithm.

Usage

set_initial_values(rho_init = NULL, alpha_init = 1)

Arguments

rho_init Numeric vector specifying the initial value of the latent consensus ranking p.
Defaults to NULL, which means that the initial value is set randomly. If rho_init
is provided when n_clusters > 1, each mixture component p. gets the same
initial value.

alpha_init Numeric value specifying the initial value of the scale parameter . Defaults
to 1. When n_clusters > 1, each mixture component «. gets the same initial
value. When chains are run in parallel, by providing an argument cl = cl, then
alpha_init can be a vector of of length length(cl), each element of which
becomes an initial value for the given chain.

Value

An object of class "BayesMallowsInitialValues”, to be provided to the initial_values argu-
ment of compute_mallows() or compute_mallows_mixtures().

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_model_options(),
set_priors(), set_progress_report(), set_smc_options(), setup_rank_data()


https://doi.org/10.1214/18-aoas1203
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

60 set_model_options

set_model_options Set options for Bayesian Mallows model

Description

Specify various model options for the Bayesian Mallows model.

Usage
set_model_options(
metric = c("footrule”, "spearman”, "cayley”, "hamming”, "kendall”, "ulam"),
n_clusters = 1,
error_model = c("none”, "bernoulli")
)
Arguments
metric A character string specifying the distance metric to use in the Bayesian Mallows
Model. Available options are "footrule”, "spearman”, "cayley”, "hamming",
"kendall”, and "ulam”. The distance given by metric is also used to compute
within-cluster distances, when include_wcd = TRUE.
n_clusters Integer specifying the number of clusters, i.e., the number of mixture compo-
nents to use. Defaults to 1L, which means no clustering is performed. See
compute_mallows_mixtures() for a convenience function for computing sev-
eral models with varying numbers of mixtures.
error_model Character string specifying which model to use for inconsistent rankings. De-
faults to "none”, which means that inconsistent rankings are not allowed. At the
moment, the only available other option is "bernoulli”, which means that the
Bernoulli error model is used. See Crispino et al. (2019) for a definition of the
Bernoulli model.
Value

An object of class "BayesMallowsModelOptions”, to be provided in the model_options argument
to compute_mallows(), compute_mallows_mixtures(), or update_mallows().
References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?”’ The Annals of Applied Statistics,
13(1), 492-519. doi:10.1214/18a0as1203.

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_initial_values(),
set_priors(), set_progress_report(), set_smc_options(), setup_rank_data()


https://doi.org/10.1214/18-aoas1203

set_priors 61

set_priors Set prior parameters for Bayesian Mallows model

Description

Set values related to the prior distributions for the Bayesian Mallows model.

Usage
set_priors(gamma = 1, lambda = 0.001, psi = 10, kappa = c(1, 3))

Arguments

gamma Strictly positive numeric value specifying the shape parameter of the gamma
prior distribution of . Defaults to 1, thus recovering the exponential prior dis-
tribution used by (Vitelli et al. 2018).

lambda Strictly positive numeric value specifying the rate parameter of the gamma prior
distribution of «.. Defaults to 0.001. When n_cluster > 1, each mixture com-
ponent o has the same prior distribution.

psi Positive integer specifying the concentration parameter ¢/ of the Dirichlet prior
distribution used for the cluster probabilities 71, 7o, . . . , 7, Where C'is the value
of n_clusters. Defaults to 10L. When n_clusters = 1, this argument is not
used.

kappa Hyperparameters of the truncated Beta prior used for error probability € in the

Bernoulli error model. The prior has the form 7(6) = 6% (1 — §)"2. Defaults to
c(1, 3), which means that the  is a priori expected to be closer to zero than to
0.5. See (Crispino et al. 2019) for details.

Value
An object of class "BayesMallowsPriors”, to be provided in the priors argument to compute_mallows(),
compute_mallows_mixtures(), or update_mallows().

References

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?”’ The Annals of Applied Statistics,
13(1), 492-519. doi:10.1214/18a0as1203.

Vitelli V, Sgrensen, Crispino M, Arjas E, Frigessi A (2018). “Probabilistic Preference Learning
with the Mallows Rank Model.” Journal of Machine Learning Research, 18(1), 1-49. https:
//jmlr.org/papers/v18/15-481.html.

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_initial_values(),
set_model_options(), set_progress_report(), set_smc_options(), setup_rank_data()


https://doi.org/10.1214/18-aoas1203
https://jmlr.org/papers/v18/15-481.html
https://jmlr.org/papers/v18/15-481.html

62 set_smc_options

set_progress_report Set progress report options for MCMC algorithm

Description

Specify whether progress should be reported, and how often.

Usage

set_progress_report(verbose = FALSE, report_interval = 1000)

Arguments

verbose Boolean specifying whether to report progress or not. Defaults to FALSE.
report_interval

Strictly positive number specifying how many iterations of MCMC should be
run between each progress report. Defaults to 1000.

Value

An object of class "BayesMallowsProgressReport”, to be provided in the progress_report ar-
gument to compute_mallows() and compute_mallows_mixtures().

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_initial_values(),
set_model_options(), set_priors(), set_smc_options(), setup_rank_data()

set_smc_options Set SMC compute options

Description

Sets the SMC compute options to be used in update_mallows.BayesMallows().

Usage

set_smc_options(
n_particles = 1000,
mcmc_steps = 5,
resampler = c("stratified”, "systematic"”, "residual”, "multinomial”),
latent_sampling_lag = NA_integer_,
max_topological_sorts = 1



set_smc_options 63

Arguments
n_particles Integer specifying the number of particles.
mcmc_steps Number of MCMC steps to be applied in the resample-move step.
resampler Character string defining the resampling method to use. One of "stratified", "sys-

non

tematic", "residual", and "multinomial". Defaults to "stratified". While multi-
nomial resampling was used in Stein (2023), stratified, systematic, or residual
resampling typically give lower Monte Carlo error (Douc and Cappe 2005; Hol
et al. 2006; Naesseth et al. 2019).

latent_sampling_lag
Parameter specifying the number of timesteps to go back when resampling the
latent ranks in the move step. See Section 6.2.3 of (Kantas et al. 2015) for
details. The L in their notation corresponds to latent_sampling_lag. See
more under Details. Defaults to NA, which means that all latent ranks from
previous timesteps are moved. If set to @, no move step is applied to the latent
ranks.

max_topological_sorts
User when pairwise preference data are provided, and specifies the maximum
number of topological sorts of the graph corresponding to the transitive closure
for each user will be used as initial ranks. Defaults to 1, which means that
all particles get the same initial augmented ranking. If larger than 1, the initial
augmented ranking for each particle will be sampled from a set of maximum size
max_topological_sorts. If the actual number of topological sorts consists of
fewer rankings, then this determines the upper limit.

Value

An object of class "SMCOptions".

Lag parameter in move step

The parameter latent_sampling_lag corresponds to L in (Kantas et al. 2015). Its use in this
package is can be explained in terms of Algorithm 12 in (Stein 2023). The relevant line of the
algorithm is:

forj=1:M,do _ _ _

M-H step: update Ry) with proposal R/ ~ q(Rg-Z) R;,p", o).

end

Let L denote the value of latent_sampling_lag. With this parameter, we modify for algorithm so
it becomes

fOl‘j = Mt—L+1 : Mt do

M-H step: update f{y) with proposal f{; ~ q(f{y) IR;, p52)7 agl)).

end

This means that with L = 0 no move step is performed on any latent ranks, whereas L = 1 means
that the move step is only applied to the parameters entering at the given timestep. The default,

latent_sampling_lag = NA means that L = ¢ at each timestep, and hence all latent ranks are part
of the move step at each timestep.



64 sounds

References

Douc R, Cappe O (2005). “Comparison of resampling schemes for particle filtering.” In ISPA 2005.
Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis,
2005.. doi:10.1109/ispa.2005.195385, http://dx.doi.org/10.1109/ISPA.2005.195385.

Hol JD, Schon TB, Gustafsson F (2006). “On Resampling Algorithms for Particle Filters.” In
2006 IEEE Nonlinear Statistical Signal Processing Workshop. doi:10.1109/nsspw.2006.4378824,
http://dx.doi.org/10.1109/NSSPW.2006.4378824.

Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N (2015). “On Particle Methods for Param-
eter Estimation in State-Space Models.” Statistical Science, 30(3). ISSN 0883-4237, doi:10.1214/
14sts511, http://dx.doi.org/10.1214/14-STS511.

Naesseth CA, Lindsten F, Schon TB (2019). “Elements of Sequential Monte Carlo.” Foundations
and Trends® in Machine Learning, 12(3), 187-306. ISSN 1935-8245, doi:10.1561/2200000074,
http://dx.doi.org/10.1561/2200000074.

Stein A (2023). Sequential Inference with the Mallows Model. Ph.D. thesis, Lancaster University.

See Also

Other preprocessing: get_transitive_closure(), set_compute_options(), set_initial_values(),
set_model_options(), set_priors(), set_progress_report(), setup_rank_data()

sounds Sounds data

Description

Data from an experiment in which 46 individuals compared 12 different sounds (Barrett and Crispino
2018). Each assessor was asked multiple times to compare a pair of two sounds, indicating which
of the sounds sounded the most like it was human generated. The pairwise preference for each
assessor are in general non-transitive. These data inspired the Mallows model for non-transitive
pairwise preferences developed by (Crispino et al. 2019).

Usage

sounds

Format

An object of class data. frame with 1380 rows and 3 columns.


https://doi.org/10.1109/ispa.2005.195385
http://dx.doi.org/10.1109/ISPA.2005.195385
https://doi.org/10.1109/nsspw.2006.4378824
http://dx.doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.1214/14-sts511
https://doi.org/10.1214/14-sts511
http://dx.doi.org/10.1214/14-STS511
https://doi.org/10.1561/2200000074
http://dx.doi.org/10.1561/2200000074

sushi_rankings 65

References

Barrett N, Crispino M (2018). “The impact of 3-D sound spatialisation on listeners’ understand-
ing of human agency in acousmatic music.” Journal of New Music Research, 47(5), 399-415.
doi:10.1080/09298215.2018.1437187.

Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019). “A Bayesian Mallows approach to
nontransitive pair comparison data: How human are sounds?” The Annals of Applied Statistics,
13(1), 492-519. doi:10.1214/18a0as1203.

See Also

Other datasets: beach_preferences, bernoulli_data, cluster_data, potato_true_ranking,
potato_visual, potato_weighing, sushi_rankings

sushi_rankings Sushi rankings

Description

Complete rankings of 10 types of sushi from 5000 assessors (Kamishima 2003).

Usage

sushi_rankings

Format

An object of class matrix (inherits from array) with 5000 rows and 10 columns.

References

Kamishima T (2003). “Nantonac Collaborative Filtering: Recommendation Based on Order Re-
sponses.” In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 583-588.

See Also

Other datasets: beach_preferences, bernoulli_data, cluster_data, potato_true_ranking,
potato_visual, potato_weighing, sounds


https://doi.org/10.1080/09298215.2018.1437187
https://doi.org/10.1214/18-aoas1203

66 update_mallows

update_mallows Update a Bayesian Mallows model with new users

Description

Update a Bayesian Mallows model estimated using the Metropolis-Hastings algorithm in compute_mallows()
using the sequential Monte Carlo algorithm described in Stein (2023).

Usage

update_mallows(model, new_data, ...)

## S3 method for class 'BayesMallowsPriorSamples'
update_mallows(
model,
new_data,
model_options = set_model_options(),
smc_options = set_smc_options(),
compute_options = set_compute_options(),
priors = model$priors,
pfun_estimate = NULL,

)

## S3 method for class 'BayesMallows'
update_mallows(
model,
new_data,
model_options = set_model_options(),
smc_options = set_smc_options(),
compute_options = set_compute_options(),
priors = model$priors,

)

## S3 method for class 'SMCMallows'
update_mallows(model, new_data, ...)

Arguments

model A model object of class "BayesMallows" returned from compute_mallows(),
an object of class "SMCMallows" returned from this function, or an object of
class "BayesMallowsPriorSamples" returned from sample_prior().

new_data An object of class "BayesMallowsData" returned from setup_rank_data().
The object should contain the new data being provided.

Optional arguments. Currently not used.



update_mallows

67

model_options An object of class "BayesMallowsModelOptions" returned from set_model _options().

smc_options

An object of class "SMCOptions" returned from set_smc_options().

compute_options

priors

An object of class "BayesMallowsComputeOptions" returned from set_compute_options().

An object of class "BayesMallowsPriors" returned from set_priors(). De-
faults to the priors used in model.

pfun_estimate Object returned from estimate_partition_function(). Defaults to NULL,

Value

and will only be used for footrule, Spearman, or Ulam distances when the car-
dinalities are not available, cf. get_cardinalities(). Only used by the spe-
cialization for objects of type "BayesMallowsPriorSamples".

An updated model, of class "SMCMallows".

See Also

Other modeling: burnin(), burnin<-(), compute_mallows(), compute_mallows_mixtures(),
compute_mallows_sequentially(), sample_prior()

Examples

## Not run:
set.seed(1)

# UPDATING A MALLOWS MODEL WITH NEW COMPLETE RANKINGS
# Assume we first only observe the first four rankings in the potato_visual

# dataset

data_first_batch <- potato_visual[1:4, ]

# We start by fitting a model using Metropolis-Hastings
mod_init <- compute_mallows(
data = setup_rank_data(data_first_batch),
compute_options = set_compute_options(nmc = 10000))

# Convergence seems good after no more than 2000 iterations
assess_convergence(mod_init)
burnin(mod_init) <- 2000

# Next, assume we receive four more observations
data_second_batch <- potato_visual[5:8, ]

# We can now update the model using sequential Monte Carlo
mod_second <- update_mallows(

model = mod_init,

new_data = setup_rank_data(rankings = data_second_batch),

smc_options

)

= set_smc_options(resampler = "systematic")

# This model now has a collection of particles approximating the posterior
# distribution after the first and second batch



68

update_mallows

# We can use all the posterior summary functions as we do for the model
# based on compute_mallows():

plot(mod_second)

plot(mod_second, parameter = "rho"”, items = 1:4)
compute_posterior_intervals(mod_second)

" n

# Next, assume we receive the third and final batch of data. We can update
# the model again
data_third_batch <- potato_visual[9:12, ]
mod_final <- update_mallows(
model = mod_second, new_data = setup_rank_data(rankings = data_third_batch))

# We can plot the same things as before
plot(mod_final)
compute_consensus(mod_final)

UPDATING A MALLOWS MODEL WITH NEW OR UPDATED PARTIAL RANKINGS

The sequential Monte Carlo algorithm works for data with missing ranks as

well. This both includes the case where new users arrive with partial ranks,

and when previously seen users arrive with more complete data than they had

previously.

We illustrate for top-k rankings of the first 10 users in potato_visual

potato_top_10 <- ifelse(potato_visual[1:10, 1 > 10, NA_real_,
potato_visual[1:10, 1)

potato_top_12 <- ifelse(potato_visual[1:10, 1 > 12, NA_real_,
potato_visual[1:10, 1)

potato_top_14 <- ifelse(potato_visual[1:10, 1 > 14, NA_real_,

potato_visual[1:10, 1)

E R

# We need the rownames as user IDs
(user_ids <- 1:10)

# First, users provide top-10 rankings

mod_init <- compute_mallows(
data = setup_rank_data(rankings = potato_top_10, user_ids = user_ids),
compute_options = set_compute_options(nmc = 10000))

# Convergence seems fine. We set the burnin to 2000.
assess_convergence(mod_init)
burnin(mod_init) <- 2000

# Next assume the users update their rankings, so we have top-12 instead.
mod1 <- update_mallows(
model = mod_init,
new_data = setup_rank_data(rankings = potato_top_12, user_ids = user_ids),
smc_options = set_smc_options(resampler = "stratified”)

)
plot(mod1)
# Then, assume we get even more data, this time top-14 rankings:

mod2 <- update_mallows(
model = mod1,



update_mallows 69

new_data = setup_rank_data(rankings = potato_top_14, user_ids = user_ids)

plot(mod2)

# Finally, assume a set of new users arrive, who have complete rankings.
potato_new <- potato_visual[11:12, ]

# We need to update the user IDs, to show that these users are different
(user_ids <- 11:12)

mod_final <- update_mallows(
model = mod2,
new_data = setup_rank_data(rankings = potato_new, user_ids = user_ids)

plot(mod_final)

# We can also update models with pairwise preferences
# We here start by running MCMC on the first 20 assessors of the beach data
# A realistic application should run a larger number of iterations than we
# do in this example.
set.seed(3)
dat <- subset(beach_preferences, assessor <= 20)
mod <- compute_mallows(

data = setup_rank_data(

preferences = beach_preferences),
compute_options = set_compute_options(nmc = 3000, burnin = 1000)

)

# Next we provide assessors 21 to 24 one at a time. Note that we sample the
# initial augmented rankings in each particle for each assessor from 200
# different topological sorts consistent with their transitive closure.
for(i in 21:24){
mod <- update_mallows(
model = mod,
new_data = setup_rank_data(
preferences = subset(beach_preferences, assessor == i),
user_ids = i),
smc_options = set_smc_options(latent_sampling_lag = 0,

max_topological_sorts = 200)

# Compared to running full MCMC, there is a downward bias in the scale

# parameter. This can be alleviated by increasing the number of particles,
# MCMC steps, and the latent sampling lag.

plot(mod)

compute_consensus(mod)

## End(Not run)



Index

+ datasets
beach_preferences, 5
bernoulli_data, 6
cluster_data, 8
potato_true_ranking, 47
potato_visual, 48
potato_weighing, 48
sounds, 64
sushi_rankings, 65

* diagnostics
assess_convergence, 3

* modeling
burnin, 6
burnin<-,7
compute_mallows, 13
compute_mallows_mixtures, 19
compute_mallows_sequentially, 22
sample_prior, 53
update_mallows, 66

* partition function
compute_exact_partition_function

11

estimate_partition_function, 30
get_cardinalities, 33

* posterior quantities
assign_cluster, 4
compute_consensus, 9
compute_posterior_intervals, 25
get_acceptance_ratios, 32
heat_plot, 38
plot.BayesMallows, 39
plot.SMCMallows, 40
plot_elbow, 43
plot_top_k, 46
predict_top_k, 49
print.BayesMallows, 50

* preprocessing
get_transitive_closure, 37
set_compute_options, 57

70

set_initial_values, 59
set_model_options, 60
set_priors, 61
set_progress_report, 62
set_smc_options, 62
setup_rank_data, 54

+ rank functions
compute_expected_distance, 12
compute_observation_frequency, 24
compute_rank_distance, 27
create_ranking, 29
get_mallows_loglik, 35
sample_mallows, 51

assess_convergence, 3

assess_convergence(), 57

assign_cluster, 4, 10, 26, 33, 38, 39, 41, 44,
46, 49, 50

beach_preferences, 5, 6, 9, 4749, 65
bernoulli_data, 6, 6, 9, 4749, 65
burnin, 6, 8, 14, 20, 23, 53, 67
burnin<-,7

cluster_data, 6, 8, 4749, 65
compute_consensus, 5, 9, 26, 33, 38, 39, 41,
44, 46, 49, 50
compute_consensus(), 38
compute_exact_partition_function, 11,
31,34
compute_exact_partition_function(), 30
compute_expected_distance, 12, 25, 28, 29,
36, 52
compute_mallows, 7, 8, 13, 20, 23, 53, 67
compute_mallows(), 4, 8, 24, 31, 32, 38, 39,
43, 44, 46, 49, 50, 56, 58-62, 66
compute_mallows_mixtures, 7, 8, 14, 19, 23,
53,67
compute_mallows_mixtures(), 4, 8, 44,
58-62



INDEX

compute_mallows_sequentially, 7, 8, 14,
20,22, 53,67
compute_mallows_sequentially(), 32
compute_observation_frequency, 13, 24,
28, 29, 36, 52
compute_observation_frequency(), 55
compute_posterior_intervals, 5, 10, 25,
33, 38, 39,41, 44, 46, 49, 50
compute_rank_distance, 13, 25, 27, 29, 36,
52
create_ordering (create_ranking), 29
create_ranking, 13, 25, 28, 29, 36, 52
create_ranking(), 54

estimate_partition_function, 12, 30, 34
estimate_partition_function(), /4, 20,
23,67

get_acceptance_ratios, 5, 10, 26, 32, 38,
39,41, 44,46, 49, 50
get_cardinalities, 12, 31, 33
get_cardinalities(), 14, 20, 23, 30, 67
get_mallows_loglik, 13, 25, 28, 29, 35, 52
get_transitive_closure, 37, 56, 59-62, 64

heat_plot, 5, 10, 26, 33, 38, 39, 41, 44, 46,
49, 50

parallel::makeCluster(), 14, 20, 31, 55
plot, 40
plot.BayesMallows, 5, 10, 26, 33, 38, 39, 41,
44, 46, 49, 50
plot.SMCMallows, 5, 10, 26, 33, 38, 39, 40,
44, 46, 49, 50
plot_elbow, 5, 10, 26, 33, 38, 39, 41, 43, 46,
49, 50
plot_elbow(), 20, 58
plot_top_k, 5, 10, 26, 33, 38, 39,41, 44, 46,
49, 50
plot_top_k(), 58
potato_true_ranking, 6, 9,47, 48, 49, 65
potato_visual, 6, 9, 47, 48, 49, 65
potato_weighing, 6, 9, 47, 48, 48, 65
predict_top_k, 5, 10, 26, 33, 38, 39,41, 44,
46, 49, 50
print.BayesMallows, 5, 10, 26, 33, 38, 39,
41,44, 46, 49, 50
print.BayesMallowsMixtures
(print.BayesMallows), 50

71

print.SMCMallows (print.BayesMallows),
50

sample_mallows, 13, 25, 28, 29, 36, 51
sample_prior, 7, 8, 14, 20, 23, 53, 67
sample_prior(), 23, 66
set_compute_options, 37, 56, 57, 59-62, 64
set_compute_options(), 14, 19, 23, 67
set_initial_values, 37, 56, 59, 59, 60-62,
64
set_initial_values(), 14, 20
set_model_options, 37, 56, 59, 60, 61, 62, 64
set_model_options(), 14, 19, 20, 23, 54, 67
set_priors, 37, 56, 59, 60, 61, 62, 64
set_priors(), 14, 20, 23, 53, 67
set_progress_report, 37, 56, 59-61, 62, 64
set_progress_report(), 14, 20
set_smc_options, 37, 56, 59-62, 62
set_smc_options(), 23, 67
setup_rank_data, 37, 54, 59-62, 64
setup_rank_data(), 14, 19, 23, 37, 66
sounds, 6, 9, 4749, 64, 65
sushi_rankings, 6, 9, 4749, 65, 65

update_mallows, 7, 8, 14, 20, 23, 53, 66

update_mallows(), 22, 32, 53, 55, 56, 58, 60,
61

update_mallows.BayesMallows(), 62



	assess_convergence
	assign_cluster
	beach_preferences
	bernoulli_data
	burnin
	burnin<-
	cluster_data
	compute_consensus
	compute_exact_partition_function
	compute_expected_distance
	compute_mallows
	compute_mallows_mixtures
	compute_mallows_sequentially
	compute_observation_frequency
	compute_posterior_intervals
	compute_rank_distance
	create_ranking
	estimate_partition_function
	get_acceptance_ratios
	get_cardinalities
	get_mallows_loglik
	get_transitive_closure
	heat_plot
	plot.BayesMallows
	plot.SMCMallows
	plot_elbow
	plot_top_k
	potato_true_ranking
	potato_visual
	potato_weighing
	predict_top_k
	print.BayesMallows
	sample_mallows
	sample_prior
	setup_rank_data
	set_compute_options
	set_initial_values
	set_model_options
	set_priors
	set_progress_report
	set_smc_options
	sounds
	sushi_rankings
	update_mallows
	Index

