
Package ‘BTSR’
January 22, 2026

Type Package

Title Bounded Time Series Regression

Version 1.0.1

Date 2026-01-22

Maintainer Taiane Schaedler Prass <taianeprass@gmail.com>

Description Simulate, estimate and forecast a wide range of regression
based dynamic models for bounded time series, covering the most
commonly applied models in the literature. The main calculations are
done in FORTRAN, which translates into very fast algorithms.

License GPL (>= 3)

Depends R (>= 4.0)

Imports Rdpack

RdMacros Rdpack

Copyright see file COPYRIGHTS

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.3.3

Author Taiane Schaedler Prass [aut, cre, com] (ORCID:
<https://orcid.org/0000-0003-3136-909X>),

Guilherme Pumi [ctb, aut] (ORCID:
<https://orcid.org/0000-0002-6256-3170>),

Fábio Mariano Bayer [ctb] (ORCID:
<https://orcid.org/0000-0002-1464-0805>),

Jack Joseph Dongarra [ctb] (LINPACK subroutines (dtrsl, dpofa, ddot)),
Cleve Moler [ctb] (LINPACK subroutines (dtrsl, dpofa, ddot)),
Gilbert Wright Stewart [ctb] (LINPACK subroutines (dtrsl, dpofa, ddot)),
Ciyou Zhu [ctb] (L-BFGS-B algorithm subroutines),
Richard H. Byrd [ctb] (L-BFGS-B algorithm subroutines),
Jorge Nocedal [ctb] (L-BFGS-B algorithm subroutines),
Jose Luis Morales [ctb] (L-BFGS-B algorithm subroutines),
Peihuang Lu-Chen [ctb] (L-BFGS-B algorithm subroutines),
John Burkardt [ctb] (Trigamma function (FORTRAN90 version)),

1

https://orcid.org/0000-0003-3136-909X
https://orcid.org/0000-0002-6256-3170
https://orcid.org/0000-0002-1464-0805

2 btsr-package

Alan Miller [ctb] (FORTRAN90 version of NSWC special function psi and
amendments to minim subroutine),

D.E. Shaw [ctb] (Original minim subroutine),
Robert W.M. Wedderburn [ctb] (Amendments to minim subroutine)

Repository CRAN

Date/Publication 2026-01-22 20:30:02 UTC

Contents
btsr-package . 2
arguments.coefs . 5
arguments.configs . 8
arguments.link . 8
arguments.loglik . 11
arguments.map . 12
arguments.model . 13
arguments.order . 19
arguments.regressors . 20
arguments.series . 21
BARC.functions . 22
BTSR.functions . 30
BTSR.model.defaults . 39
BTSR.models . 40
BTSR.parent.models . 40
coefs.start . 50
fit.control . 54
get.defaults . 55
link.btsr . 56
predict.btsr . 59
print.btsr . 61
summary . 61

Index 63

btsr-package Bounded Time Series Regression

Description

The BTSR package provides a unified framework for simulating, fitting, and forecasting bounded
time series regression models. It supports a wide range of models, including i.i.d., regression,
ARMA-like, and ARFIMA-like models, with a focus on bounded time series data.

Key features of the BTSR package include

• Simulation of bounded time series data using various models.

• Estimation of model parameters using efficient algorithms.

btsr-package 3

• Forecasting future values based on fitted models.
• Support for both short-memory and long-memory models.
• Flexible link functions and error scales.

Mathematical Notation

The BTSR package is based on the following mathematical framework

• Yt: The bounded random variable at time t, with Yt ∈ (a, b).
• Ft: The σ-field generated by information up to time t.
• µt, νt: Parameters of the conditional distribution of Yt.
• ϑt: A transformation of νt (e.g., ϑt = ν2t).
• η1t, η2t: Linear predictors for µt and ϑt, respectively.
• ϕ, θ: Autoregressive (AR) and moving average (MA) coefficients.
• d: Fractional differencing parameter, controlling long-memory behavior.
• e1t, e2t: Error terms for each part of the model (see the model definition for details).

The BTSR Structure

Let {Yt}t∈Z be a stochastic process for which Yt ∈ (a, b) with probability 1 (a and b not necessarily
finite), for all t ∈ Z, and let Ft denote the σ-field generated by the information observed up to time
t. The general structure of a BTSR model is as follows

Yt|Ft−1 ∼ f(·|µt, νt), ϑt = g2(νt)

η1t = g11(µt) = α1 +X ′
1tβ1 +

p1∑
i=1

ϕ1i[g12(Yt−i)− IX1
X ′

1(t−i)β1] + ξt, (part 1)

η2t = g21(ϑt) = α2 +X ′
2tβ2 +

p2∑
i=1

ϕ2i[g22(ϑt−i)− IX2
X ′

2(t−i)β2] +

∞∑
k=1

c2ke2,t−k, (part 2)

with ξt depending on the model, controlled by the argument model,

ξt =

{
h(T t−1(U0)), if model = "BARC",∑∞

k=1 c1ke1,t−k, otherwise,

e1,t depending on the error.scale adopted

e1,t = g13(Yt, µt) =

{
Yt − µt, if error.scale = 0 (data scale),
g11(Yt)− g11(µt), if error.scale = 1 (predictive scale)

and e2,t = g23(e1,t), where

• IX1 , IX2 are indicator functions, which control whether the regressors should be included
in the AR part of the equation. These functions are controlled by the argument xregar as
follows: xregar = FALSE corresponds to IX = 0 and xregar = TRUE corresponds to IX = 1.
If xregar = FALSE, the corresponding argument xreg is not included in the AR part of the
model.

4 btsr-package

• g13 is a function of Yt and µt, defined by the error scale adopted.

• g2 and gij , i, j ∈ {1, 2}, and g23 are link functions defined in the argument linkg. Notice
that the links gij are only used in the AR part of the model and, typically, gi1 = gi2 for each
i ∈ {1, 2}. The link g2 might depend on the distribution adopted. Finally, g23 is a link function
that transforms the error term e1t.

• h is the link function for BARC models, defined in the argument linkh.

• {cik}k≥1 are the coefficients obtained through the relation

θi(z) =

qi∑
k=0

θikz
k and (1− L)−diθi(z) =

∞∑
k=0

cikz
k, i ∈ {1, 2}.

In particular, if di = 0, then cik = θik, for k = 1, . . . , qi.

Author(s)

Taiane Schaedler Prass <taianeprass@gmail.com>, Guilherme Pumi <guipumi@gmail.com>

References

Bayer FM, Bayer DM, Pumi G (2017). “Kumaraswamy autoregressive moving average mod-
els for double bounded environmental data.” Journal of Hydrology, 555, 385–396. doi:10.1016/
j.jhydrol.2017.10.006.

Pumi G, Valk M, Bisognin C, Bayer FM, Prass TS (2019). “Beta autoregressive fractionally in-
tegrated moving average models.” Journal of Statistical Planning and Inference, 200, 196–212.
doi:10.1016/j.jspi.2018.10.001.

Pumi G, Prass TS, Souza RR (2021). “A dynamic model for double bounded time series with
chaotic driven conditional averages.” Scandinavian Journal of Statistics, 48(1), 68–86. doi:10.1111/
sjos.12439.

Pumi G, Prass TS, Taufemback CG (2024). “Unit-Weibull autoregressive moving average models.”
TEST, 33, 204–229. doi:10.1007/s11749023008938.

Pumi G, Prass TS, Taufemback CG (2024). “Publisher Correction: Unit-Weibull autoregressive
moving average models.” TEST, 33, 358–359. doi:10.1007/s11749023009057.

Pumi G, Matsuoka DH, Prass TS (2025). “A GARMA Framework for Unit-Bounded Time Series
Based on the Unit-Lindley Distribution with Application to Renewable Energy Data.” doi:10.48550/
arXiv.2504.07351.

Pumi G, Matsuoka DH, Prass TS, Palm BG (2025). “A Matsuoka-Based GARMA Model for Hy-
drological Forecasting: Theory, Estimation, and Applications.” doi:10.48550/arXiv.2502.18645.

Prass TS, Pumi G, Taufemback CG, Carlos JH (2025). “Positive time series regression models:
theoretical and computational aspects.” Computational Statistics, 40, 1185–1215. doi:10.1007/
s0018002401531z.

See Also

For detailed examples and usage instructions, see the documentation for individual functions

• btsr.sim: Simulate bounded time series data.

https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1016/j.jspi.2018.10.001
https://doi.org/10.1111/sjos.12439
https://doi.org/10.1111/sjos.12439
https://doi.org/10.1007/s11749-023-00893-8
https://doi.org/10.1007/s11749-023-00905-7
https://doi.org/10.48550/arXiv.2504.07351
https://doi.org/10.48550/arXiv.2504.07351
https://doi.org/10.48550/arXiv.2502.18645
https://doi.org/10.1007/s00180-024-01531-z
https://doi.org/10.1007/s00180-024-01531-z

arguments.coefs 5

• btsr.extract: Extract components of a BTSR model, for a given set of parameters

• btsr.fit: Fit a BTSR model to data.

• predict: Forecast future values using a fitted model.

• arguments: Shared documentation for arguments

Examples

#----------------------------
Quickstart examples.
#----------------------------

Example 1: Simulate i.i.d. samples
set.seed(1234)
y1 <- btsr.sim(model = "BETA", n = 1000, coefs = list(alpha = 0.2, nu = 20))
hist(y1)

Example 2: Simulate ARMA-like model with fixed nu
y2 <- btsr.sim(

model = "BARMA", n = 100, link = "logit",
coefs = list(alpha = 0.2, phi = 0.5, theta = 0.3, nu = 20)

)
plot(y2, type = "l")

arguments.coefs Shared documentation for coefficients

Description

This is the common documentation for arguments related to the coefficients in BTSR models.

Arguments

ignore.start optional; logical value indicating whether the argument start should be ig-
nored (fit only). If starting values are not provided, the function uses the default
values and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is ignore.start = FALSE. Partial starting values are not allowed.

start optional; a list with the starting values for the non-fixed coefficients of the model
(fit only). The default is start = NULL, in which case the function coefs.start is
used internally to obtain starting values for the parameters. For details on the
expected format and the arguments that can be passed through coefs, see the
Section Model coefficients.

coefs a list with the coefficients of the model (simulation and extraction only). The
default is coefs = NULL. For details on the expected format and the arguments
that can be passed through coefs, see the Section Model coefficients.

6 arguments.coefs

lags optional; a list with the lags (integer values) that the entries in coefs or start
correspond to (extract and fit only). The default is lags = NULL, in which the
lags are computed from the fixed.lags argument (if provided). When compo-
nents are missing or empty in both, lags and fixed.lags, the default behavior
is to include all lags based on nreg = ncol(xreg), p, and q. For details, see the
Section Model coefficients.

fixed.values optional; a list with the values of the coefficients that are fixed (extract and fit
only). The default is fixed.values = NULL. See the Section Model coefficients.

fixed.lags optional; a list with the lags (integer values) that the fixed values in fixed.values
correspond to (extract and fit only). The default is fixed.lags = NULL. For
missing components, fixed values will are set based on lags.

lower optional; list with the lower bounds for the parameters (fit only). Default is
lower = NULL. The default is to assume that the parameters have no lower bound
except for nu, for which de default is 0. Only the bounds for bounded parameters
need to be specified. The format of lower and the arguments that can be passed
through this list are the same as the ones for start.

upper optional; list with the upper bounds for the parameters (fit only). Default is
upper = NULL. The default is to assume that the parameters have no upper bound.
Only the bounds for bounded parameters need to be specified. The format of
lower and the arguments that can be passed through this list are the same as the
ones for start.

Model coefficients

start, coefs, fixed.values, lags and fixed.lags can be specified in one of two ways

• Legacy structure: a list with optional components alpha, beta, phi, theta, d, u0 (BARC
only) and required argument nu (except for one-parameter models such as ULARMA and
MARMA).

• New structure: a list with elements part1 and part2, each being a list with with optional
components alpha, beta, phi, theta, d and u0 (BARC only).

The optional arguments in this lists are

• alpha: a numeric value corresponding to the intercept. For i.i.d. corresponds to the mean of
the distribution.

• beta: a vector of coefficients corresponding to the regressors in xreg.

• phi: a vector of autoregressive coefficients.

• theta: for BARC models, this is the parameter for the map function (see BARC.functions for
details). For any other model, this is a vector of moving average coefficients corresponding to
the MA order.

• d: a numeric value corresponding to the long memory parameter.

• u0: a numeric value in the interval (0, 1), corresponding to the value of the random variable
U0. See BARC.functions for details.

• nu: distribution related parameter, usually the dispersion.

arguments.coefs 7

The following rules apply for these lists and their arguments.

Simulation:

• Passing coefs as an empty list will result in an error message.

• start and fixed.values (consequently, fixed.lags) are not used.

• If xreg is provided but coefs does not include a beta argument, an error message is issued.

• phi must be a vector of length p (the AR order), meaning all coefficients must be provided,
including zeros.

• theta (non-BARC models) must be a vector of length q (the MA order), meaning all coeffi-
cients must be provided, including zeros.

Extraction:

• One dimensional parameters (e.g. alpha) that do not appear in coefs are assume to be fixed.

• An error message will be issued if both coefs and fixed.values are both empty.

• If ν is not constant over time and nu is missing in both coefs and fixed.values, an er-
ror message is issued (except for one-parameter models such as ULARMA and MARMA).
Ignored if the new format is used.

Fitting:

• One dimensional parameters (e.g. alpha) cannot appear in both start and fixed.values.

• coefs is not used.

Extraction and fitting:

• Coefficients may include both fixed lags (with values in fixed.values) and non-fixed lags
(with values in coefs or start).

• lags and fixed.lags are complementary. Either suffices, or mix them (e.g., lags for some
parameters, fixed.lags for others).

• For one dimensional parameters, the lag is obviously always 1 and can be suppressed when
the parameter added to the fixed.values list.

• For extraction, if coefs = NULL, one dimensional parameters that do not appear in fixed.values
are assumed to be non-fixed. The same goes for fitting when start = NULL or ignore.start
= TRUE.

• If coefs/start is provided, one dimensional parameters that do not appear in this list are
assumed to be fixed.

• By default, if a given vector has fixed lags and the corresponding entry in fixed.values is
empty, the fixed values are set as zero.

• If parameter values are provided in coefs, start or fixed.values and the size of the vector
is not the same as the dimension of the parameters, either lags or fixed.lags must also be
provided.

8 arguments.link

arguments.configs Shared documentation for configuration related parameteres

Description

This is the common documentation for arguments related the configurations for fitting models and
printing reports.

Arguments

control a list with configurations to be passed to the optimization subroutines (fit only).
Default is control = NULL. Missing arguments will receive default values. For
details, see fit.control.

report logical; indicates whether the summary from the fitted model should be be
printed (fit only). Default is report = TRUE, in which case info is automati-
cally set to TRUE.

complete logical; if FALSE returns only yt, else returns additional components (simula-
tion only). Default is complete = FALSE.

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is debug = FALSE.

... further arguments passed to the internal functions. See, for instance, sum-
mary.btsr for details.

arguments.link Shared documentation for link functions

Description

This is the common documentation for arguments related link functions in BTSR models.

Arguments

error.scale either 0 or 1; the scale for the error term. Default is error.scale = 1 (predictive
scale).

linkg link functions. Can be specified as a character, two-character vector or a named
list. The corresponding text strings for currently available links are listed in
link.btsr. Default values depend on the model. For some models default values
override user specifications. See the Section Link defaults for details.

linkh a character indicating which link must be associated to the chaotic process. See
the Section ‘The BTSR structure’ in btsr-package for details and link.btsr for
valid links. Default is linkh = "linear".

arguments.link 9

configs.linkg a list with two elements, ctt and power, which define the constant a and the
exponent b in the link function g(x) = axb. Each element can be specified as a
numeric value, a vector of size 2 or a named list. The default is configs.linkg
= NULL. See the Section Link defaults for details.

configs.linkh a list with extra configurations for the link h. For now, only used if linkh =
"linear" or "polynomial". Default is configs.linkh = list(ctt = 1, power
= 1).

Link defaults

linkh and configs.linkh only apply to BARC models.

linkg can be specified in one of two ways

• Legacy structure: a character or two-character vector. If only one string is provided, the
same link name is used for g11 and g12. Internally, this structure is automatically converted
to the new format with g2 = g21 = g22 = g23 = "linear".

• New structure: a named list with optional elements (order is irrelevant) g11, g12, g2, g21,
g22 and g23. These links apply, respectively, to µt, Yt (in the AR recursion or part 1), νt,
ϑt = g2(νt), ϑt (in the AR recursion of part 2) and e1t (to build the error term in part 2).

For models that do not have the ν parameter, the links g2, g21, g22 and g23 are set to "linear" for
compatibility with Fortran subroutines.

Missing entries in the linkg list follow these rules

• If either g11 or g12 is missing (but not both), internally it is set g12 = g11.

• If both g11 and g12 are missing, use the default values for the particular model (see below).

• If phi = NULL for part 1, g12 is not required, hence set to "linear" and ignored in Fortran.

• If phi = NULL for part 2, g22 is not required, hence set to "linear" and ignored in Fortran.

• If either g21 or g22 is missing (but not both), internally it is set g22 = g21.

• If both g21 and g22 are missing, use the default values for the particular model (see below).

Default linkg values are model-dependent (based on the string provided with model):

• For all models where ν is constant over time:
internally, g2, g21, and g22 are forced to "linear", with a = 1.
Overrides any user specifications.

• iid samples:
Overrides any user specifications.
linkg = "linear" (with a = 1). Internally converted to

linkg = list(g11 = "linear", g12 = "linear", g2 = "linear"
g21 = "linear", g22 = "linear", g23 = "linear")

• BARFIMA, KARFIMA, ULARFIMA, UWARFIMA:
linkg = "logit". Internally converted to

linkg = list(g11 = "logit", g12 = "logit", g2 = "linear"
g21 = "linear", g22 = "linear", g23 = "linear")

10 arguments.link

• GARFIMA:
linkg = "log". Internally converted to

linkg = list(g11 = "log", g12 = "log", g2 = "linear"
g21 = "linear", g22 = "linear", g23 = "linear")

• MARFIMA:
linkg = "cloglog". Internally converted to

linkg = list(g11 = "cloglog", g12 = "cloglog", g2 = "linear"
g21 = "linear", g22 = "linear", g23 = "linear")

• BARFIMAV, GARFIMAV, KARFIMAV, UWARFIMAV:
g11 and g12 have the same default values as the particular model where ν is constant over
time.
g2 = "default", meaning that g2 is set as the the default link for the model.

– For BARFIMAV "default" = SIP with a = b = 1.
– For GARFIMAV "default" = SIP with a = 0 and b = 1.
– For remaining models "default" = "linear" with a = 1.

g21 depends on the model.

– For BARFIMAV g21 = "logit"

– For any other model g21 = "log".

For g22, the default is to assume g22 = g21.
Finally, g23 = "polynomial, with a = 1 and b = 2 (set in configs.link)

• Particular cases (e.g., BREG, BREGV) inherit defaults from parent models (except iid sam-
ples).

configs.linkg if provided, it must be provided as a list with optional elements, ctt and power,
which define the constant a and the exponent b in the link function g(x) = axb. Each element in
this list can be specified in one of two ways

• Legacy structure: a numeric value (applied uniformly across all linear links) or a numeric
vector of length 2, which will be associated to g11 and g12.

• New structure: a named list with optional elements (order is irrelevant) g11, g12, g2, g21,
g22 and g23.

For now, the arguments ctt and power are only used when the link function is "linear" or
"polynomial". If NULL, default is to assume that ctt and power are both equal to 1 for all links.

See Also

BTSR.model.defaults: function to print default settings for a specified model

arguments.loglik 11

arguments.loglik Shared documentation for log-likelihood

Description

This is the common documentation for arguments related the log-likelihood functions, score vector
and information matrix for BTSR models.

Arguments

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihood, given by ℓ =

∑n
t=m+1 ℓt (extract and fit only). Default is m = 0. For

details, see the Section The log-likelihood.

llk logical; indicates whether the value of the log-likelihood function should be
returned (extract and fit only). Default is llk = TRUE.

sco logical; indicates whether the score vector should be returned (extract and fit
only). Default is sco = FALSE.

info logical; indicates whether the information matrix should be returned (extract and
fit only). Default is info = FALSE. For the fitting function, info is automatically
set to TRUE when report = TRUE.

extra logical, if TRUE the matrices and vectors used to calculate the score vector and
the information matrix are returned (extract and fit only). Default is extra =
FALSE. Ignored by BARC models.

The log-likelihood

Let γ = (ρ′,λ′)′ be the vector of unknown parameters in the model where

• ρ is the vector of unknown parameters in part 1

• λ is the vector of unknown parameters in part 2.

The log-likelihood function, conditioned on a set of initial conditions Fm is given by

ℓ(γ) =

n∑
t=m+1

ℓt =

n∑
t=m+1

log
(
f(Yt | Ft−1,γ)

)
.

For simplicity of notation assume m = 0. The score vector U(γ) =
(
Uρ(γ)

′, Uλ(γ)
′)′ can be

written as
Uρ(γ) = D′

ρT1h1 +M ′
ρT2h2 and Uλ(γ) = D′

λT2h2,

where

• Dρ, Dλ and Mρ are the matrices for which the (i, j)th elements are given, respectively, by

[Dρ]i,j =
∂η1i
∂ρj

, [Dλ]i,j =
∂η2i
∂λj

and [Mρ]i,j =
∂η2i
∂ρj

,

12 arguments.map

• T1 and T2 are diagonal matrices given by

T1 = diag

{
∂µ1

∂η1t
, . . . ,

∂µn

∂η1n

}
, T2 = diag

{
∂ν1
∂η2t

, . . . ,
∂νn
∂η2n

}
,

• h1 and h2 are the vectors defined by

h1 =

(
∂ℓ1
∂µ1

, · · · , ∂ℓn
∂µn

)′

and h2 =

(
∂ℓ1
∂ν1

, · · · , ∂ℓn
∂νn

)′

.

For the models implemented so far, ∂η1t/∂λj = 0 so that we don’t need a matrix for these deriva-
tives.

The conditional Fisher information matrix for γ is given by

Kn(γ) =

(
Kρ,ρ Kρ,λ

Kλ,ρ Kλ,λ

)
with

Kρ,ρ = D′
ρT1EµT1Dρ +M ′

ρT2EµνT1Dρ +D′
ρT1EµνT2Mρ +M ′

ρT2EνT2Mρ

Kρ,λ = K ′
λ,ρ = D′

ρT1EµνT2Dλ +M ′
ρT2EνT2Dλ,

Kλ,λ = D′
λT2EνT2Dλ

where Eµ, Eµν and Eν are diagonal matrices for which the (t, t)th element is given by

[Eµ]t,t = −E
(
∂2ℓt
∂µ2

t

∣∣∣∣Ft−1

)
, [Eµν]t,t = −E

(
∂2ℓt

∂µt∂νt

∣∣∣∣Ft−1

)
and [Eν]t,t = −E

(
∂2ℓt
∂ν2t

∣∣∣∣Ft−1

)
.

arguments.map Available map functions in BTSR package

Description

This documentation describes the map argument in BARC models and the map functions imple-
mented in the BTSR package.

Arguments

map a non-negative integer from 1 to 5 corresponding to the map function. Default
is map = 4. See the Section The map function.

The map function

The map function T : [0, 1] → [0, 1] in BARC models is a dynamical system, i.e., a function,
potentially depending on a r-dimensional vector of parameters θ. As for today, for all implemented
maps, r = 1.

Available choices are

arguments.model 13

• map = 1, θ = k, for k integer greater or equal to 2.

T (u) = (ku)(mod 1)

• map = 2, 0 ≤ θ ≤ 1

T (u) =
u

θ
I(u < θ) + θ

(u− θ)

(1− θ)
I(u ≥ θ)

• map = 3 (logistic map), 0 ≤ θ ≤ 4,

T (u) = θ(1− θ)

• map = 4 (Manneville-Pomeau map), 0 < θ < 1

T (u) = (u+ u1+θ)(mod 1)

• map = 5 (Lasota-Mackey’s map),

T (u) =
u

(1− u)
I(u ≤ 0.5) + (2u− 1)I(u > 0.5)

arguments.model Available models in BTSR package

Description

The BTSR package supports a variety of models, including

• i.i.d structure,

• regression models,

• short- and long-memory time series models

• chaotic processes.

This documentation describes

• the model argument and available model strings,

• default configurations for specific models,

• how to reproduce models from literature.

Arguments

model character string (case-insensitive) indicating the model to be fitted to the data.
Must be one of the options listed in the Section Supported Models.

14 arguments.model

Supported Models

Internally, all models are handled by the same function and all models can be obtained from the
more general case "*ARFIMAV". When a particular model (e.g. "BREG" or "BARMA") is invoked
some default values are assumed.

The following table summarizes the available distributions and the corresponding string to generate
each model type. The character V at the end of the string indicates that ν is time-varying.

+--------------+--------+------------+---------+-----------+---------+
| Distribution | i.i.d. | Regression | Short | Long | Chaotic |
| | sample | | Memory | Memory | |
+--------------+--------+------------+---------+-----------+---------+
| Beta | BETA | BREG | BARMA | BARFIMA | BARC |
| | | BREGV | BARMAV | BARFIMAV | |
+--------------+--------+------------+---------+-----------+---------+
| Gamma | GAMMA | GREG | GARMA | GARFIMA | |
| | | GREGV | GARMAV | GARFIMAV | |
+--------------+--------+------------+---------+-----------+---------+
| Kumaraswamy | KUMA | KREG | KARMA | KARFIMA | |
| | | KREGV | KARMAV | KARFIMAV | |
+--------------+--------+------------+---------+-----------+---------+
| Matsuoka | MATSU | MREG | MARMA | MARFIMA | |
+--------------+--------+------------+---------+-----------+---------+
| Unit-Lindley | UL | ULREG | ULARMA | ULARFIMA | |
+--------------+--------+------------+---------+-----------+---------+
| Unit-Weibull | UW | UWREG | UWARMA | UWARFIMA | |
| | | UWREGV | UWARMAV | UWARFIMAV | |
+--------------+--------+------------+---------+-----------+---------+

Default values

All models are special cases of the general "*ARFIMAV" structure. When a specific model is selected
via model = "NAME", the package automatically applies these default configurations (any parameter
that does not appear in the equations below is ignored)

i.i.d samples (e.g., BETA, GAMMA,...)

η1t = α1 = µ, η2t = α2 = ν.

Fixed

p <- q <- d <- 0
xreg <- NULL
linkg <- list(g11 = "linear", g2 = "linear",

g21 = "linear", g23 = "linear")

Regression models with νt constant over time (e.g., BREG, GREG,...)

η1t = g11(µt) = α1 +X ′
1tβ1, η2t = α2 = ν.

Fixed

arguments.model 15

p <- q <- d <- 0
xreg <- list(part1 = "user's regressors", part2 = NULL)
linkg <- list(g11 = "user's choice", g12 = "linear",

g2 = "linear", g21 = "linear", g23 = "linear")

Regression models with νt varying on time (e.g. BREGV, GREGV)

η1t = g11(µt) = α1 +X ′
1tβ1, η2t = g21(g2(νt)) = α2 +X ′

2tβ2.

Fixed

p <- q <- d <- 0
linkg <- list(g11 = "user's choice", g12 = "linear",

g2 = "user's choice", g21 = "user's choice",
g22 = "linear", g23 = "linear")

Short-memory models with ν constant over time (ARMA-like) (e.g. BARMA, GARMA,...)

η1t = g11(µt) = α1 +X ′
1tβ1 +

p1∑
i=1

ϕ1i

(
g12(Yt−i)− IX1X

′
1(t−i)β1

)
+

q1∑
k=1

θ1ke1,t−k,

η2t = α2 = ν.

Fixed

d <- 0
xreg <- list(part1 = "user's regressors", part2 = NULL)
linkg <- list(g11 = "user's choice", g12 = "user's choice",

g2 = "linear", g21 = "linear", g23 = "linear")

Short-memory models with νt varying on time (e.g. BARMAV, GARMAV,...)

η1t = g11(µt) = α1 +X ′
1tβ1 +

p1∑
i=1

ϕ1i

(
g12(Yt−i)− IX1

X ′
1(t−i)β1

)
+

q1∑
k=1

θ1krt−k,

ϑt = g2(νt)

η2t = g21(ϑt) = α2 +X ′
2tβ2 +

p2∑
i=1

ϕ2i

(
g22(ϑt−i)− IX2

X ′
2(t−i)β2

)
+

q2∑
k=1

θ2kg23(e1,t−k).

Fixed

d <- 0

Long-memory models with ν constant over time (ARFIMA-like models) (e.g. BARFIMA,
GARFIMA,...)

η1t = g11(µt) = α1 +X ′
1tβ1 +

p1∑
i=1

ϕ1i

(
g12(Yt−i)− IX1X

′
1(t−i)β1

)
+

∞∑
k=1

c1krt−k,

η2t = α2 = ν.

Fixed

16 arguments.model

p <- c("user's p", 0)
q <- c("user's q", 0)
d <- c("user's d", 0)
xreg <- list(part1 = "user's regressors", part2 = NULL)
linkg <- list(g11 = "user's choice", g12 = "user's choice",

g2 = "linear", g21 = "linear", g23 = "linear")

Reproducing Models from the Literature

This section summarizes how to replicate well-known time series models from the literature using
the BTSR package. For each model type, we provide the necessary parameter settings and refer-
ences to the original publications. These configurations act as templates, helping users correctly
apply the package to reproduce results or extend established models.

Key arguments (e.g., error.scale, xregar, y.lower, y.upper, rho) should be set to match the
specifications in the referenced articles. While we focus on the btsr.* functions (see BTSR.functions),
all models can also be implemented using the corresponding parent model functions (for details, see
BTSR.parent.models).

i.i.d. samples: The arguments error.scale and xregar are ignored.

• Beta distribution with parameters shape1 and shape2 compatible with the one from rbeta:

model = "BETA"
alpha = shape1/(shape1 + shape2)
nu = shape1 + shape2

• Gamma distribution with parameters shape and scale compatible with the one from rgamma:

model = "GAMMA"
alpha = shape*scale
nu = shape

• Kumaraswamy distribution with shape parameters shape1 and shape2 (respectively denoted
by a and b in Kumaraswamy 1980):

model = "KUMA"
alpha = (y.lower - y.upper)*(1 - (1-rho)^1/shape2)*1/shape1 + y.lower
nu = shape1

Warning: Choose µ, ν and ρ carefully since | log(1 − ρ)| >> | log(1 − µν)| may cause
numerical instability.

• Matsuoka distribution with shape parameter shape (Matsuoka et al. 2024):

model = "MATSU"
alpha = (shape/(shape+1))^(3/2)

• Unit-Lindley distribution with parameter theta (Mazucheli et al. 2018):

model = "UL"
alpha = 1/(1 + theta)

• Unit-Weibull distribution with parameter mu, beta and tau from (Mazucheli et al. 2019):

arguments.model 17

model = "UW"
alpha = mu
nu = beta
rho = tau

Regression models: the argument error.scale and all entries but g11 in linkg are ignored

• Beta regression (Ferrari and Cribari-Neto 2004): model = "BREG"

• Kumaraswamy regression (Mitnik and Baek 2013): model = "KREG".
• Unit-Lindley regression (Mazucheli et al. 2018): model = "ULREG".
• Unit-Weibull regression (Mazucheli et al. 2019): model = "UWREG".

ARMA-like models

• BARMA model (Rocha and Cribari-Neto 2009; Rocha and Cribari-Neto 2017):

model = "BARMA"
error.scale = 1
xregar = TRUE

• KARMA model (Bayer et al. 2017):

model = "KARMA"
error.scale = 1
xregar = TRUE
y.lower = 0
y.upper = 1
rho = 0.5

• GARMA model (Prass et al. 2025):

model = "GARMA"
error.scale = 0

• MARMA model (Pumi et al. 2025):

model = "MARMA"
error.scale = 1
xregar = TRUE

• ULARMA model (Pumi et al. 2025):

model = "ULARMA"
error.scale = 1
xregar = TRUE

ARFIMA-like models

• BARFIMA model (Pumi et al. 2019):

model = "BARFIMA"
error.scale = 1
xregar = TRUE
d = TRUE (for fitting)

Chaotic models

• BARC model (Pumi et al. 2021): set model = "BARC" and error.scale = 1.

18 arguments.model

References

Bayer FM, Bayer DM, Pumi G (2017). “Kumaraswamy autoregressive moving average mod-
els for double bounded environmental data.” Journal of Hydrology, 555, 385–396. doi:10.1016/
j.jhydrol.2017.10.006.

Ferrari SLP, Cribari-Neto F (2004). “Beta Regression for Modelling Rates and Proportions.” Jour-
nal of Applied Statistics, 31(7), 799–815. doi:10.1080/0266476042000214501.

Kumaraswamy P (1980). “A generalized probability density function for double-bounded random
processes.” Journal of Hydrology, 46(1-2), 79–88. doi:10.1016/00221694(80)900360.

Matsuoka DH, Pumi G, Torrent HS, Valk M (2024). “A three-step approach to production fron-
tier estimation and the Matsuoka’s distribution.” doi:10.48550/arXiv.2311.06086.

Mazucheli J, Menezes AFB, Fernandes LB, de Oliveira RP, Ghitany ME (2019). “The unit-Weibull
distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles condi-
tional on covariates.” Journal of Applied Statistics. doi:10.1080/02664763.2019.1657813.

Mazucheli J, Menezes AJB, Chakraborty S (2018). “On the one parameter unit-Lindley distribution
and its associated regression model for proportion data.” Journal of Applied Statistics. doi:10.1080/
02664763.2018.1511774.

Mitnik PA, Baek S (2013). “The Kumaraswamy distribution: median-dispersion re-parameterizations
for regression modeling and simulation-based estimation.” Statistical Papers, 54, 177–192. doi:10.1007/
s003620110417y.

Prass TS, Pumi G, Taufemback CG, Carlos JH (2025). “Positive time series regression models:
theoretical and computational aspects.” Computational Statistics, 40, 1185–1215. doi:10.1007/
s0018002401531z.

Pumi G, Matsuoka DH, Prass TS (2025). “A GARMA Framework for Unit-Bounded Time Series
Based on the Unit-Lindley Distribution with Application to Renewable Energy Data.” doi:10.48550/
arXiv.2504.07351.

Pumi G, Matsuoka DH, Prass TS, Palm BG (2025). “A Matsuoka-Based GARMA Model for Hy-
drological Forecasting: Theory, Estimation, and Applications.” doi:10.48550/arXiv.2502.18645.

Pumi G, Prass TS, Souza RR (2021). “A dynamic model for double bounded time series with
chaotic driven conditional averages.” Scandinavian Journal of Statistics, 48(1), 68–86. doi:10.1111/
sjos.12439.

Pumi G, Valk M, Bisognin C, Bayer FM, Prass TS (2019). “Beta autoregressive fractionally in-
tegrated moving average models.” Journal of Statistical Planning and Inference, 200, 196–212.
doi:10.1016/j.jspi.2018.10.001.

Rocha AV, Cribari-Neto F (2009). “Beta autoregressive moving average models.” Test, 18, 529–
545. doi:10.1007/s117490080112z.

https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1080/0266476042000214501
https://doi.org/10.1016/0022-1694%2880%2990036-0
https://doi.org/10.48550/arXiv.2311.06086
https://doi.org/10.1080/02664763.2019.1657813
https://doi.org/10.1080/02664763.2018.1511774
https://doi.org/10.1080/02664763.2018.1511774
https://doi.org/10.1007/s00362-011-0417-y
https://doi.org/10.1007/s00362-011-0417-y
https://doi.org/10.1007/s00180-024-01531-z
https://doi.org/10.1007/s00180-024-01531-z
https://doi.org/10.48550/arXiv.2504.07351
https://doi.org/10.48550/arXiv.2504.07351
https://doi.org/10.48550/arXiv.2502.18645
https://doi.org/10.1111/sjos.12439
https://doi.org/10.1111/sjos.12439
https://doi.org/10.1016/j.jspi.2018.10.001
https://doi.org/10.1007/s11749-008-0112-z

arguments.order 19

Rocha AV, Cribari-Neto F (2017). “Erratum to: Beta autoregressive moving average models.” Test,
26, 451–459. doi:10.1007/s1174901705284.

See Also

BTSR.models, BTSR.model.defaults, get.defaults

arguments.order Shared documentation for models order

Description

This is the common documentation for arguments related to order of polynomials and truncation
points for infinite sums, presented in BTSR models.

Arguments

inf a length 1 or 2 integer vector given the truncation point for infinite sums. Default
is inf = 1000. See the Section Model Order for details.

p optional; a length 1 or 2 integer vector given the order of the AR polynomial
(extract and fit only). Default is p = NULL. See the Section Model Order for
details.

q optional; a length 1 or 2 integer vector given the order of the MA polynomial
(extract and fit only). Default is q = NULL. See the Section Model Order for
details.

d a length 1 or 2 logical vector indicating whether the long memory parameter
d should be included in the model either as a fixed or non-fixed parameter (fit
only). If d = FALSE, internally the value of the parameter d is fixed as 0. In this
case, if start or fixed.values include d, the value provided by the user is
ignored. If ν is time-varying and a single value is provided it is assumed that
d1 = d2 = d.

Model Order

The coefficients {cik}k≥0 are defined through the relation (see the section ‘The BTSR Structure’ in
btsr-package)

ci(z) := (1− L)−diθi(z) =

∞∑
k=0

cikz
k, i ∈ {1, 2}.

where θi(z) =
∑qi

k=0 θikz
k is the moving average characteristic polynomial, with order qi. For

practical purposes, the following approximation is used

ci(z) ≈
Ki∑
k=0

cikz
k,

for some Ki sufficiently large.

https://doi.org/10.1007/s11749-017-0528-4

20 arguments.regressors

inf corresponds to the truncation point for all infinite sums using the coefficients {cik}k≥0, i ∈
{1, 2}, including samples generation and derivatives calculation. It can be provided as either a sin-
gle integer (legacy format) or a length 2 integer vector (new format) specifying the trunction points
for part1/part2. If ν is time-varying and a single value is provided the same value is used for both
parts. When d = 0, Fortran automatically sets inf to q (MA order).

By default p and q are set to NULL, in which case their values are computed internally, based on
the size of the argument phi and theta, respectively, in the lists of coefficients (or staring values),
fixed lags, and fixed values. For fitting purposes, if p (analogously, q) and start are both NULL, an
error message is issued. These parameters can be provided as either a single integer (legacy format)
or a length 2 integer vector (new format) specifying orders for part1/part2. If ν is time-varying
and a single value of p (analogously, q) is provided it is assumed that p1 = p2 = p (analogously,
q1 = q2 = q).

arguments.regressors Shared documentation for regressors

Description

This is the common documentation for arguments related to the regressors.

Arguments

xreg optional; external regressors. Can be specified as a vector, a matrix or a list.
Default is xreg = NULL. For details, see the Section Regressors format.

xnew optional; nnew new observations of the external regressors (extract and fit only).
Follows the same format is the same as xreg. Default is xnew = NULL.

xreg.start optional; initial value for the regressors (to initialize recursion). Can be specified
as a vector or a list. Default is xreg.start = NULL, in which case, the average of
the first p values (AR order) is used. Only relevant if xreg is provided, xregar
= TRUE and p > 0. For details, see the Section Regressors format.

xregar a length 1 or 2 logical vector indicating whether xreg should be included in
the AR recursion for each part of the model. Default is xregar = TRUE. Only
relevant if p > 0. If a single value is provided and ν is time-varying, the same
option is assumed for both parts of the model. See the Section ‘The BTSR
structure’ in btsr-package for details.

Regressors format

In-sample (xreg) and out-of-sample values (xnew) for regressors can be provided in two formats

• Legacy structure: a vector or matrix. Internally xreg is converted to xreg = list(part1 =
xreg, part2 = NULL). The same applies to xnew

• New structure: a list with elements part1 (regressors for first model component) and part2
(regressors for second model component), each being a vector or matrix.

arguments.series 21

xreg.start can be provided in two formats

• Legacy structure: a vector with initial values for each regressor. Internally xreg.start is
converted to xreg.start = list(part1 = xreg.start, part2 = NULL).

• New structure: a list with elements part1 and part2, each a vector of initial values for the
respective regressors.

The following rules apply to xreg, xnew and xreg.start

• if model corresponds to a case where ν is constant over time (e.g., model = "BARMA"), part2
is ignored.

• For simulation, regressors must include n + burn observations.

• For model fitting, parameter initialization, or component extraction, the number of regressor
observations must match the length of the observed time series yt.

• When xreg = NULL or nnew = 0, xnew is ignored. If nnew > 0 and the number of regressors in
xnew does not match xreg an error message is issued.

• If starting values for xreg are not provided and pi > 0 for the ith part of the model, the default
behavior is to assume

Xt =
1

pi

pi∑
k=1

Xk, for t < 1.

arguments.series Shared documentation for the time series

Description

This is the common documentation for arguments related to the observed/simulated time series and
its conditional distribution.

Arguments

n the sample size of the output time series yt after burn-in (simulation only). De-
fault is n = 1.

nnew optional; the number of out-of sample predicted values required (extract and fit
only). Default is nnew = 0.

burn the length of the ‘burn-in’ period (simulation only). Default is burn = 0. The
first burn values of the time series are discarded.

yt numeric vector with the observed time series (extract and fit only). Missing
values (NA’s) are not allowed.

y.start optional; an initial value for Yt (to initialize recursions when t < 1). Default
is y.start = NULL, in which case, the recursion assumes that Yt = g−1

12 (0), for
t < 1. Only relevant if p > 0.

rho the quantile being considered in the conditional distribution of Yt (only present
in Kumaraswamy and Unit-Weibull based models). It can be any positive num-
ber between 0 and 1. Default is rho = 0.5, which corresponds to the median.

22 BARC.functions

y.lower the lower limit for the Kumaraswamy density support. Default is y.lower = 0.

y.upper the upper limit for the Kumaraswamy density support. Default is y.upper = 1.

vt.start optional; an initial value for ϑt (to initialize recursions when t < 1). Default is
vt.start = NULL, in which case, the recursion assumes that ϑt = g−1

22 (0), for
t < 1. Only relevant if ν is time-varying and p2 > 0.

e2.start optional; an initial value for g23(e1t) (to initialize recursions when t < 1).
Default is e2.start = NULL, in which case, the recursion assumes that e1t =
g−1
23 (0), for t < 1. Only relevant if ν is time-varying and q2 > 0 or d2 > 0.

BARC.functions Functions to simulate, extract components and fit BARC models

Description

These functions can be used to simulate, extract components and fit any model of the class barc.
A model with class barc is a special case of a model with class btsr. See the Section ‘The BTSR
structure’ in btsr-package for more details on the general structure. See also ‘Details’ below.

Usage

BARC.sim(n = 1, burn = 0, y.start = NULL, xreg = NULL,
xreg.start = NULL, xregar = TRUE, coefs = NULL, map = 4,
error.scale = 0, linkg = "linear", configs.linkg = NULL,
linkh = "linear", configs.linkh = list(ctt = 1, power = 1),
complete = FALSE, debug = FALSE)

BARC.extract(yt, y.start = NULL, xreg = NULL, xreg.start = NULL,
xnew = NULL, xregar = TRUE, nnew = 0, p = NULL, coefs = NULL,
lags = NULL, fixed.values = NULL, fixed.lags = NULL, error.scale = 0,
map = 4, linkg = "linear", configs.linkg = NULL, linkh = "linear",
configs.linkh = list(ctt = 1, power = 1), llk = TRUE, sco = FALSE,
info = FALSE, debug = FALSE)

BARC.fit(yt, y.start = NULL, xreg = NULL, xreg.start = NULL,
xregar = TRUE, xnew = NULL, nnew = 0, p = NULL,
ignore.start = FALSE, start = NULL, lags = NULL, fixed.values = NULL,
fixed.lags = NULL, lower = NULL, upper = NULL, map = 4,
linkg = "linear", configs.linkg = NULL, linkh = "linear",
configs.linkh = list(ctt = 1, power = 1), sco = FALSE, info = FALSE,
error.scale = 0, control = NULL, report = TRUE, debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is n = 1.

burn a non-negative integer. length of "burn-in" period. Default is burn = 0.

BARC.functions 23

y.start optionally, an initial value for Yt (to be used in the recursions). Default is
y.start = NULL, in which case, the recursion assumes that Yt = g−1

12 (0), for
t < 1. Only relevant if p > 0.

xreg optionally, a vector or matrix of external regressors. Default is xreg = NULL.
For simulation purposes, the length of xreg must be equal to n + burn. For
extraction or fitting purposes, the length of xreg must be the same as the length
of the observed time series Yt.

xreg.start optionally, a vector of initial value for Xt (to be used in the recursions). Default
is xreg.start = NULL, in which case, the average of the first p values is used,
that is, the recursion assumes that Xt = p−1

∑p
k=1 Xk, for t < 1. Only

relevant if xregar = TRUE and p > 0.
xregar logical; indicates whether xreg should be included in the AR recursion of the

model. Default is xregar = TRUE. Only relevant if xreg is included and p > 0.
See the Section ‘The BTSR structure’ in btsr-package for details.

coefs a list with the coefficients of the model. An empty list will result in an error.
The arguments that can be passed through this list are

• alpha: optionally, a numeric value corresponding to the intercept. If the
argument is missing, it will be treated as zero.

• beta: optionally, a vector of coefficients corresponding to the regressors in
xreg. For simulation purposes, if xreg is provided but coefs does not have
a beta argument, an error message is issued. The extracting function also
verify the fixed.values list before issuing an error message.

• phi: optionally, for the simulation function this must be a vector of size,
p corresponding to the autoregressive coefficients (including the ones that
are zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

• theta the parameter (or vector of parameters) corresponding to the map
function. If map = 5 this value is ignored. For simulation, purposes, the
default is map = 4 and theta = 0.5. Note: Do not confuse theta from a
BARC model with the moving average term in the general BTSR class of
models

• nu the dispersion parameter. If missing, an error message is issued.
• u0 a numeric value in the interval (0, 1), corresponding to the value of the

random variable U0. For simulation purposes, the default is u0 = pi/4.
For simulation purposes, an empty list will result in an error message. For ex-
traction purposes, an error message will be issued if both coefs and fixed.values
are empty. The argument coefs is not used when fitting a model. Missing pa-
rameters are treated as zero.

map a non-negative integer from 1 to 5 corresponding to the map function. Default
is map = 4. See the Section The map function.

error.scale the scale for the error term. Default is error.scale = 0 (data scale).
linkg character or a two character vector indicating which links must be used in the

model. See the Section ‘The BTSR structure’ in btsr-package for details and
link.btsr for valid links. If only one value is provided, the same link is used for
µt and for Yt in the AR part of the model. Default is linkg = "linear".

24 BARC.functions

configs.linkg a list with two elements, ctt and power, which define the constant a and the ex-
ponent b in the link function g(x) = axb. Each element can be a single numeric
value (applied uniformly across all linear links), a numeric vector of length 2, or
a named list with entries g11 and g12. This argument is only used when the link
function is "linear" or "polynomial". The default is configs.linkg = NULL,
in which case the function internally assumes configs.linkg = list(ctt =
list(g11 = 1, g12 = 1), power = list(g11 = 1, g12 = 1)).

linkh a character indicating which link must be associated to the chaotic process. See
the Section ‘The BTSR structure’ in btsr-package for details and link.btsr for
valid links. Default is linkh = "linear".

configs.linkh a list with extra configurations for the link h. For now, only used if linkh =
"linear" or "polynomial". Default is configs.linkh = list(ctt = 1, power
= 1).

complete logical; if FALSE returns only yt, else returns additional components. Default
is complete = FALSE.

debug logical, if TRUE the output from Fortran is return (for debugging purposes). De-
fault is debug = FALSE.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

xnew a vector or matrix, with nnew observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast. Default is xreg =
NULL. If xreg = NULL or nnew = 0, xnew is ignored. If nnew > 0 and the number
of regressors in xnew does not match xreg an error message is issued.

nnew optionally, the number of out-of sample predicted values required. Default is
nnew = 0.

p optionally, a non-negative integer. The order of the AR polynomial. Default is
p = NULL, in which case the value of p is computed internally, based on the size
of the argument phi in the lists of coefficients (or staring values), fixed lags,
and fixed values. For fitting purposes, if p and start are both NULL, an error
message is issued.

lags optionally, a list with the lags that the values in coefs correspond to. The
names of the entries in this list must match the ones in coefs (or start). For
one dimensional coefficients, the lag is obviously always 1 and can be sup-
pressed. The default is lags = NULL, in which the lags are computed from the
fixed.lags argument (if provided). If both, lags and fixed.lags are missing,
it is assumed that all lags must be used. The arguments lags and fixed.lags
are complementary. Either suffices, or mix them (e.g., lags for some parame-
ters, fixed.lags for others).

fixed.values optionally, a list with the values of the coefficients that are fixed. The default
is fixed.lags = NULL. By default, if a given vector (such as the vector of AR
coefficients) has fixed values and the corresponding entry in this list is empty,
the fixed values are set as zero. The names of the entries in this list must match
the ones in coefs (or start).

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.

BARC.functions 25

For one dimensional coefficients, the lag is obviously always 1 and can be sup-
pressed. If an empty list is provided and the model has fixed lags, the argument
lags is used as reference.

llk logical; indicates whether the value of the log-likelihood function should be
returned. Default is llk = TRUE.

sco logical; indicates whether the score vector should be returned. Default is sco =
FALSE. For now, the score vector is computed using numerical derivatives.

info logical; indicates whether the information matrix should be returned. Default is
info = FALSE. For the fitting function, info is automatically set to TRUE when
report = TRUE. For now, the information matrix is computed using numerical
derivatives.

ignore.start logical; indicates whether the argument start should be ignored. If starting
values are not provided, the function uses the default values and ignore.start
is ignored. In case starting values are provided and ignore.start = TRUE, those
starting values are ignored and recalculated. The default is ignore.start =
FALSE.

start a list with the starting values for the non-fixed coefficients of the model. The
default is start = NULL, in which case the function coefs.start is used internally
to obtain starting values for the parameters.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. Default is lower = NULL.
The default is to assume that the parameters have no lower bound except for nu,
for which de default is 0. Only the bounds for bounded parameters need to be
specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. Default is upper = NULL.
The default is to assume that the parameters have no upper bound. Only the
bounds for bounded parameters need to be specified.

control a list with configurations to be passed to the optimization subroutines. Default
is control = NULL. Missing arguments will receive default values. For details,
see fit.control.

report logical; indicates whether the summary from the fitted model should be be
printed. Default is report = TRUE, in which case info is automatically set to
TRUE.

... further arguments passed to the internal functions. See, for instance, sum-
mary.btsr for details.

Details

Sim, Extract and Fit functions:
The function BARC.sim generates a random sample from a BARC(p) model.
The function BARC.extract allows the user to extract the components Yt, µt, ηt = g(µt), et,
T t(U0), the log-likelihood, the score vector and the information matrix associated to a given set
of parameters. This function can be used by any user to create an objective function that can be
passed to optimization algorithms not available in the BTSR Package.

26 BARC.functions

The function BARC.fit fits a BARC model to a given univariate time series. For now, available
optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds for
the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Particular cases:
Neither the beta regression or an i.i.d. sample from a beta distribution can be obtained as special
cases of the BARC model since the term h(T (U0)) is always present.
The model from Pumi et al. (2021) is obtained by setting xregar = TRUE (so that the regressors
are included in the AR part of the model) and using the same link for Yt and µt.

Value

By default, the function BARC.sim returns the simulated time series yt. If complete = TRUE, it
returns a list with the following components

• model: string with the text "BARC"

• yt: the simulated time series Yt

• mut: the conditional mean µt

• etat: the linear predictor ηt = g11(µt)

• u0: the starting values of U0

• Ts: the chaotic process T t(U0)

• error: the error term e1t

• out.Fortran: the output from FORTRAN (if requested).

The function BARC.extract returns a list with the following components.

• model: string with the text "BARC"

• yt: the observed time series Yt

• TS: the chaotic process T t(U0).

• mut: the conditional mean µt

• etat: the linear predictor ηt = g11(µt)

• error: the error term e1t

• forecast: the out-of-sample forecast (if requested)

• xnew: the out-of-sample values of xreg provided by the user (only present if the model in-
cludes regressors and forecast is requested)

• sll: the sum of the conditional log-likelihood (if requested)

• score: the score vector (if requested)

• info.Matrix.: the score vector (if requested)

• out.Fortran: FORTRAN output (if requested)

The function BARC.fit returns a list with the following components.

• model: string with the text "BARC"

• call: string with a complete description of the model, including the AR and MA order.

BARC.functions 27

• n: the sample size used for estimation.

• series: the observed time series Yt

• gyt: a vector or a matrix with the transformed time series g11(Yt) and g12(Yt). Only returns
a matrix if the links g11 and g12 are not the same.

• xreg: a vector or matrix of regressors Xt (if included in the model).

• control: a list of control parameters.

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer (if
any), or NULL.

• counts: an integer giving the number of function evaluations.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• fitted.values: the conditional time series µt and the chaotic process T t(U0), which corre-
sponds to the in-sample forecast, also denoted fitted values.

• etat: the linear predictor η1t = g11(µt)

• error: the error term e1t

• residual: the observed values Yt minus the fitted values µt. The same as the error term if
error.scale = 0.

• forecast: a matrix with the out-of-sample forecast (if requested) for µt and η1t

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only included if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• score: the score vector (if requested)

• info.Matrix: the information matrix (if requested)

• link: the codes for the link functions (for summary purposes)

• configs: a list with the configurations passed to FORTRAN to fit the model. This information
is used by the prediction function.

• out.Fortran: FORTRAN output (if requested).

The map function

The map function T : [0, 1] → [0, 1] in BARC models is a dynamical system, i.e., a function,
potentially depending on a r-dimensional vector of parameters θ. As for today, for all implemented
maps, r = 1.

Available choices are

• map = 1, θ = k, for k integer greater or equal to 2.

T (u) = (ku)(mod 1)

• map = 2, 0 ≤ θ ≤ 1

T (u) =
u

θ
I(u < θ) + θ

(u− θ)

(1− θ)
I(u ≥ θ)

28 BARC.functions

• map = 3 (logistic map), 0 ≤ θ ≤ 4,

T (u) = θ(1− θ)

• map = 4 (Manneville-Pomeau map), 0 < θ < 1

T (u) = (u+ u1+θ)(mod 1)

• map = 5 (Lasota-Mackey’s map),

T (u) =
u

(1− u)
I(u ≤ 0.5) + (2u− 1)I(u > 0.5)

References

Pumi G, Prass TS, Souza RR (2021). “A dynamic model for double bounded time series with
chaotic driven conditional averages.” Scandinavian Journal of Statistics, 48(1), 68–86. doi:10.1111/
sjos.12439.

See Also

BTSR.functions: sim, extract and fit functions for BTSR models

BTSR.parent.models: sim, extract and fit functions for parent models

get.defaults: Retrieve default arguments for BTSR package functions

Examples

###
#
Example of usage of BARC.sim, BARC.extract and BARC.fit
#
###

#--
Generating a sample from a BARC model
#--
set.seed(1234)
m1 <- BARC.sim(

coefs = list(nu = 15, theta = 0.85, u0 = pi / 4),
linkg = "linear",
linkh = "linear",
configs.linkh = list(ctt = 0.6),
n = 100,
complete = TRUE

)

plot.ts(m1$yt)
lines(m1$mut, col = "red")

#--
Extracting the conditional time series given yt and

https://doi.org/10.1111/sjos.12439
https://doi.org/10.1111/sjos.12439

BARC.functions 29

a set of parameters
#--

e1 <- BARC.extract(
yt = m1$yt,
map = 4,
coefs = list(nu = 15, theta = 0.85),
fixed.values = list(u0 = pi / 4),
linkg = "linear",
linkh = "linear",
configs.linkh = list(ctt = 0.6),
llk = TRUE,
sco = TRUE,
info = TRUE

)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
score vector and information matrix are obtained
numerically.
#---
e1$sll
e1$score
e1$info.Matrix

#--
Fitting a BARC model. Assuming only alpha fixed.
#--
f1 <- BARC.fit(

yt = m1$yt,
map = 4,
configs.linkh = list(ctt = 0.6),
start = list(nu = 10, theta = 0.6, u0 = 0.5),
lower = list(nu = 0, theta = 0, u0 = 0),
upper = list(theta = 1, u0 = 1),
fixed.values = list(alpha = 0),
control = list(iprint = -1, method = "Nelder-Mead")

)

coefficients(f1)

plot.ts(m1$yt)
lines(f1$fitted.values[, "mut"], col = "red")

#--
Out-of-sample forecast
#--
pred <- predict(f1, nnew = 5)

30 BTSR.functions

pred$forecast

BTSR.functions Generic functions to simulate, extract components and fit BTSR mod-
els

Description

These generic functions can be used to simulate, extract components and fit any model of the class
btsr. See ‘Details’ below.

The package handles function arguments in two compatible formats

• Legacy structure (pre-1.0.0). Used for models with fixed or no ν parameter. Automatically
converted to the new format when processed.

• New structure (1.0.0+). Required for models with time-varying ν parameter.

All functions accept both formats seamlessly, ensuring backward compatibility. The internal pro-
cessing automatically standardizes to the new structure.

Usage

btsr.sim(model, ...)

btsr.extract(model, ...)

btsr.fit(model, ...)

Arguments

model character string (case-insensitive) indicating the model to be fitted to the data.
Must be one of the options listed in the Section Supported Models.

... further arguments passed to the internal functions. See, for instance, sum-
mary.btsr for details.

Details

A detailed description of the general structure (mathematical formulation) of BTSR models, asso-
ciated to the btsr class, is presented in Section ‘The BTSR Structure’ of btsr-package. Particular
models are discussed in arguments.model.

All functions are compatible with the new format for the arguments, introduced in version 1.0.0.
and the previous format.

• The function btsr.sim is used to generate random samples from any BTSR models.

BTSR.functions 31

• The function btsr.extract allows the user to extract all conditional time series, the log-
likelihood, and the vectors and matrices used to calculate the score vector and the information
matrix associated to a given set of parameters. This function can be used by any user to
create an objective function that can be passed to optimization functions not available in BTSR
Package. At this point, there is no other use for which this function was intended.

• The function btsr.fit fits a BTSR model to a given univariate time series. For now, available
optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds
for the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

For compatibility with previous versions of the package, all functions associated to parent models
(e.g. BARFIMA) are still available (see BTSR.parent.models). Also, analogous functions are avail-
able for parent models with time varying ν (e.g. BARFIMAV). The list of arguments and default
values for these specific functions can be accessed using the function get.defaults.

Particular models (e.g. BETA, BARMA) share the same arguments as the parent model, however,
some arguments can have different default values (see the documentation for shared arguments for
details). Information on the parent model can be obtained using the function BTSR.model.defaults.

Value

By default, the simulation function return the simulated time series yt. If complete = TRUE, it
returns a list with the following components

• model: string with the name of the model.

• yt: the simulated time series Yt

• mut: the conditional mean µt

• etat: the linear predictor(s)
For all models where ν is constant over time, returns η1t = g11(µt)
For models with time varying ν, returns a matrix whose columns are η1t = g11(µt) and
η2t = g21(ϑt).

• nut: the conditional precision νt (only for models with time varying ν)

• varthetat: the transformed time series ϑt = g2(νt). (only for models with time varying ν)
For BARFIMAV models, if g2 = "default", then varthetat is the conditional dispersion
given by ϑt = (1 + νt)

−1.

• error: the error term e1t

• out.Fortran: the output from Fortran (if requested).

The extraction function returns a list with the following components

• model: string with the name of the model.

• yt: the simulated time series Yt

• mut: the conditional mean µt

• etat: the linear predictor(s)
For models with ν fixed, returns η1t = g11(µt)
For models with time varying ν, returns a matrix whose columns are η1t = g11(µt) and
η2t = g21(ϑt).

32 BTSR.functions

• nut: the conditional precision νt (only for models with time varying ν)

• varthetat: the transformed time series ϑt = g2(νt). (only for models with time varying ν)
For BARFIMAV models, if g2 = "default", then varthetat is the conditional dispersion
given by ϑt = (1 + νt)

−1.

• error: the error term e1t (depends on the argument error.scale)

• forecast: the out-of-sample forecast. (if requested)
If νt is fixed: a vector with the predicted values for µt and η1t
If νt is time varying: a matrix the predicted values for µt and η1t, νt, ϑt and η2t.

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only included if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• score: the score vector (if requested)

• info.Matrix.: the score vector (if requested)

• D, T, E, h: additional matrices and vectors used to calculate the score vector and the information
matrix. (if requested)

• out.Fortran: FORTRAN output (if requested)

The fitting function returns a list with the following components.

• model: character; the same as the input argument.

• call: string with a complete description of the model, including the AR and MA order.

• n: the sample size used for estimation.

• series: the observed time series Yt

• gyt: a vector or a matrix with the transformed time series g11(Yt) and g12(Yt). Only returns
a matrix if the links g11 and g12 are not the same.

• xreg: a vector or matrix of regressors Xt (if included in the model).

• control: a list of control parameters.

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer (if
any), or NULL.

• counts: an integer giving the number of function evaluations.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• fitted.values: in-sample forecast.
If νt is fixed: a vector with the in-sample value of µt.
If νt is time varying: a matrix with the in-sample values of µt, νt and ϑt.

• etat: the linear predictor(s)
For models with ν fixed, returns η1t = g11(µt)
For models with time varying ν, returns a matrix whose columns are η1t = g11(µt) and
η2t = g21(ϑt).

• error: the error term e1t (depends on the argument error.scale)

BTSR.functions 33

• residual: the observed values Yt minus the fitted values µt. The same as the error term if
error.scale = 0.

• forecast: the out-of-sample forecast. (if requested)
If νt is fixed: a vector with the predicted values for µt and η1t
If νt is time varying: a matrix the predicted values for µt and η1t, νt, ϑt and η2t.

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only included if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• score: the score vector (if requested)

• info.Matrix: the information matrix (if requested)

• link: the codes for the link functions (for summary purposes)

• configs: a list with the configurations passed to FORTRAN to fit the model. This information
is used by the prediction function.

• out.Fortran: FORTRAN output (if requested).

See Also

BARC.functions: sim, extract and fit functions for BARC models

BTSR.parent.models: sim, extract and fit functions for parent models

get.defaults: Retrieve default arguments for BTSR package functions

Examples

###
#
Examples of usage of btsr.sim
#
###
#--
Generating a Beta model were both mu and nu do not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
#--

CASE 1: using the legacy format for coefs
set.seed(1234)
y1 <- btsr.sim(

model = "BETA", n = 1000,
coefs = list(alpha = 0.2, nu = 20)

)
hist(y1)

CASE 2: using the new layout for coefs
set.seed(1234)
y2 <- btsr.sim(

model = "BETA", n = 1000,
coefs = list(part1 = list(alpha = 0.2), part2 = list(alpha = 20))

)
hist(y2)

34 BTSR.functions

CASE 3: function for the parent model plus legacy format for coefs.
- requires setting linkg = "linear", otherwhise the default "logit"
link is used.
set.seed(1234)
y3 <- BARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.2, nu = 20)

)
hist(y3)

CASE 4: function for the parent model plus new format for coefs.
- requires setting linkg = "linear", otherwhise the default "logit"
link is used.
set.seed(1234)
y4 <- BARFIMA.sim(

n = 1000, linkg = "linear",
coefs = list(part1 = list(alpha = 0.2), part2 = list(alpha = 20))

)
hist(y4)

comparing the results:
range(abs(y2 - y1))
range(abs(y3 - y1))
range(abs(y3 - y4))

#--
Generating a sample from a Beta regression model
#--
burn <- 100
n <- 500
N <- n + burn
covar <- cbind(sin(2 * pi * (1:N) / 50), 1:N)

set.seed(1234)
y1 <- btsr.sim(

model = "BREG", linkg = "logit",
n = n, burn = burn, xreg = covar,
coefs = list(alpha = -1.3, beta = c(0.6, 0.002), nu = 30),
complete = TRUE

)

The regressors: X1 = sin(2*pi*t/50) and X2 = t
plot.ts(

covar,
main = "Regressors" ~ X[1][t] == sin(2 * pi * t / 50) ~ "and" ~ X[2][t] == t

)

Conditional time series:
plot.ts(y1$etat, main = "Linear predictor" ~ eta[t] == g[11](mu[t]))
plot.ts(y1$mut, main = "Conditional mean" ~ mu[t])
plot.ts(y1$yt, main = "Time series" ~ Y[t])

BTSR.functions 35

###
#
Examples of usage of btsr.extract
#
###
#--
Generating a sample from a BARMAX(1,1) model (BARMA with covariates)
#--
burn <- 100
n <- 500
N <- n + burn
covar <- cbind(sin(2 * pi * (1:N) / 50), 1:N)

set.seed(1234)
m1 <- btsr.sim(

model = "BARMA", linkg = "logit",
n = n, burn = burn, xreg = covar,
coefs = list(
alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
error.scale = 1, complete = TRUE

)

Extracting components assuming that all coefficients are non-fixed
e1 <- btsr.extract(

model = "BARMA", yt = m1$yt,
xreg = covar[(burn + 1):N,], linkg = "logit",
coefs = list(

alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
llk = TRUE, sco = TRUE, info = TRUE

)

Extracting components assuming that all coefficients are fixed
- no need to provide fixed.lags in this case.
e2 <- btsr.extract(

model = "BARMA", yt = m1$yt,
xreg = covar[(burn + 1):N,], linkg = "logit",
fixed.values = list(

alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
llk = TRUE, sco = TRUE, info = TRUE

)

Extracting components assuming that some coefficients are fixed
- e3 and e4 give the same result
- e3 uses legacy format for all arguments
- e4 uses the new format for all arguments (not optimal here)
e3 <- btsr.extract(

model = "BARMA", yt = m1$yt,

36 BTSR.functions

xreg = covar[(burn + 1):N,], linkg = "logit",
coefs = list(

phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002)

),
fixed.values = list(alpha = 0, nu = 20),
llk = TRUE, sco = TRUE, info = TRUE

)

e4 <- btsr.extract(
model = "BARMA", yt = m1$yt,
xreg = list(part1 = covar[(burn + 1):N,]),
linkg = list(g11 = "logit"),
coefs = list(part1 = list(

phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002)

)),
fixed.values = list(

part1 = list(alpha = 0),
part2 = list(alpha = 20)

),
llk = TRUE, sco = TRUE, info = TRUE

)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut), head(e2$mut), head(e3$mut), head(e4$mut))

#--
comparing the log-likelihood values obtained (must be the all equal)
#--
c(e1$sll, e2$sll, e3$sll, e4$sll)

#--
comparing the score vectors:
#--
- e1 must have 6 values: dl/dro values and dl/dlambda values
- e2 must be empty
- e3 and e4 must have only the values corresponding
to the non-fixed coefficient. The value sof
dl/dlambda are the same as in e1, but dl/drho are
differente since the mixed derivatives are not present.
#--
round(e1$score, 4)
e2$score
e3$score
e4$score

#--
comparing the information matrices.
#--
- e1 must be a 6x6 matrix

BTSR.functions 37

- e2 must be empty
- e3 and e4 must have only the value corresponding
to the non-fixed coefficient
#--
round(e1$info.Matrix, 4)
e2$info.Matrix
e3$info.Matrix
e4$info.Matrix

#--
Generating a sample from a BARFIMAVX(1,d1,1)x(1,0,1) with d1 = 0.35
(BARFIMAV with covariates)
Here using the nre format for coefficients and xreg is required.
#--
burn <- 100
n <- 500
N <- n + burn
covar1 <- cbind(sin(2 * pi * (1:N) / 50), 1:N)
covar2 <- sin(2 * pi * (1:N) / 25)

set.seed(1234)
m1 <- btsr.sim(

model = "BARFIMAV",
linkg = list(g11 = "logit", g2 = "default", g21 = "logit"),
n = n, burn = burn, xreg = list(part1 = covar1, part2 = covar2),
coefs = list(
part1 = list(

alpha = 0, d = 0.35, phi = -0.65,
theta = -0.25, beta = c(0.6, -0.002)

),
part2 = list(

alpha = -3, phi = 0.25,
theta = -0.2, beta = -0.15

)
),
error.scale = 1, complete = TRUE, vt.start = 0.02

)

Extracting components assuming that all coefficients are non-fixed
e1 <- btsr.extract(

model = "BARFIMAV", yt = m1$yt,
xreg = list(part1 = covar1[(burn + 1):N,], part2 = covar2[(burn + 1):N]),
linkg = list(g11 = "logit", g2 = "default", g21 = "logit"),
coefs = list(

part1 = list(
alpha = 0, d = 0.35, phi = -0.65,
theta = -0.25, beta = c(0.6, -0.002)

),
part2 = list(

alpha = -3, phi = 0.25,
theta = -0.2, beta = -0.15

)

38 BTSR.functions

),
vt.start = 0.02,
llk = TRUE, sco = TRUE, info = TRUE, extra = TRUE, debug = TRUE

)

score vector
e1$score

information matrix
e1$info.Matrix

###
#
Examples of usage of btsr.fit
#
###
#--
Generating a sample from a BARMAVX(1,0)x(0,1) (BARMAV with covariates)
#--
burn <- 100
n <- 500
N <- n + burn
covar1 <- cbind(sin(2 * pi * (1:N) / 50), 1:N)
covar2 <- sin(2 * pi * (1:N) / 25)

set.seed(1234)
m1 <- btsr.sim(

model = "BARMAV",
linkg = list(g11 = "logit", g2 = "default", g21 = "logit"),
n = n, burn = burn, xreg = list(part1 = covar1),
coefs = list(

part1 = list(
alpha = 0, phi = -0.3,
beta = c(0.6, -0.002)

),
part2 = list(alpha = -2.5, theta = -0.4)

),
error.scale = 1, complete = TRUE

)

fitting the model
f1 <- btsr.fit(

model = "BARMAV", yt = m1$yt, report = FALSE, info = TRUE,
xreg = list(part1 = covar1[(burn + 1):N,]),
linkg = list(g11 = "logit", g2 = "default", g21 = "logit"),
p = c(1, 0), q = c(0, 1)

)

fitting the model using the name string for the parent model
- same result
f2 <- btsr.fit(

model = "BARFIMAV", yt = m1$yt, report = FALSE, info = TRUE,
xreg = list(part1 = covar1[(burn + 1):N,]),

BTSR.model.defaults 39

linkg = list(g11 = "logit", g2 = "default", g21 = "logit"),
p = c(1, 0), q = c(0, 1), d = FALSE

)

summary(f1, full.report = TRUE) # default
summary(f2, full.report = TRUE)

summary(f1, full.report = FALSE) # simplified output
summary(f2, full.report = FALSE)

BTSR.model.defaults Print Model Default Settings

Description

Displays the default settings for a specified model in the BTSR package, including link functions
and their configurations.

Usage

BTSR.model.defaults(model)

Arguments

model Character string specifying the model name (e.g., "KREGV", "MARMA").

Value

Invisibly returns a list of data frames containing:

• basic_info - Model name and parent model (if different)

• link_functions - Link functions with their ctt and power parameters (for "polynomial"
links)

Examples

Not run:
Print settings for KREGV model
BTSR.model.defaults("KREGV")

Print settings for MARMA model
BTSR.model.defaults("MARMA")

End(Not run)

40 BTSR.parent.models

BTSR.models Table of available model

Description

This function returns the table of available models.

Usage

BTSR.models(do.plot = interactive())

Arguments

do.plot logical; if TRUE returns a plot with the output, otherwise prints the results in the
console.

Value

NULL (invisibly). The function is called for its side effects (printing/plotting).

BTSR.parent.models BTSR models with ν constant over time

Description

Function to simulate, extract components, and fit BTSR parent models

• ν constant over time:
BARFIMA, GARFIMA, KARFIMA, MARFIMA, ULARFIMA, and UWARFIMA

• ν varying over time:
BARFIMAV, GARFIMAV, KARFIMAV and UWARFIMAV

all of which are special cases of the general BTSR structure. See the Section ‘The BTSR Structure’
in btsr-package for details. These functions are maintained for backward compatibility.

All models share core arguments with

• BARFIMA.sim() for simulation

• BARFIMA.extract() for extraction

• BARFIMA.fit() for fitting.

BTSR.parent.models 41

Usage

BARFIMA.sim(n = 1, burn = 0, y.start = NULL, xreg = NULL,
xreg.start = NULL, xregar = TRUE, coefs = NULL, error.scale = 1,
linkg = "logit", configs.linkg = NULL, inf = 1000, complete = FALSE,
debug = FALSE)

BARFIMAV.sim(vt.start = NULL, e2.start = NULL, linkg = list(g11 =
"logit", g2 = "default", g21 = "log"), ...)

GARFIMA.sim(linkg = "log", ...)

GARFIMAV.sim(vt.start = NULL, e2.start = NULL, linkg = list(g11 = "log",
g2 = "default", g21 = "log"), ...)

KARFIMA.sim(rho = 0.5, y.lower = 0, y.upper = 1, ...)

KARFIMAV.sim(rho = 0.5, y.lower = 0, y.upper = 1, vt.start = NULL,
e2.start = NULL, linkg = list(g11 = "logit", g2 = "default", g21 =
"logit"), ...)

MARFIMA.sim(linkg = "cloglog", ...)

ULARFIMA.sim(...)

UWARFIMA.sim(rho = 0.5, ...)

UWARFIMAV.sim(rho = 0.5, vt.start = NULL, e2.start = NULL,
linkg = list(g11 = "logit", g2 = "default", g21 = "log"), ...)

BARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, y.start = NULL,
xreg.start = NULL, p = NULL, q = NULL, coefs = NULL, lags = NULL,
fixed.values = NULL, fixed.lags = NULL, xregar = TRUE,
error.scale = 1, inf = 1000, linkg = "logit", configs.linkg = NULL,
m = 0, llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE,
debug = FALSE)

BARFIMAV.extract(vt.start = NULL, e2.start = NULL, linkg = list(g11 =
"logit", g2 = "default", g21 = "log"), ...)

GARFIMA.extract(linkg = "log", ...)

GARFIMAV.extract(vt.start = NULL, e2.start = NULL, linkg = list(g11 =
"log", g2 = "default", g21 = "log"), ...)

KARFIMA.extract(rho = 0.5, y.lower = 0, y.upper = 1, ...)

KARFIMAV.extract(rho = 0.5, y.lower = 0, y.upper = 1, vt.start = NULL,
e2.start = NULL, linkg = list(g11 = "logit", g2 = "default", g21 =

42 BTSR.parent.models

"logit"), ...)

MARFIMA.extract(linkg = "cloglog", ...)

ULARFIMA.extract(...)

UWARFIMA.extract(rho = 0.5, ...)

UWARFIMAV.extract(rho = 0.5, vt.start = NULL, e2.start = NULL,
linkg = list(g11 = "logit", g2 = "default", g21 = "log"), ...)

BARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, y.start = NULL,
xreg.start = NULL, p = NULL, d = FALSE, q = NULL, xregar = TRUE,
inf = 1000, start = NULL, ignore.start = FALSE, lags = NULL,
fixed.values = NULL, fixed.lags = NULL, lower = NULL, upper = NULL,
error.scale = 1, linkg = "logit", configs.linkg = NULL, m = 0,
llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE,
control = NULL, report = TRUE, debug = FALSE, ...)

BARFIMAV.fit(vt.start = NULL, e2.start = NULL, linkg = list(g11 =
"logit", g2 = "default", g21 = "log"), ...)

GARFIMA.fit(linkg = "log", ...)

GARFIMAV.fit(vt.start = NULL, e2.start = NULL, linkg = list(g11 = "log",
g2 = "default", g21 = "log"), ...)

KARFIMA.fit(rho = 0.5, y.lower = 0, y.upper = 1, ...)

KARFIMAV.fit(rho = 0.5, y.lower = 0, y.upper = 1, vt.start = NULL,
e2.start = NULL, linkg = list(g11 = "logit", g2 = "default", g21 =
"logit"), ...)

MARFIMA.fit(linkg = "cloglog", ...)

ULARFIMA.fit(...)

UWARFIMA.fit(rho = 0.5, ...)

UWARFIMAV.fit(rho = 0.5, vt.start = NULL, e2.start = NULL,
linkg = list(g11 = "logit", g2 = "default", g21 = "log"), ...)

Arguments

n the sample size of the output time series yt after burn-in (simulation only). De-
fault is n = 1.

burn the length of the ‘burn-in’ period (simulation only). Default is burn = 0. The
first burn values of the time series are discarded.

BTSR.parent.models 43

y.start optional; an initial value for Yt (to initialize recursions when t < 1). Default
is y.start = NULL, in which case, the recursion assumes that Yt = g−1

12 (0), for
t < 1. Only relevant if p > 0.

xreg optional; external regressors. Can be specified as a vector, a matrix or a list.
Default is xreg = NULL. For details, see the Section Regressors format.

xreg.start optional; initial value for the regressors (to initialize recursion). Can be specified
as a vector or a list. Default is xreg.start = NULL, in which case, the average of
the first p values (AR order) is used. Only relevant if xreg is provided, xregar
= TRUE and p > 0. For details, see the Section Regressors format.

xregar a length 1 or 2 logical vector indicating whether xreg should be included in
the AR recursion for each part of the model. Default is xregar = TRUE. Only
relevant if p > 0. If a single value is provided and ν is time-varying, the same
option is assumed for both parts of the model. See the Section ‘The BTSR
structure’ in btsr-package for details.

coefs a list with the coefficients of the model (simulation and extraction only). The
default is coefs = NULL. For details on the expected format and the arguments
that can be passed through coefs, see the Section Model coefficients.

error.scale either 0 or 1; the scale for the error term. Default is error.scale = 1 (predictive
scale).

linkg link functions. Can be specified as a character, two-character vector or a named
list. The corresponding text strings for currently available links are listed in
link.btsr. Default values depend on the model. For some models default values
override user specifications. See the Section Link defaults for details.

configs.linkg a list with two elements, ctt and power, which define the constant a and the
exponent b in the link function g(x) = axb. Each element can be specified as a
numeric value, a vector of size 2 or a named list. The default is configs.linkg
= NULL. See the Section Link defaults for details.

inf a length 1 or 2 integer vector given the truncation point for infinite sums. Default
is inf = 1000. See the Section Model Order for details.

complete logical; if FALSE returns only yt, else returns additional components (simula-
tion only). Default is complete = FALSE.

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is debug = FALSE.

vt.start optional; an initial value for ϑt (to initialize recursions when t < 1). Default is
vt.start = NULL, in which case, the recursion assumes that ϑt = g−1

22 (0), for
t < 1. Only relevant if ν is time-varying and p2 > 0.

e2.start optional; an initial value for g23(e1t) (to initialize recursions when t < 1).
Default is e2.start = NULL, in which case, the recursion assumes that e1t =
g−1
23 (0), for t < 1. Only relevant if ν is time-varying and q2 > 0 or d2 > 0.

... further arguments passed to the internal functions. See, for instance, sum-
mary.btsr for details.

rho the quantile being considered in the conditional distribution of Yt (only present
in Kumaraswamy and Unit-Weibull based models). It can be any positive num-
ber between 0 and 1. Default is rho = 0.5, which corresponds to the median.

44 BTSR.parent.models

y.lower the lower limit for the Kumaraswamy density support. Default is y.lower = 0.

y.upper the upper limit for the Kumaraswamy density support. Default is y.upper = 1.

yt numeric vector with the observed time series (extract and fit only). Missing
values (NA’s) are not allowed.

nnew optional; the number of out-of sample predicted values required (extract and fit
only). Default is nnew = 0.

xnew optional; nnew new observations of the external regressors (extract and fit only).
Follows the same format is the same as xreg. Default is xnew = NULL.

p optional; a length 1 or 2 integer vector given the order of the AR polynomial
(extract and fit only). Default is p = NULL. See the Section Model Order for
details.

q optional; a length 1 or 2 integer vector given the order of the MA polynomial
(extract and fit only). Default is q = NULL. See the Section Model Order for
details.

lags optional; a list with the lags (integer values) that the entries in coefs or start
correspond to (extract and fit only). The default is lags = NULL, in which the
lags are computed from the fixed.lags argument (if provided). When compo-
nents are missing or empty in both, lags and fixed.lags, the default behavior
is to include all lags based on nreg = ncol(xreg), p, and q. For details, see the
Section Model coefficients.

fixed.values optional; a list with the values of the coefficients that are fixed (extract and fit
only). The default is fixed.values = NULL. See the Section Model coefficients.

fixed.lags optional; a list with the lags (integer values) that the fixed values in fixed.values
correspond to (extract and fit only). The default is fixed.lags = NULL. For
missing components, fixed values will are set based on lags.

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihood, given by ℓ =

∑n
t=m+1 ℓt (extract and fit only). Default is m = 0. For

details, see the Section The log-likelihood.

llk logical; indicates whether the value of the log-likelihood function should be
returned (extract and fit only). Default is llk = TRUE.

sco logical; indicates whether the score vector should be returned (extract and fit
only). Default is sco = FALSE.

info logical; indicates whether the information matrix should be returned (extract and
fit only). Default is info = FALSE. For the fitting function, info is automatically
set to TRUE when report = TRUE.

extra logical, if TRUE the matrices and vectors used to calculate the score vector and
the information matrix are returned (extract and fit only). Default is extra =
FALSE. Ignored by BARC models.

d a length 1 or 2 logical vector indicating whether the long memory parameter
d should be included in the model either as a fixed or non-fixed parameter (fit
only). If d = FALSE, internally the value of the parameter d is fixed as 0. In this
case, if start or fixed.values include d, the value provided by the user is
ignored. If ν is time-varying and a single value is provided it is assumed that
d1 = d2 = d.

BTSR.parent.models 45

start optional; a list with the starting values for the non-fixed coefficients of the model
(fit only). The default is start = NULL, in which case the function coefs.start is
used internally to obtain starting values for the parameters. For details on the
expected format and the arguments that can be passed through coefs, see the
Section Model coefficients.

ignore.start optional; logical value indicating whether the argument start should be ig-
nored (fit only). If starting values are not provided, the function uses the default
values and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is ignore.start = FALSE. Partial starting values are not allowed.

lower optional; list with the lower bounds for the parameters (fit only). Default is
lower = NULL. The default is to assume that the parameters have no lower bound
except for nu, for which de default is 0. Only the bounds for bounded parameters
need to be specified. The format of lower and the arguments that can be passed
through this list are the same as the ones for start.

upper optional; list with the upper bounds for the parameters (fit only). Default is
upper = NULL. The default is to assume that the parameters have no upper bound.
Only the bounds for bounded parameters need to be specified. The format of
lower and the arguments that can be passed through this list are the same as the
ones for start.

control a list with configurations to be passed to the optimization subroutines (fit only).
Default is control = NULL. Missing arguments will receive default values. For
details, see fit.control.

report logical; indicates whether the summary from the fitted model should be be
printed (fit only). Default is report = TRUE, in which case info is automati-
cally set to TRUE.

Details

All functions implemented in the current version of the package are compatible with the new format
for the arguments, introduced in version 1.0.0. and the previous format.

• The simulatio functions (e.g. BARFIMA.sim) are used to generate random samples from the
corresponding model.

• The extraction functions (e.g. BARFIMA.extract) allow the user to extract all conditional
time series, the log-likelihood, and the vectors and matrices used to calculate the score vector
and the information matrix associated to a given set of parameters. This function can be used
by any user to create an objective function that can be passed to optimization functions not
available in BTSR Package. At this point, there is no other use for which this function was
intended.

• The fitting functions (e.g. BARFIMA.fit) fit the corresponding model to a given univariate time
series. For now, available optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both
methods accept bounds for the parameters. For "Nelder-Mead", bounds are set via parameter
transformation.

Value

These functions return the same ouptuts as btsr.sim, btsr.extract and btsr.fit.

46 BTSR.parent.models

See Also

BTSR.functions, BARC.functions, link.btsr, get.defaults

Examples

###
#
Examples of usage of "MODEL.sim" type of functions
#
###
#--
iid samples
#--
BARFIMA: yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
CASE 1: using coefs as in the previous version of the package
set.seed(1234)
yb1 <- BARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5, nu = 20)

)
hist(yb1)

CASE 2: using the new layout
set.seed(1234)
yb2 <- BARFIMA.sim(

n = 1000,
linkg = list(g11 = "linear", g2 = "linear", g21 = "linear"),
coefs = list(part1 = list(alpha = 0.5), part2 = list(alpha = 20))

)
hist(yb2)

comparing the results
range(abs(yb2 - yb1))

samples from other models in the package
yg <- GARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5, nu = 20)

)
yk <- KARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5, nu = 20)

)
ym <- MARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5)

)
yul <- ULARFIMA.sim(

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5)

)
yuw <- UWARFIMA.sim(

BTSR.parent.models 47

linkg = "linear", n = 1000,
coefs = list(alpha = 0.5, nu = 20)

)

comparing the different distributions
par(mfrow = c(2, 3))
hist(yb1, xlim = c(0, 1))
hist(yk, xlim = c(0, 1))
hist(yg, xlim = c(0, 1))
hist(ym, xlim = c(0, 1))
hist(yul, xlim = c(0, 1))
hist(yuw, xlim = c(0, 1))

#--
BARFIMA(1,d,1) with d = 0.25 and no regressors
#--

CASE 1: using coefs as in the previous version of the package
set.seed(1234)
y1 <- BARFIMA.sim(

n = 1000,
linkg = "logit",
coefs = list(alpha = 0.2, phi = 0.2, theta = 0.4, d = 0.25, nu = 20)

)

CASE 2: using the new layout
set.seed(1234)
y2 <- BARFIMA.sim(

n = 1000,
linkg = list(g11 = "logit", g2 = "linear", g21 = "linear"),
coefs = list(

part1 = list(alpha = 0.2, phi = 0.2, theta = 0.4, d = 0.25),
part2 = list(alpha = 20)

)
)

comparing the results
range(abs(y1 - y2))

###
#
Examples of usage of "MODEL.extract" type of functions
#
###

#--
code to simulate and extract components of a BARMA(1,1) model
#--
burn <- 100
n <- 500
N <- n + burn
covar <- cbind(sin(2 * pi * (1:N) / 50), 1:N)

48 BTSR.parent.models

set.seed(1234)
m1 <- BARFIMA.sim(

linkg = "logit", n = n, burn = burn, xreg = covar,
coefs = list(
alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

), complete = TRUE
)

Extracting assuming that all coefficients are non-fixed
e1 <- BARFIMA.extract(

yt = m1$yt, xreg = covar[(burn + 1):N,], linkg = "logit",
coefs = list(

alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
llk = TRUE, sco = TRUE, info = TRUE

)

Extracting assuming that all coefficients are fixed
e2 <- BARFIMA.extract(

yt = m1$yt, xreg = covar[(burn + 1):N,], linkg = "logit",
fixed.values = list(

alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
llk = TRUE, sco = TRUE, info = TRUE

)

Extracting using a mix of fixed and non-fixed parameters
e3 <- BARFIMA.extract(

yt = m1$yt, xreg = covar[(burn + 1):N,], linkg = "logit",
coefs = list(

phi = -0.65, theta = -0.25,
beta = c(0.6)

),
fixed.values = list(alpha = 0, nu = 20, beta = -0.002),
fixed.lags = list(beta = 2),
llk = TRUE, sco = TRUE, info = TRUE

)

comparing the simulated and the extracted values of mut
cbind(head(m1$mut), head(e1$mut), head(e2$mut), head(e3$mut))

comparing the log-likelihood values obtained (must be the all equal)
c(e1$sll, e2$sll, e3$sll)

comparing the score vectors:
- e1 must have 6 values: dl/dro values and dl/dlambda values
- e2 must be empty (all parameters are fixed)
- e3 must have only the values corresponding to the non-fixed coefficients.
round(e1$score, 4)
e2$score

BTSR.parent.models 49

round(e3$score, 4)

comparing the information matrices.
- e1 must be a 6x6 matrix
- e2 must be empty
- e3 must have only the value corresponding to the non-fixed coefficient
round(e1$info.Matrix, 4)
e2$info.Matrix
round(e3$info.Matrix, 4)

###
#
Examples of usage of "MODEL.fit" type of functions
#
###

#--
code to simulate and fit a BARMA(1,1) model
#--
burn <- 100
n <- 500
N <- n + burn
covar <- cbind(sin(2 * pi * (1:N) / 50), 1:N)

set.seed(1234)
m1 <- BARFIMA.sim(

linkg = "logit", n = n, burn = burn, xreg = covar,
coefs = list(
alpha = 0, phi = -0.65, theta = -0.25,
beta = c(0.6, -0.002), nu = 20

),
complete = TRUE

)

plot.ts(m1$yt)

Fit a model assuming that all coefficients are non-fixed
for a more simplified summary, set full.report = FALSE
f1 <- BARFIMA.fit(

yt = m1$yt, xreg = covar[(burn + 1):N,],
linkg = "logit", p = 1, q = 1, report = TRUE

)

the fitted coefficients (full model, including d)
coefficients(f1)

if you try to use `robust` or `outer` without setting `extra = TRUE`, the
code issues a message and uses the information matrix
summary(f1, robust = TRUE)
summary(f1, outer = TRUE)

Fit a model assuming alpha and d are fixed
f2 <- BARFIMA.fit(

50 coefs.start

yt = m1$yt, xreg = covar[(burn + 1):N,], linkg = "logit",
p = 1, q = 1, fixed.values = list(alpha = 0, d = 0)

)
Alternatively, set `d = FALSE`
f2 <- BARFIMA.fit(

yt = m1$yt, xreg = covar[(burn + 1):N,], linkg = "logit",
p = 1, q = 1, fixed.values = list(alpha = 0), d = FALSE

)

comparing the results
true <- c(

alpha = 0, beta = c(0.6, -0.002),
phi = -0.65, theta = -0.25,
d = 0, nu = 20

)
cf1 <- coefficients(f1)
cf2 <- c(NA, coefficients(f2)[1:4], NA, coefficients(f2)[5])
round(cbind(true, cf1, cf2), 3)

coefs.start Initial values for coefficients

Description

Generates initial values for coefficients in BTSR models.

Usage

coefs.start(model, yt, y.start = NULL, y.lower = 0, y.upper = 1,
xreg = NULL, p = 0, q = 0, d = FALSE, map = .default.map.barc,
lags = NULL, fixed.values = NULL, fixed.lags = NULL,
linkg = "linear", configs.linkg = NULL)

Arguments

model character string (case-insensitive) indicating the model to be fitted to the data.
Must be one of the options listed in the Section Supported Models.

yt numeric vector with the observed time series. Missing values (NA’s) are not
allowed.

y.start optional; an initial value for Yt (to initialize recursions when t < 1). Default
is y.start = NULL, in which case, the recursion assumes that Yt = g−1

12 (0), for
t < 1. Only relevant if p > 0.

y.lower the lower limit for the Kumaraswamy density support. Default is y.lower = 0.

y.upper the upper limit for the Kumaraswamy density support. Default is y.upper = 1.

xreg optional; external regressors. Can be specified as a vector, a matrix or a list.
Default is xreg = NULL. For details, see the Section Regressors format.

coefs.start 51

p the AR order. Default is p = 0. Can be provided as either a single integer
(legacy format) or a length 2 integer vector (new format) specifying orders for
part1/part2. If ν is time-varying and a single value is provided it is assumed
that p1 = p2 = p.

q the MA order. Default is q = 0. Can be provided as either a single integer
(legacy format) or a length 2 integer vector (new format) specifying orders for
part1/part2. If ν is time-varying and a single value is provided it is assumed
that q1 = q2 = q.

d a length 1 (legacy format) or 2 (new format) logical vector indicating whether
the long memory parameter d is presented in the model (either as a fixed or
non-fixed parameter). In the new format, if only one value is provided the code
assumes that the same option is valid for both parts of the model. Default is d =
FALSE.

map a non-negative integer from 1 to 5 corresponding to the map function. Default
is map = 4. See the Section The map function.

lags optional; specification of which lags to include in the model. For one dimen-
sional coefficients, the lag is obviously always 1 and can be suppressed. Can be
specified in one of two ways

• a list with components beta, phi, and theta (legacy format) specifying
which lags to include for each parameter type.

• a list with elements part1 and part2 (new format), each being a list with
components beta, phi, and theta specifying which lags to include for each
parameter type.

Default is lags = NULL, in which the lags are computed from the fixed.lags
argument (if provided). When components are missing or empty in both, lags
and fixed.lags, the default behavior is to include all lags based on nreg =
ncol(xreg), p, and q. The arguments lags and fixed.lags are complemen-
tary. Either suffices, or mix them (e.g., lags for some parameters, fixed.lags
for others).

fixed.values optional; specification of fixed parameter values. Can be specified in one of two
ways

• a list with optional components alpha, beta, phi, theta, d and nu (legacy
format) containing fixed values for each parameter type.

• a list with elements part1 and part2 (new format), each being a list with
optional components alpha, beta, phi, theta and d containing fixed val-
ues for each parameter type.

If fixed values are provided and there exists more than one possible lag, either
lags or fixed.lags must also be provided. The default is fixed.lags = NULL.
By default, if a given vector (such as the vector of AR coefficients) has fixed
values and the corresponding entry in this list is empty, the fixed values are set
as zero.

fixed.lags optional; specification of which lags should be fixed. For one dimensional coef-
ficients, the lag is obviously always 1 and can be suppressed. Can be specified
in one of two ways

• a list with components beta, phi, and theta (legacy format) specifying
which lags should be fixed.

52 coefs.start

• a list with elements part1 and part2 (new format), each being a list with
components beta, phi, and theta specifying which lags should be fixed.

For missing components, fixed values will are set based on lags.

linkg specification of link functions. Can be specified in one of two ways

• A character or two-character vector (legacy format). If only one string is
provided, the same link name is used for µt (g11) and for Yt (g12).

• A named list (new format) with elements g11, g12, g2, g21, and g22 (order
does not matter). Particular models (see ‘Particular Models’ in BTSR.functions)
have default values for some links. Missing links follow these rules

– If either g11 or g12 is missing (but not both), assumes g12 = g11

– If phi = NULL for part 1, g12 is not required
– If phi = NULL for part 2, g22 is not required
– If either g21 or g22 is missing (but not both), assumes g22 = g21

Special case: g2 = "default" uses the model’s default link. The default
depends on the model.

Default is linkg = "linear", which is equivalent (done internally) to set all
links as "linear" in the new format. See link.btsr for valid links. For details,
see the Section ‘The BTSR structure’ in btsr-package.

configs.linkg a list with two elements, ctt and power, which define the constant a and the
exponent b in the link function g(x) = axb. Each element can be specified as a
numeric value, a vector of size 2 or a named list. The default is configs.linkg
= NULL. See the Section Link defaults for details.

Details

Parameter initialization is done as follows.

1. Legacy flat lists are converted to nested part1/part2 format. Link functions and density
bounds are validated.

2. Part 1: µt related parameters.
A linear model is used to estimate α, β and ϕ by setting

Y =

Y1

...
Yn

 and D =

1 X11 · · · X1s g12(Y0) · · · g12(Y1−p)
...

...
...

...
...

...
...

1 Xn1 · · · Xns g12(Yn−1) · · · g12(Yn−p)


where s is the number of regressors and p is the AR order, and solving the linear regression
problem Y = Dγ + ϵ via lm.fit.
MA coefficients θ are initialized to zero (though small non-zero values may help with opti-
mization stability)
The long-memory parameter d starts at 0.01 when estimated
For BARC models:

• Map parameters use:

coefs.start 53

+-------+-------+-------+-------+-------+-------+
| map | 1 | 2 | 3 | 4 | 5 |
+-------+-------+-------+-------+-------+-------+
| theta | 3 | 0.5 | 3.5 | 0.5 | NA |
+-------+-------+-------+-------+-------+-------+

• u0 defaults to π/4 when not fixed

3. Part 2: νt related parameters.
If presented and not time varying, ν is initialized as follows:

• ν = 5, for the Kumaraswamy and the Unit-Weibull distributions,

• ν =
1

n

n∑
t=1

µ̂t(1− µ̂t)

σ2
− 1, for the Beta distribution,

• ν =
1

n

n∑
t=1

µ̂2
t

σ2
, for the Gamma distribution

where (µ̂1, · · · , µ̂n)
′ = Dγ̂ are the fitted values from the regression model and σ2 is the

estimated variance of the residuals.
If ν is time varying,

• set α as g12(g2(ν)), with ν estimated as in the case where the parameter does not vary on
time.

• set β, ϕ and θ to zero.
• The long-memory parameter d starts at 0.01 when estimated.

Value

For models where νt is not time-varying, returns a list (legacy format) with starting values for the
parameters of the selected model. Possible outputs are

alpha the intercept.

beta the coefficients for the regressors.

phi the AR coefficients.

theta for BARC models, the parameter associate to the map function. For any other
model, the MA coefficients.

d the long memory parameter.

nu distribution related parameter (usually, the precision).

u0 for BARC models, the initial value of the iterated map.

For models where νt is time-varying, returns a list whose elements are part1 and part2. Each
element is a list with starting values for the parameters corresponding to each part o the selected
model. Possible outputs for each part are the same as for the legacy format.

Examples

mu <- 0.5
nu <- 20

54 fit.control

yt <- rbeta(100, shape1 = mu * nu, shape2 = (1 - mu) * nu)
using the general model BARFIMA
coefs.start(model = "BARFIMA", yt = yt, linkg = "linear")
same output as the specific model BETA
coefs.start(model = "BETA", yt = yt, linkg = "linear")

yt <- rgamma(100, shape = nu, scale = mu / nu)
coefs.start(model = "GARFIMA", yt = yt, linkg = "linear")

fit.control Default control list

Description

Sets default values for constants used by the optimization functions in FORTRAN.

Usage

fit.control(control = list())

Arguments

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See ‘Details’.

Details

The control argument is a list that can supply any of the following components

method The optimization method. Current available options are "L-BFGS-B" and "Nelder-Mead".
Default is "L-BFGS-B".

maxit The maximum number of iterations. Defaults is 1000.

iprint The frequency of reports (if positive). Defaults is -1 (no report).

• For "L-BFGS-B" method:
– iprint < 0 no output is generated;
– iprint = 0 print only one line at the last iteration;
– 0 < iprint < 99 print also f and |proj g| every iprint iterations;
– iprint = 99 print details of every iteration except n-vectors;
– iprint = 100 print also the changes of active set and final x;
– iprint > 100 print details of every iteration including x and g;

• For "Nelder-Mead" method:
– iprint < 0 No printing
– iprint = 0 Printing of parameter values and the function value after initial evidence

of convergence.

get.defaults 55

– iprint > 0 As for iprint = 0 plus progress reports after every iprint evaluations,
plus printing for the initial simplex.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. The iteration will stop
when

(fk − fk+1)

max{|fk|, |fk+1|, 1}
≤ factr × epsmch

where epsmch is the machine precision, which is automatically generated by the code. Typical
values for factr: 1.e+12 for low accuracy; 1.e+7 for moderate accuracy; 1.e+1 for extremely
high accuracy. Default is 1e7, that is a tolerance of about 1e-8.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected
gradient in the current search direction. the iteration will stop when

max{|proj gi|, i = 1, ..., n} ≤ pgtol

where proj gi is the ith component of the projected gradient. Default is 1e-12.

stopcr The criterion applied to the standard deviation of the values of objective function at the
points of the simplex, for "Nelder-Mead" method.

Value

Returns a list with all arguments in ‘Details’.

Examples

BTSR::fit.control()

get.defaults Retrieve Default Arguments for BTSR Package Functions

Description

Extracts and displays the default argument values for any function in the BTSR package, including
both exported and non-exported functions.

Usage

get.defaults(fun)

Arguments

fun Character string specifying the function name to examine (case-sensitive).

56 link.btsr

Value

Invisibly returns a data frame with two columns:

• Argument: Name of the function parameter

• Default: Default value or "(no default)" string if no default exists

The function primarily prints a formatted table of the results to the console.

Examples

Not run:
View defaults for BTSR.fit function
get.defaults("BARFIMA.fit")

Capture the results for later use
defaults <- get.defaults("BARFIMA.fit")

End(Not run)

link.btsr Create a Link for BTSR models

Description

Given the name of a link, this function returns a link function, an inverse link function, the derivative
dη/dµ and the derivative dµ/dη.

Usage

link.btsr(link = "linear")

Arguments

link character; one of "linear","polynomial", "logit", "log", "loglog", "cloglog",
"SIP". See ‘Details’ below. Default is link = "linear".

Details

The available links are:

linear: g(x) = ax, for a real.

polynomial: g(x) = axb, for a and b real.

logit: g(x) = log((x− l)/(u− x))

log: g(x) = log(x− l)

loglog: g(x) = log(− log((x− l)/(u− l)))

cloglog: g(x) = log(− log(1− (x− l)/(u− l)))

link.btsr 57

SIP (Shifted Inverse Power): g(x) = 1/(a+ x)b, with a ∈ {0, 1} and b real.

Here l and u denote the lower and upper bounds of x. The linear link is a particular case of the
polynomial link. It was kept for compatibility with older versions of the package.

The parameters a, b, l, and u are configured using the configs.linkg list, which can include the
following elements

• ctt: A constant multiplier for the link function (default: 1).

• power: The power parameter for polynomial and SIP links (default: 1).

• lower: The lower bound for mu (default: 0).

• upper: The upper bound for mu (default: 1).

This list must be passed to the functions created by link.btsr, when invoking them.

Value

An object of class "link-btsr", a list with components

linkfun Link function function(mu) g(µ)

linkinv Inverse link function function(eta) g−1(eta)

linkdif Derivative function(mu) dη/dµ

mu.eta Derivative function(eta) dµ/dη

name a name to be used for the link

Examples

#---
0 < y < 1 and linear link
#---
mylink <- link.btsr("linear")
y <- 0.8
a <- 3.4
gy <- a * y

comparing the expected result with the output of the function:
mylink$linkfun(mu = y, configs.linkg = list(ctt = a))
gy

mylink$linkinv(eta = gy, configs.linkg = list(ctt = a))
y

mylink$diflink(mu = y, configs.linkg = list(ctt = a))
a

mylink$mu.eta(eta = gy, configs.linkg = list(ctt = a))
1 / a

same function, different ctt:
mylink$linkfun(mu = y, configs.linkg = list(ctt = a + 1))

58 link.btsr

#---
For linear link bounds have no effect
#---
mylink <- link.btsr("linear")
y <- 0.8
a <- 3.4
gy <- a * y

mylink$linkfun(mu = y, configs.linkg = list(ctt = a, lower = 1, upper = 2))
mylink$linkfun(mu = y, configs.linkg = list(ctt = a)) # same result
gy

mylink$linkinv(eta = gy, configs.linkg = list(ctt = a, lower = 1, upper = 2))
y

mylink$diflink(mu = y, configs.linkg = list(ctt = a, lower = 1, upper = 2))
a

mylink$mu.eta(eta = gy, configs.linkg = list(ctt = a, lower = 1, upper = 2))
1 / a

#---
0 < y < 1 and logit link
#---
mylink <- link.btsr("logit")
y <- 0.8
gy <- log(y / (1 - y))
ginv <- 1 / (1 + exp(-gy))

mylink$linkfun(mu = y)
gy

mylink$linkinv(eta = gy)
ginv

mylink$diflink(mu = y)
1 / (y - y**2)

mylink$mu.eta(eta = gy)
ginv - ginv**2

#---
1 < y < 2 and logit link
#---
mylink <- link.btsr("logit")
a <- 1
b <- 2
y <- 1.8
gy <- log((y - a) / (b - y))
ginv <- b / (1 + exp(-gy)) + a / (1 + exp(gy))

mylink$linkfun(mu = y, configs.linkg = list(lower = 1, upper = 2))
gy

predict.btsr 59

mylink$linkinv(eta = gy, configs.linkg = list(lower = 1, upper = 2))
ginv

mylink$diflink(mu = y, configs.linkg = list(lower = 1, upper = 2))
(b - a) / ((a + b) * y - y**2 - a * b)

mylink$mu.eta(eta = gy, configs.linkg = list(lower = 1, upper = 2))
((a + b) * ginv - ginv**2 - a * b) / (b - a)

predict.btsr Predict method for BTSR

Description

Predicted values based on btsr object.

Usage

S3 method for class 'btsr'
predict(object, newdata, nnew = 0, debug = FALSE, ...)

Arguments

object Object of class inheriting from "btsr"

newdata A matrix with new values for the regressors. If omitted and "xreg" is present in
the model, the fitted values are returned. If the model does not include regres-
sors, the functions will use the value of nnew.

nnew number of out-of-sample forecasts required. If newdata is provided, nnew is
ignored.

debug logical, if TRUE the output from Fortran is return (for debugging purposes). De-
fault is debug = FALSE.

... further arguments passed to or from other methods.

Details

predict.btsr produces predicted values, obtained by evaluating the regression function in the
frame newdata.

If newdata is omitted the predictions are based on the data used for the fit.

For now, prediction intervals are not provided.

60 predict.btsr

Value

If nnew = 0, returns a list with in-sample predictions (fitted.values, etat and error), otherwise,
returns a list with the following arguments

• fitted.values: in-sample forecast.
If νt is fixed: a vector with the in-sample value of µt.
If νt is time varying: a matrix with the in-sample values of µt, νt and ϑt.

• etat: the linear predictor(s)
For models with ν fixed, returns η1t = g11(µt)
For models with time varying ν, returns a matrix whose columns are η1t = g11(µt) and
η2t = g21(ϑt).

• error: the error term e1t (depends on the argument error.scale)

• residual: The (in-sample) residuals, that is, the observed values Yt minus the fitted values
µt. The same as the error term if error.scale = 0.

• forecast: the out-of-sample forecast.
If νt is fixed: a vector with the predicted values for µt and η1t
If νt is time varying: a matrix the predicted values for µt and η1t, νt, ϑt and η2t.
For BARC models also returs a column with predicted values for the iterated map.

• TS: only for "BARC" models. The iterated map.

• xnew: out-of-sample values for xreg (if presented). These are the values passed through
newdata.

Examples

#--
Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
#--

y <- btsr.sim(
model = "BARFIMA", linkg = "linear",
n = 100, coefs = list(alpha = 0.2, nu = 20)

)

fitting the model
f <- btsr.fit(

model = "BARFIMA", yt = y, report = TRUE,
start = list(alpha = 0.5, nu = 10),
linkg = "linear", d = FALSE

)

pred <- predict(f, nnew = 5)
pred$forecast

print.btsr 61

print.btsr Print Method of class BTSR

Description

Print method for objects of class btsr.

Usage

S3 method for class 'btsr'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x object of class btsr.

digits minimal number of significant digits, see print.default.

... further arguments to be passed to or from other methods. They are ignored in
this function

Details

Users are not encouraged to call these internal functions directly. Internal functions for package
BTSR.

Value

Invisibly returns its argument, x.

summary Summary Method of class BTSR

Description

summary method for class "btsr".

Usage

S3 method for class 'btsr'
summary(object, robust = FALSE, outer = FALSE,
full.report = TRUE, ...)

S3 method for class 'summary.btsr'
print(x, digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"), ...)

62 summary

Arguments

object object of class "btsr".

robust logical. If TRUE the robust covariance matrix is computed

outer logical. If TRUE uses the outer product of the gradient to compute the covariance
matrix. If robust = TRUE, outer is used as a second option (in case of error
computing the robust version)

full.report logical. If TRUE prints a more detailed report.

... further arguments passed to or from other methods.

x an object of class "summary.btsr", usually, a result of a call to summary.btsr.

digits minimal number of significant digits, see print.default.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

Details

print.summary.btsr tries to be smart about formatting the coefficients, standard errors, etc. and
additionally provides ‘significance stars’.

Value

The function summary.btsr computes and returns a list of summary statistics of the fitted model
given in object. Returns a list of class summary.btsr, which contains the following components

• model: the corresponding model.

• call: the matched call.

• residuals: The (in-sample) residuals, that is, the observed values Yt minus the fitted values
µt. The same as the error term if error.scale = 0.

• coefficients: a k × 4 matrix with columns for the estimated coefficient, its standard error,
z-statistic and corresponding (two-sided) p-value.

• sigma.res: the square root of the estimated variance of the error term in residuals

σ̂2 =
1

n− k

n−k∑
i=1

e2i ,

where ei is the i-th residual.

• df: degrees of freedom, a 2-vector (k, n − k), the first being the number of estimated coeffi-
cients.

• vcov: a k × k matrix of (unscaled) covariances. The inverse of the information matrix.

• loglik: the sum of the log-likelihood values (L)

• aic: the AIC value. AIC = −2L+ 2k.

• bic: the BIC value. BIC = −2L+ k log(n).

• hqc: the HQC value. HQC = −2L+ k log(log(n)).

Index

∗ distribution
btsr-package, 2

∗ package
btsr-package, 2

∗ regression
btsr-package, 2

arguments, 5
arguments.coefs, 5
arguments.configs, 8
arguments.link, 8
arguments.loglik, 11
arguments.map, 12
arguments.model, 13, 30
arguments.order, 19
arguments.regressors, 20
arguments.series, 21

BARC, 12
BARC.extract (BARC.functions), 22
BARC.fit (BARC.functions), 22
BARC.functions, 6, 22, 33, 46
BARC.sim (BARC.functions), 22
BARFIMA.extract (BTSR.parent.models), 40
BARFIMA.fit (BTSR.parent.models), 40
BARFIMA.sim (BTSR.parent.models), 40
BARFIMAV.extract (BTSR.parent.models),

40
BARFIMAV.fit (BTSR.parent.models), 40
BARFIMAV.sim (BTSR.parent.models), 40
BTSR (btsr-package), 2
BTSR-Package (btsr-package), 2
BTSR-package (btsr-package), 2
btsr-package, 2, 8, 19, 20, 22–24, 30, 40, 43,

52
btsr.extract, 5, 45
btsr.extract (BTSR.functions), 30
btsr.fit, 5, 45
btsr.fit (BTSR.functions), 30
BTSR.functions, 16, 28, 30, 46, 52

BTSR.model.defaults, 10, 19, 31, 39
BTSR.models, 19, 40
BTSR.parent.models, 16, 28, 31, 33, 40
btsr.sim, 4, 45
btsr.sim (BTSR.functions), 30

coefs.start, 5, 25, 45, 50

fit.control, 8, 25, 45, 54

GARFIMA.extract (BTSR.parent.models), 40
GARFIMA.fit (BTSR.parent.models), 40
GARFIMA.sim (BTSR.parent.models), 40
GARFIMAV.extract (BTSR.parent.models),

40
GARFIMAV.fit (BTSR.parent.models), 40
GARFIMAV.sim (BTSR.parent.models), 40
get.defaults, 19, 28, 31, 33, 46, 55

KARFIMA.extract (BTSR.parent.models), 40
KARFIMA.fit (BTSR.parent.models), 40
KARFIMA.sim (BTSR.parent.models), 40
KARFIMAV.extract (BTSR.parent.models),

40
KARFIMAV.fit (BTSR.parent.models), 40
KARFIMAV.sim (BTSR.parent.models), 40

Link defaults, 8, 9, 43, 52
link.btsr, 8, 23, 24, 43, 46, 52, 56

MARFIMA.extract (BTSR.parent.models), 40
MARFIMA.fit (BTSR.parent.models), 40
MARFIMA.sim (BTSR.parent.models), 40
Model coefficients, 5, 6, 43–45
Model Order, 19, 43, 44

predict, 5
predict.btsr, 59
print.btsr, 61
print.default, 61, 62
print.summary.btsr (summary), 61

63

64 INDEX

rbeta, 16
Regressors format, 20, 43, 50
rgamma, 16

shared arguments, 31
summary, 61
summary.btsr, 8, 25, 30, 43
Supported Models, 13, 30, 50

The log-likelihood, 11, 44
The map function, 12, 23, 51

ULARFIMA.extract (BTSR.parent.models),
40

ULARFIMA.fit (BTSR.parent.models), 40
ULARFIMA.sim (BTSR.parent.models), 40
UWARFIMA.extract (BTSR.parent.models),

40
UWARFIMA.fit (BTSR.parent.models), 40
UWARFIMA.sim (BTSR.parent.models), 40
UWARFIMAV.extract (BTSR.parent.models),

40
UWARFIMAV.fit (BTSR.parent.models), 40
UWARFIMAV.sim (BTSR.parent.models), 40

	btsr-package
	arguments.coefs
	arguments.configs
	arguments.link
	arguments.loglik
	arguments.map
	arguments.model
	arguments.order
	arguments.regressors
	arguments.series
	BARC.functions
	BTSR.functions
	BTSR.model.defaults
	BTSR.models
	BTSR.parent.models
	coefs.start
	fit.control
	get.defaults
	link.btsr
	predict.btsr
	print.btsr
	summary
	Index

