Package ‘BGmisc’

January 11, 2026

Title An R Package for Extended Behavior Genetics Analysis
Version 1.5.2

Description Provides functions for behavior genetics analysis,
including variance component model identification [Hunter et al. (2021) <doi:10.1007/s10519-
021-10055-x>],
calculation of relatedness coefficients using path-tracing methods
[Wright (1922) <doi:10.1086/279872>; McArdle & McDonald (1984) <doi:10.1111/j.2044-
8317.1984.tb00802.x>],
inference of relatedness, pedigree conversion, and simulation of multi-generational family data
[Lyu et al. (2024) <doi:10.1101/2024.12.19.629449>]. For a full overview,
see [Garrison et al. (2024) <doi:10.21105/joss.06203>].

License GPL-3

URL https://github.com/R-Computing-Lab/BGmisc/,
https://r-computing-lab.github.io/BGmisc/

BugReports https://github.com/R-Computing-Lab/BGmisc/issues
Depends R (>=3.5.0)
Imports data.table, igraph, Matrix, stats, stringr, methods

Suggests corrplot, discord, dplyr, EasyMx, ggpedigree, ggplot2,
kinship2, knitr, OpenMx, rmarkdown, testthat (>= 3.0.0),
tidyverse, withr

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.3
NeedsCompilation no

Author S. Mason Garrison [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4804-6003>),
Michael D. Hunter [aut] (ORCID:

https://doi.org/10.1007/s10519-021-10055-x
https://doi.org/10.1007/s10519-021-10055-x
https://doi.org/10.1086/279872
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1101/2024.12.19.629449
https://doi.org/10.21105/joss.06203
https://github.com/R-Computing-Lab/BGmisc/
https://r-computing-lab.github.io/BGmisc/
https://github.com/R-Computing-Lab/BGmisc/issues
https://orcid.org/0000-0002-4804-6003

<https://orcid.org/0000-0002-3651-6709>),

Xuanyu Lyu [aut] (ORCID: <https://orcid.org/0000-0002-2841-5529>),

Rachel N. Good [ctb],

Jonathan D. Trattner [aut] (ORCID:
<https://orcid.org/0000-0002-1097-7603>),

S. Alexandra Burt [aut] (ORCID:
<https://orcid.org/0000-0001-5538-7431>)

Maintainer S. Mason Garrison <garrissm@wfu.edu>
Repository CRAN
Date/Publication 2026-01-11 06:12:42 UTC

Contents

adjBeta
adjiDirecto
adjiIndexed
.assignParentValue oL
.computeTranspose
JoadOrComputelsChild o
.postProcessGedcom.legacy oL
addParentRow
addPersonToPed
addRowlessParents
applyTagMappings e
buildBetweenGenerationso
buildWithinGenerations
calcAllGens
calcFamilySize
calcFamilySizeByGen
calculateCIs e
calculateH
calculateRelatedness o
checkIDs e
checkIDuniqueness e
checkParentIDs
checkParentSex
checkPedigreeNetwork o
checkSex
checkWithinRowDuplicates
collapseNames e
com2links
comp2vech
computeParentAdjacencyo oL
countPatternRows Lo oL
createGenDataFrame oL oL
determineSex
dropLink

Contents

https://orcid.org/0000-0002-3651-6709
https://orcid.org/0000-0002-2841-5529
https://orcid.org/0000-0002-1097-7603
https://orcid.org/0000-0001-5538-7431

Contents

Index

3

findBiggest e e e 33
findOldest 34
fitComponentModel L 35
hazard L e 36
identifyComponentModel oL 37
inbreeding 38
initializeRecord L 39
insertEven L 39
makelnbreeding 40
makeTwins 41
mapFAMS2parents e e 42
markPotentialChildren L o 42
parseNameLline 43
ped2addo e 44
ped2ce e e e 45
ped2eno 46
ped2com e e e 47
ped2famo e e 49
ped2gen 50
ped2graph 51
ped2maternal 52
Ped2mito e e e e e e 53
ped2paternal 55
postProcessGedcom L. L 56
POMET . o o o o e e e e e 56
prepSummarizePedigrees 57
processEventline L 58
processParents L. 59
readGedcom e 59
readWikifamilytree L 61
1ecOdeSeX e e e 62
repairlDs L e 64
repairParentIDs L. e 64
TEPAILSEX . . v v v e e e e e e e 65
royal92 . ..o 66
simulatePedigree L 67
sliceFamilies e 69
summarizeFamilies L 70
summarizeMatrilines L oL 72
summarizePatrilines oL 74
summarizePedigrees L L 75
traceTreePaths L 78
validate_and_convert_matrixo oL 78
vech . . . e 79
80

4 .adjBeta

.adjBeta Construct Adjacency Matrix for Parent-Child Relationships Using
Beta Method This function constructs an adjacency matrix for parent-
child relationships using a method in beta testing. It identifies parent-
child pairs based on the specified component of relatedness.

Description

Construct Adjacency Matrix for Parent-Child Relationships Using Beta Method This function con-
structs an adjacency matrix for parent-child relationships using a method in beta testing. It identifies
parent-child pairs based on the specified component of relatedness.

Usage

.adjBeta(
ped,
component,
adjBeta_method = 5,
parList = NULL,
lastComputed = 0,
lens = NULL,
saveable = FALSE,
resume = FALSE,
save_path = NULL,
verbose = FALSE,
save_rate_parlist = NULL,
update_rate = NULL,
checkpoint_files = NULL,
config,
compress = config$compress,

)

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
component character. Which component of the pedigree to return. See Details.

adjBeta_method numeric The method to use for computing the building the adjacency_method
matrix when using the "beta" build

parList a list of parent-child relationships

lastComputed the last computed index

lens a vector of the lengths of the parent-child relationships
saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint

save_path character. The path to save the checkpoint files

.adjDirect 5

verbose logical. If TRUE, print progress through stages of algorithm
save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000
update_rate numeric. The rate at which to print progress
checkpoint_files
a list of checkpoint files

config a configuration list that passes parameters to the function
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

.adjDirect Construct Adjacency Matrix for Parent-Child Relationships Using Di-
rect Method

Description

This function constructs an adjacency matrix for parent-child relationships using a direct method.
It identifies parent-child pairs based on the specified component of relatedness.

Usage

.adjDirect(
ped,
component,
saveable,
resume,
save_path,
verbose,
lastComputed,
checkpoint_files,
update_rate,
parList,
lens,
save_rate_parlist,
config,
compress = config$compress,

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

component character. Which component of the pedigree to return. See Details.

6 .adjIndexed

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint

save_path character. The path to save the checkpoint files

verbose logical. If TRUE, print progress through stages of algorithm

lastComputed the last computed index
checkpoint_files
a list of checkpoint files

update_rate numeric. The rate at which to print progress
parList a list of parent-child relationships
lens a vector of the lengths of the parent-child relationships

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

config a configuration list that passes parameters to the function
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

.adjIndexed Construct Adjacency Matrix for Parent-Child Relationships Using In-
dexed Method

Description

Construct Adjacency Matrix for Parent-Child Relationships Using Indexed Method

Usage

.adjIndexed(
ped,
component,
saveable,
resume,
save_path,
verbose,
lastComputed,
checkpoint_files,
update_rate,
parList,
lens,
save_rate_parlist,
config,
compress = config$compress

.assignParent Value 7

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
component character. Which component of the pedigree to return. See Details.
saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_path character. The path to save the checkpoint files
verbose logical. If TRUE, print progress through stages of algorithm

lastComputed the last computed index

checkpoint_files
a list of checkpoint files

update_rate numeric. The rate at which to print progress
parList a list of parent-child relationships
lens a vector of the lengths of the parent-child relationships

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

config a configuration list that passes parameters to the function
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.
.assignParentValue Assign parent values based on component type
Description

Assign parent values based on component type

Usage

.assignParentValue(component)

Arguments

component character. Which component of the pedigree to return. See Details.

8 .JoadOrComputelsChild

.computeTranspose Compute the transpose multiplication for the relatedness matrix

Description

Compute the transpose multiplication for the relatedness matrix

Usage

.computeTranspose(r2, transpose_method = "tcrossprod”, verbose = FALSE)
Arguments

r2 a relatedness matrix

transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod",
"crossprod", or "star"

verbose logical. If TRUE, print progress through stages of algorithm

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

.loadOrComputeIsChild Load or compute the isChild matrix

Description

Load or compute the isChild matrix

Usage
.loadOrComputeIsChild(ped, checkpoint_files, config, compress = TRUE)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns
checkpoint_files

A list of checkpoint file paths.

@keywords internal

config A list containing configuration parameters such as ‘resume‘, ‘verbose‘, and
‘saveable‘.
compress a logical specifying whether saving to a named file is to use "gzip" compression,

or one of "gzip", "bzip2", "xz" or "zstd" to indicate the type of compression to

b}

be used. Ignored if file is a connection.

.postProcessGedcom.legacy

.postProcessGedcom. legacy
Post-process GEDCOM Data Frame

Description

Post-process GEDCOM Data Frame

Usage

.postProcessGedcom. legacy(
df_temp,
remove_empty_cols = TRUE,
combine_cols = TRUE,
add_parents = TRUE,
skinny = TRUE,
verbose = FALSE

Arguments

df _temp A data frame containing information about individuals.
remove_empty_cols
A logical value indicating whether to remove columns with all missing values.

combine_cols A logical value indicating whether to combine columns with duplicate values.

add_parents A logical value indicating whether to add parents to the data frame.
skinny A logical value indicating whether to return a skinny data frame.
verbose A logical value indicating whether to print messages.

Value

A data frame with processed information.

addParentRow Create a properly formatted parent row for the pedigree

Description

Create a properly formatted parent row for the pedigree

Usage

addParentRow(template_row, newID, sex, momID = NA, dadID = NA, famID = NA)

10

Arguments

template_row
newID

sex

momID

dadID

famID

Value

addPersonToPed

A single row from ped, used as a template for column structure

The new parent’s ID

The new parent’s sex value (e.g., O for female, 1 for male, or "F"/"M")
The new parent’s mother ID (default is NA)

The new parent’s father ID (default is NA)

The new parent’s family ID (default is NA)

A single-row dataframe for the new parent

addPersonToPed

addPersonToPed

Description

A function to add a new person to an existing pedigree data. frame.

Usage
addPersonToPed(
ped,
name = NULL,
sex = NULL,
momID = NA,
dadID = NA,

twinID = NULL,
personID = NULL,
zygosity = NULL,
notes = NULL,

url = NULL,
overwrite = FALSE

Arguments

ped A data. frame representing the existing pedigree.

name Optional. A character string representing the name of the new person. If not
provided, the name will be set to NA.

sex A value representing the sex of the new person.

momID Optional. The ID of the mother of the new person. If not provided, it will be set
to NA.

dadID Optional. The ID of the father of the new person. If not provided, it will be set

to NA.

addRowlessParents

twinID

personID

zygosity

notes

url

overwrite

Value

11

Optional. The ID of the twin of the new person. If not provided, it will be set to
NA.

Optional. The ID of the new person. If not provided, it will be generated as the
maximum existing personlD + 1.

Optional. A character string indicating the zygosity of the new person. If not
provided, it will be set to NA.

Optional. A character string for notes about the new person. If not provided, it
will be set to NA.

Optional. A URL column for the new person. If not provided, it will be set to
NA.

Logical. If TRUE, the function will overwrite an existing person with the same
personID. If FALSE, it will stop if a person with the same personID already
exists.

A data. frame with the new person added to the existing pedigree.

addRowlessParents

Add addRowlessParents

Description

This function adds parents who appear in momID or dadID but are missing from ID

Usage

addRowlessParents(ped, verbose, validation_results)

Arguments

ped

verbose

A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.

A logical flag indicating whether to print progress and validation messages to
the console.

validation_results

validation results

12 buildBetweenGenerations

applyTagMappings Apply Tag Mappings to a Line

Description

Iterates over a list of tag mappings and, if a tag matches the line, updates the record. Stops after the
first match.

Usage

applyTagMappings(line, record, pattern_rows, tag_mappings)

Arguments
line A character string from the GEDCOM file.
record A named list representing the individual’s record.

pattern_rows A list with GEDCOM tag counts.

tag_mappings A list of lists. Each sublist should define: - tag: the GEDCOM tag, - field:
the record field to update, - mode: either "replace" or "append", - extractor:
(optional) a custom extraction function.

Value

A list with the updated record (record) and a logical flag (matched).

buildBetweenGenerations
Process Generation Connections

Description

This function processes connections between each two generations in a pedigree simulation. It
marks individuals as parents, sons, or daughters based on their generational position and rela-
tionships. The function also handles the assignment of couple IDs, manages single and coupled
individuals, and establishes parent-offspring links across generations.

Usage

buildBetweenGenerations(
df_Fam,
Ngen,
sizeGens,
verbose = FALSE,
marR,
sexR,

buildBetweenGenerations 13

kpc,
rd_kpc,
personID = "ID",
momID = "momID",
dadID = "dadID",
code_male = "M",
code_female = "F"
)

Arguments

df_Fam A data frame containing the simulated pedigree information up to the current
generation. Must include columns for family ID, individual ID, generation num-
ber, spouse ID (spID), and sex. This data frame is updated in place to include
flags for parental status (ifparent), son status (ifson), and daughter status (ifdau),
as well as couple IDs.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

verbose logical If TRUE, message progress through stages of algorithm

marR Mating rate. A numeric value ranging from O to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = (.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

sexR Sex ratio of offspring. A numeric value ranging from O to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

rd_kpc logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

personID character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

code_male The value to use for males. Default is "M"

code_female

Details

The value to use for females. Default is "F"

The function iterates through each generation, starting from the second, to establish connections
based on mating and parentage. For the first generation, it sets the parental status directly. For
subsequent generations, it calculates the number of couples, the expected number of offspring,

14 buildWithinGenerations

and assigns offspring to parents. It handles gender-based assignments for sons and daughters, and
deals with the nuances of single individuals and couple formation. The function relies on external
functions ‘assignCouplelds* and ‘adjustKidsPerCouple® to handle specific tasks related to couple
ID assignment and offspring number adjustments, respectively.

Value

The function updates the ‘df_Fam‘ data frame in place, adding or modifying columns related to
parental and offspring status, as well as assigning unique couple IDs. It does not return a value
explicitly.

buildWithinGenerations
Process Generations for Pedigree Simulation

Description

This function iterates through generations in a pedigree simulation, assigning IDs, creating data
frames, determining sexes, and managing pairing within each generation.

Usage

buildWithinGenerations(
sizeGens,
marR,
sexR,
Ngen,
verbose = FALSE,
personID = "ID",

momID = "momID",
dadID = "dadID",
code_male = "M",
code_female = "F",
fam_shift = 1L
)
Arguments
sizeGens A numeric vector containing the sizes of each generation within the pedigree.
marR Mating rate. A numeric value ranging from O to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = (.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.
sexR Sex ratio of offspring. A numeric value ranging from O to 1 that determines the

proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

calcAllGens 15

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

verbose logical If TRUE, message progress through stages of algorithm
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
code_male The value to use for males. Default is "M"
code_female The value to use for females. Default is "F"
fam_shift An integer to shift the person ID. Default is 1L.

Value

A data frame representing the simulated pedigree, including columns for family ID (‘fam®),

calcAllGens calcAllGens A function to calculate the number of individuals in each
generation. This is a supporting function for simulatePedigree.

Description

calcAllGens A function to calculate the number of individuals in each generation. This is a sup-
porting function for simulatePedigree.

Usage

calcAllGens(kpc, Ngen, marR)

allGens(kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from O to 1).
Value

Returns a vector containing the number of individuals in every generation.

16 calcFamilySizeByGen

calcFamilySize calcFamilySize A function to calculate the total number of individuals
in a pedigree given parameters. This is a supporting function for func-
tion simulatePedigree

Description

calcFamilySize A function to calculate the total number of individuals in a pedigree given parame-
ters. This is a supporting function for function simulatePedigree

Usage
calcFamilySize(kpc, Ngen, marR)

famSizeCal (kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from 0O to 1).
Value

Returns a numeric value indicating the total pedigree size.

calcFamilySizeByGen calcFamilySizeByGen An internal supporting function for
simulatePedigree.

Description

calcFamilySizeByGen An internal supporting function for simulatePedigree.

Usage
calcFamilySizeByGen(kpc, Ngen, marR)

sizeAllGens(kpc, Ngen, marR)

Arguments
kpc Number of kids per couple (integer >= 2).
Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from O to 1).

calculateCls 17

Value

Returns a vector including the number of individuals in every generation.

calculateCIs Confidence Intervals for Correlations with Optional Design-Effect Ad-
justment

Description

Compute confidence intervals (Cls) for correlation coefficients using either Fisher’s » — z approach
(Raykov-style on the z scale) or a Wald CI on the r scale. Standard errors are first **adjusted** by
a design-effect factor when available, and optionally for double entry. The adjusted standard errors
are used for all calculations, including CIs, z-tests, and p-values.

Usage
calculateCIs(
tbl,
rho_var,
se_var,
doubleentered = FALSE,
method = "raykov"”,

adjust_base = 1,
design_effect_m = NULL,
design_effect_rho = NULL,
design_effect_m_col = NULL,
design_effect_rho_col = NULL,
conf_level = 0.95

)
Arguments
tbl A data frame or tibble containing the correlation coefficient and standard error
variables.
rho_var The name of the column in tb1 that contains the correlation coefficients.
se_var The name of the column in tb1 that contains the standard errors.

doubleentered Logical. If TRUE, the function assumes that the correlation coefficients are
double-entered, which adjusts the standard errors accordingly. Default is FALSE.

method Character; CI method selector. Supported values:
e "raykov" — Fisher r — z CI (back-transformed).
e "fisherz" — alias of "raykov".
e "wald"” — Wald CI on the r scale.
e "doubleentered” — like "raykov" and, if doubleentered was not ex-

plicitly provided, it is set to TRUE (applies the /2 multiplier).

18 calculateH

¢ "doubleenteredconserv” — like "wald” and, if doubleentered was not
explicitly provided, it is set to TRUE.

adjust_base A numeric value to adjust the standard errors. Default is 1.

design_effect_m
A numeric value for the design effect related to the mean. Default is NULL.
design_effect_rho
A numeric value for the design effect related to the correlation. Default is NULL.
design_effect_m_col
A character string specifying the column name for the design effect related to
the mean. Default is NULL.
design_effect_rho_col
A character string specifying the column name for the design effect related to
the correlation. Default is NULL.

conf_level The confidence level for the intervals. Default is 0.95.

Value

A modified version of tb1 with additional columns for the confidence intervals and related statistics.
Everything uses adjusted standard errors, including confidence intervals, z-tests, and p-values.

Note

Double-entry handling and design effects are governed by doubleentered, design_effect_m/design_effect_rho
(or their *_col variants), and adjust_base. The "doubleentered*" method values simply pro-

vide convenient aliases: they toggle doubleentered to TRUE only when the user hasn’t explicitly

set it, and map to "raykov" or "wald" as described.

Examples

tbl <- data.frame(rho = c(0.5, 0.7, 0.3), se = c(0.1, 0.2, 0.05))

n n n

calculateCIs(tbl, rho_var = "rho", se_var = "se", method = "raykov")
calculateH Falconer’s Formula
Description

Use Falconer’s formula to solve for H using the observed correlations for two groups of any two
levels of relatednesses.

Usage

calculateH(r1, r2, obsR1, obsR2)

calculateRelatedness

Arguments
ri
r2
obsR1
obsR2

Details

19

Relatedness coefficient of the first group.
Relatedness coefficient of the second group.
Observed correlation between members of the first group.

Observed correlation between members of the second group.

This generalization of Falconer’s formula provides a method to calculate heritability by using the
observed correlations for two groups of any two relatednesses. This function solves for H using the

formula:

obsR1 — obsR2

H? =
rl —r2

where rl and r2 are the relatedness coefficients for the first and second group, respectively, and
obsR1 and obsR2 are the observed correlations.

Value

Heritability estimates (‘heritability_estimates®).

calculateRelatedness Calculate Relatedness Coefficient

Description

This function calculates the relatedness coefficient between two individuals based on their shared
ancestry, as described by Wright (1922).

Usage

calculateRelatedness(

generations = 2,
path = NULL,
full = TRUE,

maternal = FALSE,
empirical = FALSE,
segregating = TRUE,
total_a = 6800 * 1e+0Q6,
total_m = 16500,
weight_a = 1,

weight_m = 1,

denom_m = FALSE,

)

related_coef(...)

20

Arguments

generations

path

full

maternal

empirical

segregating

total_a

total_m

weight_a

weight_m

denom_m

Details

calculateRelatedness

Number of generations back of common ancestors the pair share.

Traditional method to count common ancestry, which is twice the number of
generations removed from common ancestors. If not provided, it is calculated
as 2*generations.

Logical. Indicates if the kin share both parents at the common ancestor’s gener-
ation. Default is TRUE.

Logical. Indicates if the maternal lineage should be considered in the calcula-
tion.

Logical. Adjusts the coefficient based on empirical data, using the total number
of nucleotides and other parameters.

Logical. Adjusts for segregating genes.

Numeric. Represents the total size of the autosomal genome in terms of nu-
cleotides, used in empirical adjustment. Default is 6800*1000000.

Numeric. Represents the total size of the mitochondrial genome in terms of
nucleotides, used in empirical adjustment. Default is 16500.

Numeric. Represents the weight of phenotypic influence from additive genetic
variance, used in empirical adjustment.

Numeric. Represents the weight of phenotypic influence from mitochondrial
effects, used in empirical adjustment.

Logical. Indicates if ‘total_m‘ and ‘weight_m* should be included in the de-
nominator of the empirical adjustment calculation.

Further named arguments that may be passed to another function.

The relatedness coefficient between two people (b & c) is defined in relation to their common

ancestors: 7p. =

Value

S f)

Relatedness Coefficient (‘coef*): A measure of the genetic relationship between two individuals.

Examples

Not run:

For full siblings, the relatedness coefficient is expected to be 0.5:
calculateRelatedness(generations = 1, full = TRUE)
For half siblings, the relatedness coefficient is expected to be 0.25:
calculateRelatedness(generations = 1, full = FALSE)

End(Not run)

checkIDs 21

checkIDs Validates and Optionally Repairs Unique IDs in a Pedigree Dataframe

Description

This function takes a pedigree object and performs two main tasks: 1. Checks for the uniqueness of
individual IDs. 2. Optionally repairs non-unique IDs based on a specified logic.

Usage

checkIDs(ped, verbose = FALSE, repair = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID‘, and
‘momID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
repair A logical flag indicating whether to attempt repairs on non-unique IDs.
Value

Depending on ‘repair‘ value, either returns a list containing validation results or a repaired dataframe

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 2, 3), dadID = c(NA, 1, 1, 2), momID = c(NA, NA, 2, 2))
checkIDs(ped, verbose = TRUE, repair = FALSE)

End(Not run)

checkIDuniqueness Check for duplicated individual IDs

Description

This function checks for duplicated individual IDs in a pedigree.

Usage

checkIDuniqueness(ped, verbose = FALSE)

22 checkParentIDs

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momlID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A list containing the results of the check

checkParentIDs Validates and Optionally Repairs Parent IDs in a Pedigree Dataframe

Description

This function takes a pedigree object and performs two main tasks: 1. Checks for the validity of
parent IDs, specifically looking for instances where only one parent ID is missing. 2. Optionally
repairs the missing parent IDs based on a specified logic.

Usage

checkParentIDs(
ped,
verbose = FALSE,
repair = FALSE,
repairsex = repair,
addphantoms = repair,
parentswithoutrow = repair,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
code_male = NULL,
code_female = NULL

)
Arguments

ped A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.

verbose A logical flag indicating whether to print progress and validation messages to
the console.

repair A logical flag indicating whether to attempt repairs on missing parent IDs.

repairsex A logical flag indicating whether to attempt repairs on sex of the parents

addphantoms A logical flag indicating whether to add phantom parents for missing parent IDs.

checkParentSex 23
parentswithoutrow
A logical flag indicating whether to add parents without a row in the pedigree.
famID Character. Column name for family IDs.
personID Character. Column name for individual IDs.
momID Character. Column name for maternal IDs.
dadID Character. Column name for paternal IDs.
code_male The code value used to represent male sex in the ’sex’ column of ped.

code_female

Value

The code value used to represent female sex in the ’sex’ column of ped.

Depending on the value of ‘repair®, either a list containing validation results or a repaired dataframe

is returned.

Examples

Not run:

ped <- data.frame(ID = 1:4, dadID = c(NA, 1

1, 2), momID = c(NA, NA, 2, 2))

checkParentIDs(ped, verbose = TRUE, repair = FALSE)

End(Not run)

checkParentSex

Check Parental Role Sex Consistency

Description

Validates sex coding consistency for a given parental role (momID or dadID).

Usage
checkParentSex(ped, parent_col, sex_col = "sex", verbose = FALSE)
Arguments
ped Pedigree dataframe.
parent_col The column name for parent IDs ("momID" or "dadID").
sex_col The column name for sex coding. Default is "sex".
verbose Logical, whether to print messages.
Value

A list containing role, unique sex codes, modal sex, inconsistent parents, and linked children.

24 checkPedigreeNetwork

checkPedigreeNetwork Validate Pedigree Network Structure

Description

Checks for structural issues in pedigree networks, including: - Individuals with more than two
parents. - Presence of cyclic parent-child relationships.

Usage

checkPedigreeNetwork(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
verbose = FALSE

)
Arguments
ped Dataframe representing the pedigree.
personID Character. Column name for individual IDs.
momID Character. Column name for maternal IDs.
dadID Character. Column name for paternal IDs.
verbose Logical. If TRUE, print informative messages.
Value

List containing detailed validation results.

Examples

Not run:
results <- checkPedigreeNetwork(ped,
personID = "ID",
momID = "momID"”, dadID = "dadID", verbose = TRUE

)

End(Not run)

checkSex

25

checkSex

Validates and Optionally Repairs Sex Coding in a Pedigree Dataframe

Description

This function checks and optionally modifies the coding of the biological ’sex’ variable in a pedigree
dataset. It serves two primary purposes: 1. Recodes the ’sex’ variable based on specified codes for
males and females, if provided. 2. Identifies and optionally repairs inconsistencies in sex coding
that could break the algorithm for constructing genetic pedigrees.

Usage

checkSex(
ped,
code_male

code_female
code_unknown

verbose =

NULL,

NULL,

= NULL,
FALSE,

repair = FALSE,
momID = "momID",
dadID = "dadID"

Arguments

ped
code_male

code_female

code_unknown

verbose

repair
momID
dadID

Details

A dataframe representing the pedigree data with a ’sex’ column.
The current code used to represent males in the ’sex’ column.

The current code used to represent females in the ’sex’ column. If both are
NULL, no recoding is performed.

The current code used to represent unknown or ambiguous sex in the ’sex’ col-
umn. Can be NA to indicate that missing values should be treated as unknown. If
NULL and both code_male and code_female are provided, values not matching
either will be inferred as unknown.

A logical flag indicating whether to print progress and validation messages to
the console.

A logical flag indicating whether to attempt repairs on the sex coding.
The column name for maternal IDs. Default is "momID".

The column name for paternal IDs. Default is "dadID".

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

26 checkWithinRowDuplicates

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and ’female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value
Depending on the value of ‘repair®, either a list containing validation results or a repaired dataframe
is returned.

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
checkSex(ped, code_male = "M", verbose = TRUE, repair = FALSE)

End(Not run)

checkWithinRowDuplicates
Check for within-row duplicates (self-parents, same mom/dad)

Description

This function checks for within-row duplicates in a pedigree.

Usage
checkWithinRowDuplicates(ped, verbose = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momlID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A list containing the results of the check

collapseNames 27

collapseNames collapse Names

Description

This function combines the ‘name_given‘ and ‘name_given_pieces‘ columns in a data frame. If both
columns have non-missing values that differ, a warning is issued and the original ‘name_given‘ is
retained. If one column is missing, the other is used. The same logic applies to the ‘name_surn‘
and ‘name_surn_pieces‘ columns.

Usage

collapseNames(verbose, df_temp)

Arguments

verbose Logical. If TRUE, print progress messages.

df_temp A data frame containing the columns to be combined.
Value

A data frame with the combined columns.

com2links Convert Sparse Relationship Matrices to Kinship Links

Description

This function processes one or more sparse relationship components (additive, mitochondrial, and
common nuclear) and converts them into kinship link pairs. The resulting related pairs are either
returned as a data frame or written to disk in CSV format.

Usage

com2links(
rel_pairs_file = "dataRelatedPairs.csv”,
ad_ped_matrix = NULL,
mit_ped_matrix = mt_ped_matrix,
mt_ped_matrix = NULL,
cn_ped_matrix = NULL,
write_buffer_size = 1000,
update_rate = 1000,
gc = TRUE,
writetodisk = TRUE,
verbose = FALSE,

28 comp2vech

legacy = FALSE,

outcome_name = "data",
drop_upper_triangular = TRUE,
include_all_links_1ped = FALSE,

Arguments

rel_pairs_file File path to write related pairs to (CSV format).

ad_ped_matrix Matrix of additive genetic relatedness coefficients.

mit_ped_matrix Matrix of mitochondrial relatedness coefficients. Alias: mt_ped_matrix.
mt_ped_matrix Matrix of mitochondrial relatedness coefficients.

cn_ped_matrix Matrix of common nuclear relatedness coefficients.
write_buffer_size
Number of related pairs to write to disk at a time.

update_rate Numeric. Frequency (in iterations) at which progress messages are printed.
gc Logical. If TRUE, performs garbage collection via gc to free memory.

writetodisk Logical. If TRUE, writes the related pairs to disk; if FALSE, returns a data

frame.
verbose Logical. If TRUE, prints progress messages.
legacy Logical. If TRUE, uses the legacy branch of the function.

outcome_name Character string representing the outcome name (used in file naming).
drop_upper_triangular

Logical. If TRUE, drops the upper triangular portion of the matrix.
include_all_links_1ped

Logical. If TRUE, includes all links in the output. (Default is true when only

one ped is provided)

Additional arguments to be passed to com21links

Value

A data frame of related pairs if writetodisk is FALSE; otherwise, writes the results to disk.

comp2vech comp2vech Turn a variance component relatedness matrix into its
half-vectorization

Description

comp2vech Turn a variance component relatedness matrix into its half-vectorization

computeParentAdjacency 29

Usage

comp2vech(x, include.zeros = FALSE)

Arguments

X Relatedness component matrix (can be a matrix, list, or object that inherits from
’Matrix’).

include.zeros logical. Whether to include all-zero rows. Default is FALSE.

Details

This function is a wrapper around the vech function, extending it to allow for blockwise matrices
and specific classes. It facilitates the conversion of a variance component relatedness matrix into a
half-vectorized form.

Value

The half-vectorization of the relatedness component matrix.

Examples

comp2vech(list(matrix(c(1, .5, .5, 1), 2, 2), matrix(1, 2, 2)))

computeParentAdjacency
Compute Parent Adjacency Matrix with Multiple Approaches

Description

Compute Parent Adjacency Matrix with Multiple Approaches

Usage

computeParentAdjacency(
ped,
component,
adjacency_method = "direct”,
saveable,
resume,
save_path,
verbose = FALSE,
lastComputed = 0,
checkpoint_files,
update_rate,
parList,
lens,

30 computeParentAdjacency

save_rate_parlist,
adjBeta_method = NULL,
config,

compress = config$compress,

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
component character. Which component of the pedigree to return. See Details.

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint

save_path character. The path to save the checkpoint files

verbose logical. If TRUE, print progress through stages of algorithm

lastComputed the last computed index

checkpoint_files
a list of checkpoint files

update_rate the rate at which to update the progress
parList a list of parent-child relationships
lens a vector of the lengths of the parent-child relationships

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

adjBeta_method numeric The method to use for computing the building the adjacency_method
matrix when using the "beta" build

config a configuration list that passes parameters to the function
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

countPatternRows 31

countPatternRows Count GEDCOM Pattern Rows

Description
Counts the number of lines in a file (passed as a data frame with column "X1") that match various
GEDCOM patterns. Returns a list with counts for each pattern.

Usage

countPatternRows(file)

Arguments

file A data frame with a column X1 containing GEDCOM lines.

Value

A list with counts of specific GEDCOM tag occurrences.

createGenDataFrame Create Data Frame for Generation

Description

This function creates a data frame for a specific generation within the simulated pedigree. It ini-
tializes the data frame with default values for family ID, individual ID, generation number, paternal
ID, maternal ID, spouse ID, and sex. All individuals are initially set with NA for paternal, maternal,
spouse IDs, and sex, awaiting further assignment.

Usage

createGenDataFrame(sizeGens, genIndex, idGen)

Arguments
sizeGens A numeric vector containing the sizes of each generation within the pedigree.
genIndex An integer representing the current generation index for which the data frame is
being created.
idGen A numeric vector containing the ID numbers to be assigned to individuals in the

current generation.

32 determineSex

Value

A data frame representing the initial structure for the individuals in the specified generation before
any relationships (parental, spousal) are defined. The columns include family ID (‘fam*), individual
ID (‘id*), generation number (‘gen‘), father’s ID (‘pat‘), mother’s ID (‘mat‘), spouse’s ID (‘spID‘),
and sex (‘sex‘), with NA values for paternal, maternal, and spouse IDs, and sex.

Examples

sizeGens <- c(3, 5, 4) # Example sizes for 3 generations
genIndex <- 2 # Creating data frame for the 2nd generation
idGen <- 101:105 # Example IDs for the 2nd generation
df_Ngen <- createGenDataFrame(sizeGens, genIndex, idGen)
print(df_Ngen)

determineSex Determine Sex of Offspring

Description

This internal function assigns sexes to the offspring in a generation based on the specified sex ratio.

Usage
determineSex(idGen, sexR, code_male = "M", code_female = "F")
Arguments
idGen Vector of IDs for the generation.
sexR Numeric value indicating the sex ratio (proportion of males).
code_male The value to use for males. Default is "M"
code_female The value to use for females. Default is "F"
Value

Vector of sexes ("M" for male, "F" for female) for the offspring.

dropLink 33

dropLink dropLink

Description

A function to drop a person from his/her parents in the simulated pedigree data. frame. The person
can be dropped by specifying his/her ID or by specifying the generation which the randomly to-
be-dropped person is in. The function can separate one pedigree into two pedigrees. Separating
into small pieces should be done by running the function multiple times. This is a supplementary
function for simulatePedigree.

Usage
dropLink(
ped,
ID_drop = NA_integer_,
gen_drop = 2,
sex_drop = NA_character_,
n_drop = 1
)
Arguments
ped a pedigree simulated from simulatePedigree function or the same format
ID_drop the ID of the person to be dropped from his/her parents.
gen_drop the generation in which the randomly dropped person is. Will work if ‘ID_drop*
is not specified.
sex_drop the biological sex of the randomly dropped person.
n_drop the number of times the mutation happens.
Value

a pedigree with the dropped person’s ‘dadID‘ and ‘momID* set to NA.

findBiggest Function to find the biggest families in a pedigree This function finds
the biggest families in a pedigree. It is supposed to be used internally
by the summarize_pedigree function.

Description

Function to find the biggest families in a pedigree This function finds the biggest families in a
pedigree. It is supposed to be used internally by the summarize_pedigree function.

34 findOldest

Usage

findBiggest(foo_summary_dt, n_fooest = 5, n_foo_total = nrow(foo_summary_dt))

Arguments

foo_summary_dt A data.table containing the summary statistics.

n_fooest An integer specifying the number of individuals in the summary.
n_foo_total An integer specifying the total number of individuals in the summary.
Value

a data.table containing the biggest families in the pedigree.

findOldest Function to find the oldest individuals in a pedigree This function finds
the oldest families in a pedigree. It is supposed to be used internally
by the summarize_pedigree function.

Description

Function to find the oldest individuals in a pedigree This function finds the oldest families in a
pedigree. It is supposed to be used internally by the summarize_pedigree function.

Usage

findOldest(
foo_summary_dt,
byr = "byr”,
n_fooest = 5,
n_foo_total = nrow(foo_summary_dt)

Arguments

foo_summary_dt A data.table containing the summary statistics.

byr Character. Optional column name for birth year. Used to determine the oldest
lineages.
n_fooest An integer specifying the number of individuals in the summary.
n_foo_total An integer specifying the total number of individuals in the summary.
Value

a data.table containing the oldest families in the pedigree.

fitComponentModel 35

fitComponentModel fitComponentModel Fit the estimated variance components of a model
to covariance data

Description

fitComponentModel Fit the estimated variance components of a model to covariance data

Usage
fitComponentModel (covmat, ...)
Arguments
covmat The covariance matrix of the raw data, which may be blockwise.
Comma-separated relatedness component matrices representing the variance com-
ponents of the model.
Details

This function fits the estimated variance components of a model to given covariance data. The rank
of the component matrices is checked to ensure that the variance components are all identified.
Warnings are issued if there are inconsistencies.

Value

A regression (linear model fitted with 1m). The coefficients of the regression represent the estimated
variance components.

Examples

Not run:

install.packages("OpenMX")

data(twinData, package = "OpenMx")

sellvars <- c("ht1", "ht2")

mzData <- subset(twinData, zyg %in% c(1), c(selVars, "zyg"))
dzData <- subset(twinData, zyg %in% c(3), c(selvars, "zyg"))

fitComponentModel (
covmat = list(cov(mzDatal, selVars], use = "pair"), cov(dzData[, selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(1, nrow = 2))

End(Not run)

36

hazard

hazard

Simulated pedigree with two extended families and an age-related haz-

ard

Description

A dataset simulated to have an age-related hazard. There are two extended families that are sampled

from

Usage

the same population.

data(hazard)

Format

A data frame with 43 rows and 14 variables

Details

The variables are as follows:

FamID: ID of the extended family

ID: Person identification variable

sex: Sex of the ID: 1 is female; O is male

dadID: ID of the father

momID: ID of the mother

affected: logical. Whether the person is affected or not
DA1: Binary variable signifying the meaninglessness of life
DA2: Binary variable signifying the fundamental unknowability of existence
birthYr: Birth year for person

onsetYr: Year of onset for person

deathYr: Death year for person

available: logical. Whether

Gen: Generation of the person

proband: logical. Whether the person is a proband or not

identifyComponentModel 37

identifyComponentModel

identifyComponentModel Determine if a variance components model
is identified

Description

identifyComponentModel Determine if a variance components model is identified

Usage
identifyComponentModel(..., verbose = TRUE)
Arguments
Comma-separated relatedness component matrices representing the variance com-
ponents of the model.
verbose logical. If FALSE, suppresses messages about identification; TRUE by default.
Details

This function checks the identification status of a given variance components model by examining
the rank of the concatenated matrices of the components. If any components are not identified, their
names are returned in the output.

Value

A list of length 2 containing:

e identified: TRUE if the model is identified, FALSE otherwise.

* nidp: A vector of non-identified parameters, specifying the names of components that are not
simultaneously identified.

Examples

identifyComponentModel (A = list(matrix(1, 2, 2)), C = list(matrix(1, 2, 2)), E =diag(1, 2))

38

inbreeding

inbreeding Artificial pedigree data on eight families with inbreeding

Description

A dataset created purely from imagination that includes several types of inbreeding. Different kinds
of inbreeding occur in each extended family.

The types of inbreeding are as follows:

Extended Family 1: Sister wives - Children with the same father and different mothers who
are sisters.

Extended Family 2: Full siblings have children.
Extended Family 3: Half siblings have children.
Extended Family 4: First cousins have children.
Extended Family 5: Father has child with his daughter.

Extended Family 6: Half sister wives - Children with the same father and different mothers
who are half sisters.

Extended Family 7: Uncle-niece and Aunt-nephew have children.

Extended Family 8: A father-son pairs has children with a corresponding mother-daughter
pair.

Although not all of the above structures are technically inbreeding, they aim to test pedigree dia-
gramming and path tracing algorithms. This dataset is not intended to represent any real individuals
or families.

The variables are as follows:

Usage

ID: Person identification variable

sex: Sex of the ID: 1 is female; O is male
dadID: ID of the father

momID: ID of the mother

FamID: ID of the extended family

Gen: Generation of the person

proband: Always FALSE

data(inbreeding)

Format

A data frame (and ped object) with 134 rows and 7 variables

initializeRecord 39

initializeRecord Initialize an Empty Individual Record

Description

Creates a named list with all GEDCOM initialized to NA_character_.

Usage

initializeRecord(all_var_names)

Arguments

all_var_names A character vector of variable names.

Value

A named list representing an empty individual record.

insertEven evenlnsert A function to insert m elements evenly into a length n vector.

Description

evenlnsert A function to insert m elements evenly into a length n vector.

Usage

insertEven(m, n, verbose = FALSE)

evenInsert(m, n, verbose = FALSE)

Arguments
m A numeric vector of length less than or equal to n. The elements to be inserted.
n A numeric vector. The vector into which the elements of m will be inserted.
verbose logical If TRUE, prints additional information. Default is FALSE.

Details

The function takes two vectors, m and n, and inserts the elements of m evenly into n. If the length of
m is greater than the length of n, the vectors are swapped, and the insertion proceeds. The resulting
vector is a combination of m and n, with the elements of m evenly distributed within n.

40 makelnbreeding

Value

Returns a numeric vector with the elements of m evenly inserted into n.

See Also

SimPed for the main function that uses this supporting function.

makeInbreeding makelnbreeding

Description

A function to create inbred mates in the simulated pedigree data.frame. Inbred mates can be
created by specifying their IDs or the generation the inbred mate should be created. When spec-
ifying the generation, inbreeding between siblings or 1st cousin needs to be specified. This is a
supplementary function for simulatePedigree.

Usage

makeInbreeding(
ped,
ID_matel = NA_integer_,
ID_mate2 = NA_integer_,
verbose = FALSE,
gen_inbred = 2,
type_inbred = "sib”

)
Arguments
ped A data.frame in the same format as the output of simulatePedigree.
ID_matel A vector of ID of the first mate. If not provided, the function will randomly
select two individuals from the second generation.
ID_mate2 A vector of ID of the second mate.
verbose logical. If TRUE, print progress through stages of algorithm
gen_inbred A vector of generation of the twin to be imputed.
type_inbred A character vector indicating the type of inbreeding. "sib" for sibling inbreeding
and "cousin” for cousin inbreeding.
Details

This function creates inbred mates in the simulated pedigree data. frame. This function’s purpose
is to evaluate the effect of inbreeding on model fitting and parameter estimation. In case it needs to
be said, we do not condone inbreeding in real life. But we recognize that it is a common practice in
some fields to create inbred strains for research purposes.

makeTwins

Value

41

Returns a data. frame with some inbred mates.

makeTwins

makeTwins

Description

A function to impute twins in the simulated pedigree data. frame. Twins can be imputed by speci-
fying their IDs or by specifying the generation the twin should be imputed. This is a supplementary
function for simulatePedigree

Usage

makeTwins(
ped,
ID_twin1
ID_twin2
gen_twin

NA_integer_,
NA_integer_,

2,

verbose = FALSE,
zygosity = "MzZ"

Arguments
ped
ID_twin1
ID_twin2
gen_twin
verbose

zygosity

Value

A data. frame in the same format as the output of simulatePedigree.
A vector of ID of the first twin.

A vector of ID of the second twin.

A vector of generation of the twin to be imputed.

logical. If TRUE, print progress through stages of algorithm

A character string indicating the zygosity of the twins. Default is "MZ" for
monozygotic twins.

Returns a data. frame with MZ twins information added as a new column.

42 markPotentialChildren

mapFAMS2parents Create a Mapping from Family IDs to Parent IDs

Description

This function scans the data frame and creates a mapping of family IDs to the corresponding parent
IDs.

Usage

mapFAMS2parents(df_temp)

Arguments

df_temp A data frame produced by readGedcom().

Value

A list mapping family IDs to parent information.

markPotentialChildren Mark and Assign children

Description

This subfunction marks individuals in a generation as potential sons, daughters, or parents based
on their relationships and assigns unique couple IDs. It processes the assignment of roles and
relationships within and between generations in a pedigree simulation.

Usage

markPotentialChildren(
df_Ngen,
i,
Ngen,
sizeGens,
CoupleF,
code_male = "M",
code_female = "F"

parseNameLine 43

Arguments
df_Ngen A data frame for the current generation being processed. It must include columns
for individual IDs (‘id‘), spouse IDs (‘spID‘), sex (‘sex ‘), and any previously as-
signed roles (‘ifparent’, ‘ifson‘, ‘ifdau®).
i Integer, the index of the current generation being processed.
Ngen Integer, the total number of generations in the simulation.
sizeGens Numeric vector, containing the size (number of individuals) of each generation.
CoupleF Integer, IT MIGHT BE the number of couples in the current generation.
code_male The value to use for males. Default is "M"
code_female The value to use for females. Default is "F"
Value

Modifies ‘df_Ngen* in place by updating or adding columns related to individual roles (‘ifparent®,
‘ifson®, ‘ifdau‘) and couple IDs (‘coupleld‘). The updated data frame is also returned for integration
into the larger pedigree data frame (‘df_Fam*).

parseNamelLine Parse Name Line

Description

Extracts full name information from a GEDCOM "NAME" line and updates the record accordingly.

Usage

parseNamelLine(line, record)

Arguments
line A character string containing the name line.
record A named list representing the individual’s record.
Value

The updated record with parsed name information.

44 ped2add

ped2add Take a pedigree and turn it into an additive genetics relatedness matrix

Description

Take a pedigree and turn it into an additive genetics relatedness matrix

Usage

ped2add(
ped,
max_gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten_diag = FALSE,
standardize_colnames = TRUE,
transpose_method = "tcrossprod”,
adjacency_method = "direct”,
saveable = FALSE,
resume = FALSE,
save_rate = 5,
save_rate_gen = save_rate,
save_rate_parlist = 1e+@5 * save_rate,
save_path = "checkpoint/",
compress = TRUE,

)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max_gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf® uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten_diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize_colnames
logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method

character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

ped2ce 45

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2ce Take a pedigree and turn it into an extended environmental relatedness
matrix

Description

Take a pedigree and turn it into an extended environmental relatedness matrix

Usage
ped2ce(ped, ...)

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
additional arguments to be passed to ped2com
Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

46 ped2cn

ped2cn Take a pedigree and turn it into a common nuclear environmental ma-
trix

Description

Take a pedigree and turn it into a common nuclear environmental matrix

Usage

ped2cn(
ped,
max_gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten_diag = FALSE,
standardize_colnames = TRUE,
transpose_method = "tcrossprod”,
saveable = FALSE,
resume = FALSE,
save_rate = 5,
adjacency_method = "direct”,
save_rate_gen = save_rate,
save_rate_parlist = 1000 * save_rate,
save_path = "checkpoint/",
compress = TRUE,

)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max_gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten_diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize_colnames

logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method

character. The method to use for computing the transpose. Options are "tcrossprod”,

"crossprod", or "star"

ped2com 47

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate
save_rate_parlist

numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2com Take a pedigree and turn it into a relatedness matrix

Description

Take a pedigree and turn it into a relatedness matrix

Usage

ped2com(
ped,
component,
max_gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten_diag = FALSE,
standardize_colnames = TRUE,

transpose_method = "tcrossprod”,
adjacency_method = "direct”,
isChild_method = "classic”,

saveable = FALSE,
resume = FALSE,

48 ped2com
save_rate = 5,
save_rate_gen = save_rate,
save_rate_parlist = 1e+05 * save_rate,
update_rate = 100,
save_path = "checkpoint/"”,
adjBeta_method = NULL,
compress = TRUE,
)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
component character. Which component of the pedigree to return. See Details.
max_gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.
sparse logical. If TRUE, use and return sparse matrices from Matrix package
verbose logical. If TRUE, print progress through stages of algorithm
gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten_diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize_colnames
logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"
adjacency_method
character. The method to use for computing the adjacency matrix. Options are

"non:

"loop", "indexed", direct or beta

isChild_method character. The method to use for computing the isChild matrix. Options are
"classic" or "partialparent”

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

update_rate numeric. The rate at which to print progress

save_path character. The path to save the checkpoint files

adjBeta_method numeric The method to use for computing the building the adjacency_method
matrix when using the "beta" build

ped2fam 49

compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2fam Segment Pedigree into Extended Families

Description

This function adds an extended family ID variable to a pedigree by segmenting that dataset into
independent extended families using the weakly connected components algorithm.

Usage
ped2fam(
ped,
personID = "ID",
momID = "momID",

dadID = "dadID",
famID = "famID",

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personlD character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
famID character. Name of the column to be created in ped for the family ID variable
additional arguments to be passed to ped2com
Details

The general idea of this function is to use person ID, mother ID, and father ID to create an extended
family ID such that everyone with the same family ID is in the same (perhaps very extended)
pedigree. That is, a pair of people with the same family ID have at least one traceable relation of
any length to one another.

This function works by turning the pedigree into a mathematical graph using the igraph package.
Once in graph form, the function uses weakly connected components to search for all possible
relationship paths that could connect anyone in the data to anyone else in the data.

50

Value

A pedigree dataset with one additional column for the newly created extended family ID

ped2gen

ped2gen

Take a pedigree and turn it into a generation relatedness matrix

Description

Take a pedigree and turn it into a generation relatedness matrix

Usage

pe

d2gen(

ped,

max_gen = 25,

sparse = TRUE,

verbose = FALSE,

gc = FALSE,

flatten_diag = FALSE,
standardize_colnames = TRUE,
transpose_method = "tcrossprod”,
saveable = FALSE,

resume = FALSE,

save_rate = 5,
adjacency_method = "direct”,
save_rate_gen = save_rate,

save_rate_parlist = 1000 x save_rate,

save_path = "checkpoint/",
compress = TRUE,

)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max_gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf® uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten_diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with

st

ones
andardize_colnames

logical. If TRUE, standardize the column names of the pedigree dataset

ped2graph 51

transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2graph Turn a pedigree into a graph

Description

Turn a pedigree into a graph

Usage
ped2graph(
ped,
personID = "ID",
momID = "momID",

dadID = "dadID",
directed = TRUE,
adjacent = c("parents”, "mothers"”, "fathers"),

52 ped2maternal
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
directed Logical scalar. Default is TRUE. Indicates whether or not to create a directed
graph.
adjacent Character. Relationship that defines adjacency in the graph: parents, mothers,
or fathers
additional arguments to be passed to ped2com
Details
The general idea of this function is to represent a pedigree as a graph using the igraph package.
Once in graph form, several common pedigree tasks become much simpler.
The adjacent argument allows for different kinds of graph structures. When using parents for
adjacency, the graph shows all parent-child relationships. When using mother for adjacency, the
graph only shows mother-child relationships. Similarly when using father for adjacency, only
father-child relationships appear in the graph. Construct extended families from the parent graph,
maternal lines from the mothers graph, and paternal lines from the fathers graph.
Value
A graph
ped2maternal Add a maternal line ID variable to a pedigree
Description
Add a maternal line ID variable to a pedigree
Usage
ped2maternal (
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,

ped2mit

Arguments

ped
personlD
momID
dadID
matID

Details

53

a pedigree dataset. Needs ID, momID, and dadID columns

character. Name of the column in ped for the person ID variable

character. Name of the column in ped for the mother ID variable

character. Name of the column in ped for the father ID variable

Character. Maternal line ID variable to be created and added to the pedigree

additional arguments to be passed to ped2com

Under various scenarios it is useful to know which people in a pedigree belong to the same maternal
lines. This function first turns a pedigree into a graph where adjacency is defined by mother-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
maternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2paternal()] for creating paternal line IDs

ped2mit

Take a pedigree and turn it into a mitochondrial relatedness matrix

Description

Take a pedigree and turn it into a mitochondrial relatedness matrix

Usage

ped2mit(
ped,
max_gen = 25,
sparse = TRUE

’

verbose = FALSE,

gc = FALSE,

flatten_diag = FALSE,
standardize_colnames = TRUE,
transpose_method = "tcrossprod”,
adjacency_method = "direct”,
saveable = FALSE,

resume = FALSE,

save_rate = 5,

save_rate_gen

= save_rate,

save_rate_parlist = 1et+05 * save_rate,
save_path = "checkpoint/",
compress = TRUE,

54 ped2mit

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max_gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf* uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten_diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones

standardize_colnames
logical. If TRUE, standardize the column names of the pedigree dataset

transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod",
"crossprod", or "star"

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non:

"loop", "indexed", direct or beta

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist

numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files
compress logical. If TRUE, use compression when saving the checkpoint files. Defaults
to TRUE.

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2paternal 55

ped2paternal Add a paternal line ID variable to a pedigree

Description

Add a paternal line ID variable to a pedigree

Usage

ped2paternal (
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
patID = "patID",

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personlD character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
patID Character. Paternal line ID variable to be created and added to the pedigree
additional arguments to be passed to ped2com
Details

Under various scenarios it is useful to know which people in a pedigree belong to the same paternal
lines. This function first turns a pedigree into a graph where adjacency is defined by father-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
paternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2maternal()] for creating maternal line IDs

56 potter

postProcessGedcom Post-process GEDCOM Data Frame

Description

This function optionally adds parent information, combines duplicate columns, and removes empty
columns from the GEDCOM data frame. It is called by readGedcom() if post_process = TRUE.

Usage

postProcessGedcom(
df_temp,
remove_empty_cols = TRUE,
combine_cols = TRUE,
add_parents = TRUE,
skinny = TRUE,
verbose = FALSE

Arguments

df_temp A data frame produced by readGedcom().
remove_empty_cols
Logical indicating whether to remove columns that are entirely missing.

combine_cols Logical indicating whether to combine columns with duplicate values.

add_parents Logical indicating whether to add parent information.

skinny Logical indicating whether to slim down the data frame.

verbose Logical indicating whether to print progress messages.
Value

The post-processed data frame.

potter Fictional pedigree data on a wizarding family

Description

A dataset created for educational and illustrative use, containing a fictional pedigree modeled after
characters from the Harry Potter series. This data is structured for use in software demonstrations
involving pedigree diagrams, inheritance structures, and kinship modeling. This dataset is not in-
tended to represent any real individuals or families. It includes no narrative content or protected
expression from the original works and is provided solely for educational purposes. This dataset is
not endorsed by or affiliated with the creators or copyright holders of the Harry Potter series.

prepSummarizePedigrees 57

Usage

data(potter)

Format

A data frame (and ped object) with 36 rows and 10 variables

Details

The variables are as follows:

¢ personlID: Person identification variable
e famID: Family identification variable

* name: Name of the person

e first_name: First name of the person

* surname: Last name of the person

* gen: Generation of the person

* momID: ID of the mother

* dadID: ID of the father

* spouselID: ID of the spouse

¢ sex: Sex of the ID: 1 is male; O is female
e twinID: ID of the twin, if applicable

* zygosity: Zygosity of the twin, if applicable. mz is monozygotic; dz is dizygotic

IDs in the 100s momIDs and dadIDs are for people not in the dataset.

prepSummarizePedigrees
Function to prepare the pedigree for summarization This function pre-
pares the pedigree for summarization by ensuring that the necessary
IDs are present and that the pedigree is built correctly.

Description

Function to prepare the pedigree for summarization This function prepares the pedigree for sum-
marization by ensuring that the necessary IDs are present and that the pedigree is built correctly.

58 processEventLine
Usage
prepSummarizePedigrees(
ped,
type,
verbose = FALSE,
famiD,
personID,
momID,
dadiID,
matID,
patID
)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
type Character vector. Specifies which summaries to compute. Options: ‘"fathers"*,
“"mothers"‘, ‘"families"‘. Default includes all three.
verbose Logical, if TRUE, print progress messages.
famID character. Name of the column to be created in ped for the family ID variable
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree
patID Character. Paternal line ID variable to be created and added to the pedigree
processEventLine Process Event Lines (Birth or Death)
Description

Extracts event details (e.g., date, place, cause, latitude, longitude) from a block of GEDCOM lines.
For "birth": expect DATE on line i+1, PLAC on i+2, LATI on i+4, LONG on i+5. For "death":
expect DATE on line i+1, PLAC on i+2, CAUS on i+3, LATI on i+4, LONG on i+5.

Usage

processEventLine(event, block, i, record, pattern_rows)

Arguments

event

block

i

record
pattern_rows

A character string indicating the event type ("birth" or "death").
A character vector of GEDCOM lines.

The current line index where the event tag is found.

A named list representing the individual’s record.

A list with counts of GEDCOM tag occurrences.

processParents 59

Value

The updated record with parsed event information.#

processParents Process Parents Information from GEDCOM Data

Description

This function adds mother and father IDs to individuals in the data frame

Usage

processParents(df_temp, datasource)

Arguments

df_temp A data frame produced by readGedcom().

datasource Character string indicating the data source ("gedcom" or "wiki").
Value

The updated data frame with parent IDs added.

readGedcom Read a GEDCOM File

Description

This function ingests a GEDCOM genealogy file, identifies each individual described in the file,
and parses their information into a structured data frame. It supports optional post-processing to
enrich the raw data, such as inferring parental IDs, merging redundant name fields, and dropping
uninformative columns.

Usage

readGedcom(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols = TRUE,
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

60 readGedcom

)

readGed(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols = TRUE,
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

)

readgedcom(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols = TRUE,
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

Arguments
file_path Character. Path to the GEDCOM file.
verbose Logical. If TRUE, print progress messages.

add_parents Logical. If TRUE, add momID and dadID via FAMC/FAMS mapping.
remove_empty_cols
Logical. If TRUE, drop columns that are entirely NA.

combine_cols Logical. If TRUE, merge duplicate name columns (e.g., given/surn pieces).

skinny Logical. If TRUE, return a slimmer data frame (drops FAMC, FAMS and all-
empty cols).

update_rate Numeric. Intended rate at which to print progress
post_process Logical. If TRUE, apply post-processing (parents, combine, drop empty, skinny).

Additional arguments to be passed to the function.

Details

The parser operates line-by-line and is tuned to the common GEDCOM 5.5/5.5.1 structure: This
parser is line-oriented. Individuals are defined by blocks that start with a line containing "@ INDI".
Within each block, tags are parsed using simple pattern matches: - Relationship tags FAMC (as
child) and FAMS (as spouse) are collected and later mapped to parent IDs if add_parents = TRUE.

readWikifamilytree 61

- Individuals are defined in blocks beginning with lines containing @ INDI. Each block is passed
to an internal parser that extracts identifiers, names, life events, attributes, and family relationships.

- Names are parsed from the GEDCOM NAME tag, which usually encodes the given name and
surname with slashes (e.g., "NAME John /Smith/"). The parser extracts the given name, surname,
and constructs a cleaned full name. Additional name components (prefix, suffix, nickname, married
surname) are parsed if present.

- Life events are recognized by BIRT and DEAT tags. Event details are assumed to occur at fixed
offsets in the block (for example, a BIRT tag is followed by a DATE, then a PLAC, and optionally
geographic coordinates). Missing elements leave the corresponding field as NA. for birth, expected
lines are DATE (i+1), PLAC (i+2), LATI (i+4), LONG (i+5); for death, expected lines are DATE
(i+1), PLAC (i+2), CAUS (i+3), LATI (i+4), LONG (i+5).

- Attributes such as occupation, education, and religion are parsed directly from GEDCOM tags
(OCCU, EDUC, RELLI, etc.). Each attribute is stored in a dedicated column prefixed with attribute_.

- Relationships are parsed from FAMC (family as child) and FAMS (family as spouse). These
identifiers are preserved in the raw output and can optionally be mapped to explicit parent IDs via
processParents().

- Post-processing can be applied by setting post_process = TRUE. This applies several clean-up
steps: adding inferred parents, merging duplicate name fields, and slimming the data frame by
removing all-empty columns or relationship tags.

Value

A data frame containing information about individuals, with the following potential columns: -
‘personID*: ID of the individual parsed from the @ INDI line - ‘momID*: ID of the individual’s
mother - ‘dadID*: ID of the individual’s father - ‘sex‘: Sex of the individual - ‘name‘: Full name
of the individual - ‘name_given‘: First name of the individual - ‘name_surn‘: Last name of the
individual - ‘name_marriedsurn‘: Married name of the individual - ‘name_nick‘: Nickname of the
individual - ‘name_npfx‘: Name prefix - ‘name_nsfx‘: Name suffix - ‘birth_date‘: Birth date of
the individual - ‘birth_lat*: Latitude of the birthplace - ‘birth_long‘: Longitude of the birthplace -
‘birth_place*: Birthplace of the individual - ‘death_caus‘: Cause of death - ‘death_date‘: Death date
of the individual - ‘death_lat‘: Latitude of the place of death - ‘death_long‘: Longitude of the place
of death - ‘death_place‘: Place of death of the individual - ‘attribute_caste: Caste of the individual
- ‘attribute_children‘: Number of children of the individual - ‘attribute_description‘: Description
of the individual - ‘attribute_education‘: Education of the individual - ‘attribute_idnumber*: Iden-
tification number of the individual - ‘attribute_marriages‘: Number of marriages of the individual -
‘attribute_nationality ‘: Nationality of the individual - ‘attribute_occupation‘: Occupation of the in-
dividual - ‘attribute_property‘: Property owned by the individual - ‘attribute_religion‘: Religion of
the individual - ‘attribute_residence‘: Residence of the individual - ‘attribute_ssn‘: Social security
number of the individual - ‘attribute_title‘: Title of the individual - ‘FAMC*: ID(s) of the family
where the individual is a child - ‘FAMS*: ID(s) of the family where the individual is a spouse

readWikifamilytree Read Wiki Family Tree

62 recodeSex

Description
Read Wiki Family Tree
Usage
readWikifamilytree(text = NULL, verbose = FALSE, file_path = NULL, ...)
Arguments
text A character string containing the text of a family tree in wiki format.
verbose A logical value indicating whether to print messages.
file_path The path to the file containing the family tree.
Additional arguments (not used).
Value

A list containing the summary, members, structure, and relationships of the family tree.

recodeSex Recodes Sex Variable in a Pedigree Dataframe

Description

This function serves as is primarily used internally, by plotting functions etc. It sets the ‘repair‘ flag
to TRUE automatically and forwards any additional parameters to ‘checkSex°.

Usage

recodeSex(
ped,
verbose = FALSE,
code_male = NULL,
code_na = NULL,
code_female = NULL,
code_unknown = NULL,
recode_male = "M",
recode_female = "F",
recode_unknown = "U",
recode_na = NA_character_

recodeSex 63

Arguments
ped A dataframe representing the pedigree data with a ’sex’ column.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
code_male The current code used to represent males in the ’sex” column.
code_na The current value used for missing values.
code_female The current code used to represent females in the ’sex’ column. If both are

NULL, no recoding is performed.

code_unknown The current code used to represent unknown or ambiguous sex in the ’sex’ col-
umn. Can be NA to indicate that missing values should be treated as unknown. If
NULL and both code_male and code_female are provided, values not matching
either will be inferred as unknown.

recode_male The value to use for males. Default is "M"
recode_female The value to use for females. Default is "F"
recode_unknown The value to use for unknown values. Default is "U"

recode_na The value to use for missing values. Default is NA_character_

Details

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and ’female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the "sex’ column
are preserved.

64 repairParentIDs
repairlIDs Repair Missing IDs
Description
This function repairs missing IDs in a pedigree.
Usage
repairIDs(ped, verbose = FALSE)
Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value
A corrected pedigree
repairParentIDs Repair Parent IDs
Description
This function repairs parent IDs in a pedigree.
Usage
repairParentIDs(
ped,

verbose = FALSE,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID"

repairSex 65

Arguments
ped A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
famID Character. Column name for family IDs.
personID Character. Column name for individual IDs.
momID Character. Column name for maternal IDs.
dadID Character. Column name for paternal IDs.
Value

A corrected pedigree

repairSex Repairs Sex Coding in a Pedigree Dataframe

Description

This function serves as a wrapper around ‘checkSex‘ to specifically handle the repair of the sex
coding in a pedigree dataframe.

Usage

repairSex(

ped,

verbose = FALSE,
code_male = NULL,
code_female = NULL,
code_unknown = NULL

)
Arguments
ped A dataframe representing the pedigree data with a ’sex’ column.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
code_male The current code used to represent males in the ’sex’” column.
code_female The current code used to represent females in the ’sex’ column. If both are

NULL, no recoding is performed.

code_unknown The current code used to represent unknown or ambiguous sex in the "sex’ col-

umn. Can be NA to indicate that missing values should be treated as unknown. If
NULL and both code_male and code_female are provided, values not matching
either will be inferred as unknown.

66 royal92

Details

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and *female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the ’sex’ column
are preserved.

See Also

checkSex

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
repairSex(ped, code_male = "M", verbose = TRUE)

End(Not run)

royal92 Royal pedigree data from 1992

Description

A dataset created by Denis Reid from the Royal Families of Europe.

Usage

data(royal92)

Format

A data frame with 3110 observations

simulatePedigree

Details

67

The variables are as follows:

¢ id: Person identification variable
e momID: ID of the mother
¢ dadID: ID of the father

* name: Name of the person

* sex: Biological sex

e birth_date: Date of birth
e death_date: Date of death

e attribute_title: Title of the person

simulatePedigree Simulate Pedigrees This function simulates "balanced" pedigrees
based on a group of parameters: 1) k - Kids per couple; 2) G - Number
of generations; 3) p - Proportion of males in offspring; 4) r - Mating
rate.
Description

Simulate Pedigrees This function simulates "balanced" pedigrees based on a group of parameters:
1) k - Kids per couple; 2) G - Number of generations; 3) p - Proportion of males in offspring; 4) r -

Mating rate.
Usage
simulatePedigree(
kpc = 3,
Ngen = 4,
sexR = 0.5,
marR = 2/3,

)

rd_kpc = FALSE,
balancedSex = TRUE,
balancedMar = TRUE,
verbose = FALSE,
personID = "ID",
momID = "momID",
dadID = "dadID",

spouselID = "spouselD”,
code_male = "M",
code_female = "F",

fam_shift = 1L

SimPed(...)

Arguments

kpc

Ngen

sexR

marR

rd_kpc

balancedSex
balancedMar
verbose
personID
momID

dadID
spouselD

code_male
code_female
fam_shift

Value

simulatePedigree

Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

Sex ratio of offspring. A numeric value ranging from O to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

Mating rate. A numeric value ranging from O to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

Not fully developed yet. Always TRUE in the current version.
Not fully developed yet. Always TRUE in the current version.
logical If TRUE, message progress through stages of algorithm
character. Name of the column in ped for the person ID variable
character. Name of the column in ped for the mother ID variable
character. Name of the column in ped for the father ID variable

The name of the column that will contain the spouse ID in the output data frame.
Default is "spID".

The value to use for males. Default is "M"

The value to use for females. Default is "F"

An integer to shift the person ID. Default is 1L.
Additional arguments to be passed to other functions.

A data. frame with each row representing a simulated individual. The columns are as follows:

» fam: The family id of each simulated individual. It is *fam1’ in a single simulated pedigree.

* ID: The unique personal ID of each simulated individual. The first digit is the fam id; the
fourth digit is the generation the individual is in; the following digits represent the order of the
individual within their pedigree. For example, 100411 suggests this individual has a family id
of 1, is in the 4th generation, and is the 11th individual in the 4th generation.

* gen: The generation the simulated individual is in.
¢ dadID: Personal ID of the individual’s father.
e momlID: Personal ID of the individual’s mother.

* spID: Personal ID of the individual’s mate.

* sex: Biological sex of the individual. F - female; M - male.

sliceFamilies 69

Examples

set.seed(5)
df_ped <- simulatePedigree(

kpc = 4,

Ngen = 4,
sexR = .5,
marR = .7

)
summary (df _ped)

sliceFamilies sliceFamilies

Description

Slices up families by additive relatedness, creating CSV files grouped by degree of relatedness.
Operates on a potentially large file by reading in chunks and binning links by additive relatedness.

Usage

sliceFamilies(
outcome_name = "AD_demo”,
biggest = TRUE,
bin_width = 0.1,
degreerelatedness = 12,
chunk_size = 2e+0@7,
max_lines = le+13,
addRel_ceiling = 1.5,
input_file = NULL,
folder_prefix = "data"”,
progress_csv = "progress.csv”,
progress_status = "progress.txt”,
data_directory = NULL,
verbose = FALSE,
error_handling = FALSE,
file_column_names = c("ID1", "ID2", "addRel”, "mitRel”, "cnuRel”)

Arguments

outcome_name Name of the outcome variable (used for naming input/output files)

biggest Logical; whether to process the "biggest" family dataset (TRUE) or all-but-
biggest (FALSE)

bin_width Width of additive relatedness bins (default is 0.10)

degreerelatedness

Maximum degree of relatedness to consider (default 12)

70 summarizeFamilies

chunk_size Number of lines to read in each chunk (default 2¢7)
max_lines Max number of lines to process from input file (default 1e13)
addRel_ceiling Numeric. Maximum relatedness value to bin to. Default is 1.5

input_file Path to the input CSV file. If NULL, defaults to a specific file based on ‘biggest*
flag.

folder_prefix Prefix for the output folder (default "data")

progress_csv Path to a CSV file for tracking progress (default "progress.csv")
progress_status
Path to a text file for logging progress status (default "progress.txt")

data_directory Directory where output files will be saved. If NULL, it is constructed based on
‘outcome_name* and ‘folder_prefix*.

verbose Logical; whether to print progress messages (default FALSE)

error_handling Logical. Should more aggressive error handing be attemptted? Default is false
file_column_names

Names of the columns in the input file (default c("ID1", "ID2", "addRel", "mitRel",
"cnuRel"))

Value

NULL. Writes CSV files to disk and updates progress logs.

summarizeFamilies Summarize the families in a pedigree

Description

Summarize the families in a pedigree

Usage

summarizeFamilies(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID"”,
matID = "matID"”,
patID = "patID”,
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
n_biggest = 5,
n_oldest = 5,
skip_var = NULL,

summarizeFamilies

five_num_summary = FALSE,
verbose = FALSE,
network_checks = FALSE

summariseFamilies(

ped,

famID = "famID",
personID = "ID",

momID = "momID",

dadID = "dadID",

matID = "matID"”,

patID = "patID",

byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
n_biggest = 5,

n_oldest = 5,

skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE,
network_checks = FALSE

71

)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
famID character. Name of the column to be created in ped for the family ID variable
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree
patID Character. Paternal line ID variable to be created and added to the pedigree
byr Character. Optional column name for birth year. Used to determine the oldest

lineages.

founder_sort_var

include_founder

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

n_biggest Integer. Number of largest lineages to return (sorted by count).
n_oldest Integer. Number of oldest lineages to return (sorted by birth year).
skip_var Character vector. Variables to exclude from summary calculations.

72 summarizeMatrilines

five_num_summary
Logical. If ‘TRUE®, includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

verbose Logical, if TRUE, print progress messages.

network_checks Logical. If “TRUE‘, performs network checks on the pedigree data.

See Also

[summarizePedigrees ()]

summarizeMatrilines Summarize the maternal lines in a pedigree

Description

Summarize the maternal lines in a pedigree

Usage

summarizeMatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
n_biggest = 5,
n_oldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE,
network_checks = FALSE

)

summariseMatrilines(

ped,

famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID”,
byr = NULL,

summarizeMatrilines 73

include_founder = FALSE,

founder_s
n_biggest
n_oldest
skip_var
five_num_
verbose =
network_c

Arguments
ped
famID
personlD
momID
dadID
matID
patID

byr

ort_var = NULL,
=5,

=5,

= NULL,

summary = FALSE,
FALSE,

hecks = FALSE

a pedigree dataset. Needs ID, momID, and dadID columns

character. Name of the column to be created in ped for the family ID variable
character. Name of the column in ped for the person ID variable

character. Name of the column in ped for the mother ID variable

character. Name of the column in ped for the father ID variable

Character. Maternal line ID variable to be created and added to the pedigree
Character. Paternal line ID variable to be created and added to the pedigree

Character. Optional column name for birth year. Used to determine the oldest
lineages.

include_founder

Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

founder_sort_var

n_biggest
n_oldest

skip_var

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

Integer. Number of largest lineages to return (sorted by count).
Integer. Number of oldest lineages to return (sorted by birth year).

Character vector. Variables to exclude from summary calculations.

five_num_summary

verbose

Logical. If ‘TRUE®, includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

Logical, if TRUE, print progress messages.

network_checks Logical. If “TRUE‘, performs network checks on the pedigree data.

See Also

[summarizePe

digrees ()]

74 summarizePatrilines
summarizePatrilines Summarize the paternal lines in a pedigree
Description
Summarize the paternal lines in a pedigree
Usage

summarizePatrilines(

)

ped,

famID = "famID",
personID = "ID",

momID = "momID",

dadID = "dadID",

matID = "matID"”,

patID = "patID",

byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
n_biggest = 5,

n_oldest = 5,

skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE,
network_checks = FALSE

summarisePatrilines(

ped,

famID = "famID",
personID = "ID",

momID = "momID",

dadID = "dadID",

matID = "matID",

patID = "patID”,

byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
n_biggest = 5,

n_oldest = 5,

skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE,
network_checks = FALSE

summarizePedigrees

Arguments
ped
famID
personID
momID
dadID
matID
patID

byr

75

a pedigree dataset. Needs ID, momID, and dadID columns

character. Name of the column to be created in ped for the family ID variable
character. Name of the column in ped for the person ID variable

character. Name of the column in ped for the mother ID variable

character. Name of the column in ped for the father ID variable

Character. Maternal line ID variable to be created and added to the pedigree
Character. Paternal line ID variable to be created and added to the pedigree

Character. Optional column name for birth year. Used to determine the oldest
lineages.

founder_sort_var

include_founder

n_biggest
n_oldest

skip_var

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

Integer. Number of largest lineages to return (sorted by count).
Integer. Number of oldest lineages to return (sorted by birth year).

Character vector. Variables to exclude from summary calculations.

five_num_summary

verbose

Logical. If ‘TRUE®, includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

Logical, if TRUE, print progress messages.

network_checks Logical. If “TRUE’, performs network checks on the pedigree data.

See Also

[summarizePedigrees ()]

summarizePedigrees Summarize Pedigree Data

Description

This function summarizes pedigree data, by computing key summary statistics for all numeric vari-
ables and identifying the originating member (founder) for each family, maternal, and paternal

lineage.

76
Usage
summarizePedigrees(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID”,
type = c("fathers"”, "mothers"”, "families"),
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
n_keep = 5,
n_biggest = n_keep,
n_oldest = n_keep,
skip_var = NULL,
five_num_summary = FALSE,
network_checks = FALSE,
verbose = FALSE
)
summarisePedigrees(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID"”,
matID = "matID"”,
patID = "patID”,
type = c("fathers”, "mothers”, "families"),
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
n_keep = 5,
n_biggest = n_keep,
n_oldest = n_keep,
skip_var = NULL,
five_num_summary = FALSE,
network_checks = FALSE,
verbose = FALSE
)
Arguments
ped
famID
personlD

a pedigree dataset. Needs ID, momID, and dadID columns

summarizePedigrees

character. Name of the column to be created in ped for the family ID variable

character. Name of the column in ped for the person ID variable

summarizePedigrees 77

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

matID Character. Maternal line ID variable to be created and added to the pedigree
patID Character. Paternal line ID variable to be created and added to the pedigree
type Character vector. Specifies which summaries to compute. Options: ‘"fathers"*,

on

mothers"*, ‘"families" ‘. Default includes all three.

byr Character. Optional column name for birth year. Used to determine the oldest
lineages.

include_founder
Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

founder_sort_var

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

n_keep Integer. Number of lineages to keep in the output for each type of summary.
n_biggest Integer. Number of largest lineages to return (sorted by count).

n_oldest Integer. Number of oldest lineages to return (sorted by birth year).
skip_var Character vector. Variables to exclude from summary calculations.

five_num_summary

Logical. If ‘TRUE", includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

network_checks Logical. If “TRUE‘, performs network checks on the pedigree data.

verbose Logical, if TRUE, print progress messages.

Details

The function calculates standard descriptive statistics, including the count of individuals in each
lineage, means, medians, minimum and maximum values, and standard deviations. Additionally,
if “five_num_summary = TRUE®, the function includes the first and third quartiles (Q1, Q3) to
provide a more detailed distributional summary. Users can also specify variables to exclude from
the analysis via ‘skip_var*.

Beyond summary statistics, the function identifies the founding member of each lineage based on
the specified sorting variable (‘founder_sort_var*), defaulting to birth year (‘byr‘) when available
or ‘personID* otherwise. Users can retrieve the largest and oldest lineages by setting ‘n_fooest‘ and
‘n_oldest‘, respectively.

Value

A data.frame (or list) containing summary statistics for family, maternal, and paternal lines, as well
as the 5 oldest and biggest lines.

78 validate_and_convert_matrix

traceTreePaths Trace paths between individuals in a family tree grid

Description

Trace paths between individuals in a family tree grid

Usage

traceTreePaths(tree_long, deduplicate = TRUE)

Arguments

tree_long A data.frame with columns: Row, Column, Value, id

deduplicate Logical, if TRUE, will remove duplicate paths

Value

A data.frame with columns: from_id, to_id, direction, path_length, intermediates

validate_and_convert_matrix
validate_and_convert_matrix

Description

This function validates and converts a matrix to a specific format.

Usage

validate_and_convert_matrix(
mat,
name,
ensure_symmetric = FALSE,
force_binary = FALSE

)

Arguments
mat The matrix to be validated and converted.
name The name of the matrix for error messages.

ensure_symmetric
Logical indicating whether to ensure the matrix is symmetric.

force_binary Logical indicating whether to force the matrix to be binary.

vech 79

Value

The validated and converted matrix.

vech vech Create the half-vectorization of a matrix

Description

vech Create the half-vectorization of a matrix

Usage

vech(x)

Arguments

X a matrix, the half-vectorization of which is desired

Details
This function returns the vectorized form of the lower triangle of a matrix, including the diagonal.
The upper triangle is ignored with no checking that the provided matrix is symmetric.

Value

A vector containing the lower triangle of the matrix, including the diagonal.

Examples

vech(matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2))

Index

+ datasets
hazard, 36
inbreeding, 38
potter, 56
royal92, 66
.adjBeta, 4
.adjDirect, 5
.adjIndexed, 6
.assignParentValue, 7
.computeTranspose, 8
.loadOrComputeIsChild, 8
.postProcessGedcom. legacy, 9

addParentRow, 9
addPersonToPed, 10
addRowlessParents, 11
allGens (calcAllGens), 15
applyTagMappings, 12

buildBetweenGenerations, 12
buildWithinGenerations, 14

calcAllGens, 15
calcFamilySize, 16
calcFamilySizeByGen, 16
calculateCIs, 17
calculateH, 18
calculateRelatedness, 19
checkIDs, 21
checkIDuniqueness, 21
checkParentIDs, 22
checkParentSex, 23
checkPedigreeNetwork, 24
checkSex, 25, 66
checkWithinRowDuplicates, 26
collapseNames, 27
com2links, 27, 28
comp2vech, 28
computeParentAdjacency, 29
countPatternRows, 31

80

createGenDataFrame, 31

determineSex, 32
dropLink, 33

evenlnsert (insertEven), 39

famSizeCal (calcFamilySize), 16
findBiggest, 33

findbiggest (findBiggest), 33
findOldest, 34

findoldest (findOldest), 34
fitComponentModel, 35

gc, 28,44, 46, 48, 50, 54
hazard, 36

identifyComponentModel, 37
inbreeding, 38
initializeRecord, 39
insertEven, 39

makeInbreeding, 40
makeTwins, 41
mapFAMS2parents, 42
markPotentialChildren, 42

parseNameline, 43
ped2add, 44
ped2ce, 45
ped2cn, 46

ped2com, 5, 6, 30, 45,47,47,49, 51-55

ped2fam, 49
ped2gen, 50
ped2graph, 51
ped2maternal, 52
ped2mit, 53

ped2mt (ped2mit), 53
ped2paternal, 55
postProcessGedcom, 56

INDEX

potter, 56 traceTreePaths, 78
prepSummarizePedigrees, 57

processEventLine, 58 validate_and_convert_matrix, 78
processParents, 59 vech, 79

readGed (readGedcom), 59

readGedcom, 59

readgedcom (readGedcom), 59
readWikifamilytree, 61

recodeSex, 62

related_coef (calculateRelatedness), 19
repairlDs, 64

repairParentIDs, 64

repairsSex, 65

royal92, 66

SimPed, 40

SimPed (simulatePedigree), 67

simulatePedigree, 67

sizeAllGens (calcFamilySizeByGen), 16

sliceFamilies, 69

summariseFamilies (summarizeFamilies),
70

summarisefamilies (summarizeFamilies),
70

summariseMatrilines
(summarizeMatrilines), 72

summarisematrilines
(summarizeMatrilines), 72

summarisePatrilines
(summarizePatrilines), 74

summarisepatrilines
(summarizePatrilines), 74

summarisePedigrees
(summarizePedigrees), 75

summarisepedigrees
(summarizePedigrees), 75

summarizeFamilies, 70

summarizefamilies (summarizeFamilies),
70

summarizeMatrilines, 72

summarizematrilines
(summarizeMatrilines), 72

summarizePatrilines, 74

summarizepatrilines
(summarizePatrilines), 74

summarizePedigrees, 75

summarizepedigrees
(summarizePedigrees), 75

	.adjBeta
	.adjDirect
	.adjIndexed
	.assignParentValue
	.computeTranspose
	.loadOrComputeIsChild
	.postProcessGedcom.legacy
	addParentRow
	addPersonToPed
	addRowlessParents
	applyTagMappings
	buildBetweenGenerations
	buildWithinGenerations
	calcAllGens
	calcFamilySize
	calcFamilySizeByGen
	calculateCIs
	calculateH
	calculateRelatedness
	checkIDs
	checkIDuniqueness
	checkParentIDs
	checkParentSex
	checkPedigreeNetwork
	checkSex
	checkWithinRowDuplicates
	collapseNames
	com2links
	comp2vech
	computeParentAdjacency
	countPatternRows
	createGenDataFrame
	determineSex
	dropLink
	findBiggest
	findOldest
	fitComponentModel
	hazard
	identifyComponentModel
	inbreeding
	initializeRecord
	insertEven
	makeInbreeding
	makeTwins
	mapFAMS2parents
	markPotentialChildren
	parseNameLine
	ped2add
	ped2ce
	ped2cn
	ped2com
	ped2fam
	ped2gen
	ped2graph
	ped2maternal
	ped2mit
	ped2paternal
	postProcessGedcom
	potter
	prepSummarizePedigrees
	processEventLine
	processParents
	readGedcom
	readWikifamilytree
	recodeSex
	repairIDs
	repairParentIDs
	repairSex
	royal92
	simulatePedigree
	sliceFamilies
	summarizeFamilies
	summarizeMatrilines
	summarizePatrilines
	summarizePedigrees
	traceTreePaths
	validate_and_convert_matrix
	vech
	Index

